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This  paper  continues  and  extends  the  earlier  works  by  the  author  on  a
novel model of a complex dynamical system called a kinetic automaton.
The  primary  goal  of  the  paper  is  to  introduce  an  alternative  tensor-
based method of modulation and to demonstrate that it not only signifi-
cantly  enhances  the  tunability  of  the  model  and  the  complexity  of  its
behavior, but also  is able to emulate  many other discrete-time continu-
ous-state dynamical systems. The paper provides the results of the inves-
tigation  of  spatio-temporal  patterns  arising  under  different  modes  or
parameters  of  modulation  in  elementary  (one-dimensional)  kinetic  au-
tomata. Special attention is given to quantity conservation, which is the
most salient feature of the model. 

Introduction1.

This paper continues and extends the earlier works by the author on a
novel  model  of  a  complex  dynamical  system  called  a  kinetic  automa-
ton, or kinon for short.

The  first  paper  [1]  introduced  a  novel  numerical  algorithm,  called
conservative  rank  transform  (CRT),  in  which  not  quantities  as  such
but  their  relative  values  (ranks)  are  transformed,  and  the  total  quan-
tity does not change after transformation. This method has become a
guiding  principle  and  computational  kernel  for  the  introduced  kinon
model,  defined  as  a  reflexive  dynamical  system  with  active  transport.
The model can be considered as the generalization of the lattice Boltz-
mann model (LBM) [2], which is not restricted to the Boltzmann equa-
tion  and  a  regular  grid.  The  key  element  of  the  model,  making  its
properties  and  dynamics  different  from  the  LBM,  is  a  collision  step,
which was transformed into a three-step operator: encoding, modula-
tion,  and  decoding.  It  was  demonstrated  that  different  spatio-tempo-
ral patterns found in Turing two-component systems can arise in one-
component  networks  of  kinetic  automata  consisting  of  five  structural
modules:  an  encoder,  a  modulator,  a  decoder,  a  propagator,  and
storage.
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In a subsequent paper [3], devoted primarily to the problem  of
morphogenesis, encoder and decoder blocks were augmented by the
incorporation of four new structural elements similar to electronic
analog filters. It was shown that these relatively small enhancements
dramatically increase the tunability of the model and the complexity
of its behavior, endowing the model with the ability to produce spatio-
temporal patterns, which can be attributed to the process of morpho-
genesis in real biological and physical systems. The main idea behind
that paper was to demonstrate that anisotropic diffusion, usually re-
garded as anomalous, in fact is quite ubiquitous and can be harnessed
in morphogenetic engineering and robotics.

This paper is dedicated entirely to modulation, which is a key step
in the kinon model, shaping most of its unusual properties. Although
the CRT method, used as a computational kernel in the basic model,
proved to be elegant and expressive, it is only one among many possi-
ble transformation techniques. The primary goal of this paper is to in-
troduce a novel tensor-based method of modulation and to show that
the extended modulator, augmented by a new structural element
called a kinetic tensor, is able not only to enhance further the tunabil-
ity and complexity of the model, but also to emulate many other dis-
crete-time continuous-state dynamical systems. The comprehensive
study of tensor modulation is far beyond the scope of a single paper,
so it will be investigated initially from a phenomenological point  of
view, that is, by the identification and classification of spatio-tempo-
ral phenomena arising as a consequence of different modes or parame-
ters of modulation in elementary (one-dimensional) kinetic automata.
Special attention will be given to quantity conservation, which is the
most salient feature of the model.

Background2.

The noun modulation has several meanings. It always involves some
kind of deliberate modification or change. The Latin root, modula-
tionem, has a musical meaning: rhythm, singing and playing, or
melody. Thus, in music, modulation refers to a change in stress, pitch,
loudness, or tone of the voice. In electronics and telecommunications,
modulation is the variation of a property of an electromagnetic wave
or signal, such as amplitude, frequency, or phase. In the kinon model
[1, 3], modulation designates the transformation of a vector of input
ranks {R} into a vector of output rates {ℛ}, carried out by a respective
block called a modulator (Figure 1).

Quantity conservation in the model is achieved due to encoder and
decoder blocks, which are absent in other complex dynamical sys-
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Figure 1. Kinon state-transition diagram.

tems, including the LBM. According to Rosen’s modeling relation [4],
they  are  proxies  between  a  natural  system  (the  neighborhood  of
the  kinon)  and  a  formal  one  (the  internal  kinetic  model  implement-
ed by a modulator). They carry out two tasks: the conversion of abso-
lute  (raw)  values  into  their  relative  (abstract)  form  and  the  conser-
vation  of  the  total  quantity  during  a  modulation  step.  Formally,
kinetic  transformation  is  a  one-to-one  structure-preserving  mapping

R :Qk+1 → Qk+1,  with  the  following  master  equation  (equation  of
balance): 


i=1

k

Ii -Oi = ΔS, (1)

where Ii, Oi, and S are inputs, outputs, and storage, respectively.

This  equation  implies  that  apart  from  topological  invariance
(nodes may have different valance), the model permits stateless kinons
without storage. In this case, the right-hand side of equation (1) is al-
ways  zero  (ΔS = 0)  and  all  collisions  are  elastic;  that  is,  the  sums  of
the inputs and outputs are equal. This is analogous to Kirchhoff’s cir-
cuit  laws,  with  the  difference  that  kinon  links  are  bidirectional.  In
stateful  kinons,  collisions  are  inelastic  in  general �(ΔS ≠ 0).  Equa-
tion�(1) is consistent with the conservation law and the kinetic theory,
which was the reason for naming the model a kinetic automaton. Like
the LBM, the model is relational and quantity conservative, because it
was  designed  to  be  able  to  simulate  real  physical  phenomena,  for  in-
stance, fluid dynamics. 
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Quantity  conservation  entails  additional  computational  costs,  but
the price for that is not as high as it may seem. The evolutionary steps
for  a  one-dimensional  network  with  a  periodic  boundary  in  continu-
ous  cellular  automata  (CCA)  [5]  and  coupled  map  lattices  (CML)  [6]
can  be  implemented  in  the  Wolfram  Language  with  just  one  line  of
code.  The  basic  kinetic  automaton  (BKA)  needs  a  few  extra  lines  of
code (Figure 2).
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Figure 2.  The  Wolfram  Language  code  for  evolutionary  steps  in  one-dimen-
sional CCA, CML, and BKA.

Since  quantity  is  preserved  via  storage  by  gathering  and  scattering
blocks  during  encoding  and  decoding,  modulation  does  not  need  to
be  conservative.  In  the  CRT  method,  all  components  of  the  rank
vector  {R}  with  a  unit  sum  are  mapped  independently,  so  the  output
vector  {ℛ}  generally  does  not  have  a  unit  sum.  Therefore,  any  vector-
to-vector transformation can be used for modulation. In other words,
a  modulator  can  be  treated  as  a  black  box  transforming  multiple  in-
puts into conjugate outputs.

Motivation3.

