
Black Hole Tech?

Stephen Wolfram

Founder and CEO
Wolfram Research, Inc.
s.wolfram@wolfram.com 

The Theory Works!  

The  equation  that  Albert  Einstein  wrote  down  for  the  gravitational
field in 1915 is simple enough:  

Rμv -
1

2
Rgμv = 8πTμv

But working out its consequences is not. And in fact even after 100
years we’re still just at the beginning of the process.
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Millions of lines of algebra have been done along the way (often
courtesy of Mathematica and the Wolfram Language). And there
have been all sorts of predictions. Like that if two black holes merge,
there should be a burst of gravitational radiation generated, with a
particular form. And a little more than a week ago—in a triumph  of
theoretical and experimental science—it was announced that just such
gravitational radiation had been detected.

I’ve followed General Relativity and gravitation theory for more
than 40 years now—and it’s been inspiring to see how the small com-
munity that’s pursued it has progressively increased its theoretical
prowess, and how the discussions I saw at Caltech in the late 1970s
finally led to a successful detector of gravitational waves.

General Relativity is surely not the whole story of how spacetime
and gravity work. But we’ve now just got some spectacular new evi-
dence of how far the theory can be taken. For a long time I  myself
was a bit skeptical about black holes—and for example about
whether true General-Relativity-style ones would actually form in real
physical processes. But as of a little more than a week ago I’m finally
convinced that black holes exist, just as General Relativity suggests.

Fast Forward to Black Hole Technology

OK, so we’ve observed one pair of black holes, a billion light years
away. And no doubt now—quite amazingly—we’ll get evidence for a
steady stream of others around the universe. But what if somehow we
could get our hands on our very own black holes, and maybe even
lots of them? What could we—or, for that matter, any putative
extraterrestrials—do with them? What kind of perhaps extremely
exotic structures or technology could eventually be made with them?

It’s always the same story with technology. We have to take the
raw material that our universe provides, and somehow find ways to
organize it for purposes we want. It’s remarkable to look through the
list of chemical elements, or a list of physics effects that have been dis-
covered, and to realize that—though it sometimes took a  while—
almost all those that can be readily realized on the time and energy
scales of today’s technology have found real applications. So what
about black holes? Given how hard it’s been to detect our very first
pair of black holes, it might seem almost irreverent to ask. And per-
haps our universe just isn’t big enough for the question to be sensible.
But as a kind of celebration of the detection of gravitational waves I
thought it might be fun to try fast-forwarding a long way—and seeing
what one can figure out about technology that black holes could
make possible.
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It  seems  inconceivable  that  we  ourselves  will  ever  get  to  try  out
anything like this for real—unless we find a way to locally make tiny
stable  black  holes.  But  if  something  is  possible  to  do,  perhaps  some
more-advanced civilization out there in the universe has already done
it—but  we  likely  couldn’t  recognize  evidence  of  it  without  having
more idea of what’s possible.  

But  before  we  can  get  to  speculating  about  black  hole  technology,
we’re  going  to  have  to  talk  a  bit  about  what’s  known  about  black
holes,  General  Relativity  and  gravitation.  There  are  lots  of  compli-
cated  issues—that  are  probably  most  easily  explained  using  some
fairly mathematically sophisticated concepts (Riemann tensors, covari-
ant  derivatives,  spacelike  hypersurfaces,  Penrose  diagrams,  etc.  etc.).
But for the sake of writing a general blog post, I’m going to try to do
without  these,  while  still,  I  hope,  correctly  communicating  what’s
known  and  what’s  not.  I  won’t  be  able  to  do  it  perfectly,  and  might
lapse  unwittingly  into  physics-speak  from  time  to  time,  but  here
goes…

 What Are Black Holes?  

General Relativity is often discussed in terms of the geometry of space-
time.  But  one  can  also  think  of  it  as  just  saying  that  gravity  is
associated  with  a  field  that  has  a  certain  strength  or  value  at  every
point.  This  idea  of  a  field  is  basically  just  like  in  electromagnetism,
with  its  electric  and  magnetic  fields.  It’s  also  like  in  fluid  mechanics,
where  there’s  a  velocity  field  that  gives  the  velocity  of  the  fluid  at
every point (like a wind velocity map for the weather).  

What Einstein did in 1915 was to suggest particular equations that
should  be  satisfied  by  the  gravitational  field.  Mathematically,  they’re
partial  differential  equations,  which  means  that  they  say  how  values
of  the  field  relate  to  rates  of  change  (partial  derivatives)  of  these  val-
ues.  They’re  the  same  general  kind  of  equations  that  we  know  work
for electromagnetic fields, or for the velocity field in a fluid.  

So  what  does  one  do  with  these  equations?  Well,  one  solves  them
to find out what the field is in any particular case. It turns out that for
electromagnetism,  the  structure  of  the  equations  makes  this  in  princi-
ple  straightforward.  But  for  fluid  mechanics,  it’s  considerably  more
complicated—and  for  Einstein’s  equations  it’s  much  more  compli-
cated still.  

In  electromagnetism,  one  can  just  think  of  charges  and  currents  as
being sources of electromagnetic field, and there’s no “internal effect”
of  the  field  on  itself  (unless  one  considers  quantum  effects).  But  for
fluid  mechanics  and  Einstein’s  equations,  it’s  a  different  story.  In  a
first approximation, the velocity of a fluid is determined by whatever
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pressure  is  applied  to  it.  But  what  complicates  things  greatly  is  that
within  the  fluid  there’s  an  internal  effect  of  each  part  of  the  velocity
field  on  others.  And  it’s  similar  with  the  gravitational  field:  In  a  first
approximation, the field is just determined by whatever configuration
of  masses  exists.  But  there’s  also  an  “internal  effect”  of  the  field  on
itself. Physically, this is because the gravitational field can be thought
of as having energy and momentum, which behave like mass in effec-
tively  being  a  source  of  the  field.  (The  electromagnetic  field  has
energy  and  momentum  too,  but  it  doesn’t  itself  have  charge,  so
doesn’t  act  as  a  source  for  itself.  In  QCD,  the  color  field  itself  has
color,  so  it  has  the  same  general  kind  of  nonlinear  character  as  fluid
mechanics or Einstein’s equations.)  

In electromagnetism, with its simpler structure, one can’t have any
region of static nonzero field unless one has charges or currents explic-
itly producing it. But when fields can act on themselves it’s a different
story,  and  there  can  be  structures  that  exist  purely  in  the  field,  with-
out  any  external  sources  being  present.  For  example,  in  a  fluid  there
can be a vortex that just exists within the fluid—because this happens
to be a possible solution to the pure equations for the velocity field of
the fluid, without any external forces.  

What  about  the  Einstein  equations?  Well,  it’s  somewhat  the  same
story,  though  the  details  are  considerably  more  complicated.  There
are  nontrivial  solutions  to  the  Einstein  equations  even  in  the  case  of
“pure  gravity”,  without  any  matter  or  external  configuration  of
masses  being  present.  And  that’s  exactly  what  black  holes  are.
They’re  examples  of  solutions  to  the  Einstein  equations  that  corre-
spond to structures that can just exist independently in a gravitational
field, a bit like vortices can just exist in the velocity field of a fluid.  

 How Black Holes Are Made  

From  everyday  experience  and  from  seeing  the  operation  of  pro-
grams, we tend to be used to the idea that the way to work out what
something will do is to start from the beginning and then go forwards
step  by  step.  But  in  mathematically  based  science  the  setup  is  often
much less direct and constructive, and instead is basically “the system
obeys  such-and-such  an  equation;  whatever  the  system  does  must
correspond  to  some  solution  or  another  to  the  equation”.  And  that’s
ultimately the setup with Einstein’s equations.  

