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In the emerging field of network science, a recent model proposes that a
hyperbolic geometry underlies the network representation of complex
systems, shaping their topology and being responsible for their signa-
ture features: scale invariance and strong clustering. Under this model
of network formation, points representing system components are
placed in a hyperbolic circle and connected if the distance between
them is below a certain threshold. Then the aforementioned properties
come out naturally, as a direct consequence of the geometric principles
of the hyperbolic space containing the network. With the aim of provid-
ing insights into the stochastic processes behind the structure of com-
plex networks constructed with this model, the probability density for
the approximate hyperbolic distance between N points, distributed
quasi-uniformly at random in a disk of radius R ~ lnN, is determined
in this paper, together with other density functions needed to derive
this result.

Introduction1.

Representing the dynamic relationships between complex system com-
ponents as networks of interacting nodes has found applications in bi-
ology [1], mathematics [2], technology [3], and even cosmology [4].
Despite the apparent differences between these fields, the networks
arising from their systems share many structural properties: scale-free
node degree distributions [5], self-similarity [6], and average graph
geodesics that grow logarithmically with the number of nodes and
strong clustering [7]. Moreover, these characteristics can also be pre-
sent in geometric objects, like fractals or cellular automata [8–10],
which has prompted the analysis of complex networks from a geomet-
ric perspective [6, 8, 9, 11, 12].

Of special interest is a recent model of network growth that advo-
cates for the geometric principles of hyperbolic space being responsi-
ble for the emergence of the above-mentioned network signature
features [13]. Thus, the formation of scale-free and strongly clustered
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networks  is  the  result  of  an  optimization  process  involving  two  vari-
ables: node popularity and similarity between nodes. 

Popularity  reflects  the  property  of  a  node  to  attract  connections
from others over time, and it is thus associated with a node’s seniority
status in the system. On the other hand, nodes that are similar to each
other  have  a  high  likelihood  of  getting  connected,  regardless  of  their
rank.  Dynamic  generation  of  a  network  with  this  model  can  thus
mimic  the  formation  of,  for  example,  social  websites,  where  the
concepts of (social) popularity and similarity can be intuitively under-
stood,  but  also  of  other  types  of  networks,  such  as  protein  interac-
tomes.  There,  popularity  would  correspond  to  the  tendency  of  a
protein  to  establish  more  connections,  which  could  correlate  with  a
protein having appeared at an early stage in evolution (seniority), and
similarity  could  be  in  protein  sequence  or  function.  This  is  a  good
example of how very simple rules—in this case, link to the most popu-
lar and similar node—result in complex behavior. 

In  the  so-called  ℍ2
 model,  which  can  be  seen  as  the  static  version

of  the  popularity-similarity  optimization  discussed  above  [14,  15],
nodes appear randomly in a hyperbolic disk with radius proportional
to  the  number  of  system  components.  Node  pairs  are  then  linked  if
they  are  hyperbolically  close.  The  choice  of  this  space  to  place  nodes
is  a  convenient  way  to  abstract  the  tradeoff  between  popularity  and
similarity  via  the  hyperbolic  distance  between  them:  popularity  is
modeled  by  node  radial  coordinates  and  similarity  by  angular  dis-
tances between nodes. In this way, and due to the principles of hyper-
bolic geometry, nodes that appear near the origin of the disk are more
popular/senior  and  have  a  higher  probability  of  connecting  to  other
nodes  in  the  system,  thus  becoming  the  hubs  of  the  network.  In  con-
trast,  nodes  that  appear  on  the  periphery  link  only  with  nodes  that
are really close (similar) to them [16]. 

One  of  the  advantages  of  this  model  is  that  with  the  appropriate
choice  of  node  density  and  hyperbolic  disk  radius,  we  can  grow  net-
works  with  target  node  degree  scaling  exponent  γ  and  average  node
degree  and  clustering  coefficient,  which  can  serve  as  null  models  for
testing  hypotheses  related  to  the  formation  of  complex  systems.  As  a
result,  the  goal  of  this  work  is  to  determine  an  analytical  expression
for  the  probability  distribution  of  hyperbolic  distances  between
nodes,  randomly  placed  in  a  hyperbolic  disk.  The  resulting  distribu-
tion,  which  is  based  on  an  approximation  of  the  hyperbolic  distance
between  nodes,  provides  insights  into  the  stochastic  processes  that
give  rise  to  the  structure  of  complex  networks  and  serves  as  a  refer-
ence  for  the  type  of  node  similarities  needed  to  generate  their  scale-
free and strongly clustered topologies. 
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Preliminaries2.

