
A Relatively Small Turing Machine Whose
Behavior Is Independent of Set Theory

Adam Yedidia
Scott Aaronson

Massachusetts Institute of Technology
adamy@mit.edu
aaronson@csail.mit.edu

Since the definition of the busy beaver function by Rado in 1962, an in-
teresting open question has been the smallest value of n for which
BB(n) is independent of Zermelo–Fraenkel set theory with the axiom of
choice (ZFC). Is this n approximately 10, or closer to 1 000 000, or is it
even larger? In this paper, we show that it is at most 7910 by present-
ing an explicit description of a 7910-state Turing machine Z with one
tape and a two-symbol alphabet that cannot be proved to run forever
in ZFC (even though it presumably does), assuming ZFC is consistent.
The machine is based on work of Harvey Friedman on independent
statements involving order-invariant graphs. In doing so, we give the
first known upper bound on the highest provable busy beaver number
in ZFC. To create Z, we develop and use a higher-level language, La-
conic, which is much more convenient than direct state manipulation.
We also use Laconic to design two Turing machines, G and R, that halt
if and only if there are counterexamples to Goldbach’s conjecture and
the Riemann hypothesis, respectively.

Introduction1.

Background and Motivation1.1

Zermelo–Fraenkel set theory with the axiom of choice, more com-
monly known as ZFC, is an axiomatic system invented in the twenti-
eth century that has since been used as the foundation of most of mod-
ern mathematics. It encodes arithmetic by describing natural numbers
as increasing sets of sets.

Like any axiomatic system capable of encoding arithmetic, ZFC
is �constrained by Gödel’s two incompleteness theorems. The first
incompleteness theorem states that if ZFC is consistent (it never
proves both a statement and its opposite), then ZFC cannot also be
complete (able to prove every true statement). The second incomplete-
ness theorem states that if ZFC is consistent, then ZFC cannot prove
its own consistency. Because we have built modern mathematics on
top of ZFC, we can reasonably be said to have assumed ZFC’s consis-

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

mailto:adamy@mit.edu
mailto:aaronson@csail.mit.edu

tency. This means that we must also believe that ZFC cannot prove
its own consistency. This fact carries with it certain surprising
conclusions.

In particular, consider a Turing machine Z that enumerates, one af-
ter the other, each of the provable statements in ZFC. To describe
how such a machine might be constructed, Z could iterate over the ax-
ioms and inference rules of ZFC, applying each in every possible way
to each conclusion or pair of conclusions that had been reached so
far. We might ask Z to halt if it ever reaches a contradiction; in other
words, Z will halt if and only if it finds a proof of 0  1. Because this
machine will enumerate every provable statement in ZFC, it will run
forever if and only if ZFC is consistent.

It follows that Z is a Turing machine for which the question of its
behavior (whether or not it halts when run indefinitely) is equivalent
to the consistency of ZFC. While we will talk about ZFC throughout
this paper, rather than simple ZF set theory, this is simply a conven-
tion. For our purposes, the axiom of choice is irrelevant: the consis-
tency of ZFC is equivalent to the consistency of simple ZF set theory
[1], and ZFC and ZF prove exactly the same arithmetical statements
(which include, among other things, statements about whether Turing
machines halt) [2]. Therefore, just as ZFC cannot prove its own con-
sistency (assuming ZFC is consistent), ZFC also cannot prove that Z
will run forever. In other words, the statement “Z will run forever” is
independent of ZFC.

This is interesting because, while the undecidability of the halting
problem tells us that there cannot exist an algorithmic method for de-
termining whether an arbitrary Turing machine loops or halts, Z is an
example of a specific Turing machine whose behavior cannot be
proven one way or the other using the foundation of modern mathe-
matics. Mathematicians and computer scientists think of themselves
as being able to determine how a given algorithm will behave if given
enough time to stare at it; despite this intuition, Z is a machine whose
behavior we can never prove without assuming axioms more power-
ful than those generally assumed in modern mathematics.

Turing Machines1.2

There are many slightly different definitions of Turing machines. For
example, some definitions allow the machine to have multiple tapes;
others only allow it to have one; some allow an arbitrarily large alpha-
bet, while others allow only two symbols, and so on. In most research
regarding Turing machines, mathematicians do not concern them-
selves with which of these models to use, because any one can simu-
late the others (usually efficiently). However, because this work is con-
cerned with upper-bounding the exact number of states required to

298 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

perform certain tasks, it is important to define the model precisely.
The model we choose here is traditional for the busy beaver function.

Formally, a k-state Turing machine is a 7-tuple M 

Q, Γ, a, Σ, δ, q0, F, where:

Q is the set of k states {q0, q1, … , qk-2, qk-1}

Γ  a, b is the set of tape alphabet symbols

a is the blank symbol

Σ  is the set of input symbols

δ  Q⨯Γ → Q⋃ F ⨯Γ⨯L, R is the transition function

q0 is the start state

F  HALT, ERROR is the set of halting states.

A Turing machine’s states make up the Turing machine’s easily ac-
cessible, finite memory. The Turing machine’s state is initialized to q0.

The tape alphabet symbols correspond to the symbols that can be
written on the Turing machine’s infinite tape.

In this work, all Turing machines are run on the all-a input.

The transition function encodes the Turing machine’s behavior. It
takes two inputs: the current state of the Turing machine (an element
of Q⋃ F) and the symbol read off the tape (an element of Γ). It out-
puts three instructions: what state to enter (an element of Q⋃ F),
what symbol to write onto the tape (an element of Γ) and what direc-
tion to move the head (an element of {L, R}). A transition function
specifies the entire behavior of the Turing machine in all cases.

The start state is the state that the Turing machine is in at
initialization.