In multilinear algebra, a black box metaphor can be applied to a ten-
sor  that  takes  in  one  collection  of  numbers  and  outputs  a  different
one.  To  a  great  extent,  this  paper  was  inspired  by  the  concept  of  the
response tensor originally presented in the context of irreversible ther-
modynamics  by  Richardson  [7].  Later,  it  was  demonstrated  that  all
linear  phenomenology  of  irreversible  thermodynamics,  dubbed  phe-
nomenological  calculus,  could  be  applied  to  a  large  class  of  complex
dynamical systems and derived from three simple postulates [8]:
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Postulate  1. ���� �������������� ��� ���� ������� �{��} ������� ����� �� ������� ����

�����������������������������������������������������������������������������

�������������������������������������������������������������������������

Postulate  2.  The  system  dynamics  are  characterized  phenomenologi-

cally by the response tensor R = aiFi.

Postulate 3. The response tensor R is invariant under coordinate trans-
formations in description space.

It  was  posited  that  if  the  dissipation  function  of  the  system  is  de-

rived in the form δ = Fi . �
i
 (Einstein summation notation), then the re-

sultant fluxes (or effects), denoted �i, are given phenomenologically as
a linear function of the conjugate set of forces (or causes):

�i = Lij�j, (2)

where Lij = ai . aj are the elements of a metric tensor. 

In the kinon model, generalized forces {Fi}, generated by fluxes Ji

and  a  metric  tensor  Lij,  correspond  to  input  ranks  Rj,  output  rates

ℛi,  and  a  modulator  Mij,  respectively,  so  a  modulation  step  can  be

written algebraically as follows:

ℛi = MijRj. (3)

Thus, a modulator can be regarded as a metric tensor transforming

covariant input ranks Rj into contravariant output rates ℛi.

A black box abstraction can also be applied to artificial neural net-
works  (ANN)  [9],  which  can  be  exemplified  by  a  single-layer  feed-
forward neural network consisting of perceptrons (Figure 3(a)). With-

Figure 3. Neural networks: (a) perceptrons and (b) associative memory.
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out  thresholding  f  and  biasing  b,  it  represents  a  linear  associative
memory, usually called a Kohonen network [10] (Figure 3(b)). It asso-
ciates  the  output  vector  with  the  input  one  via  a  fully  connected,
weighted  bipartite  graph,  which  can  be  calculated  by  the  inner  (dot)
product  of  the  weight  matrix  W  and  the  input  vector,  so  the  weight
matrix W is fully analogous to the response tensor. 

Tensor Modulation4.

The  tensor  approach  allows  capturing  the  behavior  of  a  system  with-
out  knowing  its  internal  structure,  so  it  can  be  applied  to  a  wide
range of complex dynamical systems, and the kinon model in particu-
lar. In order to demonstrate this, a modulator, containing only kinetic
maps  for  each  port,  was  augmented  by  a  kinetic  tensor  that  trans-
forms  the  covariant  vector  of  ranks  into  a  contravariant  form  before
transforming  it  via  a  kinetic  map.  Schematically,  the  kinetic  tensor
can be implemented by a set of fully interconnected splitters and cou-
plers, which are highlighted by a peach color in Figure 4.

Figure 4. Tensor modulator.

It  is  easy  to  notice  the  equivalence  of  the  kinetic  tensor  to  a  linear
associative  memory  and  the  close  resemblance  of  a  tensor  modulator
to a single-layer neural network. In accordance with their names, split-
ters  split  input  values  among  the  couplers  according  to  the  assigned
weights,  while  couplers  just  couple  (sum)  them  up.  The  result  of  this
rearrangement  (“entanglement”)  fully  corresponds  to  the  inner  (dot)
product of the input vector R and the weight matrix W. The assigned
weights represent the components of the kinetic tensor. Thus, a tensor
modulator  consists  of  a  kinetic  tensor  and  a  set  of  kinetic  maps  for
each port. 
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This considerably improves the tunability of modulation, but raises
the problem of dimensionality. A one-dimensional modulator has
three ports (one for storage and two for neighbors), so the kinetic ten-
sor will have nine (3⨯3) components. In higher dimensions, the num-
ber will grow polynomially. One of the most attractive features of the
kinon model is its ability to be tuned by a single parameter of the ki-
netic map, which seems to be lost in tensor modulation. One of the
possible solutions to the problem is parametric tensor construction,
described in the following.

Although tensor components are independent of each other, one
can dramatically reduce the parameter space by imposing interdepen-
dencies among them. This approach is used in CML, where coupling
coefficients have a unit sum and are defined by a single parameter
ε�[6]:

xn+1(i) = 1 - εf(xn(i)) +
ε

2

j=1

N

f(xn(j)). (4)

Similarly, one can use an arbitrary binary matrix as a template,
which can be converted into a real-valued one by the substitution
(fuzzification) of zeros and units with a real-valued coefficient

ε ∈ 0, 1: 0 → ε, 1 → 1 - ε. It corresponds to the coupling coeffi-

cient in CML, so can be called a coupling rate, but also a fuzzy rate,
or a fuzzifier.

This method can be used for the construction of kinetic tensors  of
any rank and dimension. Low-dimensional tensors can be enumerated
by integer numbers, similar to transition rules in elementary cellular
automata (ECA) [11], by the flattening of tensor components into
binary strings and converting them into a shorter decimal form. Three-
by-three tensors can be encoded by three-digit octal numbers, in
which digits represent corresponding rows of the tensor. Therefore, a
kinetic tensor can be denoted as τ(ε), where τ stands for a tensor code
and ε for a fuzzy rate, which can be omitted when it is equal to zero.
For example, the code 421 represents the identity kinetic tensor with
a zero fuzzy rate. A tensor modulator with the identity tensor is equiv-
alent to a basic modulator containing only kinetic maps.

Some kinetic tensors, which can be called conservative, have a re-
markable property that the inner (dot) product of any vector with
them does not change the sum of the vector. It is important for the ki-
non model, because quantity conservation is its main requirement. It
is  rather obvious that it takes place when all vectors wi in Figure 4

have a unit sum of components. It corresponds to the matrix W, in
which all columns have a unit sum. Tensor modulation with a conser-
vative kinetic tensor and the identity kinetic map f(x) = x does not
need encoding and decoding steps for quantity conservation. In this
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case,  the  basic  kinon  model  can  be  reduced  into  a  minimalistic  kinon
model (MKA), containing only three modules: a propagator (P), stor-
age  (S),  and  a  tensor  modulator  (M)  (Figure  5(a)).  Using  a  category
theory  notation  adopted  for  the  description  of  the  kinon  model  [3],
the  MKA  algorithm  can  be  represented  by  the  categorical  diagram
shown in Figure 5(b). For a one-dimensional network with a periodic
boundary, the evolutionary MKA step can be implemented by a single
line of Wolfram Language code (Figure 5(c)).

(a) (b)

������������������������������������������������������

�������������������������������������

������������������������������������������������������������

(c)

Figure 5.  MKA:  (a)  schematic  diagram,  (b)  categorical  diagram,  (c)  Wolfram
Language code.

In fact, the MKA is equivalent to the LBM and can be used for its
implementation,  because  both  models  are  conservative.  When  the  re-
quirement  of  quantity  conservation  is  eliminated,  this  model  can  be
used for the emulation of CCA and CML as well. With the appropri-
ate  settings  of  the  kinetic  tensor  τ(ε)  and  the  kinetic  map  f,  they  can
be emulated by the MKA, which will be demonstrated in the next sec-
tion. While the basic kinon model is a generalization of the LBM, the
MKA  can  be  regarded  as  a  generalization  of  CCA  and  CML.  Hence,
the kinon model can serve as a unifying framework for a broad range
of discrete-time continuous-state dynamical systems.