In this paper, the native representation of the hyperbolic space is

used, in which the two-dimensional hyperbolic space ℍ2, of constant

curvature K  -ζ2, is contained in a Euclidean disk, and points are
placed at polar coordinates (r, θ). The results shown in Section 3 fo-
cus on the case ζ  1. Even when the choice of different ζ changes the
radius of the hyperbolic disk and scales distances between points in-

side it by a factor of 1  ζ, the network resulting from connecting

them remains the same [16].
Note that while hyperbolic angles and distances from the origin of

the disk (i.e., radial coordinates) are equivalent to Euclidean angles
and distances from the origin, the length and area of a hyperbolic cir-

cle of radius r, L(r)  2π sinhr and A(r)  2πcosh(r) - 1, respec-

tively, expand exponentially with r and not polynomially like in the
Euclidean scenario. Consequently, to distribute N points uniformly at
random in a hyperbolic circle of radius R, angular coordinates

θ ∈ 0, 2π are sampled with the uniform density ρ(θ)  1  2π, and

radial coordinates r ∈ 0, R are sampled with the exponential density

ρ(r)  sinh(r)  coshR - 1 ≈ er-R (see Figure 1(a)). Note that if a pa-

rameter α ∈ 0, 1 is introduced in this expression, we can control the

density of points close to the origin of the hyperbolic circle (see equa-
tion (1) and Figure 1(b)). This has a direct impact on the node degree
distribution of the network resulting from this modified node density,
because, as mentioned in Section 1, nodes with small radial coordi-
nates have a higher likelihood to be network hubs due to their prox-
imity to all other nodes in the space:

ρ(r) ≈ αeα(r-R). (1)

Figure 1. (a) Uniform distribution of points in the hyperbolic circle, which cor-
responds to setting α  1 in equation (1). (b) Quasi-uniform distribution  of
points in the hyperbolic circle for two different values of α. Disk centers are
marked with a red cross and circle boundaries are depicted in gray.
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Equation (1), which corresponds to a quasi-uniform distribution of
points  in  the  hyperbolic  circle  of  radius  R,  is  the  one  used  in  the  rest
of this paper. 

To compute the distance between any two points (ri, θi) and rj, θj

in  the  hyperbolic  disk  of  constant  curvature  -1,  we  can  resort  to  the
hyperbolic law of cosines (see equation (2) and Figure 2): 

xi,j  arcoshcosh(ri) coshrj - sinh(ri) sinhrj cosθi,j. (2)

θi,j  π - π -θi-θj  in  equation  (2)  is  the  angle  between  points  (i.e.,

their angular distance).
For sufficiently large ri  and rj, equation (2) can be closely approxi-

mated by equation (3), which is the expression for the hyperbolic dis-
tance between points that is used in the rest of this paper: 

xi,j ≈ ri + rj + 2 ln
θi,j

2
. (3)

Note that since xi,j ≥ 0, θi,j ≥ 2 e-ri-rj . 

Figure 2. The  hyperbolic  distance  xi,j  between  two  points  in  the  hyperbolic

disk can be computed with the help of the hyperbolic law of cosines (see equa-
tion (2)) and closely approximated by equation (3).

Proof. Let us write equation (2) as: 

coshxi,j  cosh(ri) coshrj1 - tanh(ri) tanhrj cosθi,j.

Since limz→∞ tanh z  1 and ri and rj are large, we have: 

coshxi,j ≈ cosh(ri)coshrj1 - cosθi,j  cosh(ri) coshrj 2 sin
2
θi,j

2
.
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Using the definitions of cosh z  e2z + 1  2ez  (ez + e-z)  2:

e2xi,j + 1

2exi,j
≈

eri + e-ri

2

erj + e-rj

2
2 sin2

θi,j

2
.

Since ri and rj are large, e-ri and e-rj are very close to 0, which

gives:

e2xi,j - eri+rj  sin2
θi,j

2
exi,j + 1 ≈ 0.

The above can be solved for exi,j as a quadratic equation, yielding:

exi,j ≈
1

2
eri+rj  sin2

θi,j

2
1 ± 1 - 4e-2ri-2rj  sin-4

θi,j

2
.

Once again, since ri and rj are large, e
-2ri-2rj → 0, making the nega-

tive term inside the squared root close to 0. As a result, considering
the positive root only, the term in brackets is approximately 2, yield-
ing:

exi,j ≈ eri+rj  sin2
θi,j

2
.

Applying natural logarithms to both sides, the expression in equa-
tion (3) is reached:

xi,j ≈ ri + rj + 2 ln sin
θi,j

2
≈ ri + rj + 2 ln

θi,j

2
.

