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Since the definition of the busy beaver function by Rado in 1962, an in-
teresting open question has been the smallest value of n for which
BB(n) is independent of Zermelo–Fraenkel set theory with the axiom of
choice (ZFC). Is this n approximately 10, or closer to 1 000 000, or is it
even larger? In this paper, we show that it is at most 7910 by present-
ing an explicit description of a 7910-state Turing machine Z with one
tape and a two-symbol alphabet that cannot be proved to run forever
in ZFC (even though it presumably does), assuming ZFC is consistent.
The machine is based on work of Harvey Friedman on independent
statements involving order-invariant graphs. In doing so, we give the
first known upper bound on the highest provable busy beaver number
in ZFC. To create Z, we develop and use a higher-level language, La-
conic, which is much more convenient than direct state manipulation.
We also use Laconic to design two Turing machines, G and R, that halt
if and only if there are counterexamples to Goldbach’s conjecture and
the Riemann hypothesis, respectively.

Introduction1.

Background and Motivation1.1

Zermelo–Fraenkel set theory with the axiom of choice, more com-
monly known as ZFC, is an axiomatic system invented in the twenti-
eth century that has since been used as the foundation of most of mod-
ern mathematics. It encodes arithmetic by describing natural numbers
as increasing sets of sets.

Like any axiomatic system capable of encoding arithmetic, ZFC
is �constrained by Gödel’s two incompleteness theorems. The first
incompleteness theorem states that if ZFC is consistent (it never
proves both a statement and its opposite), then ZFC cannot also be
complete (able to prove every true statement). The second incomplete-
ness theorem states that if ZFC is consistent, then ZFC cannot prove
its  own consistency. Because we have built modern mathematics on
top of ZFC, we can reasonably be said to have assumed ZFC’s consis-
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tency.  This  means  that  we  must  also  believe  that  ZFC  cannot  prove
its  own  consistency.  This  fact  carries  with  it  certain  surprising
conclusions. 

In particular, consider a Turing machine Z that enumerates, one af-
ter  the  other,  each  of  the  provable  statements  in  ZFC.  To  describe
how such a machine might be constructed, Z could iterate over the ax-
ioms and inference rules of ZFC, applying each in every possible way
to  each  conclusion  or  pair  of  conclusions  that  had  been  reached  so
far. We might ask Z to halt if it ever reaches a contradiction; in other
words, Z will halt if and only if it finds a proof of 0  1. Because this
machine  will  enumerate  every  provable  statement  in  ZFC,  it  will  run
forever if and only if ZFC is consistent. 

It follows that Z is a Turing machine for which the question of its
behavior  (whether  or  not  it  halts  when  run  indefinitely)  is  equivalent
to the consistency of ZFC. While we will talk about ZFC throughout
this  paper,  rather  than  simple  ZF  set  theory,  this  is  simply  a  conven-
tion.  For  our  purposes,  the  axiom  of  choice  is  irrelevant:  the  consis-
tency of ZFC is equivalent to the consistency of simple ZF set theory
[1],  and  ZFC  and  ZF  prove  exactly  the  same  arithmetical  statements
(which include, among other things, statements about whether Turing
machines  halt)  [2].  Therefore,  just  as  ZFC  cannot  prove  its  own  con-
sistency  (assuming  ZFC  is  consistent),  ZFC  also  cannot  prove  that Z
will run forever. In other words, the statement “Z will run forever” is
independent of ZFC. 

This  is  interesting  because,  while  the  undecidability  of  the  halting
problem tells us that there cannot exist an algorithmic method for de-
termining whether an arbitrary Turing machine loops or halts, Z is an
example  of  a  specific  Turing  machine  whose  behavior  cannot  be
proven  one  way  or  the  other  using  the  foundation  of  modern  mathe-
matics.  Mathematicians  and  computer  scientists  think  of  themselves
as being able to determine how a given algorithm will behave if given
enough time to stare at it; despite this intuition, Z is a machine whose
behavior  we  can  never  prove  without  assuming  axioms  more  power-
ful than those generally assumed in modern mathematics. 

Turing Machines1.2

There  are  many  slightly  different  definitions  of  Turing  machines.  For
example,  some  definitions  allow  the  machine  to  have  multiple  tapes;
others only allow it to have one; some allow an arbitrarily large alpha-
bet, while others allow only two symbols, and so on. In most research
regarding  Turing  machines,  mathematicians  do  not  concern  them-
selves  with  which  of  these  models  to  use,  because  any  one  can  simu-
late the others (usually efficiently). However, because this work is con-
cerned  with  upper-bounding  the  exact  number  of  states  required  to
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perform  certain  tasks,  it  is  important  to  define  the  model  precisely.
The model we choose here is traditional for the busy beaver function.

Formally,  a  k-state  Turing  machine  is  a  7-tuple  M 

Q, Γ, a, Σ, δ, q0, F, where:

Q is the set of k states {q0, q1, … , qk-2, qk-1} 

Γ  a, b is the set of tape alphabet symbols 

a is the blank symbol 

Σ  is the set of input symbols 

δ  Q⨯Γ → Q⋃ F ⨯Γ⨯L, R is the transition function 

q0 is the start state 

F  HALT, ERROR is the set of halting states. 

A Turing machine’s states make up the Turing machine’s easily ac-
cessible, finite memory. The Turing machine’s state is initialized to q0. 

The  tape  alphabet  symbols  correspond  to  the  symbols  that  can  be
written on the Turing machine’s infinite tape. 

In this work, all Turing machines are run on the all-a input. 

The  transition  function  encodes  the  Turing  machine’s  behavior.  It
takes two inputs: the current state of the Turing machine (an element
of  Q⋃ F)  and  the  symbol  read  off  the  tape  (an  element  of  Γ).  It  out-
puts  three  instructions:  what  state  to  enter  (an  element  of  Q⋃ F),
what symbol to write onto the tape (an element of Γ) and what direc-
tion  to  move  the  head  (an  element  of  {L, R}).  A  transition  function
specifies the entire behavior of the Turing machine in all cases. 

The  start  state  is  the  state  that  the  Turing  machine  is  in  at
initialization. 

A  halting  transition  is  a  transition  to  a  halting  state,  which  causes
the Turing machine to halt. While having three possible halting transi-
tions is not necessary for our purposes, being able to differentiate be-
tween  different  types  of  halting  (HALT  and  ERROR)  is  useful  for
testing. 

The Busy Beaver Function1.3

Consider  the  set  of  all  Turing  machines  with  k  states,  for  some  posi-
tive  integer  k.  We  call  a  Turing  machine  B  a  k-state  busy  beaver  if
when run on the empty tape as input, B halts, and B also runs for at
least  as  many  steps  before  halting  as  all  other  halting  k-state  Turing
machines [3].

In other words, a busy beaver is a Turing machine that runs for at
least as long as all other halting Turing machines with the same num-
ber  of  states.  Another  common  definition  for  a  busy  beaver  is  a  Tur-
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ing machine that writes as many ones on the tape as possible; because
the number of ones written is a somewhat arbitrary measure, it is not
used in this work. 

The  busy  beaver  function,  written  BBk,  equals  the  number  of

steps it takes for a k-state busy beaver to halt. The busy beaver func-
tion  has  many  striking  properties.  To  begin  with,  it  is  not  com-
putable; in other words, there does not exist an algorithm that takes k

as  input  and  returns  BBk,  for  arbitrary  values  of  k.  This  follows

directly  from  the  undecidability  of  the  halting  problem.  Suppose  an
algorithm  existed  to  compute  the  busy  beaver  function;  then  given  a

k-state Turing machine M as input, we could compute BBk and run

M  for  BBk  steps.  If,  after  BBk  steps,  M  had  not  yet  halted,  we

could  safely  conclude  that  M  would  never  halt.  Thus,  we  could  solve
the halting problem, which we know is impossible. 

By  the  same  argument,  BBk  must  grow  faster  than  any  com-

putable  function.  (To  check  this,  assume  that  some  computable  func-

tion  fk  grows  faster  than  BBk  and  substitute  fk  for  BBk  in  the

rest  of  the  proof.)  In  particular,  the  busy  beaver  grows  even  faster
than  (for  instance)  the  Ackermann  function,  a  well-known  fast-grow-
ing function. 

Because  finding  the  value  of  BBk  for  a  given  k  requires  so  much

work  (one  must  fully  explore  the  behavior  of  all  k-state  Turing  ma-
chines),  few  explicit  values  of  the  busy  beaver  function  are  known.
The known values are [4, 5]: 

BB1  1

BB2  6

BB3  21

BB4  107.

