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Thomas C. Schelling showed that global aggregation may occur, even if
it does not correspond to agent preferences; thus, to some extent his
model supported the view that segregation is unavoidable, whatever the
tolerance is. The segregation landscape approach proposed in this pa-
per is seriously weakening this hypothesis; here, we radically change the
perspective and propose using the landscape metaphor to represent
emergent segregated communities. A segregation landscape is a map-
ping from situated individuals into an extra dimension that represents
the degree of segregation of everyone. This paper uncovers how to inter-
pret hills and valleys, and whether these interpretations are congruent
with the intuitive notion of frontier. Such a representation allows us to
describe both the static properties of a segregation space and their im-
pact on how information propagates between segregated communities.
In order to assess the explanatory power of the landscape metaphor, we
devise agent-based simulations. First, we establish the link between the
micro-level quantified by individual tolerance and the macro-structure
represented by the landscape, then we show how “geographic” proper-
ties impact the dynamical behavior on such a population landscape.

Introduction1.

The general context of this paper is that of modeling spatial segrega-
tion in order to understand, as Schelling said, how “people who differ
conspicuously in binary groups—e.g. blacks and whites, males and fe-
males […]—get separated spatially, in residence, in dining halls, at
public events” [1]. Tolerance determines the local level of individual
behavior, while aggregation characterizes the resulting global level  of
the entire population. Individuality and aggregation constitute impor-
tant topics in complex systems research, as they represent facets  of
emergence, a core concept deemed a “central and constructive player
in our understanding of the natural world” [2]. While much research
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has looked at social phenomena through a two-dimensional perspec-
tive, this paper makes use of the landscape metaphor to represent the
degree of segregation undergone by each individual.

This metaphor has been essayed in different forms during recent
years [3–5]. The motivation to use it is that three-dimensional land-
scapes provide a richer mapping between the static properties of segre-
gated populations and geographical concepts that everyone intuitively
understands. In addition, although it is assumed that individuals are
equivalent, the metaphor also provides insights into the different roles
that each one has over the emerging social aggregates. In essence, we
address the following scientific question, “when aggregates emerge
from local segregationist behaviors, do individuals really play an
equal role?”

As people get together, a concept of particular interest is that of the
frontier. In order to recognize the unity of an aggregate of individuals,
one must be able to distinguish between its interior and its exterior;
this is where the concept of frontier becomes relevant. The classical
scenario sees frontiers as geographical boundaries between two con-
tiguous territorial systems (e.g., river, mountain range). The primary
role of a frontier is to separate (e.g., a defense system is aimed at keep-
ing enemies away); however, absolute separation is an ideal and, in
reality, this is complemented by exchange (e.g., in the form of infor-
mation flow). Frontiers can be described in terms of their varying
separation–exchange tradeoff.

The segregation landscape metaphor we propose allows us to de-
scribe both the static properties of the system and their influence on
how information propagates between segregated communities. One
fundamental issue is to link these two points of view by determining
how “geographic” properties rely on original properties and how they
influence the dynamical process of information flow.

The paper is structured as follows. In Section 2, we present a sim-
ple model of spatial segregation that will serve as a framework for
our study. Section 3 defines the concepts of segregation landscape,
frontier, and segregation walk; in addition, we identify the basic prop-
erties of such a landscape. Section 4 provides experimental results; we
use a multiagent environment to study the influence of the level of tol-
erance on landscape and frontier features. In Section 5 we offer our
conclusion and hints for future research.

A Generic Model of Segregation2.

The generic model of segregation we use was first proposed in [6]. We
consider a set of agents immersed in a world composed of spatial loca-
tions. Apart from its own location, an agent is characterized by its
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type  attribute,  which  remains  constant  over  time.  All  agents  with  the
same type are part of the same community.

Proximity Network versus Agent Network2.1

The perception of an agent spans only the set of locations adjacent to
it, which represent its local neighborhood. A location is either vacant
or occupied by one agent. Let V be the set of vacant locations and A
the set of agents; as there is up to one agent per location, the density
of agents is the ratio

δ 
A

A + V
.

The  proximity  network  defines  the  arrangement  or  interconnectiv-
ity  of  locations.  Two  locations  are  connected  by  an  edge  if  they  are
neighbors. The degree of a location node, that is, the number of edges
that connect it to other locations, is named its proximity degree. 

