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An exploratory study is made concerning the effect of memory of past
states on the dynamics of a kind of triplex number iterative map. Partic-
ular attention is paid to the case of the map generating the so-called
Mandelbulb set.

Mandelbrot and Mandelbulb1.

The Mandelbrot set [1] is a mathematical object constructed in the
complex plane. It is defined as the set of those points z ∈ ℂ for which

the orbit of 0, 0 under iteration of equation (1) is bounded:

zT+1  zT
n + zc. (1)

There is no three-dimensional analog of the two-dimensional space of
complex numbers [2], so that a canonical three-dimensional Mandel-
brot set does not exist. But in order to introduce the mathematical ob-
ject studied here, let us consider the polar form of a complex number
z  (ρ, θ), so that equation (1) becomes:

(ρ, θ)T+1  (ρ, θ)T
n + (ρc, θc) (2)

where it is

(ρ, θ)n  (ρn, nθ). (3)

The Mandelbulb [3] is a three-dimensional object constructed us-

ing spherical coordinates (ρ, θ, φ), using as the formula for the “nth

power” of a vector in 3 the extension of that in the complex plane
given by equation (3). Thus,

(ρ, θ, φ)n  (ρn, nθ, nφ). (4)

The Mandelbulb is then defined as the set of those points

(ρc, θc, φc) in 3 for which the orbit of 0, 0, 0 under iteration  of

equation (5) is bounded:

(ρ, θ, φ)T+1  (ρ, θ, φ)T
n+(ρc, θc, φc). (5)

This paper will focus on the quadratic map (n  2) in Section 3
and on the n  8 model in Section 4. Figure 1 shows the n  8 Man-
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delbulb  set,  which  exhibits  a  bulb-like  structure  with  fractal  surface
detail and a number of “lobes.” These features emerge, albeit at differ-
ent degrees, as soon as n > 3. Figure 1 is taken from [4], together with
[5]  considered  the  “official”  Mandelbulb  websites.  These  sites  also
provide  information  on  the  Juliabulb,  that  is,  the  mathematical  ob-
jects achieved by fixing the (ρc, θc, φc) point and allowing for the vari-

ation of (ρ0, θ0, φ0). We will not consider the Juliabulb here. 

Figure 1. Nylander’s n  8 Mandelbulb set taken from [4]. 

Memory2.

The  mapping  of  equation  (5)  may  be  endowed  with  explicit  memory
of past states in the form:

(ρ, θ, φ)T+1  ρ, θ, φT
n
+ (ρc, θc, φc), (6)

where  the  bars  in  the  first  summand  of  the  second  term  indicate  a
mean value of the values achieved for every coordinate across the dy-
namics. This kind of memory implementation enables the explicit con-
sideration of the memory of previous state values without altering the
original form of the transition rule equation (5).

We will consider here the effect of average memory with geometric

decay based on the memory factor α lying in the 0, 1 interval: 

ρT 
ρT +∑t1

T-1 αT-tρt

ΩT
, θT 

θT +∑t1
T-1 αT-tθt

ΩT
,

φT 
φT +∑t1

T-1 αT-tφt

ΩT
,

(7)

where  Ω  stands  for  the  sums  of  the  factors  considered;  that  is,

ΩT  1 +∑t1
T-1 αT-t.  The  choice  of  the  memory  factor  α  simulates
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the intensity of the memory effect: the limit case α  1 corresponds to
a memory with equally weighted records (full memory), whereas
α ≪ 1 intensifies the contribution of the most recent states (short-
term memory). The choice α  0 leads to the ahistoric model. This
kind of memory implementation will be referred to as α memory.

The length of the trailing memory may be limited to the last τ time
steps. In the lowest length of memory scenario, that is, with τ  2, the
equations (7) become:

ρT 
ρT + αρT-1

1 + α
, θT 

θT + αθT-1

1 + α
,

φT 
φT + αφT-1

1 + α
.