For BB(5), BB6 and BB(7), only lower bounds are known [6–8]: 

BB(5) ≥ 47176 870

BB6 > 7.4⨯1036 534

BB(7) > 1010
1010

107

.

Additionally, BB22 is known to be larger than Graham’s number

(a  famous  huge  number  from  Ramsey  theory,  obtained  by  iterating
the  Ackermann  function  64  times)  [9].  Researchers  have  worked  on
pinning  down  the  value  of  BB(5)  exactly,  and  some  consider  it  to  be
possibly within reach. 
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Another  way  to  discuss  the  busy  beaver  sequence  is  to  say  that
modern mathematics has established a lower bound of 4 on the high-
est  provable  busy  beaver  value.  In  this  paper,  we  prove  the  first
known  upper  bound  on  the  highest  provable  busy  beaver  value  in
ZFC;  that  is,  we  give  a  value  of  k,  namely  7910,  such  that  the  value

of BBk cannot be proven in ZFC. 

Intuitively,  one  might  expect  that  while  no  algorithm  may  exist  to

compute  BBk  for  all  values  of  k,  we  could  find  the  value  of  BBk

for any specific k using a procedure similar to the one we used to find

the value of BBk for k ≤ 4. The reason this is not so is closely tied to

the  existence  of  a  machine  like  the  Gödelian  machine  Z,  as  described
in  Section  1.1.  Suppose  that  Z  has  k  states.  Because  Z’s  behavior
(whether  it  halts  or  loops)  cannot  be  proven  in  ZFC,  it  follows  that

the  value  of  BBk  also  cannot  be  proven  in  ZFC;  if  it  could,  then  a

proof would exist of Z’s behavior in ZFC. Such a proof would consist
of  a  computation  history  for  Z,  which  is  an  explicit  step-by-step  de-
scription  of  Z’s  behavior  for  a  certain  number  of  steps.  If  Z  halts,
then a computation history leading up to Z’s halting would be the en-

tire  proof;  if  Z  loops,  then  a  computation  history  that  takes  BBk

steps,  combined  with  a  proof  of  the  value  of  BBk,  would  constitute

a proof that Z will run forever. 
In  this  paper,  we  construct  a  machine  like  Z,  for  which  a  proof

that  Z  runs  forever  would  imply  that  ZFC  was  consistent.  In  doing
so, we give an explicit upper bound on the highest busy beaver value
provable  in  ZFC,  assuming  the  consistency  of  a  slightly  stronger  set
theory. Our machine, which we shall refer to as Z hereafter, contains
7910  states.  Therefore,  we  will  never  be  able  to  prove  the  value  of

BB7910  without  assuming  more  powerful  axioms  than  those  of

ZFC.  This  upper  bound  is  presumably  very  far  from  tight,  but  it  is  a
first step.

Even to achieve a state count of 7910, we will need three nontrivial
ideas:  Friedman’s  order-theoretic  statements,  on-tape  processing  and
introspective  encoding.  Without  all  three  ideas,  we  found  that  the
state count would be in the tens of thousands, hundreds of thousands
or  even  millions.  We  briefly  introduce  these  ideas  in  the  following
subsection  and  explore  them  in  much  greater  detail  in  Section  8.  The
implementation  of  these  ideas  constitutes  this  paper’s  main  technical
contribution. 

Parsimony1.4

In most algorithmic study, efficiency is the primary concern. In design-
ing Z, however, parsimony is the only thing that matters. One histori-
cal  analog  is  the  practice  of  “code  golfing”:  a  recreational  pursuit
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adopted by some programmers in which the goal is to produce a piece
of  code  in  a  given  programming  language,  using  as  few  characters  as
possible.  Many  examples  of  code  golfing  can  be  found  at  [10].  The
goal  of  designing  a  Turing  machine  with  as  few  states  as  possible  to
accomplish  a  certain  task,  without  concern  for  the  machine’s  effi-
ciency or space usage, can be thought of as code golfing with a partic-
ularly low-level programming language.

Part  of  the  charm  of  Turing  machines  is  that  they  give  us  a
“standard  reference  point”  for  measuring  complexity,  unencumbered
by  the  details  of  more  sophisticated  programming  languages.  Also,
with Turing machines, there can be no suspicion that we engineered a
programming  formalism  just  for  the  purpose  of  code  golfing,  or  for
making  the  concepts  we  want  artificially  simple  to  describe.  This  is
why  we  prefer  Turing  machines  as  a  tool  for  measuring  complexity;
not  because  they  are  particularly  special,  but  simply  because  they  are
so primitive that their specifics will interfere minimally with what we
mean by an algorithm being “complicated.” 

In  this  paper,  we  use  three  ideas  for  generating  parsimonious  Tur-
ing  machines:  Friedman’s  mathematical  statements,  on-tape  process-
ing  and  introspective  Turing  machines.  The  last  of  these  ideas  was
proposed,  under  a  different  name  and  with  some  variations,  by  Ben-
Amram and Petersen in 2002 [11]. These three ideas are explained in
more detail in Subsections 3.1, 8.1 and 8.3, respectively, but we sum-
marize them very briefly here. 

The  first  idea  is  simply  to  use  the  research  done  by  Friedman  [12]
into  finding  simple-to-express  statements  that  are  equivalent  to  the
consistency of various axiomatic systems. In particular, we use a state-
ment discovered by Friedman to be equivalent to the consistency of a
set  theory  stronger  than  ZFC  (and  whose  consistency,  therefore,
would imply the consistency of ZFC) [13]. (Admittedly, it is not obvi-
ous  that  using  Friedman’s  current  statements  does  decrease  the  state
count of the Turing machines. It is possible that one could do as well
or better by directly searching for contradictions in ZFC, and indeed,
recent unpublished work by O’Rear has given some evidence for that
[14]. On the other hand, Friedman’s statements can be translated into
code  without  using  the  apparatus  of  first-order  logic,  which  arguably
gives us a conceptual simplification. In addition, statements like Fried-
man’s  seem  like  the  most  plausible  path  forward  for  further  reduc-
tions  in  the  state  count,  beyond  whatever  lower  limit  one  hits  when
one needs to encode the ZFC axioms explicitly.) 

The  second  idea,  on-tape  processing,  is  a  way  to  encode  high-level
commands into a Turing machine parsimoniously. Instead of convert-
ing commands to groups of states directly, which incurs a multiplica-
tive  overhead  based  on  how  large  these  groups  need  to  be,  on-tape
processing begins by writing the commands onto the tape, using as ef-
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ficient  an  encoding  as  possible.  Then,  once  the  commands  are  on  the
tape, the commands are processed by a single group of states that un-
derstands how to interpret them. 

The  third  idea,  introspective  Turing  machines,  is  a  way  to  write
long  strings  onto  the  tape  using  as  few  states  as  possible.  The  idea  is
to encode information in one of each state’s transitions, instead of en-
coding information in each state’s write field. This is advantageous be-
cause  there  are  many  choices  for  which  state  to  point  a  transition  to,
but only two choices for which bit to write. Therefore, more informa-
tion can be encoded in each state using this method. 

Implementation Overview1.5

To  generate  descriptions  of  Turing  machines  with  nice  mathematical
properties  entirely  by  hand  is  a  daunting  task.  Rather  than  approach
the  problem  directly,  we  created  tools  for  generating  parsimonious
Turing  machines  while  presenting  an  interface  that  is  comfortably  fa-
miliar to most programmers (and to us!).

We created two tools. At the top level is the Laconic programming
language,  whose  syntax  and  capabilities  are  similar  to  those  of  most
programming  languages,  such  as  Java  or  Python.  Beneath  it  we  cre-
ated a lower-level language called Turing Machine Descriptor (TMD).
TMD  is  quite  unlike  most  programming  languages  and  is  better
thought of as a convenient way to describe a multi-tape, three-symbol
Turing  machine  plus  a  function  stack.  The  style  of  multi-tape  Turing
machine used in TMD is the commonly used “one-tape-at-a-time” ab-
straction: only one tape at a time can be interacted with, for reading,
writing and moving the head. Laconic compiles down to a TMD pro-
gram, and TMD compiles down to a description of a single-tape, two-
symbol Turing machine. This process is illustrated in Figure 1. 

We recommend that programmers hoping to use our tools to gener-
ate  their  own  encodings  of  mathematical  statements  or  algorithms  as
Turing  machines  use  Laconic.  Laconic’s  interface  is  perfect  for  some-
body hoping to write in a “traditional” language. On the other hand,
if the programmer wishes to improve upon Laconic’s compilation pro-
cess, writing code directly in TMD is likely to be the better option. 