Results5.

Following  the  long-established  tradition  to  study  complex  dynamical
systems  with  elementary  (one-dimensional)  models,  only  the  simplest
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one-dimensional kinon network will be considered here. It consists of
101 kinons connected in a ring. The total quantity available in the net-
work Ω is equal to 50, which is equivalent to the average value 0.5 in
a  homogeneous  state  visualized  as  a  gray  color  in  a  grayscale  image.
Evolution  of  the  network  starts  either  from  a  singular  configuration
when only the central kinon has nonzero storage equal to Ω, or a ran-
dom  configuration  where  Ω  is  distributed  randomly  in  a  unit  range

0, 1  among  the  kinon  storages.  By  default,  the  basic  kinon  model

(BKA) will be used, unless another (MKA) is specified.

Classification of Behavioral Patterns5.1

Despite  different  state  spaces  (continuous  versus  discrete),  the  behav-
ior of elementary kinon networks is very similar to ECA; therefore, it
can be classified in a similar way. The most well-known classification
system of ECA dynamics includes four classes [12]:

Class I. Tends to a spatially homogeneous state.

Class II. Yields simple stable or periodic structures.

Class III. Exhibits chaotic aperiodic behavior.

Class IV. Yields complicated localized structures.

Li  and  Packard  iteratively  refined  Wolfram’s  scheme  and  distin-
guished six classes [13, 14]. Roughly, class 1 corresponds to Wolfram
class  I,  classes  2,  3,  and  4  constitute  class  II,  class  5  is  equivalent  to
class  III,  and  class  6  is  class  IV.  Li–Packard  classification  is  based  on
the differences in various statistical measures applied to asymptotic be-
havior,  which  is  more  convenient  for  the  analysis  of  the  kinon  net-
work dynamics, so it will be adopted here.

The  phenomenology  of  pure  tensor  modulation,  that  is,  with  the
identity  kinetic  map  and  binary  kinetic  tensors  (ε  is  equal  to  zero),
will  be  considered  first.  There  are  512  binary  3⨯3  tensors,  which  are
encoded by three-digit octal numbers denoting corresponding rows of
the  matrix  with  a  prefix  for  the  initial  state:  random  (r)  and  singular
(s).  All  tensors  are  grouped  according  to  Li–Packard  classification  in
Table 1 and listed in Appendix A. 

Initial State Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Random 278 188 21 21 3 1

Singular 257 192 38 14 3 8

Table 1. Li–Packard classification of 512 binary 3⨯3 tensors.

The  most  characteristic  or  interesting  examples  of  each  class  are
shown  in  Figures  6–11,  where  the  upper  row  displays  the  evolution
during the first 200 steps, the middle one represents the decimated im-
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ages (1:101) of 10000 evolutionary steps, and the last row, except for
class  1  where  all  results  converge  to  a  spatially  homogeneous  state,
shows  the  histograms  of  the  final  steps.  Due  to  a  periodic  boundary,
the  decimated  images,  composed  of  the  time  steps  multiple  to  the
chain length (101 in our case), contain only vertical stripes or lines for
any  stable  or  globally  shifted  fixed  patterns,  which  simplifies  fixed-
point determination.

Class 1: Spatially Homogeneous (Null-Point) Pattern5.1.1

This class is the most ubiquitous among others and is more typical for
random initial states, which is rather predictable. However, it is com-
mon  for  singular  configurations  as  well,  where  transients  can  be  very
long  or  rather  complicated  (s066,  s643)  before  a  spatially  homoge-
neous state is reached (Figure 6).

Class 2: Spatially Inhomogeneous Fixed or Globally Shifted
Fixed Pattern

5.1.2

This class is less abundant and appears slightly more often in singular
configurations (Figure 7). Singular configurations usually quickly con-

r152 r216 r465 s066 s356 s415 s450 s643

Figure 6. Class 1: spatially homogeneous (null-point) pattern.

r034 r043 r421 s005 s045 s064 s435 s463

Figure 7. Class 2: spatially inhomogeneous fixed pattern.
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verge  to  shifted  local  persistent  structures  similar  to  gliders  in  Con-
way's  Game  of  Life:  solitary  spikes  (s005),  trains  of  diminishing
spikes (s045, s064), or solitary asymmetric waves (s435, s463).

Class 3: Periodic or Globally Shifted Periodic Pattern5.1.3

This class is much rarer than the previous classes. The period of these
patterns consists of two or three cycles, which can be globally shifted
(Figure  8).  In  vertical  patterns,  decimated  images  contain  stripes  or
lines  with  indentations  at  every  second  or  third  line.  In  shifted  pat-
terns,  decimated  images  consist  of  dashed  vertical  lines  where  gaps
correspond to stationary steps. It was mentioned earlier that some ten-
sors  are  quantity  conservative  by  themselves.  There  are  27  conserva-
tive tensors and all of them exhibit class 2 or 3 behavior in any initial
configuration. This rather boring repetitive or stationary behavior is a
consequence of their strict linearity. All conservative tensors are high-
lighted in Appendix A.

r016 r042 r104 r240 s014 s016 s004 s040

Figure 8. Class 3: periodic behavior.

Class 4: Periodic Pattern between Globally Shifted Walls5.1.4

These patterns are quite rare, but interesting enough (Figure 9). Most
of  them  look  very  similar  to  class  2  or  3,  but  closer  examination
reveals  periodicity,  often  barely  visible.  It  is  manifested  by  the  inter-
mittency of stripes, which is seen more clearly in decimated images. In-
termittency  indicates  two-cycle  or  three-cycle  periodicity  bounded  by
fixed  or  globally  shifted  walls.  In  rare  cases,  the  period  can  vary  in
different  domains  (r014).  Some  singular  configurations  (s154,  s246)
deflect  to  the  left  or  right  from  the  vertical  (time)  axis.  This  phe-
nomenon arises due to the intrinsic property of the tensor, which can
be termed as its chirality (“handedness”), rather than to a global shift.
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r014 r456 r004 r040 s114 s144 s154 s246

Figure 9. Class 4: periodic behavior between fixed or shifted walls.

Class 5: Globally Chaotic Pattern5.1.5

It is the rarest of all classes and all cases are shown in Figure 10. The
initial  deflection  due  to  chirality  of  tensors  046  and  056  eventually
disappears, but the volatility remains the same, which can be visually
estimated by histograms and densities of white pixels in decimated im-
ages. Tensor 044 exhibits more “uniform” chaotic behavior than ten-
sors  046  and  054.  Interestingly,  they  are  almost  the  same  except  for
their initial chirality, though they are not transposes of each other.

s044 r044 s046 r046 s054 r054

Figure 10. Class 5: chaotic behavior.