(8)

Equations (9) show the general form of τ  2 memory implementa-
tion (referred to as ϵ memory, 0 ≤ ϵ ≤ 1):

ρT  ϵρT-1 + 1 - ϵρT, θT  ϵθT-1 + 1 - ϵθT,

φT  ϵφT-1 + 1 - ϵφT.
(9)

The memory models of equations (8) and (9) are interchangeable

according to ϵ  α  1 + α if ϵ ≤ 1  2. The maximum memory charge

under equation (8), that is, α  1.0, corresponds to ϵ  0.5, leading
to the arithmetic mean of the last two state values. But levels  of
ϵ > 0.5 allow for a higher contribution of the past than of the present
state, which generates dynamics uncovered with τ  2 α memory.

This paper follows previous works on the effect of memory on real-
valued discrete dynamical systems [6], on maps in the complex plane
[7, 8], and on quaternionic maps [9, 10]. Incidentally, the quater-
nions, a noncommutative extension of the complex numbers to four
dimensions, do not induce the rich variety of detail one might expect,
given the detail seen in the conventional Mandelbrot set in ℂ. This
might explain, at least to some extent, why some recent formulations
(like the one treated in this paper) rely instead on manipulation of spa-

tial coordinates in 3.
All the simulations in this paper are run up to T  1000 or up to

divergence, precisely up to ρ reaching the breakout value δ  8.0.
Thus in the figures, red indicates the Mandelbrot set, blue indicates di-
vergence at an even time step number, and white indicates divergence
at an odd time step number.

Fortran code running with double precision in the mainframe men-
tioned in the Acknowledgments has been written to perform the com-
putations in this paper. The code also generates the portable pixel
maps (PPM) pattern images that are presented here in PDF format.
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n 2 Simulations3.

Figure 2  shows  two-dimensional  sections  of  the  type x, y, 0,

0, y, z, and x, 0, z of the n  2 Mandelbulb set with α and ϵ memo-

ries.  The  sections  shown  are  parallel  to  the  Cartesian  axes  and  cen-

tered in the origin, with extent -1.5, 1.5⨯-1.5, 1.5.

(a) (b)

(c)

Figure 2. Three  sections  of  the  n  2  Mandelbulb  set  with  α  memory.
(a):�z  0.0;  (b):  x  0.0;  (c):  y  0.0.  Color  code:  red  →  bounded  pixels
(Mandelbrot set); blue → divergence at an even time step number; white → di-
vergence at an odd time step number.

The x, y, 0 sections shown in Figure 2(a) correspond to the effect

of memory in the canonical  two-dimensional Mandelbrot set M, a sce-
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nario studied in [8]. As a result induced by the inertial effect that α
memory exerts, M (top-left section in each frame, i.e., under
α  0.00) grows in Figure 2 as α increases, so that it virtually occu-
pies the region bounded by the outer blue band, which in turn is not
very much altered, except on the left.

The effect of memory in the 0, y, z and x, 0, z sections shown in

Figure 2(a) and 2(c) is weaker than that exerted on the x, y, 0 sec-

tion with respect to the growing of the bounded region (red). Besides,

unlike in x, y, 0, the increase of α induces a notable effect in the

proximity of the bounded region, even with α  1.0, in the 0, y, z

and x, 0, z sections.

The quadratic map in a three-dimensional context has been studied
in [11, 12] using a kind of nondistributive scator algebra. Though this
scenario differs from that of the triplex number studied here, the gen-
eral form of the bounded region achieved with n  3 according to
equation (4) (not shown here) is reminiscent of that shown in [12].