Related Work2.

Gregory Chaitin raised the problem of proving a version of our result
in his book The Limits of Mathematics [15]. He wrote:

I  would  like  to  have  somebody  program  out  Zermelo–Fraenkel
set theory in my version of LISP, which is pretty close to normal
LISP  as  far  as  this  task  is  concerned,  just  to  see  how  many  bits
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Figure 1. A visual overview of the compilation process.

of  complexity  mathematicians  normally  assume  …  If  you  pro-
grammed  ZF,  you’d  get  a  really  sharp  incompleteness  result.  It
wouldn’t  say  that  you  can  get  at  most  H(ZF) + 15 328  bits  of
[Chaitin’s halting probability] Ω, it would say, perhaps, at most
96 000  bits!  We’d  have  a  much  more  definite  incompleteness
theorem.

We did not program ZF set theory in LISP, but we programmed it
in  an  even  simpler  language—thereby  answering  Chaitin’s  call  for  an
explicit  number  of  bits  to  attach  to  the  complexity  of  ZF  set  theory.
(As  many  as  required  to  fully  describe  our  Turing  machine—or  more
precisely, 157 819.) 

This paper is not the first to attempt to quantify the complexity of
arithmetical  statements.  Calude  and  Calude  [16,  17]  define  a  register
machine  of  their  own  design  and  provide  quantifications  of  the  com-
plexity  of  Legendre’s  conjecture,  Fermat’s  last  theorem,  Goldbach’s
conjecture,  Dyson’s  conjecture,  the  Riemann  hypothesis  and  the  four
color theorem. (Because Fermat’s last theorem and the four color theo-
rem have been proved, their “complexity” is now known to be 1—the
minimum number of states in a Turing machine that runs forever.) In
addition, Koza [18] and Pargellis [19] each invent instruction sets that
are  particularly  well  suited  to  representing  self-reproducing  programs
simply  and  show  that  starting  from  a  “primordial  soup”  of  such  in-
structions distributed about a large memory, along with an increasing
number  of  program  threads,  a  rich  ecosystem  of  increasingly  efficient
self-reproducing programs starts to dominate the “landscape.” 
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This  paper  differs  from  the  previous  work  in  two  ways:  first,  it  is
the  first  to  give  explicit,  relatively  small  machines  whose  behavior  is
provably  independent  of  the  standard  axioms  of  modern  mathemat-
ics. Second, to our knowledge, this paper is the first concrete study of
parsimony to use Turing machines themselves as the model of compu-
tation—rather  than  (for  example)  a  new  programming  language  pro-
posed  by  the  authors,  or  a  complex  on-tape  description  of  Turing
machines! We consider it important to use the weakest and most com-
mon model of computation for complexity comparisons across differ-
ent  mathematical  statements.  This  is  because  the  more  powerful  and
complex  the  model  of  computation  used,  the  more  of  the  complexity
of  the  algorithm  can  be  “shunted”  onto  the  model  of  computation,
and  the  greater  the  potential  distortion  created  by  the  choice  of
model. As a reductio ad absurdum, we could imagine a programming
language  that  included  “test  the  Riemann  hypothesis”  and  “test  the
consistency  of  ZFC”  as  primitive  operations.  By  using  the  “weakest”
model  of  computation  that  is  commonly  known,  we  hope  to  avoid
this pitfall and make it easier to interpret our results in a model-inde-
pendent way. 

Also related to the work of this paper is the famous search for the
smallest  universal  Turing  machine,  which  has  a  relatively  long  his-
tory. A survey is available at [20]. Here a universal Turing machine is
a  Turing  machine  that  can  simulate  any  other  Turing  machine,  when
a  description  of  the  latter  is  provided  on  its  input  tape.  The  smallest
known  universal  Turing  machine  has  only  two  states  and  a  three-
symbol  alphabet.  It  was  found  and  conjectured  to  be  universal  by
Wolfram [21] and then proved to be universal by Smith [22] in 2007.
The search for the smallest universal Turing machine is closely related
to  the  smallest  Turing  machine  that  is  independent  of  ZFC,  in  that
both constitute a search for simplicity according to some rigorous met-
ric.  From  the  perspective  of  this  paper,  however,  the  problem  is  that
the  known  small  universal  Turing  machines  achieve  their  small  size
only  at  the  cost  of  an  extremely  complicated  description  format  for
the  input  machine.  That  is,  most  of  the  complexity  gets  “shunted”
from the Turing machine itself to the input encoding format. By con-
trast,  with  small  Turing  machines  to  test  Con(ZFC),  such  as  the  Rie-
mann hypothesis, Goldbach’s conjecture, or others, and which run on
an initially blank tape, there is no analogous trick for hiding the state-
ment’s complexity. 

Finally,  let  us  mention  that,  after  we  circulated  a  preprint  of  this
work,  O’Rear  [23]  created  a  different  1919-state  Turing  machine
whose  behavior  is  equivalent  to  the  consistency  of  ZFC.  O’Rear  was
directly  inspired  to  do  this  by  our  result;  his  result,  however,  is
stronger  than  ours  in  two  ways.  First,  his  machine  is  substantially
smaller  than  ours,  yielding  a  tighter  upper  bound  on  the  lowest  busy
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beaver  number  whose  value  is  independent  of  ZFC.  Second,  the  non-
halting  of  his  machine  is  directly  equivalent  to  Con(ZFC),  whereas
proving the non-halting of our machine seems to require assuming the
consistency  of  a  stronger  system  than  ZFC  (known  as  “stationary
Ramsey property”). 

In  order  to  create  his  machine,  O’Rear  adapted  our  Laconic  lan-
guage,  creating  a  slightly  different  language  which  he  called  Not
Quite Laconic (NQL). O’Rear then wrote a short NQL program that
directly iterates through all theorems of a formal system called Meta-
math, which is known to have the same consistency strength as ZFC. 

We hope that future work will manage to tighten the upper bound
still further. 

A Turing Machine That Cannot Be Shown to Run Forever 
Using ZFC

3.

We  present  a  7910-state  Turing  machine  whose  behavior  is  indepen-
dent of ZFC; it is not possible to prove that this machine halts or does
not halt using the axioms of ZFC, assuming that a stronger set theory

is consistent. It is therefore impossible to prove the value of BB7910

to  be  any  given  value  without  assuming  axioms  more  powerful  than
ZFC, assuming that ZFC is consistent.

For an explicit listing of this machine, see Appendix C. 

We  call  this  machine  Z.  One  way  to  build  this  machine  would  be
to start with the axioms of ZFC and apply the inference rules of first-
order  logic  repeatedly  in  each  possible  way  so  as  to  enumerate  every
statement  ZFC  could  prove,  and  to  halt  if  ever  a  contradiction  was
found. While this method is conceptually simple, to actually construct
such  a  machine  would  lead  to  a  huge  number  of  states,  because  it
would  require  writing  a  program  to  manipulate  the  axioms  of  ZFC
and the inference rules of first-order logic and then compiling that pro-
gram all the way down to Turing machine states. 

Friedman’s Mathematical Statement3.1

Thankfully,  a  simpler  method  exists  for  creating  Z.  Friedman  [13]
was able to derive a graph theoretic statement whose truth implies the
consistency of ZFC and that is false if ZFC is inconsistent. Moreover,
like most such conditional statements about the consistency of formal
systems, Friedman’s theorem could itself be formalized and proved in
a  fragment  of  Peano  arithmetic,  so  we  can  talk  about  it  in  the  same
theory-independent  terms  with  which  we  talk  about  (say)  the  prime
number  theorem  or  any  other  result  in  elementary  number  theory.  In
fact,  Friedman’s  statement  is  equivalent  to  the  consistency  of  SRP
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(“stationary  Ramsey  property”),  which  is  a  system  of  axioms  more
powerful  than  ZFC.  Because  SRP  is  strictly  more  powerful  than  ZFC
(it  in  fact  consists  of  ZFC  plus  some  additional  axioms),  the  consis-
tency of SRP implies the consistency of ZFC, and the inconsistency of
ZFC  implies  the  inconsistency  of  SRP.  Here  is  Friedman’s  statement
(the notation will be explained in the rest of this section): 

Statement 1.  For  all  k, n, r > 0,  every  order  invariant  graph  on  []≤k

has  a  free  x1, … , xr, ush(x1), … , ush(xr)  of  complexity  ≤ 8knr !,

each  x1, … , x(8kni)!,  for  i > 0  and  8kni ! ≤ r,  reducing  x1 ⋃⋯

⋃xi ⋃ 0, … , n≤k [13].