There  can  be  some  serious  complications.  For  example,  given
particular  constraints  it’s  far  from  obvious  that  any  solutions  to  the
equations will exist, or be unique. And indeed we’ll encounter difficul-
ties  along  these  lines  later.  But  let’s  start  off  by  trying  to  get  some
rough idea of the physics of how black holes can be made.  
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The  classic  way  one  imagines  a  black  hole  is  made  is  from  the
collapse of a massive star. And that’s presumably where the two black
holes just detected came from.  

For the Earth, with its particular mass and radius, we can work out
that  something  launched  from  the  surface  must  have  a  velocity  of
about 25,000 miles per hour to escape Earth’s gravity. But for a body
whose  mass  is  larger  or  whose  radius  is  smaller,  the  escape  velocity
will  be  larger.  And  what  General  Relativity  (like  Newtonian  gravity
before  it)  says  is  that  eventually  the  escape  velocity  will  exceed  the
speed  of  light—so  that  neither  light  nor  anything  else  will  be  able  to
escape, so the object will always seem black: a black hole.  

When  this  happens,  there’s  inevitably  also  a  strong  gravitational
field.  And  this  gravitational  field  effectively  has  mass,  which  itself
serves  as  a  source  of  gravitational  field.  And  in  the  end,  it’s  actually
irrelevant if there’s matter there at all: the black hole is in effect a self-
sustaining  configuration  of  the  gravitational  field  that  exists  as  a
solution  to  Einstein’s  equations.  It’s  a  bit  like  a  vortex  in  a  fluid,
which  you  can  start  by  stirring,  but  which,  once  it’s  there,  effectively
just perpetuates itself (though in a real fluid with viscosity it’ll eventu-
ally damp out).  

It’s not obvious of course that the mass and radius needed to get a
black  hole  would  actually  occur.  It’s  known  that  stars  like  the  Sun
will  never  collapse  far  enough.  But  above  about  3  or  4  solar  masses,
there’s  at  least  no  known  physical  process  that  will  prevent  a  star
from  collapsing  enough  to  form  a  black  hole.  And  the  36-  and  29-
solar-mass black holes recently observed presumably formed this way.

 What Can a Black Hole Be Like?  

Let’s for a moment ignore how black holes might be formed, and just
ask what they can be like. This is really a question about possible solu-
tions  to  Einstein’s  equations.  And  if  we  want  something  that  doesn’t
change with time, and that’s localized in space, then there are mathe-
matical theorems that say the choices are very limited.  

There  could  have  been  a  whole  zoo  of  possible  black  hole  struc-
tures—and  in  higher  dimensions,  there  are  at  least  a  few  more.  But
for  4D  spacetime,  it  actually  turns  out  that  all  stationary  black  hole
solutions  are  mathematically  similar,  and  are  determined  by  just  two
parameters:  their  overall  mass  and  angular  momentum.  (If  one
includes  electromagnetism  as  well,  then  they’re  also  determined  by
charge—and  it’d  be  the  same  story  with  any  other  long-range  gauge
fields.)  
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The  case  of  non-rotating  black  holes  (zero  angular  momentum)  is
simplest.  The  relevant  solution  to  the  Einstein  equations  was  found
already by Karl Schwarzschild in 1915. But it took nearly 50 years for
the interpretation of the solution to become clear.  

One  crucial  feature  of  the  Schwarzschild  solution  is  that  it  has  an
event  horizon.  This  means  that  any  light  rays  (or  anything  else)  that
originate  inside  a  certain  sphere  (the  event  horizon)  are  trapped  for-
ever, and can’t escape. There was confusion for quite a while, because
the  original  formula  for  the  Schwarzschild  solution  has  a  singularity
at  the  event  horizon.  But  actually  this  is  just  a  mathematical  artifact
that can be removed by using a different coordinate system, and isn’t
relevant to anything physically observable.  

But  even  though  there’s  no  real  singularity  at  the  event  horizon,
there  is  a  singularity  at  the  very  center  of  the  black  hole—where  the
curvature  of  spacetime,  and  thus  the  effective  strength  of  the  gravita-
tional field, is infinite. And it turns out that this singularity is in effect
where  the  whole  mass  of  the  black  hole  is  concentrated.  It’s  a  pretty
pathological  situation.  If  this  were  happening  in  fluid  mechanics,  for
example,  we’d  just  assume  that  the  continuum  differential  equations
we’re using must break down, and that instead we’d have to work at
the  level  of  molecules.  But  for  General  Relativity  we  don’t  yet  have
any  established  lower-level  theory  to  use  (though  I  certainly  have
ideas,  and  string  theory  has  claims  of  being  able  to  come  to  the  res-
cue).  There’s  also  elegant  mathematics  that’s  developed  around  black
holes and their singularities—and anyway at least in this case one can
say  that  “It’s  all  happening  inside  the  event  horizon  so  nobody  out-
side will ever find out about it”. So the current state of the art is just
to  work  with  the  theory  assuming  the  singularity  is  real—and  what’s
interesting  now  is  that  calculations  based  on  this  seem  to  have  given
correct answers for the recent gravitational wave discovery.  

 The Life of a Non-rotating Black Hole  

I  just  talked  a  bit  about  the  mathematical  structure  of  a  black  hole
solution  to  Einstein’s  equations.  But  how  does  this  correspond  to  an
actual black hole that could form from the collapse of a massive star?  

The  truest  way  to  find  out  would  be  to  start  from  an  accurate
model of the star and then simulate the whole process of forming the
black  hole.  And  at  least  in  some  approximation,  it’s  possible  these
days to do this. But let’s try a more lightweight approach.  

Let’s  assume  that  there’s  a  black  hole  solution  to  Einstein’s  equa-
tions  that  exists.  Then  let’s  ask  what  happens  when  small  things  fall
into  it.  Well,  there’s  already  an  issue  here.  Think  about  an  observer
far  from  the  black  hole.  In  order  to  “get  the  news”  that  something
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crossed  the  event  horizon  of  the  black  hole,  the  observer  would  have
to  get  some  signal—say  a  light  pulse.  But  as  the  thing  gets  closer  to
the event horizon, it’ll take longer and longer for the signal to escape.
And the result is that the observer will never see things cross the event
horizon:  they’ll  appear  to  get  closer  and  closer  (and  darker  and
darker), but never actually cross.  

And  that’ll  be  true  even  when  it  comes  to  the  formation  of  the
black  hole.  The  star  will  be  seen  to  be  collapsing,  but  it’ll  look  as  if
it’s  just  freezing  when  it  gets  to  the  point  where  an  event  horizon
would form.  

OK, but what if the observer is also falling into a black hole? Here
the  experience  is  completely  different.  They  probably  wouldn’t  even
notice  when  they  cross  the  event  horizon,  except  that  “handshake”
signals  to  the  outside  world  will  stop  getting  responses.  But  then
they’ll  get  pulled  in  towards  the  singularity  at  the  center  of  the  black
hole.  The  gravitational  field  will  steadily  increase,  and  the  fact  that
it’s stronger further in will inevitably stretch any object (or observer!)
out.  But  eventually,  splat,  they’ll  hit  the  singularity—and  in  some
sense be sucked into it.  

Is  that  really  how  things  will  work?  Well,  it’s  hard  to  tell,  but
probably not. Outside the event horizon it’s known that small pertur-
bations in the structure of the gravitational field—say associated with
the  presence  of  matter—will  tend  to  get  damped  out,  so  that  what
emerges is exactly the official Schwarzschild black hole solution to the
Einstein equations.  