Overlying  the  proximity  network  is  the  agent  network.  Its  nodes
are the agents, and two agents are in direct contact if they are located
in  adjacent  locations;  a  proximity  network  edge  can  be  seen  as  a
shared  communication  channel.  While  the  proximity  network  is
static,  as  agents  can  move,  the  agent  network  evolves  over  time.  We
call  agent  degree  (denoted  as  ada(t))  the  number  of  connections  the

agent network a has to other agent networks at time t; it is a measure
of the local influence of the agent within the agent network. 

Tolerance and Individual’s Satisfaction2.2

We assume that the level of tolerance is shared by all agents and is rep-

resented by a constant floating number τ in the range 0..1. The state

of  an  agent,  satisfied  or  unsatisfied,  is  time  dependent;  it  depends  on
the  tolerance  and  on  its  own  type  and  the  type  of  its  neighbors.  For
each  agent  a  at  time  t,  the  Boolean  indicator  satisfied  is  defined  as

satisfieda(t)  1 - sa(t) ≤ τ,  where  sa(t)  is  the  ratio  of  the  number

of  neighbors  with  similar  type  to  the  agent  degree.  (Let  us  note  that
obviously an isolated agent is satisfied.) So the tolerance τ denotes the
threshold under which an agent is satisfied. A tolerance of 0.5 means
that  each  agent  accepts  at  most  half  of  its  neighbors  to  be  different
from  itself.  The  agents  are  said  to  be  intolerant  if  τ ≪ 0.5  and  rather
tolerant if τ ≫ 0.5. 

Micromotive versus Macrobehavior2.3

Agent behavior is oriented toward achieving and maintaining satisfac-
tion:  an  unsatisfied  agent  is  motivated  to  move  toward  another  loca-
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tion, whereas a satisfied one has no incentive to move. We assume
that an unsatisfied agent uses the eulogy to fleeing rule [7] to find a
new place: a location is randomly chosen from the world and the
agent moves into it if and only if the location is vacant. If all the
agents are satisfied at the same time, the eulogy to fleeing rule has no
effect, and the system has reached a fixed-point configuration. In this
paper, we do not discuss the conditions that guarantee that the system
converges toward equilibrium; we select system conditions in which
equilibrium will be reached. The parameters of the segregation model
are summarized in Table 2 (columns 1 and 2).

Schelling-like Model2.4

Schelling’s checkerboard model of residential segregation has become
one of the most cited and studied models in many domains, such as
economics and sociology [8–12]. It is also one of the predecessors  of
agent-based computer models [13].

In Schelling’s initial work [14], the starting point is that the individ-
ual’s satisfaction depends on tolerance and on the size and the social
composition of the neighborhood. Global aggregation is measured as
the average over the entire population of local information [15–17]
where, for each individual ai, the information is the measure of simi-

larity si regarding its neighbors; let us note that such a metric is

closely related to the dissimilarity index used in the demographic liter-
ature [18]. Schelling showed that global aggregation may occur even
if it does not correspond to agent preferences, that is, even if tolerance
is high; thus, to some extent his model supported the assumption that
segregation is unavoidable whatever the tolerance is.

In [6], the authors show that the Schelling model can be viewed as
an instance of the generic model of segregation. One only needs to as-
sume that the proximity network is a two-dimensional regular grid
and the neighborhood of an agent is composed of the eight nearest
cells surrounding it (for each location, the proximity degree is 8). In
addition, the eulogy to fleeing rule has already been used within
Schelling’s models, leading toward equilibrium states where correla-
tion between tolerance and global aggregation underlined by Schelling
is confirmed [7].

Segregation Landscape3.

In evolutionary biology and combinatorial optimization, a fitness
landscape is a way of visualizing a problem [3, 5, 19]. In such a land-
scape, the altitude represents the fitness; there are peaks, and the high-
est peak is the best solution regarding fitness adaptation or optimiza-
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tion. Depending on the number of peaks, fitness landscapes can be
described as rugged or smooth.