If  s  is  a  set,  the  operation  (.)≤k  refers  to  the  set  of  all  subsets  of  s
with size at most k. 

A  graph  on  []≤k  is  an  irreflexive  symmetric  relation  on  []≤k.  In
other  words,  it  can  be  thought  of  as  a  graph  whose  vertices  are  ele-

ments  of  []≤k,  and  whose  edges  are  undirected,  connected  pairs  of
vertices. These edges never connect vertices to themselves. 

A free set is a set such that no pair of elements in that set are con-
nected by an edge. 

A  number  of  complexity  at  most  c  refers  to  a  number  that  can  be

written as a fraction a  b, where a and b are both integers with abso-

lute value less than or equal to c. A set has complexity at most c if all
the numbers it contains have complexity at most c. 

An order invariant graph is a graph containing a countably infinite
number  of  nodes.  In  particular,  it  has  one  node  for  each  finite  set  of
rational  numbers.  The  only  numbers  relevant  to  the  statement  are

numbers  of  complexity  8knr !  or  smaller.  In  every  description  of

nodes  that  follows,  the  term  node  refers  both  to  the  object  in  the  or-
der invariant graph and to the set of numbers that it represents. 

In an order invariant graph, two nodes a, b have an edge between

them if and only if each other pair of nodes c, d that is order equiva-

lent  with  a, b  has  an  edge  between  them.  Two  pairs  of  nodes  a, b

and c, d are order equivalent if a and c are the same size and b and d

are  the  same  size  and  if  for  all  1 ≤ i ≤ a  and  1 ≤ j ≤ b,  the  ith  ele-

ment of a is less than the jth  element of b if and only if the ith  element

of c is less than the jth element of d. 
To give some trivial examples of order invariant graphs: the graph

with no edges is order invariant, as is the complete graph. A less triv-

ial example is a graph on []≤2, in which each node corresponds to a
set  of  two  rational  numbers  of  a  given  complexity,  and  there  is  an
edge  between  two  nodes  if  and  only  if  their  corresponding  sets  a  and

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 307

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.297



b satisfy a  b  2 and a1 < b1 < a2 < b2. (Because edges are undi-

rected  in  order  invariant  graphs,  such  an  edge  will  exist  if  either as-
signment of the vertices to a and b satisfies the inequality above.) 

The  ush()  function  takes  as  input  a  set  and  returns  a  copy  of  that
set with all non-negative numbers in that set incremented by 1. 

For  vertices  x  and  y,  x ≤rlex y  if  and  only  if  x  y  or  xx-i < yy-i,

where  i  is  the  least  integer  such  that  xx-i ≠ yy-i.  (Friedman  recom-

mended in private communication that we use the ≤rlex comparator to

compare  vertices,  instead  of  comparing  their  maximum  elements  as
described  in  his  manuscript.)  (The  ≤rlex  operation  creates  a  lexico-

graphic  ordering  over  the  vertices,  weighting  the  last  and  largest  ele-
ments  of  those  vertices  most  heavily.  Like  with  lexicographic  order-
ings, if the two vertices are identical but one is longer, the shorter one
comes first.) 

Finally, a set of vertices X reduces a set of vertices Y  if and only if
for all y ∈ Y, there exists x ∈ X such that either x  y or x ≤rlex y and

an edge exists between x and y. 

Implementation Methods3.2

To create Z, we needed to design a Turing machine that halts if State-
ment  1  is  false  and  loops  if  Statement  1  is  true.  Such  a  Turing  ma-
chine’s  behavior  is  necessarily  independent  of  ZFC,  because  the  truth
or falsehood of Statement 1 is independent of ZFC, assuming the con-
sistency of SRP [13]. SRP is an extension of ZFC by certain relatively
mild, large cardinal hypotheses and is widely regarded by set theorists
as consistent. For more information about SRP, see [24].

To  design  such  a  Turing  machine,  we  wrote  a  Laconic  program
that  encodes  Friedman’s  statement,  then  compiled  the  program  down
to  a  description  of  a  single-tape,  two-symbol  Turing  machine.  What
follows  is  an  extremely  brief  description  of  the  design  of  the  Laconic
program;  for  the  documented  Laconic  code  itself,  along  with  a  de-
tailed explanation of the full compilation process, see [25]. 

Our  Laconic  program  begins  by  looping  over  all  non-negative  val-

ues for k, n and r. For each trio k, n, r, our program generates a list

N of all numbers of complexity at most 8knr !. These numbers repre-

sent  the  vertices  in  our  putative  order  invariant  graph.  Because
Laconic  does  not  support  floating-point  numbers,  the  list  is  entirely
composed of integers; it is a list of all numbers that can be written in

the  form  8knr! !(i / j),  where  i  and  j  are  integers  satisfying

- 8knr ! ≤ i ≤ 8knr !  and  1 ≤ j ≤ 8knr !.  (Note  that  any  number

that can be expressed in this form is necessarily an integer, because of
the large scaling factor in front.) 
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After we generate N, we generate the nodes in a potential order in-
variant graph by adding to N all possible lists of k or fewer numbers
from N. We call this list of lists V. 

We iterate over all binary lists of length V2. Any such list E repre-
sents a possible set of edges in the graph. To be more precise, we say
that an edge exists between node i and node j (represented by Vi  and

Vj respectively) if and only if EiV+j is 1. 

For any graph (V, E), we say that it is “valid” if the following three
conditions hold: 

No node has an edge to itself. 1.

If an edge exists between node i and node j, an edge also exists between
node j and node i. 

2.

The  graph  has  a  free  x1, … , xr, ush(x1), … , ush(xr),  each

x1, … , x8kni! reducing x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k. 

3.

For each list of nodes V, we loop over every possible binary list E,
and if no pair (V, E) yields a valid graph, we halt. 

When  verifying  the  validity  of  a  graph,  checking  the  first  two
conditions is trivial, but the third merits further explanation. In order
to  verify  that  a  given  graph  (V, E)  has  a  free

x1, … , xr, ush(x1), … , ush(xr),  each  x1, … , x(8kni)!  reducing

x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k,  we  look  at  every  possible  subset  of  the

nodes  in  V.  For  each  subset,  we  verify  that  it  has  length  r,  that

ush(x1), … , ush(xr) all exist in V, and for each i such that 8kni ! ≤ r,

that  x1, … , x(8kni)!  reduces  x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k.  Once  we

have  found  such  a  subset,  we  know  that  the  third  condition  is
satisfied. 

A Turing Machine That Encodes Goldbach’s Conjecture4.

We present a 4888-state Turing machine that encodes Goldbach’s con-
jecture;  in  other  words,  to  know  whether  this  machine  halts  is  to
know whether Goldbach’s conjecture is true. It is therefore impossible

to prove the value of BB4888 without simultaneously proving or dis-

proving  Goldbach’s  conjecture.  (Note  that  our  tools  were  primarily
meant  to  encode  complex  statements  into  Turing  machines,  such  as
Statement 1. Because Goldbach’s conjecture is so simple, it is feasible
in  that  case  to  make  dramatically  smaller  Turing  machines  through  a
more  direct  approach.  Indeed,  after  a  preprint  of  this  paper  was
circulated  online,  “Jared  S”  and  “code  golf  addict”  created  Turing
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machines for Goldbach’s conjecture with 47 and 31 states, respective-
ly�[14].)

Recall that Goldbach’s conjecture is as follows: 

Statement 2. Every even integer greater than 2 can be expressed as the
sum of two primes.

Because  Goldbach’s  conjecture  is  so  simple  to  state,  the  Laconic
program  encoding  the  statement  is  also  quite  simple.  It  can  be  found
in  Appendix  A.  A  detailed  explanation  of  the  compilation  process,
documentation  for  the  Laconic  language  and  an  explicit  description
of this Turing machine are available at [25]. 

A Turing Machine That Encodes the Riemann Hypothesis5.

We  present  a  5372-state  Turing  machine  that  encodes  the  Riemann
hypothesis;  in  other  words,  to  know  whether  this  machine  halts  is  to
know whether the Riemann hypothesis is true. An explicit description
of this machine can be found at [25].

The Riemann hypothesis is traditionally stated as follows: 

Statement 3. The Riemann zeta function has its zeros only at the nega-

tive even integers and the complex numbers with real part 1  2.