But  inside  the  event  horizon  it’s  much  less  clear  what  happens.  As
soon as there are perturbations, there’ll be time variations in the gravi-
tational field, and one’s no longer dealing with a static solution to the
Einstein  equations.  The  result  is  that  the  known  theorems  no  longer
apply—and quite possibly there’ll be instabilities that change the struc-
ture  or  even  existence  of  the  singularity.  But  at  least  in  this  case,  in
some sense it doesn’t matter—because none of what happens will ever
be visible outside of the event horizon.  

 Rotating Black Holes  

In 1963 Roy Kerr found a solution to Einstein’s equations that corre-
sponds to a black hole with angular momentum. Like the solution for
a non-rotating black hole, it has a singularity in the middle. But now
the singularity is not a point; instead it forms a ring.  

And  at  least  so  long  as  the  angular  momentum  J  is  (in  suitable

units)  less  than  the  square  of  the  mass,  M2,  the  rotating  black  hole
solution has an event horizon. And outside the event horizon, pertur-

Black Hole Tech? 263

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.257



bations  tend  to  get  damped,  just  like  in  the  non-rotating  case.  But
inside, things are different.  

In  a  non-rotating  black  hole  anything  that  goes  inside  the  event
horizon will eventually hit the singularity, but won’t “see it coming”.
And if light or anything else originates at the singularity it’ll just stay
there, and never “get out”.  

But  the  same  isn’t  true  in  a  rotating  black  hole.  Here,  not
everything will hit the singularity, and things that originate at the sin-
gularity  can  “get  out”.  This  latter  point  is  quite  a  problem—because
it means that to know the behavior inside the black hole, you have to
know  what  happens  at  the  singularity.  But  at  the  singularity,
Einstein’s  equations  can’t  tell  one  anything:  they  essentially  just  say
infinity=infinity.  So  the  conclusion  is  that  at  least  based  on  Einstein’s
equations, one simply can’t predict what will happen.  

At  least  with  J < M2,  this  failure  of  prediction  occurs  only  inside
the  so-called  inner  horizon  of  the  black  hole.  But  even  outside  this,
something  weird  happens.  To  an  observer  falling  into  the  black  hole,
it’ll  seem  like  a  finite  time  elapses  between  when  they  cross  the  event
horizon  and  the  inner  horizon.  But  to  an  observer  outside  the  black
hole, this will seem like an infinite time. And that means that any sig-
nals that come from outside the black hole—into the infinite future—
could be collected by the observer inside the black hole, in finite time. 

Most  likely  this  is  a  sign  that  in  practice  unbounded  amounts  of
energy  will  accumulate  near  the  inner  horizon,  making  it  unstable.
But  if  somehow  stability  were  maintained,  there’d  be  a  really  weird
effect going on: the observer inside the black hole would get to see, in
finite time, the whole infinite future unfolding outside the black hole.
And  if  that  future  happened  to  include  Turing  machines  doing
computations, then in finite time the observer would get to see compu-
tations—like  solving  the  halting  problem—that  can’t  necessarily  be
done by Turing machines in any finite time.  

This  might  be  billed  as  evidence  for  “physics  going  beyond  the
Turing  limit”,  but  it’s  not  really  convincing,  first  because  the  whole
theoretical  internal  structure  of  rotating  black  holes  probably  gets
modified in practice; and second, because to really talk about the infi-
nite  future  we  have  to  consider  the  structure  of  the  whole  universe,
not just one specific black hole.  

But despite all this complexity about what happens inside the event
horizon,  General  Relativity  has  clear  predictions  for  outside—and
these are what were needed for the pair of black holes just detected.  
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 Naked Singularities  

In  a  rotating  black  hole  with  J < M2,  there’s  a  nasty  singularity—but

it’s  safely  inside  an  event  horizon.  But  for  J > M2,  there’s  the  same
kind  of  singularity,  but  now  it’s  no  longer  inside  an  event  horizon,
and instead it’s “naked” and exposed to the outside universe.  

If  there’s  a  naked  singularity  like  this,  the  consequence  is  simple:
General  Relativity  alone  isn’t  sufficient  to  describe  what  happens  in
the universe; some additional theory is needed.  

Encountering  something  like  this  is  one  of  the  hazards  of  using  a
theory—like  General  Relativity—that’s  based  on  solving  equations
(rather than, say, running a program) to deduce how systems behave.  

And  in  fact,  it’s  still  quite  possible  that  something  similar  happens
in  the  Navier–Stokes  equations  for  fluid  mechanics.  There  are  lots
of �partial  results,  but  it’s  still  not  known  whether  starting  from
smooth  initial  conditions,  the  Navier–Stokes  equations  can  generate
singularities.  

From a physics point of view, though, there’s something to say: the
Navier–Stokes  equations  for  fluids  are  derived  by  assuming  that  the
velocity field doesn’t change too rapidly in space or time. And that’s a
fine  assumption  when  the  velocities  are  small.  But  as  soon  as  there’s
supersonic  flow,  there  are  shocks  where  the  velocity  changes  rapidly.
Viscosity  smooths  out  the  shocks  a  bit,  but  by  the  time  one’s  in  the
hypersonic  regime,  at  Mach  4  or  so,  the  shocks  get  very  sharp—in
fact, so sharp that their width is less than the typical distance between
collisions  for  molecules  in  the  fluid.  And  the  result  of  this  is  that  the
continuum  description  of  the  fluid  necessarily  breaks  down,  and  one
has to start looking at the underlying molecular structure.  

OK, so can naked singularities actually occur in practice in General

Relativity?  We  know  they  occur  if  you  somehow  have  a  J > M2

object. But what if you start from a realistic star, or some other distri-
bution  of  matter?  Can  it  spontaneously  evolve  to  produce  a  naked
singularity?  

It  was  proved  a  few  decades  ago  that  if  you  start  with  something
that’s  close  to  ordinary  flat  spacetime,  it  can’t  spontaneously  make
singularities. But if you start putting matter in, then the story changes.
And  in  fact  there  are  now  several  examples  known  where  a  smooth
initial distribution of matter can evolve to make a naked singularity—
though the singularity only shows up if the initial conditions are very
carefully  arranged  and  as  soon  as  there’s  any  perturbation,  it  goes
away.  

Can one get a stable naked singularity without this kind of special
setup? So far, nobody knows.  
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And  nobody  knows  whether  J > M2
 objects  can  be  formed.  If  one

looks at candidate black holes around the universe, most of them are

rotating. The final one from the week before last had J ≃ 0.7M2. And

it’s  certainly  interesting  to  note  that  while  many  have  J  close  to  M2,

none  seen  so  far  have  J > M2.  It’s  also  interesting  that  in  numerical
simulations  of  pairs  of  rotating  black  holes,  they  always  eventually

merge—but  if  the  result  would  have  J > M2
 they  seem  to  “delay”

their  merger,  and  emit  lots  of  gravitational  radiation  that  gets  rid
of  angular  momentum,  before  merging  to  produce  a  black  hole

with J < M2.  

 Gravitational Waves  

People  have  been  talking  about  gravitational  waves  for  almost  a  cen-
tury,  and  there’s  been  indirect  evidence  of  them  for  a  while.  But  the
recent  announcement  of  direct  detection  of  gravitational  waves  is
pretty exciting.  