In sociology or geography, the usual way of visualizing the forma-
tion of communities is to look at the two-dimensional space in which
the agents move. In this paper, we propose to supplement this view by
the more informative segregation landscape. The segregation land-
scape provides a third dimension that expands the two-dimensional
human and physical geography; such a dimension represents for each
agent its distance to the opposite community, meaning that to an ex-
tent, the altitude represents the degree of segregation. This approach
differs from the classical definition of segregation based on informa-
tion located in the vicinity of each individual regarding its type and
the type of its neighbors [15–17].

In the following, in order to specify the metaphor of segregation
landscape, we introduce the concepts of segregation index, segrega-
tion shape, and frontier.

Segregation Index3.1

For each agent ai in one community C, the segregation index σ is its

distance to the opposite community C:

σ(ai)  min
j
dai, aj aj ∈ C, (1)

where d is the Euclidean distance between two agents. Intuitively,
peaks will correspond to high σ values, while coasts will correspond
to low values.

In formal terms, the segregation landscape consists of three ingredi-
ents: (i) the set of agents A; (ii) a notion of neighborhood represented
by the grid proximity network; and (iii) the segregation function σ:

SL  A, gPN, σ. (2)

Let us note that whenever an agent moves, this affects not only the
neighborhood it leaves, but also the one it arrives in, and conse-
quently, the segregation index of all agents with which the agent
“interacts” may change. This implies that as long as there are unsatis-
fied individuals, the segregation landscape may change over time. In
the following, we will look at the landscape when all the agents have
become satisfied.

Segregation Shape3.2

Maintaining the landscape metaphor, we match recognizable emer-
gent shapes to concepts such as peaks, valleys, contour lines, coasts,
and watersheds (Table 1).
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Geography Segregation Landscape
peak most segregated agents 
valley agents for which all the neighbors have 

a higher segregation index
contour lines agents with almost equal segregation index
coast agents closest to the opposite community
watershed agents for which the coast of the neighbors 

is far away from their own coast 

Table 1. Mapping between geography and segregation landscape.

This way, they gain the following semantic: 

Peaks are the agents most distant from the opposite community; that is,
the agents for which all the neighbors have a lower segregation index.

1.

Valleys are the agents for which all the neighbors have a higher segrega-
tion index; from an optimization point of view, peaks and valleys are lo-
cal optima.

2.

Contour lines are sets of agents with equal or almost equal segregation
index.

3.

Coasts are the agents closest to the opposite community and so the less
segregated; to some  extent, they foreshadow the  proximity of the fron-
tier between the two communities.

4.

Watershed contains agents for which the coast of the neighbors may be
far away from their own coast. 

5.

Let  us  note  that  with  the  classical  two-dimensional  view,  there  is
no structured organization inside a community, and everyone is play-
ing  the  same  role,  so,  in  a  way,  from  a  landscape  perspective  each
community  stands  on  a  large  plateau.  As  a  consequence,  two-dimen-
sional  models  do  not  match  the  reality  very  well;  for  instance,  two
individuals that are located next to each other, on both sides of a wa-
tershed,  are  equivalent,  whereas,  if  we  have  to  take  into  account  the
way  information  propagates  to  the  opposite  community,  their  behav-
iors differ in a significant way. 

Figures 1 and 2 illustrate the geographic features on one particular
segregation  landscape  generated  using  an  agent-based  simulation.  To
facilitate  understanding,  the  third  dimension  allows  us  to  show  only
one  community  (the  other  agents  remain  on  the  ground).  Each  figure
illustrates  only  one  feature,  and  the  corresponding  agents  are  plotted
as “person.” 

174 P. Collard and T. Ghetiu

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.3.169



(a)

(b)

Figure 1. Geography vs. segregation landscape: (a) peaks and (b) valleys.
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(a)

(b)

Figure 2. Geography  vs.  segregation  landscape:  (a)  contour  lines  and
(b) watershed.

Frontier3.3

A  frontier  is  a  generic  concept  that  has  different  instantiations,
depending  on  the  context  in  which  it  is  considered.  A  common  class
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of frontiers is found in the geographical domain where they appear as
fronts.

Specifics of This Paper Regarding the Concept of Frontier3.3.1

Before presenting our approach, it is necessary to clarify its position
beside our previous works. In [6], we revisited the concept of frontier
in the context of the Schelling model, now seen as the set of locations
where contact occurs between two agents of opposite types. We con-
sidered two kinds of contact: direct contact refers to agents being
directly linked in the agent network, whereas indirect contact is medi-
ated through a vacant location. Two types of proximity networks
were considered: grid and scale free. The frontier represents structure
that both determines the borderland between two aggregates of oppo-
site types and allows communication between them.