Equivalent Statement5.1

Instead  of  encoding  the  Riemann  zeta  function  into  a  Laconic  pro-
gram,  it  is  simpler  to  use  the  following  statement,  which  was  shown
by  Davis,  Matijasevic  and  Robinson  [26]  to  be  equivalent  to  the  Rie-
mann hypothesis: 

Statement 4. For all integers n ≥ 1,


k≤δ(n)

1

k
-
n2

2

2

< 36n3.

The function δ(n) used in Statement 4 is defined as follows: 

η (j) p if j  pk, p is prime, k is a positive integer

η (j) 1 otherwise

δ (x)
n<x


j≤n

η(j).

Implementation Methods5.2

Statement  4  is  equivalent  to  the  following  statement,  which  involves
only positive integers:

l(n) < r(n)
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for all positive integers n, where

l(n)  a(n)2 + b(n)2

r(n)  36n3(δ(n) !)2 + 2a(n)b(n)

a(n)  
k≤δ(n)

δ(n) !

k

b(n) 
n2δ(n) !

2
.

Although  it  is  not  immediately  obvious, δ(n) !  k  is  necessarily  an

integer for all k ≤ δ(n), and δ(n) !  2 is an integer for all n > 1.

To  check  the  Riemann  hypothesis,  our  program  computes  a(n),
b(n),  l(n)  and  r(n),  in  that  order,  for  each  possible  value  of  n.  If
l(n) ≥ r(n), our program halts. 

Laconic6.

Laconic is a programming language designed to be both user friendly
and  easy  to  compile  down  to  parsimonious  Turing  machine
descriptions.

Laconic  is  a  strongly  typed  language  that  supports  recursive  func-
tions.  Laconic  compiles  to  an  intermediate  language  called  TMD.
TMD  programs  are  spread  across  multiple  files  and  grouped  into
directories. TMD directories are meant to represent sequences of com-
mands  that  could  be  given  to  a  multi-tape,  three-symbol  Turing  ma-
chine,  using  the  Turing  machine  abstraction  that  allows  the  machine
to read and write from one head at a time. 

For  an  example  of  a  Laconic  program,  see  Appendix  A.  For  an  il-
lustration of the compilation process, see Figure 1. 

Turing Machine Descriptor7.

TMD  is  a  programming  language  designed  to  help  the  user  describe
the  behavior  of  a  multi-tape,  three-symbol  Turing  machine  with  a
function  stack.  Each  tape  is  infinite  in  one  direction  and  supports
three symbols: _, 1 and E. The blank symbol is _; that is, _ is the only
symbol  that  can  appear  on  the  tape  an  infinite  number  of  times.  The

tape  must  always  have  the  form  _?1 E+_∞;  in  other  words,  each

tape must always contain a string of 1s and Es of size at least 1, possi-
bly  preceded  by  a  _  symbol  and  necessarily  followed  by  an  infinite
number of copies of the _ symbol. 
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What is the purpose of having a language like TMD as an interme-
diary  between  Laconic  and  a  description  of  a  single-tape  machine?
The concept of tapes in a multi-tape Turing machine and the concept
of  variables  in  standard  imperative  programming  languages  map  to
one another very nicely. The idea of the Laconic-to-TMD compiler is
to encode the value of each variable on one tape. Then, each Laconic
command  that  manipulates  the  value  of  one  or  more  variables  com-
piles down to a TMD function call that manipulates the tapes that cor-
respond to those variables appropriately. 

As an example, consider the following Laconic command: 

���������

This Laconic command assigns the value of b*c to the variable a. It
compiles down to the following TMD function call: 

��������������������������������

This  function  call  will  result  in  BUILTIN_multiply  being  run  on
the  three  tapes  a,  b  and  c.  This  will  cause  the  symbols  on  tape  a  to
take on a representation of an integer whose value is equal to bc. 

In  turn,  the  TMD  code  compiles  directly  to  a  string  of  bits  that  is
written onto the tape at the start of the Turing machine’s execution. 

A TMD directory consists of three types of files: 

The functions file. This file contains a list of the names of all the func-
tions used by the TMD program. The top function in the file is pushed
onto the stack at initialization. When this top function returns, the Tur-
ing machine halts. 

1.

The initvar file. This file contains the non-blank symbols that start in
each register (or tape) at initialization. 

2.

Any  files  used  to  describe  TMD  functions.  These  files  all  end  in  a  .tfn
extension and only have any relevance to the compiled program if they
show up in the functions file. 

3.

Compilation and Processing8.

There  are  two  ways  to  think  about  the  layout  of  the  tape  symbols:
with a four-symbol alphabet ({_, 1, H, E}, blank symbol _) and with a
two-symbol alphabet ({a, b}, blank symbol a). The two-symbol alpha-
bet  version  is  the  one  that  is  ultimately  used  for  the  results  in  this
paper, since we advertised a Turing machine that used only two sym-
bols. However, in nearly all parts of the Turing machine, the two-sym-
bol  version  of  the  machine  is  a  direct  translation  of  the  four-symbol
version, according to the following mapping: 
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_↔ aa

1↔ ab

H↔ ba

E↔ bb

The sections that follow sometimes refer to the ERROR state. Transi-
tions  to  the  ERROR  state  should  never  be  taken  under  any  circum-
stances and are useful for debugging purposes. 

Concept8.1

A  directory  of  TMD  functions  is  converted  at  compilation  time  to  a
string  of  bits  to  be  written  onto  the  tape,  along  with  other  states  de-
signed  to  interpret  these  bits.  The  resulting  Turing  machine  has  three
main components, or submachines:

The  initializer  sets  up  the  basic  structure  of  the  variable  registers  and
the function stack. 

1.

The printer writes down the binary string that corresponds to the com-
piled TMD code. 

2.

The  processor  interprets  the  compiled  binary,  modifying  the  variable
registers and the function stack as necessary. 

3.

The  Turing  machine’s  control  flow  proceeds  from  the  initializer  to
the  printer  to  the  interpreter.  In  other  words,  initializer  states  point
only  to  initializer  states  or  to  printer  states,  printer  states  point  only
to  printer  states  or  to  interpreter  states  and  interpreter  states  point
only to interpreter states or the HALT state. 

This  division  of  labor,  while  seemingly  straightforward,  actually
constitutes an important idea. The problem of the compiler is to con-
vert  a  higher-level  representation—a  machine  with  many  tapes,  a
larger  alphabet  and  a  function  stack—to  the  lower-level  representa-
tion  of  a  machine  with  a  single  tape,  a  two-symbol  alphabet  and  no
function stack. The immediately obvious solution, and the one taught
in  every  computability  theory  class  as  a  proof  of  the  equivalence  of
different  kinds  of  Turing  machines,  is  to  have  every  “state”  in  the
higher-level  machine  compile  down  to  many  states  in  the  lower-level
machine. 

While  simple,  this  approach  is  suboptimal  in  terms  of  the  number
of states. As is nearly always true when designing systems to be parsi-
monious, the clue that improvement is possible lies in the presence of
repetition.  Each  state  transition  in  the  higher-level  machine  is  con-
verted  to  a  group  of  lower-level  states  with  the  same  basic  structure.
Why  not  instead  explain  how  to  perform  this  conversion  exactly
once, and then apply the conversion many times? 

This  idea  is  at  the  core  of  the  division  of  labor  described  previ-
ously.  We  begin  by  writing  a  description  of  the  higher-level  machine
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onto  the  tape  and  then  “run”  the  higher-level  machine  by  reading
what  is  on  the  tape  with  a  set  of  states  that  understands  how  to
interpret  the  encoded  higher-level  machine.  We  refer  to  this  idea  as
on-tape processing. 

In this paper, we use TMD as the representation of the higher-level
machine.  (Note  that  instead  of  TMD,  the  on-tape  processing  scheme
could  be  used  for  any  language,  assuming  the  designer  provides  both
a  processor  and  an  encoding  for  that  language.  We  chose  TMD  be-
cause  it  made  the  interpreter  easy  to  write,  but  other  minimalist  lan-
guages,  like  Unlambda  [27],  BF  [28]  or  Iota  and  Jot  [29],  might  be
good candidates for parsimonious designs, with the additional advan-
tage  of  being  already  known  to  some  programmers!  Thanks  to  Luke
Schaeffer  for  this  point.)  The  printer  writes  the  TMD  program  onto
the  tape,  and  the  processor  executes  it.  As  a  result  of  using  this
scheme,  we  incur  a  constant  additive  overhead—we  have  to  include
the processor in our final Turing machine—but we avoid the constant
multiplicative overhead required for the naïve scheme. 