So  what  are  gravitational  waves?  They’re  a  fairly  direct  analog  of
electromagnetic waves. If you take a charge and wiggle it around, it’ll
radiate  electromagnetic  waves—for  example,  radio  waves.  And  in  a
directly  analogous  way,  if  you  take  a  mass  and  wiggle  it  around,  it’ll
radiate  gravitational  waves.  Usually  they’ll  be  incredibly  weak.  But  if
the  mass  is  very  big  and  concentrated,  like  a  black  hole,  the  gravita-
tional  waves  can  be  stronger—and,  as  we’ve  now  seen,  even  strong
enough to detect.  

Why is there radiation when you wiggle something around? It’s not
hard to see. Imagine, say, that there’s a charge sitting somewhere, and
you’re some distance away. There’ll be electric field from the charge—
that’s,  say,  pointing  towards  the  charge.  Now  suddenly  move  the
charge.  After  things  have  stabilized  again,  there’d  better  be  a  new
version  of  the  electric  field,  say  pointing  to  the  new  position  of  the
charge.  But  how  does  the  transition  happen?  The  answer  is  that
the�change somehow has to propagate outward from the charge—and
the  process  of  that  happening  is  electromagnetic  radiation,  which  (in
a vacuum) moves at the speed of light.  

In  general,  the  amount  of  electromagnetic  radiation  that’s  pro-
duced is proportional to (the square of) the acceleration of the charge.
(Actually, there’s considerable subtlety to this, particularly in the rela-
tivistic  case—and  the  details  of  the  globally  correct  formula  are  still
somewhat debated.) It’s similar for gravitational radiation.  

There are some differences though. A minimal antenna for electro-
magnetic  radiation  is  a  straight  wire,  that  electrons  can  go  up  and
down.  For  gravitational  radiation,  the  minimal  “antenna”  has  to  be
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something  that  effectively  has  motion  in  two  perpendicular  direc-
tions—or,  more  technically,  a  changing  quadrupole  moment.  In
practice,  two  bodies  orbiting  each  other  will  emit  gravitational  radia-
tion,  more  or  less  as  a  result  of  the  acceleration  necessary  to  keep
them in their orbits. More or less any mass that “blobs around” with-
out being spherically symmetric will also emit gravitational waves.  

When  something  emits  gravitational  waves,  it’s  radiating  away
some of its energy. And in general the emission of gravitational radia-
tion  tends  to  have  a  damping  effect  on  the  motion  of  things.  For
example,  the  emission  of  gravitational  radiation  will  make  orbits
decay—and  makes  orbiting  bodies  progressively  spiral  in  towards
each other.  

For  something  like  the  Earth  and  the  Sun,  this  is  an  absolutely
infinitesimal effect. But for a pair of neutron stars orbiting each other,
it’s  more  significant.  And  indeed,  starting  in  1974  such  an  effect  was
observed  in  a  binary  pulsar.  And  now,  this  is  what  caused  two  black
holes eventually to spiral in so far that they hit each other—and pro-
duce the event just announced.  

Once two black holes hit, there’s a tremendous amount of gravita-
tional radiation emitted as the resulting object “blobs around” before
assuming its final single-black-hole shape. For stellar-sized black holes
it  all  happens  in  a  few  hundred  milliseconds.  And  in  the  case  of  the
event just announced, the total energy in gravitational radiation was a
whopping  3  solar  masses—big  enough  that  we’re  able  to  detect  it  a
significant fraction of the way across the universe.  

 Mathematics of Waves  

Pretty  much  any  kind  of  field  or  continuous  material  supports  some
kind  of  waves.  Start  from  whatever  the  stable  state  of  the  system  is,
then  perturb  it  just  a  little  by  periodically  changing  something,  and
you’ll  get  waves.  When  the  amplitude  of  the  waves  is  small  enough,
the  math  tends  to  be  fairly  straightforward.  For  example,  in  a  first
approximation, the amplitudes of different waves at a particular point
will just add linearly.  

But  when  the  amplitudes  of  the  waves  get  bigger,  things  can  get
much  more  complicated.  In  electromagnetism,  everything  stays  linear
however  big  the  amplitude  is  (well,  until  one  runs  into  quantum
effects). But for pretty much any other kind of waves—including, say,
water waves, as well as gravitational waves—there start to be nonlin-
ear effects as soon as the amplitude is larger.  

When  there’s  linearity,  one  can  effectively  break  down  any  field
configuration  into  a  sequence  of  non-interacting  waves  of  different
frequencies.  But  that’s  no  longer  true  for  something  nonlinear,  and
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eventually  it  usually  doesn’t  make  sense  to  talk  about  waves  at  all:
one’s just dealing with some field configuration or another. 

In  the  case  of  gravitational  waves,  one  of  the  notable  features
is�that  one  can  in  principle  arrange  waves  to  combine  so  that  they’ll
form  black  holes.  Indeed,  one  can  potentially  start  with  low-
amplitude waves, but somehow make them converge to a point where
they’ll  generate  a  black  hole  (think  “gravitational  implosion  lens”,
etc.).  

Two Black Holes  

A  single  static  black  hole  in  an  infinite  universe  is  a  possible  solution
to  Einstein’s  equations.  So  what  about  two  black  holes  orbiting  each
other? Well, there’s no known exact solution to the equations for this
case, and it’s only fairly recently that it’s become possible to calculate
with any reliability what happens.  

Roughly,  there  are  three  regimes.  First,  the  black  holes  are  peace-
fully  orbiting,  and  emitting  gravitational  radiation.  When  the  black
holes are far apart, and have velocities small compared to the speed of
light, it’s fairly straightforward. But as they get closer and speed up, it
becomes  more  complicated.  Each  black  hole  perturbs  the  other,  but
with  a  lot  of  algebra  it’s  possible  to  calculate  the  effects  (as  a  power
series in v/c).  

Eventually,  though,  this  breaks  down,  and  the  only  choice  is  to
solve the Einstein equations numerically using many of the same meth-
ods  traditionally  used  for  fluid  mechanics.  (There’ve  been  various
efforts  to  use  the  same  kind  of  cellular  automaton  approach  on  the
Einstein  equations  that  I  used  for  the  Navier–Stokes  equations,  but  I
think  what’s  more  promising  is  to  try  something  like  my  network-
rewriting models for gravity.)  

It’s only in recent years that computers have become fast enough to
get sensible answers from computations like this involving high gravi-
tational  fields  as  well  as  velocities  close  to  the  speed  of  light.  And  in
these  computations,  the  result  is  that  something  like  a  single  black
hole  is  formed.  Inevitably  it’s  a  deformed  black  hole,  and  the  third
regime  is  one  where—a  bit  like  a  bell—the  black  hole  “rings  down”
these  deformations  (either  by  emitting  gravitational  radiation,  or  by
absorbing them into the black hole itself).  

It’s a pretty complicated stack of computations, requiring a variety
of  different  methods.  But  the  impressive  thing  is  that—judging  from
the recent announcement—it seems to correctly capture what goes on
in the interaction between two black holes.  
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There  are  plenty  of  detailed  issues,  however.  One  of  them  is  that
you can’t just set up some elaborate initial state with two black holes
and expect that it will be a solution to the Einstein equations, even for
an instant. So in addition to working out the time evolution, one also
has to somehow progressively modify the initial conditions one speci-
fies,  so  that  they  actually  correspond  to  a  possible  configuration  of
the gravitational field according to Einstein’s equations.  

If  we  want  to  start  thinking  about  black  hole  configurations  for
purposes of technology, it would help to devise a simplified summary
of  interactions  between  two—or  more—black  holes.  For  example,
one  might  want  to  have  a  summary  of  the  effects  of  the  direction  of
rotation (or “spin”) and of orbiting on black holes’ interactions, orga-
nized  (in  analogy  with  quantum  systems)  into  spin-orbit,  spin-spin,
etc. components.  