The present study differs from this previous effort in the following
aspects: (i) the proximity network is a grid only; (ii) we consider di-
rect contacts only; (iii) the frontier is defined according to the segrega-
tion index; (iv) we consider the likelihood that a signal emitting from
one agent crosses the frontier and reaches the other community; and
(v) we underline the fact that agents on the frontier are not all equiva-
lent.

Definitions3.3.2

The above points lead to the following definitions.

◼ Referrer. One agent r is a referrer if and only if there is at least one
other agent a in the opposite community, such that d(a, r)  σ(a). We

will denote as RC(t) the subset of C of all the referrers for community C

at time t. Let us note that one agent can have more than one referrer, so
the set Ra of referrers of an agent a in community C is

argminr∈Cd(a, r).

◼ Basin of attraction. The basin of attraction of a referrer r in community

C is the set of agents a in the opposite community C for which r is a re-

ferrer: B(r)  a ∈ C r ∈ Ra.

◼ Scope. The scope of a referrer is the size of its basin of attraction:
scope(r)  B(r).

◼ Gate. A referrer r is said to be a gate if there is at least one other agent
a in the opposite community such that d(a, r)  1; in such a case, there
is a direct contact between r and one agent in the other community; un-
der these circumstances, the agent a is positioned at a global minimum
in the segregation landscape. We will refer to the set of all the gates for

community C at time t as GC(t); let us note that GC ⊂ RC ⊂ C.
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◼ Frontier. Assuming that all the individuals have become satisfied, we de-
fine the frontier FC of a community C as the set of referrers in the oppo-

site community: FC  RC(∞).

Overview3.4

Figure 3 provides qualitative views on two extreme segregation land-
scapes where, in both cases, all the agents have become satisfied. In or-
der to facilitate comprehension and to avoid confusion between the
two communities, we chose to represent all the agents in only one
community (see small “arrows” in Figure 3), whereas from the other
community we depicted only the referrers—the size of a referrer is
proportional to its scope (see “persons” in Figure 3). A key point is
that the segregation landscape metaphor shows that agents on the
frontier are not all equivalent: there are agents with a high scope,
while others have only small basins of attraction. As we will detail in
Section 4, the former play a central role for disseminating information
between communities.

(a) Intolerant agents (τ  0.25)

(b) Tolerant agents (τ  0.63)

Figure 3. Segregation landscape: one community (“arrow”) and its frontier
(“person”); δ  90%.
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How to Characterize a Segregation Landscape3.5

To enable consistent comparisons between various kinds of segrega-
tion landscapes, we must take into account both static and dynamic
properties. In the following, we define what we mean by global segre-
gation index, roughness, frontier size and thickness, scope distribu-
tion, and penetrability.

Global Segregation Index3.5.1

First of all, we define the global segregation index σ as the local segre-
gation index averaged over all the population.

Landscape Ruggedness3.5.2

To synthesize landscapes with tunable ruggedness, Kauffman [20] pro-
posed the NK models, where the ruggedness increases with parameter
K from a single-peaked landscape to a multi-peaked landscape: walks
to local optima become shorter as K increases [21]. In the following,
we will show that in our model tolerance plays a role similar to that
of the K parameter. Although ruggedness of a three-dimensional land-
scape is an intuitive notion, we use several quantitative measures to
probe alternative facets of this characteristic.

◼ Local roughness. We define the local roughness of a segregation
landscape as the root mean squared difference between the segregation
index of an agent and that of its neighbors, averaged over all the popu-
lation [22]:

rg(SL) 
1

A

i

1

adi

j1

adi

σ(ai) - σaj
2 , (3)

where aj is a neighbor of ai. As defined, the roughness of a smooth land-

scape will be small, while that of a rugged landscape will be high.

◼ Minima ratio. This ratio corresponds to the fraction of minima in the
landscape. According to the segregation index σ, we will denote as

Cσ
min the set of local minima in the community C.

◼ Peak ratio. The ratio of peaks is the number of agents with no fitter
neighbors divided by the total number of agents.