Is  this  additive  overhead  small  enough  to  be  worth  it?  We  found
that  it  is.  Our  implementation  of  the  processor  requires  3860  states.
(See Section 8.5 for a detailed breakdown of the state cost by subma-
chine.)  In  contrast  to  this  additive  overhead  of  3860,  the  naïve  ap-
proach incurs a large multiplicative overhead that depends in part on
how  many  states  must  be  used  to  represent  each  higher-level  state
transition, and in part on how efficient an encoding scheme can be de-
vised for the on-tape approach. Table 1 compares the performance of
on-tape  processing  to  the  performance  of  an  implementation  that
used the naïve approach. The comparison is shown for three kinds of
machines: a machine that halts if and only if Goldbach’s conjecture is
false,  a  machine  that  halts  if  and  only  if  the  Riemann  hypothesis  is
false and a machine whose behavior is independent of ZFC. 

As can be seen from Table 1, on-tape interpretation results in huge
gains, particularly in large and complex programs. 

The  subsections  that  follow  describe  each  of  the  three  subma-
chines—the  initializer,  the  printer  and  the  processor—in  greater
detail. 

Program States (Naïve) States (On-Tape Processing)
Goldbach 7902 4888 

Riemann 36146 5372 

ZFC 340943 7910

Table 1.A comparison of Turing machine size with and without on-tape pro-
cessing.  On-tape  processing  leads  to  vastly  more  parsimonious  Turing
machines.
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The Initializer8.2

The  initializer  starts  by  writing  a  counter  onto  the  tape  that  encodes
how  many  registers  there  will  be  in  the  program.  Using  the  value  in
that  counter,  it  creates  each  register,  with  demarcation  patterns  be-
tween registers and unique identifiers for each register. Each register’s
value  begins  with  the  pattern  of  non-blank  symbols  laid  out  in  the
initvar  file.  The  initializer  also  creates  the  program  counter,  which
starts at 0, and the function stack, which starts out with only a single
function call to the top function in the functions file. 

Figure  2  is  a  detailed  diagram  describing  the  tape’s  state  when  the
initializer passes control to the printer. 

Figure 2. The  state  of  the  Turing  machine  tape  after  the  initializer  completes.
The  TMD  program  being  expressed  in  Turing  machine  form  is  described  in
full  in  Appendix  B.  The  top  bar  is  a  high-level  description  of  what  each  part
of  the  Turing  machine  tape  represents.  The  middle  bar  is  an  encoding  of  the
tape in the standard four-symbol alphabet; the bottom bar is simply the trans-
lation of that tape into the two-symbol alphabet. For a more detailed explana-
tion of how to interpret the tape patterns, see [25].

The Printer8.3
Specification8.3.1

The printer writes down a long binary string that encodes the entirety
of the TMD program onto the tape.

Figure  3  shows  the  tape’s  state  when  the  printer  passes  control  to
the processor. 
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Figure 3. The  state  of  the  Turing  machine  tape  after  the  printer  completes.
The  TMD  program  being  expressed  in  Turing  machine  form  is  described  in
full  in  Appendix  B.  The  top  bar  is  a  high-level  description  of  the  entire  tape;
unfortunately,  at  this  point  there  are  so  many  symbols  on  the  tape  that  it  is
impossible  to  see  everything  at  once.  For  a  detailed  view  of  the  first  two-
thirds  of  the  tape  (registers,  program  counter  and  stack),  see  Figure 2.  The
bottom  three  bars  show  a  zoomed-in  view  of  the  program  binary.  From  the
top, the second bar gives a high-level description of what each part of the pro-
gram  binary  means;  the  third  bar  gives  the  direct  correspondence  between
four-symbol  alphabet  symbols  on  the  tape  and  their  meaning  in  TMD;  the
fourth and final bar gives the translation of the third bar into the two-symbol
alphabet. For a more detailed explanation of the encoding of TMD into tape
symbols, see [25].

Introspection8.3.2

Writing  down  a  long  binary  string  onto  a  Turing  machine  tape  in  a
parsimonious fashion is not as straightforward as it might initially ap-
pear. The first idea that comes to mind is simply to use one state per
symbol, with each state pointing to the next, as shown in Figure 4.

On  closer  examination,  however,  this  approach  is  quite  wasteful
for  all  but  the  smallest  binary  files.  Every  a  transition  points  to  the
next  state  in  the  sequence,  and  none  of  the b  transitions  are  used  at
all! Indeed, the only information-bearing part of the state is the single
bit  contained  in  the  choice  of  which  symbol  to  write.  But  in  theory,
far  more  information  than  that  could  be  encoded  in  each  state.  In  a
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Figure 4. A naïve implementation of the printer. In this example, the hypothet-
ical  program  is  10  bits  long,  and  the  printer  uses  10  states,  one  for  each  bit.
In the diagram, the blue symbol is the symbol that is read on a transition, the
red  letter  indicates  the  direction  the  head  moves  and  the  green  symbol  indi-
cates  the  symbol  that  is  written.  Note  the  lack  of  transitions  on  reading  a  b;
this  is  because  in  this  implementation,  the  printer  will  only  ever  read  the
blank  symbol,  which  is  a,  since  the  head  is  always  proceeding  to  untouched
parts  of  the  tape.  It  therefore  makes  no  difference  what  behavior  the  Turing
machine adopts upon reading a b in states 1 through 10 (and therefore b tran-
sitions are presumed to lead to the ERROR state)

machine  with  n  states,  each  state  could  contain  2log2(n) + 1  bits  of

information, because each of the state’s two transitions could point to
any of the n states, and the machine will write either an a or a b onto
the tape. Of course, this is only in theory; in practice, to extract the in-
formation  contained  in  the  Turing  machine’s  states  and  translate  it
into bits on the tape is nontrivial. 

We  will  use  a  scheme  originally  conceived  by  Ben-Amram  and
Petersen [11] and refined further and suggested to us by Luke Schaef-
fer.  It  does  not  achieve  the  optimal  theoretical  encoding  described
above,  but  it  is  relatively  simple  to  implement  and  understand  and  is
within  a  factor  of  2  of  optimal  for  large  binary  strings.  Schaeffer
named Turing machines that use this idea introspective. 

Introspection works as follows. If the binary string contains k bits,
then let w be the word size. The word size w takes the largest value it
can  such  that  w2w ≤ k.  We  can  split  the  binary  string  into

nw  k w words of w bits each (we can pad the last word with the

blank  symbol).  In  our  scheme,  each  word  in  the  bit  string  is  repre-
sented by a data state. Each data state points to the state representing
the  next  word  in  the  sequence  for  its  a  transition,  but  which  state
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the  b  transition  points  to  encodes  the  next  word.  Every  b  transition
points  to  one  of  the  last  2w  data  states,  thereby  encoding  w  bits  of
information. 

Of  course,  the  encoding  is  useless  until  we  specify  how  to  extract
the  encoded  bit  string  from  the  data  states.  The  extraction  scheme

works  as  follows.  To  query  the  ith  data  state  for  the  bits  it  encodes,

we  run  the  data  states  on  the  string  ai-1ba∞  (a  string  of  i - 1  as  fol-

lowed by a b in the ith  position). After running the data states on that

string,  what  remains  on  the  tape  is  the  string  bi-1abra∞,  assuming

that the ith  data state pointed to the rth-to-last data state. Thus, what
we  are  left  with  is  essentially  a  unary  encoding  of  the  “value”  of  the
word  in  binary.  Thus,  the  job  of  the  extractor  is  to  set  up  a  binary
counter  that  removes  one  b  at  a  time  and  increments  the  counter  ap-
propriately. Then afterward, the extractor reverts the tape back to the

form aiba∞, shifts all symbols on the tape over by w bits and repeats
the process. Finally, when the state beyond the last data state sees a b
on  the  tape,  we  know  that  the  process  has  completed,  and  we  can
pass control to the processor. Figure 5 shows the whole procedure. 

Figure 5. An  introspective  implementation  of  the  printer.  In  this  example,  the
hypothetical  program  is  k  10  bits  long,  and  so  the  word  size  must  be  2
(since  w  2  is  the  largest  w  such  that  w2w ≤ 10).  There  are  therefore

nw  k w  5  data  states,  each  encoding  two  bits.  The  b  transitions  carry

the information about the encoding; note that each one only points to one of
the  last  four  data  states.  The  last  four  data  states  have  in  parentheses  what
word we mean to encode if we point to them.