 Gravitational Turbulence?  

It’s  a  general  feature  of  fluids  that  when  they  flow  rapidly,  they  tend
to  show  turbulence  and  behave  in  seemingly  random  ways.  It’s  still
not  completely  clear  what  the  origin  of  this  apparent  randomness  is.
It could be that somehow one is seeing an amplified version of small-
scale  random  molecular  motions.  Or  it  could  be  there  is  enough
instability that one is progressively exploring random details of initial
conditions  (as  in  chaos  theory).  I’ve  spent  a  long  time  studying  this,
and  my  conclusion  is  that  the  randomness  mostly  isn’t  coming  from
things  that  are  essentially  outside  of  the  fluid;  it’s  instead  coming
from  the  actual  dynamics  of  the  fluid,  as  if  the  fluid  were  computing
my  rule�30  cellular  automaton,  or  running  a  pseudorandom  number
generator.  

If  one  works  with  the  standard  Navier–Stokes  equations  for  fluid
mechanics,  it’s  not  very  clear  what’s  going  on—because  one  ends  up
having  to  solve  the  equations  numerically,  and  whenever  something
complicated  happens,  it’s  almost  impossible  to  tell  if  it’s  a  conse-
quence  of  the  numerical  analysis  one’s  done,  or  a  genuine  feature  of
the  equations.  I  sidestepped  these  issues  by  using  cellular  automaton
models  for  fluids  rather  than  differential  equations—and  from  that
it’s pretty clear that intrinsic randomness generation is at least a large
part of what’s going on. And having seen this, my expectation would
be  that  if  one  could  solve  the  equations  well  enough,  one  would  see
exactly the same behavior in the Navier–Stokes equations.  

So  what  about  the  Einstein  equations?  Can  they  show  turbulence?
I’ve  long  thought  that  they  should  be  able  to,  although  to  establish
this  will  run  into  the  same  kinds  of  numerical-analysis  issues  as  with
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the  Navier–Stokes  equations,  though  probably  in  an  even  more  diffi-
cult form.  

In  a  fluid  the  typical  pattern  is  that  one  starts  with  a  large-scale
motion (say induced by an airplane going through the air). Then what
roughly happens (at least in 3D) is that this motion breaks down into
a  cascade  of  smaller  and  smaller  eddies,  until  the  eddies  are  so  small
that they are damped out by viscosity in the fluid.  

Would  something  similar  happen  with  turbulence  in  the  gravita-
tional  field?  It  can’t  be  quite  the  same,  because  unlike  fluids,  which
dissipate  small-scale  motion  by  turning  it  into  heat,  the  gravitational
field  has  no  such  dissipation  mechanism,  at  least  according  to
Einstein’s  equations  (without  adding  matter,  quantum  effects,  etc.).
(Note that even with ordinary fluid mechanics, things are very differ-
ent  in  2D:  there  eddies  tend  not  to  break  into  smaller  ones,  but
instead  to  combine  into  larger  ones,  perhaps  like  the  Great  Red  Spot
on Jupiter.)  

My  guess  is  that  a  phenomenon  akin  to  turbulence  is  endemic  in
systems  that  have  fields  which  can  interact  with  themselves.  Another
potential  example  is  the  classical  analog  of  QCD—or,  more  simply,
classical  Yang–Mills  theory  (the  theory  of  a  classical  self-interacting
color  field).  Yang–Mills  theory  shares  with  gravity  the  feature  that  it
exhibits  no  dissipation,  but  is  mathematically  perhaps  simpler.  For
years I’ve been asking people who do lattice-gauge-theory simulations
whether  they  see  any  analog  of  turbulence.  But  with  the  randomized
sampling  (as  opposed  to  evolution)  approach  they  typically  use,  it’s
hard to tell. (There are mathematical connections between versions of
gravity  and  versions  of  Yang–Mills  theory  that  have  been  extensively
explored  in  recent  years,  but  I  don’t  know  what  implications  they
have for questions of turbulence.)  

 Orbiting a Black Hole  

In  Newton’s  theory  of  gravity,  there’s  an  inverse  square  law  for  the
force of gravity. Sufficiently far away from a massive object, the same
law  holds  in  General  Relativity  too.  With  an  inverse  square  law  for
gravity, the orbit of a pointlike object around any spherical mass will
always  be  an  ellipse  (just  like  Newton  said  it  should  be  for  Halley’s
Comet).  And  every  time  the  object  goes  around  its  orbit,  it  will  just
retrace  the  exact  same  ellipse,  keeping  the  long  axis  of  the  ellipse  in
the same direction.  

But what happens in General Relativity, and with black holes? The
first important fact is that if something is spherically symmetric, then
the  gravitational  field  it  produces  outside  itself  must  always  be  given
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exactly  by  the  Schwarzschild  solution  to  Einstein’s  equations.  That’s
true for a perfectly spherical star, and it’s also true for a non-rotating
black hole. And in fact that’s why it was often hard to tell if you were
dealing with a genuine black hole: because the gravitational field out-
side it would be the same as for a star of the same mass.  

So  what  happens  according  to  General  Relativity  if  you’re  in  orbit
around something spherical? In a first approximation, the orbit is still
elliptical,  but  the  axis  of  the  ellipse  can  change  (“precess”)—and  in
fact one of the early successes of General Relativity was to explain an
effect like this that had been seen for the orbit of the planet Mercury
(the “advance of the perihelion”).  

Here’s what actually happens as the orbital distance goes down:  

The  object  in  the  middle  looks  larger  and  larger  relative  to  the
orbit.  In  the  final  picture,  there’s  no  orbit  at  all,  and  one  just  spirals
into  the  object  in  the  middle.  In  the  other  cases,  there  are  roughly
elliptical  orbits,  but  the  precession  effect  gets  larger  and  larger,  and
typically  one  ends  up  eventually  visiting  a  whole  ring  of  possible
positions.  (There’s  an  interactive  version  of  this  on  the  Wolfram
Demonstrations Project.)  

But  does  this  always  happen?  The  answer  is  no:  one  can  pick  spe-
cial  initial  conditions  that  instead  give  a  variety  of  closed  orbits  with
various patterns:  
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So  what  about  a  rotating  object,  or  specifically  a  rotating  black
hole?  One  notable  feature  is  a  phenomenon  called  “frame  dragging”,
which  causes  orbits  to  be  pulled  towards  rotating  along  with  the
object. A consequence of this is that unless the orbit precisely follows
the  direction  of  rotation,  it  won’t  stay  in  a  single  plane,  and—in  a
seemingly  quite  random  way—will  typically  fill  up  not  a  ring  but  a
whole 3D torus. (Try out the interactive demonstration to see this.)  

Although  it  eventually  fills  in  a  torus,  the  pattern  of  the  orbit  can
be  fairly  different  depending  on  what  initial  “latitude”  one  starts
from (all these are shown for the same total time):  

If you’re sufficiently far away from the black hole, then it turns out
that  even  though  you’re  pulled  by  frame  dragging,  you  can  in  princi-
ple  overcome  the  force  (say  with  a  powerful  enough  rocket).  But  if
you’re  inside  a  region  called  the  ergosphere  (indicated  by  the  gray
region in the pictures), you’d have to be going faster than the speed of
light to do that. So the result is that any object that gets into the ergo-
sphere (which extends outside of the event horizon) will inevitably be
made to co-rotate with the black hole, just through frame dragging.  

And this means that if you can put something into the ergosphere,
it  can  gain  energy—ultimately  by  reducing  the  angular  momentum  of
the  black  hole.  One  could  imagine  using  this  as  a  way  to  harvest  the
energy  of  a  black  hole—and  indeed  astronomical  phenomena  like
high-energy gamma ray bursts are thought to be possibly related.  