Frontier3.5.3

The frontier can be characterized according to the following aspects:

◼ Relative size. We define the relative size of the frontier F as the number
of referrers divided by the total number of agents:

rs(F) 
2F

A
. (4)
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◼ Thickness. The thickness of the frontier is the mean distance to the op-
posite community over all the referrers: 

th(F) 
∑i
F σ(ri)

F
, (5)

where  ri ∈ F.  Let  us  note  that  the  lowest  value  for  thickness  is  1  and

would be reached only in the situation in which each referrer is a gate.

◼ Scope distribution. As they differ by their scope, the referrers are not all
equivalent:  while  some  have  a  big  basin  of  attraction,  others  refer  only
to  a  few  agents  in  the  opposite  community.  So  the  scope  distribution
can give some insight into such a differentiation. 

Penetrability3.5.4

The notion of penetrability has been used in psychology, physics, and
geography. It is the quality of being penetrable by people, light, infor-
mation,  and  so  on  [23–25].  One  of  the  most  interesting  and  still  not
completely  understood  phenomena  happening  in  social  networks  is
their  ability  to  spread  units  of  information  (e.g.,  rumors  or  cultural
contents); in the context of segregation, the question is whether a sig-
nal emitting from one community can reach the other one. We define
penetrability  as  the  likelihood  that  a  signal  emitting  from  one  agent
reaches  the  edge  of  the  frontier,  then  crosses  the  frontier  and  finally
reaches the other community.

In  order  to  pass  through  the  frontier,  we  assume  that  information
must follow a segregation walk in the basin of attraction of a gate [4].
We  name  segregation  walk  any  process  by  which  a  piece  of  informa-
tion  passes  from  agent  to  agent,  depending  on  segregation.  Such  a
process  looks  like  water  from  rain  descending  the  line  of  minimum
gradient  in  a  geographical  landscape.  The  information  crosses  the
landscape, each step being assumed to lead to an improvement of the
system  against  segregation.  Assuming  that  all  the  agents  are  satisfied,
their  behavior  is  based  on  the  act  of  passing  information  closer  and
closer to the frontier; by continuing this process over many iterations,
the information will eventually end up on a local minima from a segre-
gation  index  perspective.  Let  us  note  that  we  assume  that  each  agent
knows which of its neighbors, if any, are the less segregated. 

We  define  the  theoretical  penetrability p  of  the  segregation  land-
scape as the ratio between the sum of all gate scopes and the number
of agents: 

pSL 
∑G scope(g)

A
, (6)

where g is a gate and scope(g) is its scope. Obviously, this measure de-
pends  both  on  the  number  of  gates  and  on  the  scope  distribution  for
the gates.
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Simulation and Experimental Results4.

Experiments are performed via the NetLogo multi-agent pro-
grammable environment [26]. The pseudocode for simulating the
model is defined in Algorithm 1. All the qualitative results we present
are averaged over 100 runs. Simulations are performed on an L⨯L lat-
tice of locations, with L set to 100. The grid is a toroid where the top
and bottom edges, as well the left and right edges, are connected to
each other. We set the density of agents to 90%, which is a standard
value for which the Schelling model converges. Agents are positioned
in a random initial configuration, such that the vacant locations and
the two types of agents are well mixed.

Name Parameter Value
N world size 10000
δ agent density ]0;1]
τ tolerance [0;1]
type type number 2
PN proximity network grid
AN agent network -

Table 2. Simulation: global parameters.

Name Parameter
type the type
(xcor, ycor) the spatial position
satisfied? the satisfaction
referrer the referrer
σ the segregation index

Table 3. Simulation: agent parameters.
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Algorithm 1. Simulation of the simple model of segregation.

Geography versus Tolerance4.1
Observation4.1.1

Overhead views. To provide an overall view of the landscape, we con-
sider  two  representative  runs  with  two  extreme  cases  for  the  toler-
ance. Obviously, we examine the landscape at the end of the process,
when  all  the  agents  are  satisfied.  (To  ensure  convergence,  values  for
the tolerance are above 0.20.) In Figure 4, the tolerance is set to 0.25,
while it is 0.63 in Figure 5: in both cases, the top represents the land-
scape,  while  the  bottom  represents  the  frontier  only.  Representing
links  between  each  agent  and  its  referrer  allows  us  to  see  the  variety
of referrers’ basins of attraction. 