Class 6: Complex Pattern5.1.6

This class is characterized by long transients and complex spatio-tem-
poral  patterns,  including  both  oscillating  and  propagating  structures
(Figure  11).  It  includes  those  cases  that  did  not  fall  in  the  previous
groups because of some abnormalities. The hallmark of complexity is
spatial and temporal intermittency, clearly visible in decimated images
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and histograms (s015, s062). Configurations r065 and s465 produce
“tartan” and “zigzag” patterns that look repetitive, but their periodic-
ity is equal to the width of the image, so it is not invariant under its
change. Besides, these configurations exhibit a very interesting phe-
nomenon of elastic collisions similar to the reversible rule 122R in
ECA [5, p. 442], or two-dimensional cellular automata emulating an
ideal gas of particles [5, p. 447]. The configurations s542 and s614
are the most puzzling. After 100 initial immobile steps, they began to
slowly but steadily deflect with a constant velocity, and after approxi-
mately 5850 steps, their movement abruptly terminates. This is possi-
bly the artifact of real-valued computations, because with higher val-
ues of Ω, the period of movement increases and patterns become less
symmetrical.

s015 s062 s143 s234 r065 s465 s542 s614

Figure 11. Class 6: complex behavior.

Phenomenology of Tensor Fuzzification5.2

This group of results uses real-valued tensors, which are obtained
through the fuzzification of binary tensor components with a real-val-
ued parameter ε in a unit range, called a fuzzy rate, by the substitu-

tion 0 → ε, 1 → 1 - ε. In random configurations with fuzzy rates

close to zero, chaotic behavior or a disordered fixed state gradually
converges to quite regular shifted stripes, which become broader with
the increase of the parameter ε. After a certain critical value (usually
much less than 0.1), any initial random distribution converges to a
spatially homogeneous fixed point (Figure 12).

In singular configurations, tensor fuzzification always leads to ho-
mogeneity, except for marginal fuzzy rates, but can drastically affect
transient states. It can change the class of behavior (Figure 13(a)) or
chirality of the tensor when the fuzzy rate exceeds 0.5 (Figure 13(b)).
When the fuzzy rate reaches its maximum, the tensor becomes a bi-
nary complement of the tensor template. Its dynamics often tend to
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non-homogeneity again, but usually, it is not the same as it was origi-
nally.  They  are  equivalent  to  the  dynamics  of  the  dual  tensor,  which
can be derived by the binary inversion of the tensor and replacing the
fuzzy rate with the opposite value. In ECA, the reflection and Boolean
conjugation  symmetries  are  used  to  classify  256  transition  rules  into
88 equivalence classes. On the basis of the symmetry under binary in-
version  and  transposition,  all  512  binary  tensors  can  be  divided  into
144  groups,  which  can  simplify  the  exploration  of  the  parameter
space, although these groups are not behaviorally equivalent.

(a)

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

(b)

0 0.001 0.005 0.01 0.02 0.04 0.05 0.06

Figure 12. Phenomenology of fuzzification in (a) r002 and (b) r102.

(a)

0 0.0001 0.01 0.02 0.04 0.1 0.2 0.3

(b)

0 0.01 0.1 0.3 0.7 0.9 0.99 1.

Figure 13. Phenomenology of fuzzification in s065 (a) and s343 (b).

Phenomenology of Tensor-Map Modulation5.3

The  first  experiments  with  elementary  kinetic  automata  [1]  demon-

strated  that  even  a  simple  kinetic  map  f(x) = Max0, 1 - kx  ex-

hibits highly complex behavior and revealed the existence of a narrow
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range of the parameter k when a nearly homogeneous initial state con-

verges  to  a  dynamical  ordered  or  chaotic  pattern 1.5 < k < 2 rather

than  a  homogeneous k < 1.5  or  stable  non-homogeneous  state

k > 2.  The  most  dramatic  changes  occur  when k  is  near  1.6,  which

is  confirmed  by  tensor  modulation  with  the  identity  kinetic  tensor
421 (Figure 14).

(a)

1.4 1.5 1.6 2 3 4 9 15

(b)

1.4 1.5 1.6 2 3 4 9 15

(c)

1.4 1.5 1.6 2 3 4 9 15

Figure 14.  f (x) = Max[0, (1 - kx)]  modulation  with  different  random  initial
states:  (a)  almost  homogeneous  [0.49, 0.51],  (b)  inhomogeneous  [0.2, 0.8],
(c) fully random [0, 1].

In singular configurations, this map behaves almost the same under
small values of the parameter k. Higher values of the kinetic parame-

ter  k > 4  exhibit  rather  complex  transient  states  gradually  converg-

ing to chaotic patterns (Figure 15). 
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1.4 1.5 1.6 2 3 4 9 15

Figure 15. f (x) = Max[0, (1 - kx)] modulation in s421.

It is evident from the results shown that tensor and map modula-
tions are self-sufficient to produce any class of behavior. Combined
tensor-map modulation can increase further the complexity of behav-

ior. The map f(x) = Max0, 1 - kx confirmed its complex behavior

in the narrow range 1.5 < k < 2 with many tensors. The configura-
tion s412 exhibits all four Wolfram classes of behavior (Figure 16):

class I k < 1.5, class II k > 3.5, class III 2 < k < 3.5, and class IV

1.5 < k < 2. Again, the most ordered state is achieved under k equal

to the “magic” number 1.6, which is strikingly close to the golden ra-
tio φ = 1.618.

1.4 1.5 1.6 2 3 4 9 15

Figure 16. f (x) = Max[0, (1 - kx)]modulation in s412.

Phenomenology of Modulation in the Minimalistic Kinon Model5.4

Using different kinetic tensors and maps with tunable parameters ε

and k, it is possible not only to generate any behavior, but also to
emulate other discrete-time continuous-state complex dynamical sys-
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tems. For instance, the MKA with a kinetic tensor 000(1/3) and a ki-

netic map f(x) = Modx + k, 1 can emulate the behavior of CCA and

generate spatio-temporal patterns, which are almost identical to those
shown in [5, p. 160] (Figure 17).

0.1001 0.3001 0.3221 0.3285 0.3506 0.4751 0.4901 0.9001

Figure 17. CCA emulation with s000(1/3) and f (x) = Mod[x + k, 1].

The  canonical  CML  (equation  (4))  with  a  logistic  map  f(x) =

1 - ax2  exhibits  rich  phenomenology  under  different  parameters  ε

and a [15]. They include frozen random patterns with spatial bifurca-
tion  and  localized  chaos,  pattern  selection  with  suppression  of  chaos,
spatio-temporal  intermittency,  and  traveling  waves.  Similar  patterns

can  be  obtained  in  the  MKA  with  f(x) = 1 - kx2  in  configuration

r421(ε),  where  zeros  are  substituted  by  ε  2  in  order  to  comply  with

equation  (4)  (Figure  18).  The  bottom  row  contains  decimated  images
(1:100) of spatio-temporal dynamics.

ϵ = 0.2
k = 1.45

ϵ = 0.3
k = 1.75

ϵ = 0.4
k = 1.71

ϵ = 0.5
k = 1.782

Figure 18. CML emulation by r421(ε) and f (x) = 1 - kx2.