The Three-Body Problem  

OK,  so  we’ve  talked  about  orbiting  a  black  hole,  and  earlier  about
what happens with two black holes. But what about with more black
holes? Well, we can start by asking that question just for simple point
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masses following Newton’s law of gravity—and it turns out that even
there things are already extremely complicated.  

The  pictures  below  show  a  bunch  of  possible  trajectories  for  three
equal-mass  pointlike  objects  interacting  through  ordinary  Newtonian
gravity.  The  only  difference  between  the  setup  for  the  different
pictures  is  where  the  objects  were  started.  But  one  can  see  that  just
changing  this  initial  condition  leads  to  an  incredible  diversity  of
behavior:  

Here are some animated versions:

Solving  the  necessary  differential  equations  is  fast  enough  these
days  in  the  Wolfram  Language  that  one  can  actually  generate  these
interactively. Here’s a version in 2D where you can interactively move
around the initial positions and velocities:  
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And here’s a version in 3D where you can set all the positions and
velocities in 3D:  

If we just had two objects (a “two-body problem”), all that would
ever  happen  is  that  they’d  orbit  each  other  in  a  simple  ellipse.  But
adding a third object (“three-body problem”) immediately allows dra-
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go  their  separate  ways.  Sometimes  two  form  a  binary  system  and  the
third goes separately. And sometimes all three make anything from an
orderly arrangement to a complicated tangled mess.  

The  three-body  problem  turns  out  to  be  a  classic  example  of  the
chaos-theory  idea  of  sensitive  dependence  on  initial  conditions:  in
many situations, even the tiniest change in, say, the initial position of
an object will be progressively amplified. And the result is that if one
specifies  the  initial  conditions  by  numbers  (say,  for  coordinate  posi-
tions),  then  the  evolution  of  the  system  will  effectively  “excavate”
more and more digits in these numbers.  

Here’s  a  particularly  simple  example.  Imagine  having  a  pair  of
objects  in  a  simple  elliptical  orbit.  Then  a  third  object  (assumed  to
have infinitesimally small mass) is started a certain distance above the
plane  of  the  ellipse.  Gravity  will  make  the  third  object  oscillate  back
and  forth  through  this  plane  forever.  But  the  tricky  thing  is  that  the
details of these oscillations depend arbitrarily sensitively on the details
of the initial conditions.  

This picture shows what happens when one starts that third object
at one of four different coordinate positions that differ by one part in
a  billion.  For  a  while,  all  of  them  follow  what  looks  like  exactly  the
same trajectory. But then they start to diverge, and eventually each of
them does something completely different:  

Plotting  this  in  3D  (with  the  initial  position  z0  shown  going  into

the  page)  we  can  see  just  how  random  things  can  get—even  though
each  specific  trajectory  is  precisely  determined  by  the  sequence  of
digits  in  the  real  number  that  represents  its  initial  condition.  (It’s  not
trivial,  by  the  way,  to  compute  these  pictures  correctly;  it  requires
using  the  arbitrary-precision  number  arithmetic  of  the  Wolfram
Language—and as time goes on more and more digits are needed.)  
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Not  surprisingly,  there’s  no  simple  formula  that  represents  these
results.  But  a  few  interesting  things  have  been  proved—for  example
that  if  one  measures  each  oscillation  by  how  many  orbits  are  com-
pleted while it is happening, then one can get any sequence of integers
one wants by choosing the initial conditions appropriately.  

The two-body problem was solved in terms of mathematical formu-
las  by  Isaac  Newton  in  1687—as  a  highlight  of  his  introduction  of
calculus.  And  in  the  1700s  and  1800s  it  was  assumed  that  eventually
someone  would  find  the  same  kind  of  solution  for  the  three-body
problem.  But  by  the  end  of  the  1800s  there  were  results  (notably  by
Henri Poincaré) that suggested there couldn’t be a solution in terms of
at least certain kinds of functions.  

It’s  still  not  proved  that  there  can’t  be  solutions  in  terms  of  any
kind of known functions (much as even though there aren’t algebraic
solutions  to  quintic  equations,  there  are  ones  in  terms  of  elliptic  or
hypergeometric functions). But I strongly suspect that there can never,
even in principle, be a complete solution to the three-body problem as
an explicit formula.  

 Gravitational Computation  

One can think of the time evolution of a system of masses interacting
according  to  gravity  as  being  a  computation:  you  put  in  the  initial
conditions, and then you get out where the masses are after a certain
time.  But  how  sophisticated  is  this  computation?  For  the  two-body
problem,  it’s  fairly  simple.  In  fact,  however  long  the  actual  two-body
system  runs,  one  can  always  find  the  outcome  just  by  plugging  num-
bers into a straightforward formula.  

But  what  about  the  three-body  problem?  The  pictures  above  sug-
gest  a  very  different  story.  And  indeed  my  guess  is  that  the  evolution
of  a  three-body  system  can  correspond  to  an  arbitrarily  sophisticated
computation—and  that  with  suitable  initial  conditions  it  should  in
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fact  be  able,  for  example,  to  emulate  any  Turing  machine,  and  thus
act as a universal computer.  

I’ve  suspected  computational  universality  in  the  three-body  prob-
lem  for  about  35  years  now.  But  it’s  a  technically  complicated  thing
to  prove.  Usually  in  studying  computation  we  look  at  fundamentally
discrete  systems,  like  Turing  machines  or  cellular  automata.  But  the
three-body  problem  is  fundamentally  continuous—and  can  for  exam-
ple  make  use  of  arbitrarily  many  digits  in  the  real  numbers  it’s  given
as initial conditions.  

Still, at least from a formal point of view, one can set up initial con-
ditions  that  have,  say,  a  finite  sequence  of  nonzero  digits.  Then  one
can  look  at  the  output  from  the  evolution  of  the  system,  binning  the
results to get a sequence of discrete data (e.g. using ideas of symbolic
dynamics).  And  then  the  question  is  whether  by  changing  the  initial
conditions  we  can  have  the  output  sequence  correspond  to  the  result
from  any  program  we  want—say  one  that  shows  which  successive
numbers are prime, or computes the digits of pi.  

So  what  would  it  mean  if  we  could  prove  this  kind  of  computa-
tional  universality?  One  thing  it  would  mean  is  that  three-body
problem  must  be  computationally  irreducible,  so  there  couldn’t  ever
be a way to “shortcut”—say with a formula—the actual computation
it  does  in  getting  a  result.  And  another  thing  it  means  is  that  certain
infinite-time  questions—like  whether  a  particular  body  can  ever
escape  for  any  of  a  particular  range  of  initial  conditions—could  in
general be undecidable.  

(There’s a whole discussion about whether the three-body problem,
because  it  works  with  real  numbers,  can  compute  more  than  a  stan-
dard  universal  computer  like  a  Turing  machine,  which  only  works
with integers. Suffice it here to say that my strong suspicion is that it
can’t,  at  least  if  one  insists  that  the  initial  conditions  and  the  results
can be expressed in finite symbolic terms.) 

 Random Orbits  

How  stable  are  the  seemingly  random  trajectories  in  the  three-body
problem?  Some  are  very  sensitive  to  the  details  of  the  initial  condi-
tions,  but  others  are  quite  robust.  And  for  example,  if  one  were
designing a trajectory for a spacecraft, it seems perfectly possible that
one  could  find  a  complex  and  seemingly  random  trajectory  that
would achieve some purpose one wants.  