For intolerant agents, the dynamics lead to the emergence of spatial
homogeneous patterns (Figure 4(a, b)) isolated by a no-man’s-land of
vacant nodes (Figure 4(c, d)), but as tolerance increases, communities
fragment  further  (Figure  5(a,  b)),  and  we  observe  that  the  smooth
shape becomes more complex, as in a real landscape when roughness
dictates many meanders to the edge of a lake (Figure 5(c, d)). 
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(a) Landscape (b) Close-up from (a)

(c) Frontier (d) Close-up from (c)

Figure 4. Segregation landscape: view from above. Intolerant agents
(τ  0.25).

(a) Landscape (b) Close-up from (a)

Figure 5. (continues).
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(c) Frontier (d) Close-up from (c)

Figure 5. Segregation landscape: view from above. Tolerant agents (τ  0.63).

Global segregation. Figure 6 shows the value reached at conver-
gence by the global segregation index, according to the level of toler-
ance. The graph represents a decreasing “S”-shaped curve, whose in-
flection point roughly coincides with neutral tolerance. As tolerance
increases toward its maximum, the global segregation index decreases
toward its minimum value 1, which means that the two communities
are fully mixed. In addition, let us note that the variance decreases
with tolerance; this confirms that intolerant micromotives lead to the
emergence of large patterns of individuals belonging to the same com-
munity (Figure 4(a)).

Figure 6. Global segregation vs. tolerance.

Roughness. Figure 7 shows that: (i) roughness (equation (3)) in-
creases with tolerance—with a particularly rapid rate of growth be-
tween 0.04 and 0.198 when τ increases from 0.25 to 0.5: roughness
reaches its high values as soon as tolerance is above neutrality; and
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(ii) the number of extrema in the landscape actually increases with tol-
erance—it follows an S-curve between two extreme values: for intoler-
ant agents, there are less than 10% of minima and 1% of peaks,
while with tolerant agents, almost 90% of them are local minima and
70% are peaks.

Figure 7. Roughness vs. tolerance.

Discussion4.1.2

Qualitative observations of the segregation indexes for the same com-
munity show that individuals are not all equal with regard to segrega-
tion. As tolerance increases, the global segregation index decreases,
whereas the shape of the landscape becomes more rough and the fron-
tier more complex. Knowledge of this “geography” is important as
long as the population is subject to segregation optimization: the form
determines the likelihood of reaching other agents more or less segre-
gated. So tolerance is a key parameter, and its variation determines
the roughness; tunable ruggedness captures here the intuition that the
number of local “hills and valleys” can be adjusted via changes in tol-
erance; the geography depends on what people’s tolerance is: few
“hills” with large “valleys” for intolerance and strong ruggedness for
tolerance. Nevertheless, quantitative measures show that tolerance sig-
nificantly impacts roughness for values below 0.5 only.

Frontier versus Tolerance4.2
Observation4.2.1

Frontier size and thickness. Figure 8 gives quantitative results on the
shape of the frontier: as tolerance increases, we observe that the size
increases, while the thickness decreases. In addition, the size reaches a
plateau (~62% of the total population) as soon as the tolerance is

above 0.8, whereas the thickness reaches a plateau t ≃ 1 as soon as

the tolerance is above 0.5.
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Figure 8. Frontier in a segregation landscape: size and thickness vs. tolerance.

Frontier scope distribution. Figure 9 shows the frontier scope distri-
bution for intolerant and tolerant individuals. For intolerant agents,
the log–log plot (Figure 9) shows a reasonably consistent linear curve,
which reveals that the distribution approximately follows a power
law with a long tail. For tolerant agents, plotting the log of the num-
ber of referrers with a given basin size vs. the basin size yields a
straight line (Figure 9), so the distribution decrease is exponential.

(a) log–log axis (τ  0.25) (b) normal–log axis (τ  0.63)

Figure 9. Scope distribution power law decrease vs. exponential decrease.