Concluding Remarks5.5

Figures 6–18 can be reproduced in Wolfram Mathematica 9 or higher
with  the  code  provided  in  Appendix  B.  For  comparability  of  results,
all  random  initial  configurations  use  the  same  random  seed,  thus  are
fully  identical.  Nevertheless,  there  can  be  slight  deviations  because  of
the peculiarities of real-valued computations on different platforms. It
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should  be  also  noted  that  changing  the  random  seed  or  the  range  of
random values can dramatically affect asymptotic behavior of tensors,
which  was  demonstrated  in  Figure  14.  Besides,  some  tensors  have
very  long  transient  states  (up  to  millions  of  steps),  which  complicates
fixed-point  determination.  Therefore,  the  classification  of  tensors  in
Table  1  and  Appendix  A  is  rather  tentative  and  might  be  subject  to
change.

Discussion6.

The  results  shown  convincingly  demonstrate  the  viability  of  a  tensor
approach to modulation in kinetic automata, which can enhance their
future  development  and  open  new  perspectives  on  their  possible
applications.

 Tensor  calculus  was  developed  around  1890  by  Ricci-Curbastro
and  Levi-Civita  under  the  name  of  absolute  differential  calculus.  In
the  twentieth  century,  the  subject  came  to  be  known  as  tensor  analy-
sis  and  achieved  broader  acceptance  with  the  introduction  of  Ein-
stein’s theory of general relativity in 1916. Electrical engineer Gabriel
Kron  pioneered  the  application  of  tensors  to  the  analysis  of  electrical
networks [16]. Tensors were found to be useful in continuum mechan-
ics,  where  stress  tensor,  strain  tensor,  and  elasticity  tensor  are  widely
used.  In  1980,  Pellionisz  and  Llinás  introduced  the  tensor  network
theory  to  describe  the  behavior  of  the  cerebellum  in  transforming  af-
ferent sensory inputs into efferent motor outputs. They proposed that
intrinsic central nervous system space could be described and modeled
by an extrinsic network of tensors that together describe the behavior
of the central nervous system. By treating the brain as a “geometrical
object,”  brain  function  could  be  quantified  and  described  as  a  net-
work of tensors [17, 18].

Around  the  same  period  in  the  1980s,  tensor  calculus  was  applied
to the phenomenology of complex dynamical systems under the name
of phenomenological calculus, which was described earlier. Initially, it
considered  only  linear  systems  that  implicitly  assume  that  cause  and
effect are always collinear and each cell is homogeneous and isotropic
with  respect  to  diffusion  in  all  directions.  In  2006,  phenomenological
calculus was extended by Louie and Richardson into a much broader
domain  of  anisotropy  [19].  In  their  own  words:  “It  may  even  be  ar-
gued  that  nature  is  anisotropic.  Isotropic  systems  are  simply  ‘weakly
anisotropic’  ones,  for  which  linear  approximations  suffice.”  Essen-
tially, anisotropic systems are what the kinon model was intended for.
Anisotropy, as opposed to isotropy, implies that the flux is not always
aligned with the force. In other words, they are directionally indepen-
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dent. Anisotropic systems have much more complex cause-effect phe-
nomenology than isotropic ones and can be found wherever a wave
propagates through a medium: in constrained transport, crystallogra-
phy, fluid dynamics, seismology, cosmology, and others.

In anisotropic systems, the fluxes cannot be derived from the forces
by simple scalar multiplication and must be “independently scaled.”
That is why a modulator in the basic kinon model simply transforms
input ranks into output rates via a nonlinear kinetic map on a one-by-
one basis. In phenomenological calculus, the components of the
response tensor are scalar products of forces and constitutive parame-
ters of the system; hence the response tensor is a dyadic (second-
order) tensor. Louie and Richardson argue that a triadic (third-order)
response tensor is needed for anisotropy; that is, the constitutive pa-
rameters of the anisotropic system must be tensors themselves. The
current implementation of tensor modulation employs only dyadic ki-
netic tensors. The desired anisotropy of modulation is achieved via
the final nonlinear map modulation.

The idea of representing the internal structure of a complex multi-
port system by a matrix and calculating its output by a simple vector-
matrix multiplication is rather old and appeared in many contexts. It
can be traced back a formulation of quantum mechanics called matrix
mechanics, created by Heisenberg, Born, and Jordan in 1925. Later, it
was transformed into S-matrix theory, which was very influential in
the 1960s but now is largely abandoned. However, under the name of
the S-parameter approach, it is still alive and thriving in microwave
engineering, where an electrical network is regarded as a “black box”
that interacts with other circuits through ports [20]. The network is
characterized by a square matrix of complex numbers called an
S-parameter matrix, which is used to calculate its response to signals
applied to the input ports.

It was already mentioned that a black box abstraction can also be
attributed to ANN, which are based on the discrete-time logic-based
neural model invented by McCulloch and Pitts in 1943 [21]. How-
ever, one of the first neuron models was proposed by Rashevsky a
decade earlier [22]. His idea was to use a pair of linear differential
equations and a nonlinear threshold operator to account for periph-
eral nerve excitation. Rosen showed [23, 24] that Rashevsky’s two-
factor systems are closely related to Turing’s theory of morphogenesis
[25] but are capable of far wider application. Despite many advan-
tages of discrete models, the continuous Rashevsky’s neuron model
might be suitable for modeling whole masses of neurons. Though a
tensor modulator looks much like a single-layer feed-forward neural
network, the whole kinon would be better viewed as a model of the
arbitrary ensemble of neurons. In this sense, it is closer to Rashevsky’s
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neuron  model  and  Pellionisz–Llinás  tensor  networks,  but  its  applica-
bility is much broader than neural modeling.

It  was  shown  that  the  MKA  with  a  tensor  modulator  is  able  to
emulate  CCA,  which  are  closely  related  to  cellular  neural  networks
(CNN)  introduced  by  Chua  and  Yang  in  1988  [26,  27].  Basically,
CNN and ANN are the same, with the difference that interactions are
allowed  only  between  neighboring  cells,  similar  to  CCA.  Therefore,
CNN can be readily emulated by kinetic automata.

Schematically,  CNN  is  an  array  of  locally  interconnected  simple
analog  circuits  consisting  of  a  linear  capacitor,  a  nonlinear  voltage-
controlled  current  source,  and  a  few  resistive  linear  circuit  elements.
The local interconnection enables efficient very large-scale integration
implementations  (VLSI),  and  many  CNN  chips  have  been  reported
since  the  first  CNN  chip  was  presented  in  1991.  In  1993,  the  CNN
architecture  was  augmented  by  programmable  weights,  local  storage,
and  logic,  and  thus  became  analogic  (analog  and  logic)  [28].  It  was
called  a  CNN  universal  machine  (CNN-UM),  as  it  has  been  proven
that it is as universal as a Turing machine. Among the numerous appli-
cations of CNNs, image processing is the most widespread, though re-
cent studies have proved that they can be also used for simulations in
fluid dynamics and statistical physics. Since kinetic automata are ana-
log (continuous state) dynamical systems with a comparable architec-
ture, CNN-UM can be used for their efficient VLSI implementation.