Are  there  cases  where  actual  star  or  planetary  systems  will  exhibit
apparent  randomness?  There  were  undoubtedly  examples  even  in  the
history  of  our  own  solar  system.  But  because  randomness  tends  to
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bring  bodies  into  regions  where  they  haven’t  been  before,  there’s  a
higher  chance  of  disruption  by  external  effects—such  as  collisions—
and so the apparent randomness probably doesn’t typically last under
“natural  selection  for  solar  systems”  when  there  are  many  bodies  in
the system.  

In  the  ever-difficult  problem  of  working  out  whether  something  is
of  “intelligent  origin”,  the  three-body  problem  adds  another  twist—
because it allows astronomical processes to show complexity just as a
consequence  of  their  intrinsic  dynamics.  If  it  is  indeed  possible  to  do
arbitrary  computation  with  a  three-body  system,  then  such  a  system
could  in  principle  be  programmed  to,  say,  generate  the  digits  of  pi,
and  perhaps  make  them  visible  in  the  light  curve  of  a  star.  But  often
the  system  will  show  just  as  complex  behavior  from  many  different
initial conditions—and one won’t be able to tell whether the behavior
has any element of “purpose”.  

 Gravitational Engineering  

Can one pick initial conditions for the three-body problem to achieve
particular  kinds  of  behavior?  The  answer  is  certainly  yes.  One  exam-
ple  (already  found  by  Lagrange  in  1772) is  to  have  the  bodies  on  the
corners  of  an  equilateral  triangle—which  produces  stable  periodic
behavior.  

One can find other periodic configurations too:  

And  indeed,  particularly  if  one  allows  more  bodies,  given  some
specified  periodic  trajectory,  one  can  probably  find  (by  fairly  tradi-
tional gradient descent methods) initial conditions that will reproduce
it, at least to some accuracy. (A notable example found in 1993 is just
three bodies following a figure-eight orbit.)  

But what about more-complex trajectories? Clearly, each set of ini-
tial  conditions  gives  some  kind  of  behavior.  The  question  is  whether
it’s useful.  

The situation is similar to what I’ve encountered for a long time in
studying simple programs like cellular automata: out there in the com-
putational universe of possible programs, there’s all kinds of rich and
complex  behavior.  Now  the  issue  is  to  “mine”  those  examples  that
are actually useful for something.  
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In  practice,  I’ve  done  lots  of  “algorithm  discovery”  in  the  com-
putational  universe,  setting  up  criteria  and  then  searching  huge
numbers  of  possible  programs  to  find  ones  that  are  useful.  And  I
expect exactly the same can be done for gravitational systems like the
three-body  problem.  It’s  really  a  question  of  formulating  some  pur-
pose  one’s  trying  to  achieve  with  the  system;  then  one  can  just  start
searching,  often  quite  exhaustively,  for  a  case  that  achieves  that
purpose.  

So how do black holes work in things like the three-body problem?
The basic story is simple: so long as the bodies stay far enough apart,
it  doesn’t  matter  whether  they’re  black  holes  or  just  generic  masses.
But  if  they  get  close,  there’ll  start  to  be  relativistic  effects,  and  that’s
where  black  holes  will  be  important.  Presumably,  however,  one  can
just set up a constraint that there should be no close approaches, and
one  will  still  be  able  to  do  plenty  of  gravitational  engineering—with
black holes or any other massive objects.  

 Where Can We Get Black Holes, Anyway?  

If  we’re  going  to  be  able  to  do  serious  black  hole  engineering,  we’d
better have a serious source of black holes. It’s not clear that our uni-
verse is going to cooperate on this. There are probably big black holes
at  the  centers  of  galaxies  (and  that  may  be  the  rather  unsatisfying
answer  to  “what’s  the  ‘equilibrium’  state”  of  a  large  number  of  self-
gravitating  objects).  There’s  probably  a  decent  population  of  black
holes  from  collapsed  massive  stars—perhaps  one  per  thousand  stars
or so, which means 100 million spread across our galaxy.  

There’s  an  important  other  point  to  mention  about  black  holes:  if
current  theories  correctly  graft  certain  aspects  of  quantum  mechanics
onto  the  classical  physics  of  the  Einstein  equations,  then  any  black
hole will emit Hawking radiation, and will eventually evaporate away
as  a  result.  Star-sized  black  holes  would  have  huge  lifespans,  but  for
less-massive black holes, the lifespan goes down, and for a black hole
the  mass  of  Halley’s  comet,  the  lifespan  would  be  about  a  billion
years.  

What  about  tiny  black  holes?  Hawking  radiation  suggests  they
should  evaporate  almost  instantly:  an  electron-mass  one  should  be

gone in well under 10-100  seconds. (When I was 15 or so, I remember
asking  a  distinguished  physicist  whether  electrons  could  actually  be
black  holes.  He said  it  was  a stupid  idea,  which  probably it  was.  But
in  writing  this  blog  I  discovered  that  Einstein  also  considered  this
idea—though  about  50  years  before  I  did.  And  as  it  happens,  in  my
network-based  models,  electrons  do  end  up  being  made  of  “pure
space”, not so unlike black holes.)  
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Even if it’s hard to get genuine gravitational black holes, one might
wonder if there could at least be analogs that are easier to get. And in
recent  years  there’s  been  some  success  with  making  “sonic  black
holes”—that  are  at  least  a  rough  analog  of  gravitational  black  holes,
but where it’s sound, rather than light, that’s trapped.  

 Finally, Black Hole Technology  

OK,  so  we’re  now  finally  ready  to  talk  about  creating  technology
with  black  holes.  I  should  say  at  the  outset  that  I’m  not  at  all  happy
with what I’ve managed to figure out. Lots of things I thought might
work turn out simply to be impossible when one looks at them in the
light  of  actual  black  hole  physics.  And  some  others,  while  perhaps
interesting,  require  assembling  large  numbers  of  black  holes,  which
seems almost absurdly infeasible in our universe—given how sparse at
least  larger  black  holes  seem  to  be,  with  only  perhaps  10^19  spread
across our whole universe.  

 Time Travel to the Future  

But  let’s  say  we  just  have  one  black  hole.  What  can  we  do  with  it?
One answer is to “bask in its time dilation”—or in some sense to use
it to do “time travel to the future”.  

Special  Relativity  already  exhibits  the  phenomenon  of  time  dila-
tion,  in  which  time  runs  more  slowly  for  an  object  that’s  moving
quickly. General Relativity also messes around with the rate at which
time  runs.  In  particular,  in  a  place  with  stronger  gravity,  time  runs
slower  than  in  a  place  with  weaker  gravity.  And  so  this  means,  for
example,  that  as  one  goes  further  from  the  Earth,  time  runs
slightly �faster.  (The  clocks  on  GPS  satellites  are  back-corrected
for  this—making  them  at  least  naively  appear  to  “violate  General
Relativity”.)  

Near  a  black  hole,  strong  gravity  can  make  time  run  significantly
more  slowly.  There’s  a  nice  example  in  the  movie  Interstellar,  in
which  there’s  a  planet  orbiting  at  exactly  the  right  distance  from  a
black hole with exactly the right parameters—so that time runs much
more slowly on the planet, but other gravitational effects there aren’t
too extreme.  

In  a  sense,  as  soon  as  one  has  a  way  to  make  time  locally  run
slower,  one  can  do  “time  travel  to  the  future”.  For  the  “traveler”  a
month might have elapsed—but outside it could have been a century.
(It’s  worth  mentioning  that  one  can  achieve  the  same  kind  of  effect
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without  gravity  just  by  doing  a  trip  in  which  one  accelerates  to  close
to the speed of light.)  