Discussion4.2.2

Qualitative observations show that the complexity of contours in-
creases as agents become more and more tolerant. Intolerant agents
lead to a short no-man’s-land frontier; such an impervious structure
with a high thickness and low size limits the possibility of direct com-
munication between opposite agents (Figure 4). In the opposite case,
if agents are tolerant, thickness reaches its minima and size is maxi-
mum; the frontier looks like a Peano line (Figure 5).
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In [27], Goles et al. proposed a criterion called energy, by analogy
with spin-glass systems, that represents the full states of all the agents:

E  -
1

2

ai∈A

ei⨯ 
aj∈Ni

ej, (7)

where Ni is the neighborhood of agent ai, and ∀ ai, aj ∈ A2,

eiej  +1 if ai and aj are in the same community and -1 elsewhere.

The authors show that as the system converges, the energy decreases
until reaching a level that is linearly correlated to the perimeter of the
interface between the two communities. So it is interesting to know
whether or not this is still the case with our definition of frontier. To
test the statistical significance of the association between energy
(equation (7)) and size (equation (4)), we conduct a regression anal-
ysis. (Experiments’ values are averaged over 100 runs.) We establish
the following regression equation for size on energy:
rsτ ≃ rs1 + 0.1414⨯Eτ, where the τ subscript refers to tolerance,

comes with a correlation coefficient close to 0.995. (If all the agents
are maximally tolerant, i.e., τ  1, the energy E1 is close to 0.) This

result appears to confirm that the landscape metaphor is well suited
to determine whether or not an agent stands on the interface between
the two communities.

Experimental results show that the (relative) size is not in  itself
enough to characterize the frontier well; to be clearly understood,
such a “complex object” requires deeper analysis. Indeed, we have to
take into account: (i) the relative importance of the referrers; and
(ii)�its thickness.

Each referrer distinguishes itself by its basin of attraction. The dis-
tribution of the size of the basin of attraction is highly reliant on the
level of tolerance: for intolerant agents the number of referrers having
a certain scope is found to decrease as a power of the size of the
basin; it would look similar to an exponential decay, but the tail does
not decay as quickly, leaving very large basins still being possible:
there are large numbers of referrers with low scope and nevertheless
some with high scope. As a consequence, there is not a characteristic
value for the distribution. For tolerant agents, the distribution de-
crease is exponential: there are many referrers with a small basin of at-
traction and very few with a large basin. Finally, thickness must also
be  taken into consideration, and we observe that tolerance signifi-
cantly impacts this measure only for values below 0.5.

Penetrability versus Tolerance4.3

Let  us remember that we have defined penetrability as the likelihood
for  information spreading from one agent to reach the edge of the
frontier and then to pass through the frontier. With the aim of predict-
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ing  what  should  happen,  equation  (6)  proposes  a  theoretical  defini-
tion  of  penetrability  based  on  the  size  of  the  basins  of  attraction  for
the gates. On the other hand, experimental probability will be a result
of  trials  that  test  predictions,  and  we  must  do  a  sufficient  number  of
dynamic  penetrability  tests  to  see  how  often  information  crosses  the
frontier.

Theoretical penetrability. Figure 10 shows that both the theoretical
penetrability (equation (6)) and the number of gates increase with tol-
erance.  As  tolerance  increases,  the  number  of  gates  roughly  follows  a
steady growth from 0.02 to 0.64. As tolerance increases from 0.25 to
0.5,  penetrability  quickly  increases  from  0.39  to  1,  then  a  high
plateau with the maximum value of 1 is reached. The difference in the
increase can be explained by the scope distribution, which follows, ac-
cording to the tolerance, either a power law or an exponential decay.
All this indicates that the number of gates itself is not sufficient to ex-
plain  penetrability  well,  and  we  really  have  to  also  take  into  account
the scope of the gates. In other words, as tolerance increases, there is
not  only  a  quantitative,  but  also  a  fundamentally  qualitative  change
for the gates. 

Figure 10. Penetrability and gate ratio vs. tolerance.

Experimental  penetrability.  As  the  previous  results  are  based  only
on  a  theoretical  formula,  to  complement  validation  of  the  landscape
metaphor,  we  conduct  penetrability  tests  (Algorithm  2).  Each  agent
can  have  two  possible  states:  informed  or  susceptible.  (We  use  the
term  susceptible  in  reference  to  the  SI  epidemic  model  [28],  meaning
“susceptible  to  become  infected”—a  susceptible  agent  is  not  infected,
but  has  the  potential  of  being  so.)  Whatever  the  nature  of  informa-
tion, virus, rumor, or opinion is, only an informed agent can transmit
the  signal.  Assuming  that  the  goal  is  to  reach  the  frontier,  the  move-
ment  of  propagation  toward  the  opposite  community  can  be  seen  as
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moving downhill, since, at any time, a less segregated condition is
preferable to a more segregated one: the lower the segregation index,
the nearer to the opposite community the agent is.