Cartesian Coordinates3.1

The map of equation (5) may be expressed in terms of Cartesian
coordinates from the formulas that give the Cartesian coordinates
from the spherical ones:

x  ρ cos φ cos θ, y  ρ cos φ sin θ,

z  ρ sin φ.
(10)

Thus, for n  2 the formulas that give the Cartesian coordinates
are:

ρ2  x2 + y2 + z2
2
, x2 + y2  ρ2cos2φ,

sin2θ 
y2

ρ2
ρ2cos2φ 

y2

x2 + y2
,

x(2) ρ2 cos 2 φ cos 2 θ  ρ21 - 2 sin2 φ 1 - 2 sin2 θ 

ρ2 1 - 2
z2

ρ2
1 - 2

y2

x2 + y2
 x2 + y2 - z2

x2 - y2

x2 + y2
,

y(2) ρ2 cos 2 φ sin 2 θ  ρ21 - 2 sin2 φ 2 sin θ cos θ 

ρ2 1 - 2
z2

ρ2
2

x y

ρ2 cos2 φ
 2 x2 + y2 - z2

x y

x2 + y2
,

z(2) ρ2 sin 2 φ  ρ2 2 sin φ cos φ  2 ρ2
z

ρ

x2 + y2

ρ


2 z x2 + y2 .
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As a result, for n  2 we have:

xT+1  xT
2 - yT

2  1 -
zT
2

xT
2 + yT

2
+ xc,

yT+1  2xTyT 1 -
zT
2

xT
2 + yT

2
+ yc,

zT+1  2zT xT
2 + yT

2 + zc.

(11)

In turn, the map of equation (11) becomes with memory:

xT+1  xT
2 - yT

2  1 -
zT
2

xT
2 + yT

2
+ xc,

yT+1  2xTyT 1 -
zT
2

xT
2 + yT

2
+ yc,

zT+1  2zT xT
2 + yT

2 + zc.

(12)

The  square  root  in  the  z  component  of  equation  (11)  implies  the
possibility  of  considering  its  positive  or  negative  value.  Here  we  have
taken the positive one, that is, the so-called positive z component vari-
ation  in  [4].  The  reader  unfamiliar  with  hypercomplex  numbers
should  also  be  warned  that  the  formulas  for  the  square  of  (x, y, z)  in
equation  (11)  are  not  achieved  by  squaring  the  quaternion  (x, y, z, t)
and projecting on the (x, y, z) subspace via t  0. In fact, the formula

is  x + yi + zj + tk2  x2 - y2 - z2 - t2 + xyi + 2xzj + 2xtk,  so  that

making t  0 gives (x + yi + zj)2  x2 - y2 - z2 + 2xyi + 2xzj. The lat-

ter is referred to as the quadratic formula in [13]. 
When  n is  odd,  the  equations (11)  become  rational polynomials  in

the three coordinates. Thus, for n  3 the formula is:

z(2)  ρ3sin3φ  ρ3sin2φ + φ 

ρ3sin2φcosφ + cos2φsinφ 

2z x2 + y2 x2 + y2 + x2 + y2 - z2z  z3x2 + 3y2 - z2.

And consequently,

xT+1  xT
3zT

2 - xT
2 + yT

2 xT
2 - 3yT

2 

xT
2 + yT

2
+ xc,

yT+1  yT
3zT

2 - xT
2 + yT

2 3xT
2 - yT

2 

x2 + yT
2

+ yc,

zT+1  zT3xT
2 + yT

2  - zT
2  + zc.

(13)
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Note  that  φ  in  equation  (10)  stands  for  the  latitude  (like  in  the
usual  geographic  coordinate  system).  If  φ  stood  for  the  colatitude,  it
would be: 

x  ρ sin φ cos θ, y  ρ sin φ sin θ,

z  ρ cos φ.
(14)

The  cosine  variation  in  [4]  based  on  the  transformations  in  equa-
tion  (14)  makes  a  distorted-looking  quadratic  Mandelbulb  set,  but  it
yields  nice-looking  higher-order  Mandelbulb  sets  [4].  Memory  in-
duces a much greater alteration on the Mandelbulb set achieved using
the  cosine  variation  compared  to  that  shown  here  according  to  the
transformations in equation (10). 

n 8 Simulations4.