Of  course,  even  though  this  would  allow  “time  travel  to  the
future”,  it  would  give  no  way  to  get  back.  For  that,  one  would  need
so-called  closed  timelike  curves,  which  do  in  principle  exist  in  solu-
tions  to  the  Einstein  equations  (notably,  the  one  found  by  Kurt
Gödel),  but  which  don’t  seem  to  appear  in  any  physically  realizable
case.  (In  a  system  determined  by  equations,  a  closed  timelike  curve  is
really less about “traveling in time” than it is about defining a consis-
tency condition between what happens in the past and the future.)  

 Black-Hole-Mediated Travel  

In science fiction, black holes and related phenomena tend to be a sta-
ple  of  faster-than-light  travel.  At  a  more  mundane  level,  the  kind  of
“gravity  assist”  maneuvers  that  real  spacecraft  do  by  swinging,  say,
around  Jupiter  could  be  done  on  a  much  larger  scale  if  one  could
swing  around  a  black  hole—where  the  maximum  achievable  velocity
would be essentially the speed of light.  

In  General  Relativity,  the  only  way  to  effectively  go  faster  than
light  is  to  modify  the  structure  of  spacetime.  For  example,  one  can
imagine  a  “wormhole”  or  tube  that  directly  connects  different  places
in  space.  In  General  Relativity  there’s  no  way  to  form  such  a  worm-
hole  if  it  doesn’t  already  exist—but  there’s  nothing  to  say  such
wormholes  couldn’t  already  have  existed  at  the  beginning  of  the
universe. There is a problem, though, in maintaining an “open worm-
hole”:  the  curvature  of  spacetime  at  the  end  would  tend  to  create
gravity that would make it collapse.  

I  don’t  know  if  it  can  be  proved  that  there’s  no  configuration  of,
say,  orbiting  black  holes  that  would  keep  the  wormhole  open.  One
known way to keep it open is to introduce matter with special proper-
ties  like  negative  energy  density—which  sounds  implausible  until  you
consider  vacuum  fluctuations  in  quantum  field  theory,  inflationary-
universe scenarios or dark-energy ideas.  

Introducing exotic matter makes all sorts of new solutions possible
for  the  Einstein  equations.  A  notable  example  is  the  Alcubierre  solu-
tion, which in some sense provides a different way to traverse space at
any speed, effectively by warping the space.  

Could  there  be  a  solution  to  the  Einstein  equations  that  allows
something  similar,  without  exotic  matter?  It  hasn’t  been  proved  that
it’s  impossible.  And  I  suppose  one  could  imagine  some  configuration
of judiciously placed black holes that would make it possible.  
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It’s  perhaps  worth  mentioning  that  in  the  models  I’ve  studied
where the underlying structure of spacetime is a network with no pre-
defined number of space dimensions, wormhole-like phenomena seem
more  natural—though  insofar  as  the  models  reproduce  General
Relativity  on  large  scales,  this  means  such  phenomena  can’t  originate
on those scales.  

 Energy Sources  

It’s  easy  to  generate  high  energies  with  a  black  hole.  Matter  that  spi-
rals  in  towards  the  black  hole  will  gain  energy—and  indeed,  around
stellar and larger black holes there’s potentially an accretion disk that
contains high-energy matter.  

With  rotating  black  holes,  there  are  some  additional  energy  phe-
nomena.  In  the  ergosphere,  objects  can  gain  energy  at  the  expense  of
the black hole itself. This is relevant both in accelerating ordinary mat-
ter,  and  in  producing  “superradiance”  where  energy  is  added  to
waves, say of light, that pass through the ergosphere.  

Can  one  do  better  with  multiple  black  holes  than  a  single  one?  I
don’t  know.  Maybe  there’s  a  configuration  of  orbiting  black  holes
that’s  somehow  optimized  for  imparting  energy  to  matter—like  a
kind of particle accelerator made from black holes.  

 Gravitational Crystals  

We  saw  earlier  some  of  the  complex  trajectories  that  three  bodies
interacting  through  gravity  can  follow.  But  what  kind  of  trajectories
can we potentially “engineer”, particularly with more bodies?  

It’s not too difficult to start with approximate trajectories and then
do  gradient  descent  (e.g.  in  Fourier  space)  to  try  to  find  trajectories
that actually correspond, for example, to closed orbits. So can one for
example find a “gravitational crystal” that consists of an infinite regu-
lar array of interacting gravitational bodies?  

There  are  some  mathematical  tricks  to  apply—and  one  ends  up
having  to  use  randomized  search  more  than  systematic  gradient
descent—but  there  do  seem  to  be  gravitational  crystals  to  be  found.
Here  are  two  potential  examples  that  show  a  kind  of  checkerboard
symmetry:  
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I  suppose  a  “gravitational  wall”  like  this  might  be  good  for  stop-
ping  things  that  approach  it.  With  the  right  parameters,  it  might  be
able  to  capture  anything  (perhaps  up  to  some  speed)  that  tries  to
cross�it.  

Given  a  “gravitational  crystal”,  one  can  ask  about  implementing
things  like  cellular  automata  on  it.  I  don’t  know  how  to  store  “bits”
for  cellular  automaton  cells  in  lattices  like  these  without  disrupting
the  lattice  too  much,  but  I  suspect  there’s  a  way.  (Yes,  classical  grav-
ity  is  reversible,  so  one  would  have  to  have  reversible  cellular
automata, but there are plenty of those.)  

What’s  shown  here  is  something  that’s  intended  to  be  a  regular,
periodic  “crystal”.  One  can  also  potentially  imagine  creating  a
“random  crystal”  in  which  there’s  overall  regularity,  but  at  a  small
scale there’s seemingly random motion. If one could make such a ran-
dom  crystal  work,  then  it  might  provide  a  more  robust  “wall”,  less
affected by outside perturbations.  

 Gravitational Shielding  

Modularization  is  an  important  general  technique  in  engineering
because it lets one break a problem into parts and then solve each one
separately.  But  for  gravitational  systems,  it’s  hard  to  do  modular-
ization—because  gravity  is  a  large-range  force,  dropping  off  only
gradually with distance.  

And  even  with  spinning  black  holes  and  the  like,  I  don’t  know  of
any way to achieve the analog of gravitational shielding—though this
changes  if  one  introduces  exotic  matter  that  effectively  has  negative
mass, or if, for example, every black hole has electric charge.  

And  without  modularization,  it’s  surely  more  difficult  to  create
something  technologically  useful—because  in  effect  one  has  to  figure
out everything at once. But it’s certainly conceivable that by searching
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a  space  of  possibilities  one  could  find  something—though  without
modularization  it  might  look  very  complicated  (as  long-range  simple
programs, like combinators, tend to do), and it could be difficult even
to  tell  what  the  system  achieves  without  looking  for  specific  proper-
ties one already knows.  

 What I’m Missing…  

Having said all this, I suspect that there are big things I am missing—
and  that  with  the  right  ways  of  thinking,  there’ll  end  up  being  some
spectacular  kinds  of  technology  that  black  holes  make  possible.  And
for all we know, once we figure this out we’ll realize that an example
of it has already existed in our universe for a billion years, whether of
“natural” origin or not.  

But for now, the discovery of gravitational radiation from merging
black  holes  is  a  remarkable  example  of  how  something  like  the  small
equation  Einstein  wrote  down  for  the  gravitational  field  a  hundred
years  ago  can  lead  to  such  elaborate  consequences.  It’s  an  impressive
endorsement  of  the  strength  of  theoretical  science—and  perhaps  an
inspiration to see just how small the rules might be to generate every-
thing we see in our universe.    
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