The penetrability test (Algorithm 2) is executed as follows. First,
the segregation walk is initialized by “informing” a randomly chosen
agent a0. The information is then passed from the agent to one of its

nearest neighbors that has a lower segregation index. Iteratively, the
walk terminates as soon as the signal reaches an agent ak that is a lo-

cal minimum. Finally, the test succeeds if there is a gate g in the oppo-
site community such that d(ak, g)  1. As the objective is to approach

the likelihood for the information to reach an agent of the opposite
group, we applied the penetrability test a large number of times
(10 000) in order to get the ratio of success. The root mean square de-
viation between the theoretical penetrability given by equation (6)
and the ratio of success of penetrability tests is very low, in the order
of 0.01 (Figure 10). This result appears to confirm that the segrega-
tion landscape is a complementary approach to determine the penetra-
bility of the frontier. The main reason is that the landscape metaphor
allows us to distinguish on the frontier between hubs and agents
barely connected.

���������������������������������������

����������������������������������� ∈ �

� ← �

������������� ∈ �σ
�������

������������������������������������������������+��

������������+� ∈ ������σ(��+�) < σ(��)

� ← � + �

��������� 

������ �(��� ��)  �

������: �� ∈ �σ
���

Algorithm 2. Penetrability test.

Conclusion and Future Work5.

Our understanding of the segregated world has been shifted toward a
landscape-oriented three-dimensional world. This  allows us to high-
light the underlying community  structure induced by segregating
behaviors. This  new point of  view  allows us to refine the concept  of
frontier using that of referrer-agents that  can or cannot act as gates
through which  information may pass from  one  community to the
other.
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The benefits of this approach are multiple: while the two-dimen-
sional view already represents a metaphor for social segregation, the
three-dimensional view expands our conceptual capabilities by facili-
tating the mapping between emerging segregation shapes and recogniz-
able features such as hills, valleys, watersheds, and so on. Further-
more, additional metrics can be applied, such as landscape roughness,
frontier scope distribution, and others.

One of the more significant findings to emerge from this study is
that in fact, agents differ greatly from one place to another. While pre-
vious works on Schelling-like models consider that all the agents
within a community are equivalent, from a landscape perspective
some of them play a critical role; for instance, two individuals that
are located next to each other and on both sides of a watershed are
not equivalent, provided that they are acting to propagate informa-
tion to the opposite community.

In relation with the concept of frontier, we identified the role of re-
ferrer, differentiating agents inside segregated groups from those situ-
ated on the frontier. According to its neighborhood in the opposite
community, a referrer can be a gate through which information
passes in or out of the segregated group to which it belongs. The
power of the metaphor lies in such storytelling: the image of informa-
tion going through hilly landscapes, from one community to the
other, helps to efficiently communicate the complex mechanics of so-
cial segregation.

Schelling showed that global aggregation may occur even if it does
not correspond to agent preferences; thus, in some way his model sup-
ports the assumption that global segregation is unavoidable whatever
the tolerance is. Moving from the classical averaged local dissimilarity
index to the segregation index metric, the segregation landscape ap-
proach changes the point of view and is seriously weakening this hy-
pothesis: (i) studying correlation between tolerance and landscape
roughness, we show that tolerance seriously impacts the emergent
shape only when tolerance is low (Figure 7); (ii) studying the frontier
properties, we show that thickness is high only if tolerance is below
0.5 (Figure 8); and (iii) considering the flow of information through
the landscape, the notion of gate, and the size of the basins of attrac-
tion, we show that the scope distribution differs considerably between
low and high tolerance (Figure 9) and penetrability is low only when
tolerance is below 0.5 (Figure 10).

In the future, we plan to further the present work in the following
ways: (i) study the impact of various strategies (random or targeted)
in order to control or prevent penetrability of the frontier; and (ii) use
the three-dimensional metaphor to study the dynamic that leads to
the emergence of a fixed-point landscape that will be satisfactory for
everyone.
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