This completes the proof. □

In Section 3, the random variable Xi,j, the distance between two

random points in a hyperbolic circle, is considered, and its probability

density function (PDF) fXi,j
xi,j  ρxi,j is determined. This is

achieved with the help of two facts: (i) the PDF of a random variable
is the derivative of its cumulative distribution function (CDF); and
(ii)�the PDF of the sum of two random variables is the convolution of
their individual PDFs. In the following, random variables Zq are de-

noted with capital letter and subscripted with the part q of equa-

tion�(3) being analyzed. FZq
zq is the CDF of Zq and fZq

zq  ρ(q) is

its PDF.
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Determination of the Probability Distribution3.

Let us start by determining the PDF of the rightmost part of equa-
tion�(3). To do so, we first need to determine the PDF  of
θi,j  π - π -θi-θj and, at the same time, the PDF of θi - θj. It is im-

portant to emphasize that the latter expression is different from θi,j.

While θi,j is the angular distance between points and is always ≥0,

θi - θj can be negative if θj > θi. The PDF of random variable Zθi-θj
,

the  difference of two random angles in the hyperbolic circle, corre-
sponds to the following convolution (or cross-correlation in signal-
processing terminology):

fZθi-θj

zθi-θj
   fZθi

zθi-θj
+ θjfZθj

θjdθj.

Due to the domain of θj, the integration limits of this cross-correla-

tion  must ensure that 0 ≤ zθi-θj
+ θj ≤ 2π. This breaks the integral in

two pieces:

fZθi-θj

zθi-θj
 


0

2π-zθi-θj
fZθi

zθi-θj
+ θjfZθj

θjdθj, θj ≤ 2π - zθi-θj


-zθi-θj

2π
fZθi

zθi-θj
+ θjfZθj

θjdθj, θj ≥ -zθi-θj
.

The solution of the integrals yields (see Figure 3(a)):

fZθi-θj

zθi-θj
 

1

2π
+

zθi-θj

4π2
, -2π ≤ zθi-θj

≤ 0

1

2π
-

zθi-θj

4π2
, 0 < zθi-θj

≤ 2π.

(4)

As a result, the PDF for random variable Z
θi-θj

should be:

fZ
θi-θj 

z
θi-θj

  2fZθi-θj

zθi-θj
 

1

π
-

z
θi-θj

2π2
, 0 ≤ z

θi-θj
≤ 2π.

To determine the PDF of Zπ-θi-θj
 π -Z

θi-θj
, let us use its CDF:

FZπ-θi-θj 
zπ-θi-θj

  Pπ -Z
θi-θj

≤ zπ-θi-θj
 

1 - PZ
θi-θj

≤ π - zπ-θi-θj
  1 - FZ

θi-θj 
π - zπ-θi-θj

 

1 - 
0

π-zπ-θi-θj  1

π
-

z
θi-θj

2π2
dz

θi-θj


1

2

zπ-θi-θj
2

2π2
+

zπ-θi-θj

π
+

1

2
.
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Figure 3. The  shape  of  the  distributions  derived  for  the  rightmost  term  in
equation (3): (a) the difference between the angles of two points in the hyper-
bolic  circle;  (b)  the  angular  distance  between  these  points;  and  (c)  the  θi,j-

dependent correction applied to the sum of radial coordinates to approximate
the hyperbolic distance between these points. The red line corresponds to the
analytical  expressions  derived  in  this  work  (equations  (4)  through  (6)),  and
the  histograms  correspond  to  the  actual  distributions  of  pairwise  differences,
distances,  and  corrections  between  1000  points  placed  at  random  according
to α  1.

Note  that  the  last  expression  is  valid  for  -π ≤ zπ-θi-θj
≤ π,  and

that differentiation with respect to zπ-θi-θj
 finally gives: 

fZπ-θi-θj 
zπ-θi-θj

 
1

2π
1 +

zπ-θi-θj

π
, -π ≤ zπ-θi-θj

≤ π.

Now, the PDF for random variable Zπ-θi-θj||
 is simply the positive

part of fZπ-θi-θj 
zπ-θi-θj

 plus its negative part, which yields:

fZπ-θi-θj ||
zπ-θi-θj||

  fZπ-θi-θj 
zπ-θi-θj||

 + fZπ-θi-θj 
-zπ-θi-θj||

 
1

π
,

0 ≤ zπ-θi-θj||
≤ π.

Let Θi,j  π -Zπ-θi-θj||
 be  the  random  variable  for  the  angle  be-

tween  two  random  points  in  the  hyperbolic  circle  (i.e.,
θi,j  π - π -θi - θj ||). Using the CDF of Θi,j, we have: 

FΘi,j
θi,j  Pπ -Zπ-θi-θj||

≤ θi,j  1 - PZπ-θi-θj||
≤ π - θi,j 

1 - FZπ-θi-θj ||
π - θi,j  1 - 

0

π-θi,j 1

π
dzπ-θi-θj||


θi,j

π
.