Apart from Wolfram and Li–Packard classifications of ECA transi-
tion  rules  considered  earlier,  Adamatzky  and  Wuensche  proposed  re-
cently  to  classify  them  by  mapping  onto  the  cognitive  control  versus
schizotypy  spectrum  phase  space  and  interpreting  cellular  automaton
behavior  in  terms  of  creativity  [29].  They  found  that  null-  and  fixed-
point  ECA  rules  lie  in  the  “autistic”  domain  and  chaotic  rules  are
“schizophrenic.” It is rather discouraging that there are no highly cre-
ative  ECA  rules,  and  rules  closest  to  creativity  domains  are  two-cycle
rules  exhibiting  wave-like  patterns.  At  the  current  stage  of  the  kinon
model  exploration,  it  is  impossible  to  make  any  definite  conclusion
about  its  creativity.  Nevertheless,  due  to  the  flexibility  of  the  kinon
model  and  the  infinity  of  its  parameter  space,  it  can  be  hoped  that
truly  “creative”  configurations  and  parameters,  capable  of  generating
“artistic” patterns of nature, might be found in the future.

Conclusion7.

The main goal of this paper is to demonstrate the applicability of the
tensor  approach  to  modulation  in  kinetic  automata.  It  was  shown
that  the  proposed  tensor-based  modulator  is  capable  of  generating  a
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variety of spatio-temporal patterns, which can be attributed to all
classes of behavior found in elementary cellular automata and cou-
pled map lattices (CML): chaos, periodicity, period doubling, intermit-
tency, domains and walls, soliton propagation, phase shifts, and oth-
ers. Some of them can be qualified as complex and need further
investigation.

The proposed method of tensor construction from binary templates
alleviates the problem of dimensionality of the parameter space and is
valid for tensors of any rank and dimension. The binary structure  of
tensor templates enables their enumeration and shorthand denotation
in a way that is convenient both for referencing and comparison. Para-
metric fuzzification corresponds to the fine-tuning of the kinetic ten-
sor. Combined tensor and map modulation can produce any dynam-
ics with just a few parameters.

Tensor modulation not only increases the complexity of the model
behavior but also permits bypassing encoding and decoding steps in
some cases. It was shown that the minimalistic kinon model, consist-
ing of only three modules: a tensor modulator, a propagator, and stor-
age, is sufficient to emulate the behavior of continuous cellular au-
tomata and CML. Cellular neural networks can be readily emulated
by kinetic automata as well. It follows that the kinon model can serve
as a unifying framework for a broad range of discrete-time continu-
ous-state complex dynamical systems.
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Appendix

Classes of Tensor BehaviorA.

These are the lists of binary tensors grouped in six classes of asymp-
totic behavior according to Li–Packard classification. In classes 2–4,
tensors with globally shifted patterns are underlined, while conserva-
tive tensors are highlighted by the orange color.

Class 1. Spatially homogeneous (null) fixed patterns
r: 015,017,036,037,053,055,057,062,066,072,073,076,077,105,107,114,115,116,
117,125,127,135,136,137,143,144,145,146,147,152,153,154,155,156,157,162,163,
165,166,167,172,173,175,176,177,215,216,217,234,235,236,237,242,244,246,252,
253,254,255,256,257,260,261,262,263,264,265,266,267,270,271,272,273,274,275,
276,277,305,307,314,315,316,317,325,327,334,335,336,337,342,343,344,345,346,
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347,352,353,354,355,356,357,360,361,362,363,364,365,366,367,370,371,372,373,
374,375,376,377,404,406,415,417,424,426,436,437,440,441,444,446,450,451,453,
454,455,457,462,465,466,472,473,476,477,504,505,506,507,514,515,516,517,524,
525,526,527,534,535,536,537,540,541,542,543,544,545,546,547,550,551,552,553,
554,555,556,557,562,563,564,565,566,567,572,573,574,575,576,577,604,606,614,
615,616,617,624,626,634,635,636,637,640,641,642,643,644,645,646,647,650,651,
652,653,654,655,656,657,660,661,662,663,664,665,666,667,670,671,672,673,674,
675,676,677,704,705,706,707,714,715,716,717,724,725,726,727,734,735,736,737,
740,741,742,743,744,745,746,747,750,751,752,753,754,755,756,757,760,761,762,
763,764,765,766,767,770,771,772,773,774,775,776,777
s: 017,036,037,053,055,057,066,072,073,076,077,105,107,115,116,117,125,127,
135,136,137,145,146,147,153,155,156,157,162,163,165,166,167,172,173,175,176,
177,215,217,235,236,237,252,253,254,255,256,257,260,261,262,263,264,265,266,
267,270,271,272,273,274,275,276,277,305,307,315,316,317,325,327,335,336,337,
344,345,346,347,352,353,354,355,356,357,360,361,362,363,364,365,366,367,370,
371,372,373,374,375,376,377,404,406,415,417,424,426,436,437,440,441,444,446,
450,451,453,454,455,457,462,466,472,473,476,477,504,505,506,507,514,515,516,
517,524,525,526,527,534,535,536,537,540,541,543,544,545,546,547,550,551,553,
554,555,556,557,562,563,564,565,566,567,572,573,574,575,576,577,604,606,615,
617,624,626,634,635,636,637,640,641,642,643,644,645,646,647,650,651,652,653,
654,655,656,657,660,661,662,663,664,665,666,667,670,671,672,673,674,675,676,
677,704,705,706,707,714,715,716,717,724,725,726,727,734,735,736,737,740,741,
742,743,744,745,746,747,750,751,752,753,754,755,756,757,760,761,762,763,764,
765,766,767,770,771,772,773,774,775,776,777

Class 2. Inhomogeneous fixed or shifted fixed patterns
r: 000,001,002,003,005,007,010,011,012,013,020,021,022,023,025,027,030,031,
032,033,034,035,043,045,047,060,061,063,064,067,070,071,074,075,100,101,102,
103,110,111,112,113,120,121,122,123,130,131,132,133,134,160,161,164,170,171,
174,200,201,202,203,205,207,210,211,212,213,220,221,222,223,225,227,230,231,
232,233,243,245,247,300,301,302,303,310,311,312,313,320,321,322,323,330,331,
332,333,400,401,402,403,405,407,410,411,412,413,414,420,421,422,423,425,427,
430,431,432,433,434,435,442,443,445,447,460,461,463,464,467,470,471,474,475,
500,501,502,503,510,511,512,513,520,521,522,523,530,531,532,533,560,561,570,
571,600,601,602,603,605,607,610,611,612,613,620,621,622,623,625,627,630,631,
632,633,700,701,702,703,710,711,712,713,720,721,722,723,730,731,732,733
s: 000,001,002,003,005,007,010,011,012,013,020,021,022,023,025,027,030,031,
032,033,034,035,043,045,047,060,061,063,064,067,070,071,074,075,100,101,102,
103,110,111,112,113,120,121,122,123,130,131,132,133,134,152,160,161,164,170,
171,174,200,201,202,203,205,207,210,211,212,213,216,220,221,222,223,225,227,
230,231,232,233,243,245,247,300,301,302,303,310,311,312,313,320,321,322,323,
330,331,332,333,400,401,402,403,405,407,410,411,412,413,414,420,421,422,423,
425,427,430,431,432,433,434,435,442,443,445,447,460,461,463,464,467,470,471,
474,475,500,501,502,503,510,511,512,513,520,521,522,523,530,531,532,533,552,
560,561,570,571,600,601,602,603,605,607,610,611,612,613,616,620,621,622,623,
625,627,630,631,632,633,700,701,702,703,710,711,712,713,720,721,722,723,730,

731,732,733

Class 3. Periodic or shifted periodic patterns
r: 016,042,052,104,106,124,126,142,214,240,241,250,251,304,306,324,326,340,
341,350,351
s: 004,006,014,016,024,026,040,041,042,050,051,052,104,106,124,126,140,141,
142,150,151,204,206,214,224,226,240,241,250,251,304,306,324,326,340,341,350,
351
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Class 4. Periodic patterns between fixed or shifted walls
r: 004,006,014,024,026,040,041,050,051,056,140,141,150,151,204,206,224,226,
416,452,456
s: 056,114,144,154,242,244,246,314,334,342,343,416,452,456

Class 5. Chaotic patterns
r: 044,046,054

s: 044,046,054

Class 6. Complex patterns
r: 065

s: 015,062,065,143,234,465,542,614

Wolfram Language Code for Section 5B.