How much have we gained by using introspection for encoding the
program  binary,  instead  of  the  naïve  approach?  It  depends  on  how
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large the program binary is. Using introspection incurs an Olog k ad-

ditive  overhead,  because  we  have  to  include  the  extractor  in  our  ma-
chine.  (Our  implementation  of  the  extractor  takes  10w + 17  states.  It
is possible to build a constant-size extractor, but it is not worth it for
our value of w.) In return, we save a multiplicative factor of w (which
scales with log k) on the number of data states needed. 

This is plainly not worth it for the 10-bit example binary shown in
Figures  4  and  5.  For  that  binary,  we  require  69  additional  states  for
the extractor in order to save five data states. For real programs, how-
ever, it is worth it, as can be seen from Table 2. 

Program
Binary 

Size w
 

nw 

Extractor 
Size

States 
(Naïve)

States 
(Introspective)

Example TMD 116 4 29 57 116 86
Goldbach 4964 9 552 107 4964 659
Riemann 9532 10 1024 117 9532 1141
ZFC 38864 11 3534 127 38864 3661

Table 2. Statistics  relating  to  the  printer,  with  and  without  using  introspective
techniques. Introspection leads to substantially more parsimonious Turing ma-
chines, particularly when the Turing machine is complex and the program bi-
nary is long.

One minor detail concerns the numbers presented for the Riemann
program.  Ordinarily,  with  a  binary  of  size  9532,  we  would  opt  to
split  the  program  into  1060  words  of  nine  bits  each  plus  a  107-state
extractor,  since  nine  is  the  greatest  w  such  that  w2w < 9532.  But  be-
cause  9532  is  so  close  to  the  “magic  number”  10 240,  it  is  actually
more parsimonious to pad the program with copies of the blank sym-
bol until it is 10 240 bits long and split it into 1024 words of 10 bits
each plus a 117-state extractor. 

The Processor8.4

The processor’s job is to interpret the code written onto the tape and
modify the variable registers and function stack accordingly. The pro-
cessor does this by the following sequence of steps:

START:

Find the function call at the top of the stack. Mark the function f  in the
code whose ID matches that of the top function call. 

1.

Read  the  current  program  counter.  Mark  the  line  of  code  l  in  f  whose
line number matches the program counter. 

2.

Read l. Depending on what type of command l is, carry out one of the
following three lists of tasks. 

3.
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IF l IS AN EXPLICIT TAPE COMMAND:

Read  the  variable  name  off  l.  Index  the  variable  name  into  the  list  of
variables  in  the  top  function  on  the  stack.  This  list  of  variables  corre-
sponds  to  the  mapping  between  the  function’s  local  variables  and  the
register names. 

1.

Match  the  indexed  variable  to  its  corresponding  register  r.  Mark  r.
Read the symbol sr to the right of the head marker in that register. 

2.

Travel  back  to  l,  remembering  the  value  of  sr  using  states.  Find  and

mark  the  reaction  x  corresponding  to  the  symbol.  See  what  symbol  sw
should be written in response to reading sr. 

3.

Travel  back  to  r,  remembering  the  value  of  sw  using  states.  Replace  sr
with sw. 

4.

Travel  back  to  x.  See  which  direction  d  the  head  should  move  in  re-
sponse to reading sr. 

5.

Travel  back  to  r,  remembering  the  value  of  d  using  states.  Move  the
head marker accordingly. 

6.

Travel back to x. See if a jump is specified. If a jump is specified, copy
the  jump  address  onto  the  program  counter.  Otherwise,  increment  the
program counter by 1. 

7.

Go back to START. 8.

IF l IS A FUNCTION CALL:

Write the function’s name to the top of the stack. 1.

For each variable in the function call, index the variable name into the
list  of  variables  in  the  top  function  on  the  stack.  This  list  of  variables
corresponds  to  the  mapping  between  the  function’s  local  variables  and
the  register  names.  Push  the  corresponding  register  names  in  the  order
that they correspond to the variables in the function call. 

2.

Copy the current program counter to the return address of the newborn
function call at the top of the stack. 

3.

Replace  the  current  program  counter  with  0  (meaning  “read  the  first
line of code”). 

4.

Go back to START. 5.

IF l IS A RETURN STATEMENT:

Replace the current program counter with f ’s return address. 1.

Increment the program counter by 1. 2.

Erase the call to f  from the top of the stack. 3.

Check if the stack is now empty. If so, halt. 4.

Go back to START. 5.
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Cost Analysis8.5

It is worthwhile to analyze the relative contributions of the initializer,
the  printer  and  the  processor  to  the  machine’s  final  state  count.
Table�3  lists  the  number  of  states  in  each  submachine  for  each  of  the
four different TMD programs under discussion. 

Program Initializer Printer Processor Total
Example TMD 349 86 3860 4295
Goldbach 369 659 3860 4888 

Riemann 371 1141 3860 5372 

ZFC 389 3661 3860 7910

Table 3. State cost of each submachine. The cost of the processor is substantial
but  fixed;  as  the  Turing  machine  becomes  more  complicated,  the  cost  of  the
printer becomes increasingly important.

As can be seen from Table 3, the processor makes the largest contri-
bution  to  all  four  programs.  Improving  the  processor,  therefore,  is
probably  the  best  approach  for  improving  upon  the  bounds  we  pre-
sent.  Equally  clear,  however,  is  that  for  programs  more  complicated
than the ones presented here, the cost of the printer will grow almost
linearly,  but  the  cost  of  the  processor  will  stay  the  same.  The  cost  of
the initializer grows very slightly with the complexity of programs be-
cause of the need to initialize additional registers. 

Improving  the  printer,  and  with  it  the  TMD  and  Laconic  lan-
guages,  is  probably  the  best  approach  for  reducing  state  count  for
very large and complex programs. 

Future Work9.

This  paper  still  leaves  a  three-orders-of-magnitude  gap  between  the
smallest n, namely 7910, for which BB(n) is known to be independent
of  ZF  set  theory,  and  the  largest  n,  namely  4,  for  which  BB(n)  is
known  to  be  determinable.  We  regard  it  as  a  fascinating  problem  to

pin down the truth here: for example, is it conceivable that BB10 or

even  BB6  might  be  independent  of  ZF?  If  so,  that  would  arguably

force  a  qualitative  change  in  our  understanding  of  the  Gödel  incom-
pleteness  phenomenon—showing  that  incompleteness  from  strong  set
theories  rears  its  head  for  much  simpler  arithmetical  questions  than
had previously been known.

A  more  immediate  question  is  how  much  further  Z’s  state  count
can  be  reduced.  We  are  optimistic  about  the  possibility  of  further  re-
ductions.  For  example,  one  could  adapt  the  processor-printer  model
to  use  a  better  language  than  TMD.  Ideally,  one  wants  a  language
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whose processor contains fewer states than TMD’s, and whose typical
programs  are  also  shorter  than  TMD  programs.  A  few  ideas  have
been  proposed  for  this  [14],  many  of  them  related  in  some  way  to
lambda calculus. 

Other  future  work  might  involve  further  use  of  our  Laconic  lan-
guage to upper-bound the “complexities” of mathematical statements
and  algorithms,  in  as  standardized  and  model-independent  a  way  as
possible. Perhaps Laconic could be used to measure the complexity of
other  well-known  conjectures,  or  even  to  compare  different  algo-
rithms  for  solving  the  same  problem  (e.g.,  to  try  to  quantify  the  no-
tion that an insertion sort is simpler than a merge sort)! 
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Appendices

Example Laconic Program: Goldbach’s ConjectureA.

The  following  is  an  example  Laconic  program,  which  compiles  down
to  the  Turing  machine  G  mentioned  in  Section  4  (which  halts  if  and
only if Goldbach’s conjecture is false). 
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For detailed documentation of the Laconic programming language,
see  [25].  To  find  this  file  specifically,  navigate  to  parsimony/src/
laconic/laconic_files/goldbach.lac at [25]. 

Example Turing Machine Descriptor ProgramB.

The following is an example TMD directory, which compiles down to
a binary string to be written on a Turing machine tape. It is the exam-
ple used in illustrations throughout this paper, most notably in the ex-
ample compilation shown in Figures 2 and 3. The program calls itself
recursively  three  times  until  the  starting  symbol  on  each  tape  E  is  re-
placed with a 1, at which point the program halts. 