This  section  deals  with  the  most  relevant  n  choice  in  the  ahistoric
model,  that  of  n  8.  The  figures  in  this  section  show  two-dimen-
sional  sections  of  the  three-dimensional  long-term  dynamics  with  α

and ϵ memories.
Figures  3  and  4  show  two-dimensional  sections  with  one  of  the

Cartesian  coordinates  equalized  to  zero.  Contrary  to  the  expectation
from Section 3, the area of the bounded regions is not significantly al-
tered  with  α  memory  in  the  sections  of  Figure  3.  Neither  is  the  form
of  the  bounded  region  dramatically  altered  in  Figure  3,  albeit  in  the

x, y, 0  scenario  (Figure  3(a))  the  seven  isolated  bulbs  detectable  in

(a) (b)

Figure 3. (continues).
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(c)

Figure 3. Three  sections  of  the  n  8  Mandelbulb  set  with  α  memory.
(a)�z  0.0; (b): x  0.0; (c): y  0.0. Color code as in Figure 2. 

the  ahistoric  dynamics  (α  0)  merge  with  the  core  of  the  bounded

region  to  generate  a  kind  of  hepta-star  when  α ≥ 0.5.  In  the  x, 0, z

scenario  (Figure  3(c)),  a  kind  of  shrink  and  drift  to  the  left  of  the
bounded  region  may  be  appreciated  as  α  increases.  The  same  conclu-
sion is reached with ϵ memory in Figure 4, as the area and form of the
bounded  region  are  not  notably  altered  as  ϵ  increases.  Recall  that  the
scenario of ϵ  0.5 coincides with that of τ2 α  1.0 memory. 

(a) (b)

Figure 4. (continues).
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(c)

Figure 4. Three sections of the n  8 Mandelbulb set with ϵ memory.
(a):�z  0.0; (b): x  0.0; (c): y  0.0. Color code as in Figure 2.

Figures 5 and 6 show two-dimensional sections of the n  8 Man-
delbulb set with one of the Cartesian coordinates equalized to 0.5.
The effect of memory in Figure 5 is comparable to that in Figure 3,
though with particular characteristics, such as that the bulbs in the

ahistoric dynamics in the x, y, 0 scenario (Figure 3(a)) become more

enhanced (Figure 5(a)) instead of becoming merged with the core  of

the bounded region, and no drift is found in the x, 0, z (Figure�5(c))

section. In turn, the effect of memory on Figure 6 is roughly

(a) (b)

Figure 5. (continues).
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(c)

Figure 5. Three  sections  of  the  n  8  Mandelbulb  set  with  α  memory.
(a):�z  0.5; (b): x  0.5; (c): y  0.5. Color code as in Figure 2. 

similar  to  that  in  Figure  4.  In  Figure  6,  the  values  of  ϵ  in  the

0.5, 0.80 interval seem to preserve (or even increase) the complex be-

havior in the proximity of the bounded region. Let us call attention to
the  particular  case  in  both  Figure  4  and  Figure  6  of  ϵ  0.7,  a  mem-

ory factor close to the center of the 0.5, 1.0 interval that weights the

past more heavily than the last state value. 

(a) (b)

Figure 6. (continues).
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(c)

Figure 6. Three  sections  of  the  n  8  Mandelbulb  set  with  ϵ  memory.
(a):�z  0.5; (b): x  0.5; (c): y  0.5. Color code as in Figure 2. 

Figures 7 and 8 show two-dimensional sections of the n  8 Man-
delbulb  set  with  one  of  the  Cartesian  coordinates  equalized  to  1.0.

Those  are  fairly  outer  sections,  far  from  0, 0, 0,  and  consequently

the  areas  of  the  bounded  regions  are  small  compared  to  those  with
the Cartesian coordinates equalized to 0.0 or to 0.5. In the case of the
x  1.0  section  (top  right)  the  bounded  region  is  empty;  that  is,  the
section  is  out  of  the  Mandelbulb  set  in  the  ahistoric  dynamics,

(a) (b)

Figure 7. (continues).
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(c)

Figure 7. Three  sections  of  the  n  8  Mandelbulb  set  with  α  memory.
(a):�z  1.0; (b): x  1.0; (c): y  1.0. Color code as in Figure 2. 

whereas with α memory (Figure 7), a few red-marked pixels appear as
soon  as  α  0.1,  increasing  for  higher  values  of  this  memory  factor.