Distance Distribution between Complex Network Nodes in Hyperbolic Space 229

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.3.223



Differentiating  with  respect  to  θi,j,  the  resulting  density  is  (see  Fig-

ure 3(b)): 

fΘi,j
θi,j 

1

π
, 0 ≤ θi,j ≤ π. (5)

Thanks to equation (5), it is now possible to work out the PDF of

term  2 lnθi,j  2  in  equation  (3).  Again,  using  the  CDF  method  it  is

straightforward to determine the PDF for random variable Zθij2
: 

fZθij2
zθij2

 
2

π
, 0 ≤ zθij2

≤ π.

With  the  help  of  the  CDF  method,  the  PDF  of  random  variable

Zlnθij2
 lnZθij2

 is derived as follows: 

FZlnθij2
zlnθij2

  PlnZθij2
 ≤ zlnθij2

  PZθij2
≤ e

zlnθij2  

FZθij2
e
zlnθij2   

0

e
z
lnθij2 2

π
dzθij2


2e

zlnθij2

π
.

Differentiating with respect to zlnθij2
: 

fZlnθij2
zlnθij2

 
2e

zlnθij2

π
, zlnθij2

< ln
π

2
.

Finally,  it  is  not  difficult  to  see  that  for  the  random  variable
C  2Zlnθij2

,  the  θij-dependent  correction  applied  to  the  sum  of  ra-

dial coordinates in equation (3) is (see Figure 3(c)): 

fC(c) 
ec/2

π
, c < 2 ln

π

2
. (6)

The  next  step  of  this  analysis  is  to  derive  the  PDF  for  the  sum  of
random  variables  Ri  and  Rj,  which  correspond  to  the  radial  coordi-

nates  of  two  random  points  in  the  hyperbolic  circle.  The  densities  of

these  variables  are  fRi
 αeα(ri-R)  and  fRj

 αeαrj-R,  respectively,

with  constant  R  and  ri, rj ≤ R.  The  PDF  for  random  variable

Ri,j  Ri +Rj is thus the convolution of the independent PDFs: 

fRi,j
ri,j   fRi

ri,j - rjfRj
rjdrj.
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To define the integration limits for the above convolution, consider
that rj ≤ R and thus ri,j - rj ≤ R too, which yields:

fRi,j
ri,j  

ri,j-R

R
αeαri,j-rj-Rαeαrj-Rdrj 


ri,j-R

R
α2eαri,j-2Rdrj  α22R - ri,je

αri,j-2R, ri,j ≤ 2R.

(7)

Figure 4 shows the shape of equation (7) for different values of pa-
rameter α.

Figure 4. The shape of the distribution for the sum of the radial coordinates
of two random points in the hyperbolic circle, for three different values of pa-
rameter α. The red line corresponds to the analytical expression derived in
this work (equation (7)), and the histogram corresponds to the actual distribu-
tion of pairwise radial coordinate sums between 1000 points placed at ran-
dom according to parameter α.

The final step of this analysis is the determination of the PDF for
random variable Xi,j  Ri,j +C, the distance between two random

points in hyperbolic space, under the important condition that vari-
ables Ri,j and C are independent. This corresponds to the convolution

of fC(c) and fRi,j
ri,j:

fXi,j
xi,j   fRi,j

h - cfC(c)dc.

The integration variable chosen is c because it has the smallest up-

per limit (2 lnπ  2), which becomes the upper limit of integration.

To establish the lower limit, consider that h - c ≤ 2R, due to the
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domain of fRi,j
, which results in:

fXi,j
xi,j  

xi,j-2R

2 ln(π/2)
α22R - xi,j + ce

αxi,j-m-2R
ec/2

π
dc 

1

π1 - 2α2
-2α2eαxi,j-2R-c+c2

2 + xi,j - 2αxi,j + 4α - 2R - c + 2αc
xi,j-2R

2 ln(π/2)
.

(8)

Changing  fXi,j
xi,j  to  ρxi,j  as  defined  in  Section  2,  the  evaluation

of equation (8) in the given limits is finally equal to: 

ρxi,j 
2α2

π1 - 2α2
2exi,j2-R - eαxi,j-2R-2 ln(π/2)+ln(π/2)

2 + xi,j1 - 2α + 4α - 2 R + ln
π

2
,

xi,j ≤ 2R + 2 ln
π

2
.