(* ������������ ����� �-��������

�-������� ������� �-������� ����

�-��������� (�/�)� �-�������� ������������ (�/�) *)

����[�_� �_� �_� �_� �_] �= ������{���� ���� ��� �}�

��� = {�[[�]]� ����������@�[[�]]� �����������@�[[�]]}�

��� = ���������@���[���[�� #] �� ���������@���]�

������[�] ⩵ ���������

��� = �������� #(�����[�@���] /� {�� → ∞})� # �� ����

���� �� = �����[���]�

� = ��(�����[�@���] /� {�� → ∞})�

��� = ����@���[# � �� ���]�

���[[�]] = �� - �����[����@���]�

����

(* ������� ������ �-���������

�-������� �-�������� �-���-������� *)

����[�_] �= ��[� ⩵ ����

�����[��[� ⩵ � �� � ⩵ ��� ��� ��]� {�� �}� {�� ���}]�

����������[���]� �������[�����[�� {�}� {���}]�

����������[������[�� ����

{�� �}� ���� {���� ���}� _� {��� ��}]� ���]]]�

(* ������ ������������� τ-������ ����� ε-����� ���� *)

������[τ_� ε_] �=

���������[�������������[����������[τ� �]� �� �]� �] /�

��ε < �� � → (� - ���[ε])� � → ���[ε]�� {� → (� - ε)� � → ε}�

(* ���������� �-��������� ���� *)

������[�_] �= ������[{�� �� �� �� �}�

� = ����@����������[�[[�]]� �]� (* ������� ����� *)

� = ������[����������[�[[�]]� -�]� �[[�]]]� (* ������ *)

� = ��[������@� > �� �[[�]] /� {� → �[[�]]}]� (* ��� *)
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� = ��[������@� < �� ����� �[[�]]]� (* ���������� �/� *)

� = ��[������[�] < �� ����� �[[�]]]�

(* �������� ������������� �/� *)

��������[����[#� �� �� �� �] �� �� �����]]�

(* ����� ����������� �-����� �-���������� ���� *)

�����[�_� �_] �=

�����[����[�����[�� {�}]� {�� -�� �}]� ��������� → ���]�

(* ��������� ��������� �-����� ���� *)

����[�_] �= ������[{� = �����@�}�

������������[�� ������� → ����� ��������� → ���� ����� → �����

��������� → {{�� ���}� {���[�� �]� ���[�� �]}}]]�

(* ������ �������� *)

������[�_] �= ������[{�}� ����@���������@���[(

� = ������[����@#]� (* �������� ���� *)

{��[�����@#[[�]]�

������@#[[�]]� #[[�]]]� (* ������� *)

�����[����[�� ���]� �]� (* ����� ��� ����� *)

�����[����[�� -���]� �]� (* ���� ��� ����� *)

�����[�� ��[������@#[[�]] < �� ���� #[[�� �]]]]�

(* �������� *)

����@�[[-�]]}) �� �]]� (* ���� ���� ��������� *)

(* ������� �� ������� � *)

���� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� �������

������� ������}]]�

���� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� �������

������� ������}]]�

���� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� �������

������� ������}]]�

���� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� �������

������� ������}]]�

����� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� ������}]]�

����� �= ������[���[{#� #� �} ��

{������� ������� ������� ������� ������� �������

������� ������}]]�

������ �= ������[���[{#� ������� #} ��

{�� ������� ������ ������� ����� ������� ������ ������}]]�

������ �= ������[���[{#� ������� #} ��

{�� ������ ������ ����� ����� ����� ����� ����}]]�

������ �= ������[���[{#� ������� #} ��

{�� ������� ����� ����� ����� ���� ���� ���}]]�

������ �= ������[���[{#� ������� #} ��

{�� ����� ���� ���� ���� ���� ����� ���}]]�
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������ �= ������[���[

{#� ������� �� ����[� - � #� {�� �}] �� #} ��

{���� ���� ���� �� �� �� �� ��}]]�

������ �= ������[���[

{#� ������� �� ����[� - � #� {�� �}] �� #} ��

{���� ���� ���� �� �� �� �� ��}]]�

������ �= ������[���[

{#� ������� �� ����[� - � #� {�� �}] �� #} ��

{���� ���� ���� �� �� �� �� ��}]]�

����� �= ������[���[

{#� ������� �� ����[� - � #� {�� �}] �� #} ��

{���� ���� ���� �� �� �� �� ��}]]�

����� �= ������[���[

{#� ������� �� ����[� - � #� {�� �}] �� #} ��

{���� ���� ���� �� �� �� �� ��}]]�

����� �= ���������

#� ������� ���� ���[� + #� �] �� #� ������ ����� ��

{������ ������ ������ ������ ������ ������ ������ �����}�

����� �= ������[���[

{#� ������� -#[[�]]� � - � #�� �� #[[�]]� ������ �����} ��

{{���� ����� ���}� {��� ����� ���}�

{��� ����� ���}� {��� ������ ���}}]]�

References

[1] Y. Shalygo, “The Kinetic Basis of Self-Organized Pattern Formation,” in
Proceedings  of  the  14th  International  Conference  on  the  Synthesis  and
Simulation of Living Systems (ALife 14), (H. Sayama, J. Rieffel, S. Risi,
R.  Doursat,  and  H.  Lipson,  eds.),  Cambridge,  MA:  MIT  Press,  2014
pp.�665–672. doi:10.7551/978-0-262-32621-6-ch106.

[2]  B. Chopard, P. Luthi, and A. Masselot, “Cellular Automata and Lattice
Boltzmann  Techniques:  An  Approach  to  Model  and  Simulate  Complex
Systems,”  Advances  in  Complex  Systems,  5(2),  2002  pp.  103–246.
doi:10.1142/S0219525902000602.

[3] Y.  Shalygo,  “The  Kinetic  Basis  of  Morphogenesis,”  in  Proceedings
of the 13th European Conference on Artificial Life (ECAL 2015), York,
UK, Cambridge, MA: MIT Press, 2015 pp. 122–129.
doi:10.7551/978-0-262-33027-5-ch027.

[4] R. Rosen, Life Itself: A Comprehensive Inquiry into the Nature, Origin,
and Fabrication of Life, New York: Columbia University Press, 1991.

[5] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002.