This  TMD  directory  is  called  example_tmd_dir  and  contains  four
files: f.tmd, g.tmd, initvar and functions.
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For  detailed  documentation  of  the  TMD  programming  language,
see [25]. To find this directory specifically, navigate to parsimony/src/
tmd/tmd_dirs/example_tmd_dir at [25]. 

Explicit Listing of ZC.

To  find  an  explicit  description  of  our  Turing  machine  Z,  please  visit
our repository at [25]. 

We  ran  this  Turing  machine  for  10000 000000  steps  (more  than
half a day on our simulators), and within that time it did not halt. We
note,  however,  that  Z  was  designed  for  parsimony  rather  than  effi-
ciency,  and  that  this  “experiment”  is  of  little  consequence!  We  simi-
larly  ran  a  Turing  machine  designed  to  test  the  conjecture  that  all
perfect  squares  are  less  than  5,  and  it  ran  for  2 895 083899  steps  (a
couple of hours on our simulator) before it found the counterexample
9 and halted. 

References

[1] K. Gödel, The Consistency of the Axiom of Choice and of the General-
ized  Continuum-Hypothesis  with  the  Axioms  of  Set  Theory,  Princeton,
NJ: Princeton University Press, 1940.

[2] J. Schoenfield, “The Problem of Predicativity,” in Essays on the Founda-
tions  of  Mathematics  (Y.  Bar-Hillel  et  al.,  eds.),  Jerusalem:  Magnes
Press, Hebrew University, 1961 pp. 132–142. 

[3] T.  Rado,  “On  Non-computable  Functions,”  The  Bell  System  Technical
Journal, 41(3), 1962 pp. 877–884.
doi:10.1002/j.1538-7305.1962.tb00480.x.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 325

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1002/j.1538-7305.1962.tb00480.x


[4] A.  H.  Brady,  “Solution  of  the  Non-computable  ‘Busy  Beaver’  Game  for
k  4,” in Abstracts for: ACM Computer Science Conference, Washing-
ton,  DC,  1975,  New  York:  Association  for  Computing  Machinery,
1975 p. 27.

[5] S.  Lin  and  T.  Rado,  “Computer  Studies  of  Turing  Machine  Problems,”
Journal of the ACM, 12(2), 1965 pp. 196–212.
doi:10.1145/321264.321270.

[6] H. Marxen. “Busy Beaver.” (Oct 4, 2016) www.drb.insel.de/~heiner/BB. 

[7] Wythagoras. “A Good Bound for S(7)?” (Sep 20, 2016)
googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_
S%287%29%3F. 

[8] H.  Marxen  and  J.  Buntrock,  “Attacking  the  Busy  Beaver  5,”  Bulletin
of the EATCS, 40, 1990 pp. 247–251.
www.drb.insel.de/~heiner/BB/mabu90.html.

[9] Deedlit11. “Okay, More Turing Machines.” (Sep 20, 2016)
googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing
_machines. 

[10] “Programming Puzzles & Code Golf.” (Sep 20, 2016)
codegolf.stackexchange.com.

[11] A.  M.  Ben-Amram  and  H.  Petersen,  “Improved  Bounds  for  Functions
Related  to  Busy  Beavers,”  Theory  of  Computing  Systems,  35(1),  2002
pp. 1–11. doi:10.1007/s00224-001-1052-0.

[12] H. Friedman. “Order Theoretic Equations, Maximality, and Incomplete-
ness.”  (Oct  12,  2016)  u.osu.edu/friedman.8/foundational-adventures/
downloadable-manuscripts #78. 

[13] H.  Friedman.  “Order  Invariant  Graphs  and  Finite  Incompleteness.”
(Sep 20, 2016)
u.osu.edu/friedman.8/files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf. 

[14] S.  Aaronson,  “The  8000th  Busy  Beaver  Number  Eludes  ZF  Set  Theory:
New  Paper  by  Adam  Yedidia  and  Me,”  Shtetl-Optimized  (blog).
(Sep�20, 2016) www.scottaaronson.com/blog/?p=2725#comments. 

[15] G.  Chaitin,  The  Limits  of  Mathematics,  p.  79.  (Sep  20,  2016)
archive.org/details/arxiv-chao-dyn9407003.

[16] C. S. Calude and E. Calude, “Evaluating the Complexity of Mathemati-
cal  Problems:  Part  1,”  Complex  Systems,  18(3),  2010  pp.  267–285.
www.complex-systems.com/pdf/18-3-1.pdf.

[17] C. S. Calude and E. Calude, “Evaluating the Complexity of Mathemati-
cal  Problems:  Part  2,”  Complex  Systems,  18(4),  2010  pp.  387–401.
www.complex-systems.com/pdf/18-4-1.pdf.

326 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1145/321264.321270
http://www.drb.insel.de/~heiner/BB/
http://googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_S%287%29%3F
http://googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_S%287%29%3F
http://www.drb.insel.de/~heiner/BB/mabu90.html
http://googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing_machines
http://googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing_machines
http://codegolf.stackexchange.com
http://dx.doi.org/10.1007/s00224-001-1052-0
http://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts#78
http://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts#78
https://u.osu.edu/friedman.8/files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf
http://www.scottaaronson.com/blog/?p=2725#comments
https://archive.org/details/arxiv-chao-dyn9407003
http://www.complex-systems.com/pdf/18-3-1.pdf
http://www.complex-systems.com/pdf/18-4-1.pdf


[18] J. Koza, “Spontaneous Emergence of Self-Replicating and Evolutionarily
Self-Improving  Computer  Programs,”  in  Artificial  Life  III:  Proceedings
of  the  Workshop  on  Artificial  Life,  held  June  1992  in  Santa  Fe,  New
Mexico  (C.  G.  Langton,  ed.),  Reading,  MA:  Addison-Wesley,  1994
pp. 225–262.

[19] A.  N.  Pargellis,“The  Spontaneous  Generation  of  Digital  ‘Life’,”  Physica
D: Nonlinear Phenomena, 91(1–2), 1996 pp. 86–96.
doi:10.1016/0167-2789(95)00268-5.

[20] D.  Woods  and  T.  Neary,  “The  Complexity  of  Small  Universal  Turing
Machines:  A  Survey,”  Theoretical  Computer  Science,  410(4–5),  2009
pp. 443–450. doi:10.1016/j.tcs.2008.09.051.

[21] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002 p. 709. 

[22] A.  Smith.  “Universality  of  Wolfram’s  2,  3  Turing  Machine.”  Submitted
for  the  Wolfram  2,  3  Turing  Machine  Research  Prize.  (Sep  20,  2016)
www.wolframscience.com/prizes/tm23/TM23Proof.pdf. 

[23] S. O’Rear. “Metamath Turing Machines.” (Sep 20, 2016)
github.com/sorear/metamath-turing-machines.

[24] H. Friedman. “The Upper Shift Kernel Theorems.” (Sep 20, 2016)
u.osu.edu/friedman.8/files/2014/01/KernStruThm100910-1lu0b8v.pdf. 

[25] A. Yedidia. “Parsimony.” (Sep 20, 2016)
github.com/adamyedidia/parsimony. 

[26] M.  Davis,  Y.  Matijasevic  and  J.  Robinson,  “Hilbert’s  Tenth  Problem.
Diophantine  Equations:  Positive  Aspects  of  a  Negative  Solution,”  in
Mathematical  Developments  Arising  from  Hilbert  Problems:  Proceed-
ings  of  Symposia  in  Pure  Mathematics,  Vol.  28  (F.  E.  Browder,  ed.),
Providence: American Mathematical Society, 1976 pp. 323–378.

[27] D.  Madore.  “The  Unlambda  Programming  Language.”  (Sep  20,  2016)
www.madore.org/david/programs/unlambda.

[28] U.  Müller.  “Brainfuck:  An  Eight-Instruction  Turing-Complete  Program-
ming Language.” www.muppetlabs.com/~breadbox/bf.

[29] C. Barker. “Iota and Jot: The Simplest Languages?” (Sep 20, 2016)
semarch.linguistics.fas.nyu.edu/barker/Iota.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 327

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1016/0167-2789(95)00268-5
http://dx.doi.org/10.1016/j.tcs.2008.09.051
http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf
https://github.com/sorear/metamath-turing-machines
https://u.osu.edu/friedman.8/files/2014/01/KernStruThm100910-1lu0b8v.pdf
https://github.com/adamyedidia/parsimony
http://www.madore.org/david/programs/unlambda/
http://www.muppetlabs.com/~breadbox/bf
http://semarch.linguistics.fas.nyu.edu/barker/Iota/