The x  1.0 section gets a nonempty bounded region in the 0.5, 0.7

interval of ϵ in Figure 8. 

(a) (b)

Figure 8. (continues).
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(c)

Figure 8. Three sections of the n  8 Mandelbulb set with ϵ memory.
(a):�z  1.0; (b): x  1.0; (c): y  1.0. Color code as in Figure 2.

Volume and Center of Gravity4.1

As  reported in the brief account given in [14], the Mandelbulb set is
not  mathematically well explored. Thus, for example, it seems to be
connected like the Mandelbrot set, but this has not been mathemati-
cally proven yet. Even the simple issue of its volume has not been
properly tackled so far. We have performed an estimation of the vol-
ume of the Mandelbulb by simple pixel counting. In the α memory
scenario (Figures 3, 5, 7), that is, with the memory factor increasing
as  α  0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, the volume increases as
V  2.256, 2.271, 2.315, 2.523, 2.962, 3.152, 3.334, 3.698, 3.951.
Whereas in the ϵ memory scenario (Figures 4, 6, 8), that is, with the
memory factor increasing as ϵ  0.0, 0.50, 0.55, 0.60, 0.65, 0.70,
0.80, 0.90, 0.95, the volume varies as V  2.256, 2.690, 2.665,
2.593, 2.448, 2.298, 2.113, 2.100, 2.190. The quadratic model gives
a flat-looking Mandelbrot set (as may be seen in [4]). Memory in-
duces its expansion as indicated by the increase of its volume in the
context of Figure 2: V  0.278, 0.304, 0.332, 0.377, 0.583, 0.697,
1.245, 2.100, 2.349. In the ϵ memory scenario (Figures 4, 6, 8), the
notable growth of the volume in the Mandelbulb set with higher val-
ues of α is not apparent in the sections shown in Figure 2, particularly
with respect to the y  0 section.

Figure 9 graphs the increase of the volume of the Mandelbulb
as �a function of the memory charge α. The volumes reported in the
preceding paragraph are plotted together with those for α  0.4
and α  0.8. The actual values of the volume are blue, and the
fitted values are green. Figure 9(a) deals with the n  8 scenario
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of �Figures  3,  5,  7,  where  the  fitting  equation  plotted  is

V(α)  2.256 + 0.7α + 0.7α2.  This  linear  plus  quadratic  equation  fits
the volume for high memory charges (α ≥ 0.8) very well, albeit overes-
timates  V  for  low  alpha  (α < 0.3)  and  underestimates  V  for
0.3 < α < 0.8.  Figure  9(b)  deals  with  the  n  2  scenario  of  Figure  2,

in  which  case  the  fitting  equation  V(α)  0.278 + α2
 works  very  well

up  to  α ≤ 0.6  but  heavily  underestimates  V  for  α > 0.6.  Conse-

quently,  V(α)  0.278 + α2 + α  has  been  adopted  as  the  fitting  equa-
tion  for  α > 0.6  in  Figure  9(b),  as  providing  higher  good  estimations
of V. 

(a) (b)

Figure 9. Volume  of  the  Mandelbulb  as  a  function  of  the  memory  charge  α.
Actual  values  are  blue  and  fitted  values  (see  text)  are  green.  (a):  n  8  sce-
nario of Figures 3, 5, 7. (b): n  2 scenario of Figure 2. 

The  center  of  gravity  of  the  n  8  Mandelbulb  set  stays  at

0.0, 0.0, 0.0 in all the simulations run in this study, regardless of the

memory types and charges implemented in them. In the n  2 simula-
tions  reported  in  Figure  2,  the  xg  and  zg  coordinates  of  the  center  of

gravity stay at 0.0 regardless of memory, but its y coordinate varies as
yg  -0.065,  -0.048,  -0.019,  -0.019,  0.015,  0.044,  0.079,  0.175,

0.130; thus, it slowly increases its value as α increases. 