[6] K.  Kaneko,  “Pattern  Dynamics  in  Spatiotemporal  Chaos:  Pattern  Selec-
tion, Diffusion of Defect and Pattern Competition Intermettency,” Phys-
ica D: Nonlinear Phenomena, 34(1–2), 1989 pp. 1–41.
doi:10.1016/0167-2789(89)90227-3.

Phenomenology of Tensor Modulation in Elementary Kinetic Automata 219

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.3.195

http://dx.doi.org/10.7551/978-0-262-32621-6-ch106
http://dx.doi.org/10.1142/S0219525902000602
http://dx.doi.org/10.7551/978-0-262-33027-5-ch027
http://dx.doi.org/10.1016/0167-2789(89)90227-3


[7] I.  W.  Richardson,  “The  Metrical  Structure  of  Aging  (Dissipative)  Sys-
tems,”  Journal  of  Theoretical  Biology,  85(4),  1980  pp.  745–746.
doi:10.1016/0022-5193(80)90269-6.

[8] I. W. Richardson, A. H. Louie, and S. Swaminathan, “A Phenomenologi-
cal  Calculus  for  Complex  Systems,”  Journal  of  Theoretical  Biology,
94(1), 1982 pp. 61–76. doi:10.1016/0022-5193(82)90329-0.

[9] R.  Rojas, Neural  Networks:  A  Systematic  Introduction,  Berlin,  New
York: Springer-Verlag, 1996. 

[10] T.  Kohonen,  Associative  Memory:  A  System-Theoretical  Approach,
New York: Springer-Verlag, 1977. 

[11] S.  Wolfram,  “Statistical  Mechanics  of  Cellular  Automata,”  Reviews
of Modern Physics, 55(3), 1983 pp. 601–644.
doi:10.1103/RevModPhys.55.601.

[12] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[13] W.  Li  and  N.  Packard,  “The  Structure  of  the  Elementary  Cellular  Au-
tomata  Rule  Space,”  Complex  Systems,  4(3),  1990  pp.  281–297.
http://www.complex-systems.com/pdf/04-3-3.pdf.

[14] W.  Li,  N.  H.  Packard,  and  C.  G.  Langton,  “Transition  Phenomena  in
Cellular  Automata  Rule  Space,”  Physica  D:  Nonlinear  Phenomena,
45(1–3), 1990 pp. 77–94. doi:10.1016/0167-2789(90)90175-O.

[15] K. Kaneko and T. Yanagita, “Coupled Maps,” Scholarpedia, 9(5), 2014
4085. doi:10.4249/scholarpedia.4085.

[16] G.  Kron,  Tensor  Analysis  of  Networks,  New  York:  J.  Wiley  &  Sons,
Inc., 1939.

[17] A.  Pellionisz  and  R.  Llinás,  “Tensorial  Approach  to  the  Geometry  of
Brain  Function:  Cerebellar  Coordination  via  a  Metric  Tensor,”  Neuro-
science, 5(7), 1980 pp. 1125–1138. doi:10.1016/0306-4522(80)90191-8.

[18] A. Pellionisz and R. Llinás, “Tensor Network Theory of the Metaorgani-
zation of Functional Geometries in the Central Nervous System,” Neuro-
science, 16(2), 1985 pp. 245–273. doi:10.1016/0306-4522(85)90001-6.

[19] A.  H.  Louie  and  I.  W.  Richardson,  “A  Phenomenological  Calculus  for
Anisotropic Systems,” Axiomathes, 16(1), 2006 pp. 215–243.
doi:10.1007/s10516-005-4697-5.

[20] K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Transac-
tions  on  Microwave  Theory  and  Techniques,  13(2),  1965  pp.  194–202.
doi:10.1109/TMTT.1965.1125964.

[21] W. S. McCulloch and W. H. Pitts, “A Logical Calculus of the Ideas Im-
manent in Nervous Activity,” Bulletin of Mathematical Biophysics, 5(4),
1943 pp. 115–133. doi:10.1007/BF02478259.

220 Y. V. Shalygo

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.3.195

http://dx.doi.org/10.1016/0022-5193(80)90269-6
http://dx.doi.org/10.1016/0022-5193(82)90329-0
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1016/0167-2789(84)90245-8
http://www.complex-systems.com/pdf/04-3-3.pdf
http://dx.doi.org/10.1016/0167-2789(90)90175-O
http://dx.doi.org/10.4249/scholarpedia.4085
http://dx.doi.org/10.1016/0306-4522(80)90191-8
http://dx.doi.org/10.1016/0306-4522(85)90001-6
http://dx.doi.org/10.1007/s10516-005-4697-5
http://dx.doi.org/10.1109/TMTT.1965.1125964
http://dx.doi.org/10.1007/BF02478259


[22] N.  Rashevsky,  “Outline  of  a  Physico-Mathematical  Theory  of  Excita-
tion and Inhibition,” Protoplasma, 20(1), 1933 pp. 42–56.
doi:10.1007/BF02674811.

[23] R.  Rosen,  “Two-Factor  Models,  Neural  Nets,  and  Biochemical  Au-
tomata,”  Journal  of  Theoretical  Biology,  15(3),  1967  pp.  282–297.
doi:10.1016/0022-5193(67)90138-5.

[24] R.  Rosen,  “Turing’s  Morphogens,  Two-Factor  Systems  and  Active
Transport,”  The  Bulletin  of  Mathematical  Biophysics,  30(3),  1968
pp.�493–499. doi:10.1007/BF02476609.

[25] A.  M.  Turing,  “The  Chemical  Basis  of  Morphogenesis,”  Philosophical
Transactions of the Royal Society B, 237(641), 1952 pp. 37–72.
doi:10.1098/rstb.1952.0012.

[26] L.  O.  Chua  and  L.  Yang,  “Cellular  Neural  Networks:  Theory,”  IEEE
Transactions  on  Circuits  and  Systems,  35(10),  1988  pp.  1257–1272.
doi:10.1109/31.7600.

[27] L.  O.  Chua  and  L.  Yang,  “Cellular  Neural  Networks:  Applications,”
IEEE  Transactions  on  Circuits  and  Systems,  35(10),  1988
pp. 1273–1290. doi:10.1109/31.7601.

[28] T. Roska and L. O. Chua, “The CNN Universal Machine: An Analogic
Array  Computer,”  IEEE  Transactions  on  Circuits  and  Systems  II:  Ana-
log  and  Digital  Signal  Processing,  40(3),  1993  pp.  163–173.
doi:10.1109/82.222815.

[29] A.  Adamatzky  and  A.Wuensche,  “On  Creativity  and  Elementary  Cellu-
lar  Automata,”  Complex  Systems,  22(4),  2013  pp.  361–375.
http://www.complex-systems.com/pdf/22-4-2.pdf.

Phenomenology of Tensor Modulation in Elementary Kinetic Automata 221

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.3.195

http://dx.doi.org/10.1007/BF02674811
http://dx.doi.org/10.1016/0022-5193(67)90138-5
http://dx.doi.org/10.1007/BF02476609
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1109/31.7600
http://dx.doi.org/10.1109/31.7601
http://dx.doi.org/10.1109/82.222815
http://www.complex-systems.com/pdf/22-4-2.pdf