(9)

Figure  5  shows  the  shape  of  equation  (9)  for  different  values  of
parameter  α,  together  with  the  histogram  of  the  pairwise  hyperbolic
distances  between  N  1000  points,  distributed  quasi-uniformly  at
random in the hyperbolic circle of radius R ~ lnN (see [3] for the ex-

act expression for R in the ℍ2
 model for complex networks). Thanks

to a wxMaxima worksheet accompanying this work (see Section 4), it
is possible to see that equation (9) is a valid PDF, since its integration
in the domain of xi,j equals 1. 

Figure 5. The shape of the distribution for the hyperbolic distance between N
random  points,  quasi-uniformly  distributed  in  the  hyperbolic  circle  of  radius
R ~ lnN  for  three  different  values  of  parameter  α.  The  red  line  corresponds
to  the  analytical  expression  derived  in  this  work  (equation  (9)),  and  the  his-
togram  corresponds  to  the  actual  distribution  of  pairwise  distances  between
1000 points placed at random according to parameter α.  
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Note that although equation (3) closely approximates equation (2),
a consequence of the assumption of large ri and rj that leads to equa-

tion (3) is that a fraction of equation (9)’s domain is negative (see Fig-
ure 5), which is not expected from a distance distribution. This
should not represent a problem for the construction of networks with

scaling exponent γ ∈ 2, 3, the range that is typically observed in real

systems [13]. The reason why this is the case is that the choice of α im-
pacts the network’s degree exponent γ  2α + 1 [16]. When γ ≥ 2,

that is, α ≥ 1  2, the probability that nodes have small radial coordi-

nates is very low, and even if their angular distances are small, the
sum of their radial coordinates is big enough for equation (3) to be
≥ 0 (see Figures 1(a), 1(b) left, 4(a, b), and 5(a, b)). However,  if

α ∈ 0, 1  2, nodes are closer to the center of the hyperbolic disk,

thus increasing the probability of observing negative distances (see Fig-
ures 1(b) right, 4(c), and 5(c)).

It is also important to note that setting α  1  2 in equation (9) is

problematic. Nonetheless, sampling radial coordinates from equa-

tion�(1) when α  1  2 is perfectly valid, which prompts for the deter-

mination of ρxi,j when α → 1  2. The resulting expression is shown

in equation (10):

lim
α→1/2

ρxi,j 
exi,j-2R2

8π
4R2 + 4R 2 ln

π

2
- xi,j +

xi,j
2 + 4 ln

π

2
ln

π

2
- x , xi,j ≤ 2R + 2 ln

π

2
.

(10)

Conclusion4.

In this paper, the probability density function for the approximate hy-
perbolic distance between points, distributed quasi-uniformly at ran-
dom in a hyperbolic disk of radius R, has been determined. In the pro-
cess, probability densities for the sum of the point radial coordinates,
their angular coordinate difference and distance, and the natural loga-
rithm of the latter have also been derived. These results provide in-
sights into the processes that the components of complex systems
need to optimize to give rise to the characteristic structural features of
the networks they form. Equation (9) can serve as a target function or
shape for geometric models of complex systems, which seek to gener-
ate scale-free and strongly clustered networks from distances between
system components.

Perhaps the most important area for future work is the derivation
of a  general version of equation (9) for hyperbolic spaces of any di-
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mension D ≥ 2. In that case, nodes would be inside a hyperbolic
sphere, and their position would be described by a radial coordinate r
and D - 1 angular coordinates Θ. Furthermore, equation (1) would
have to change and represent a volume density rather than a planar
one. Notwithstanding that such considerations are quite interesting,

networks lying on ℍD spaces (D ≫ 2) have zero clustering in the limit
of large N [15]. In contrast, real-world networks are strongly clus-

tered, just like those generated by the ℍ2 model, making them more re-
alistic and more suitable for the study of the dynamics underlying the
formation of complex systems.

Despite the fact that the most representative models of complex net-
work formation are based on very simple rules [5, 7, 13, 16], network
construction subject to optimization constraints or automata rules is a
relatively fertile field in network science. Developments in the analysis
of networks derived from cellular automata [17], network automata
[18], trinet automata [19], and simple optimization [20] call for
greater efforts aimed at understanding the relationships between sim-
ple computational systems and real-world networks.

A wxMaxima worksheet for the solution of cumbersome integrals
in this paper and R code for the density, distribution, and quantile
functions derived from the analytical expression determined are avail-
able at http://www.greg-al.info/code, together with a Wolfram Note-
book with interactive plots of the main PDFs derived. R code for the
generation of quasi-uniform point densities in hyperbolic space is
available at the same link.
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