Conclusion and Future Work5.

This paper provides an initial exploratory study of the effect of mem-
ory  of  past  states  on  the  dynamics  of  triplex  number  iterative  maps.
Two-dimensional  slices  parallel  to  the  xy,  xz,  and  yz  planes  are
shown in this study in order to assess the effect of memory in a fairly
qualitative manner.
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Further  study  of  the  effect  of  memory  on  triplex  number  iterative
maps  is  due  in  at  least  two  directions:  (i)  a  more  detailed  scrutiny  of
the geometry, and (ii) mathematical foundation. 

Concerning  geometry,  three-dimensional  visualization  [15–22]  and
printing  [23]  tools  implementing  ad  hoc  rendering  and  illuminating
techniques  need  to  be  enriched  to  deal  with  memory.  Once  three-
dimensional tools are available, the study of point trajectories will be
feasible in graphic terms, so that a deeper study of technical aspects of
the  Mandelbulb  with  memory,  such  as  the  investigation  of  Misi-
urewicz points or the construction of an infinitely sized directed graph
of points connected to other points, will be feasible. 

The  mathematical  foundation  task  does  not  seem  easy:  nonlinear
dynamics  with  memory  in  the  hypercomplex  space  appears  to  de-
mand,  let  us  say,  unconventional  mathematics.  Let  us  point  out  that
fractional  calculus  has  been  applied  in  the  analysis  of  discrete  maps
with memory [24]. Fractional calculus extends the definition of deriva-
tive  and  integral,  allowing  for  noninteger  orders.  According  to  the
Riemann–Liouville  fractional  approach,  the  definition  of  the  integral
of  order  α  is  reminiscent  of  the  form  of  the  equations  (7),  which  is
central to the application of fractional calculus to the study of systems
with memory. 

In  another  vein,  the  memory  scheme  adopted  here  may  be  altered
in  many  ways.  Let  us  mention  two  possible  variants.  First,  the  equa-
tions  (5)  may  be  endowed  with  memory  in  just  one  or  two  coordi-
nates,  not  in  the  three  implemented  in  equation  (6).  Thus,  for  exam-
ple, with memory only in the ρ coordinate it would be: 

(ρ, θ, φ)T+1  ρ, θ, φT
n
+ (ρc, θc, φc). (15)

Another  variation  may  be  that  of  computing  the  transition  rule
equation  (5)  first  and  then  implementing  memory  of  such  points.
Namely, to compute first: 

(ρ*, θ*, φ*)T  (ρ, θ, φ)T
n + (ρc, θc, φc)

and then

(ρ, θ, φ)T+1  ρ*, θ*, φ*T.

These variants in memory implementation induce in turn particular
alterations in the Mandelbulb set (as they do in the Mandelbrot set in
the  complex  plane  [7,  25]),  which  are  to  be  examined  in  subsequent
studies. 

In  the  short  term  we  plan  to  examine  (with  and  without  memory)
the effect of convergence criteria alternative to those adopted to gener-
ate  the  Mandelbub  set,  that  is,  the  Euclidean  criterion  ρ < δ.  In  par-
ticular,  we  are  interested  in  the  convergence  criterion  adopted  in  the

A Glimpse of the Mandelbulb with Memory 123

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.2.109



so-called  biomorphs  [20,  26],  based  on  the  bounding  of  the  coordi-
nates, that is, either x < δ, y < δ, or z < δ. 

To the best of our knowledge, this kind of triplex number iterative
map  in  equation  (5)  has  not  been  properly  studied  in  the  academic
context since its emergence in 2009. We hope that this paper might en-
courage  the  fractals  community  to  investigate  its  properties,  particu-
larly those interested in three-dimensional fractals [27], as proper frac-
tal features might emerge in the dynamics with memory. Of particular
interest might be not necessarily adopting exactly the iterative mecha-
nism of equations (4) and (5), but some of the variants of it presented
in [4], such as, for example, the power n being a real number instead
of an integer. 
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