A halting transition is a transition to a halting state, which causes
the Turing machine to halt. While having three possible halting transi-
tions is not necessary for our purposes, being able to differentiate be-
tween different types of halting (HALT and ERROR) is useful for
testing.

The Busy Beaver Function1.3

Consider the set of all Turing machines with k states, for some posi-
tive integer k. We call a Turing machine B a k-state busy beaver if
when run on the empty tape as input, B halts, and B also runs for at
least as many steps before halting as all other halting k-state Turing
machines [3].

In other words, a busy beaver is a Turing machine that runs for at
least as long as all other halting Turing machines with the same num-
ber of states. Another common definition for a busy beaver is a Tur-

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 299

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

ing machine that writes as many ones on the tape as possible; because
the number of ones written is a somewhat arbitrary measure, it is not
used in this work.

The busy beaver function, written BBk, equals the number of

steps it takes for a k-state busy beaver to halt. The busy beaver func-
tion has many striking properties. To begin with, it is not com-
putable; in other words, there does not exist an algorithm that takes k

as input and returns BBk, for arbitrary values of k. This follows

directly from the undecidability of the halting problem. Suppose an
algorithm existed to compute the busy beaver function; then given a

k-state Turing machine M as input, we could compute BBk and run

M for BBk steps. If, after BBk steps, M had not yet halted, we

could safely conclude that M would never halt. Thus, we could solve
the halting problem, which we know is impossible.

By the same argument, BBk must grow faster than any com-

putable function. (To check this, assume that some computable func-

tion fk grows faster than BBk and substitute fk for BBk in the

rest of the proof.) In particular, the busy beaver grows even faster
than (for instance) the Ackermann function, a well-known fast-grow-
ing function.

Because finding the value of BBk for a given k requires so much

work (one must fully explore the behavior of all k-state Turing ma-
chines), few explicit values of the busy beaver function are known.
The known values are [4, 5]:

BB1  1

BB2  6

BB3  21

BB4  107.

For BB(5), BB6 and BB(7), only lower bounds are known [6–8]:

BB(5) ≥ 47176 870

BB6 > 7.4⨯1036 534

BB(7) > 1010
1010

107

.

Additionally, BB22 is known to be larger than Graham’s number

(a famous huge number from Ramsey theory, obtained by iterating
the Ackermann function 64 times) [9]. Researchers have worked on
pinning down the value of BB(5) exactly, and some consider it to be
possibly within reach.

300 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

Another way to discuss the busy beaver sequence is to say that
modern mathematics has established a lower bound of 4 on the high-
est provable busy beaver value. In this paper, we prove the first
known upper bound on the highest provable busy beaver value in
ZFC; that is, we give a value of k, namely 7910, such that the value

of BBk cannot be proven in ZFC.

Intuitively, one might expect that while no algorithm may exist to

compute BBk for all values of k, we could find the value of BBk

for any specific k using a procedure similar to the one we used to find

the value of BBk for k ≤ 4. The reason this is not so is closely tied to

the existence of a machine like the Gödelian machine Z, as described
in Section 1.1. Suppose that Z has k states. Because Z’s behavior
(whether it halts or loops) cannot be proven in ZFC, it follows that

the value of BBk also cannot be proven in ZFC; if it could, then a

proof would exist of Z’s behavior in ZFC. Such a proof would consist
of a computation history for Z, which is an explicit step-by-step de-
scription of Z’s behavior for a certain number of steps. If Z halts,
then a computation history leading up to Z’s halting would be the en-

tire proof; if Z loops, then a computation history that takes BBk

steps, combined with a proof of the value of BBk, would constitute

a proof that Z will run forever.
In this paper, we construct a machine like Z, for which a proof

that Z runs forever would imply that ZFC was consistent. In doing
so, we give an explicit upper bound on the highest busy beaver value
provable in ZFC, assuming the consistency of a slightly stronger set
theory. Our machine, which we shall refer to as Z hereafter, contains
7910 states. Therefore, we will never be able to prove the value of

BB7910 without assuming more powerful axioms than those of

ZFC. This upper bound is presumably very far from tight, but it is a
first step.

Even to achieve a state count of 7910, we will need three nontrivial
ideas: Friedman’s order-theoretic statements, on-tape processing and
introspective encoding. Without all three ideas, we found that the
state count would be in the tens of thousands, hundreds of thousands
or even millions. We briefly introduce these ideas in the following
subsection and explore them in much greater detail in Section 8. The
implementation of these ideas constitutes this paper’s main technical
contribution.

Parsimony1.4

In most algorithmic study, efficiency is the primary concern. In design-
ing Z, however, parsimony is the only thing that matters. One histori-
cal analog is the practice of “code golfing”: a recreational pursuit

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 301

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

adopted by some programmers in which the goal is to produce a piece
of code in a given programming language, using as few characters as
possible. Many examples of code golfing can be found at [10]. The
goal of designing a Turing machine with as few states as possible to
accomplish a certain task, without concern for the machine’s effi-
ciency or space usage, can be thought of as code golfing with a partic-
ularly low-level programming language.

Part of the charm of Turing machines is that they give us a
“standard reference point” for measuring complexity, unencumbered
by the details of more sophisticated programming languages. Also,
with Turing machines, there can be no suspicion that we engineered a
programming formalism just for the purpose of code golfing, or for
making the concepts we want artificially simple to describe. This is
why we prefer Turing machines as a tool for measuring complexity;
not because they are particularly special, but simply because they are
so primitive that their specifics will interfere minimally with what we
mean by an algorithm being “complicated.”

In this paper, we use three ideas for generating parsimonious Tur-
ing machines: Friedman’s mathematical statements, on-tape process-
ing and introspective Turing machines. The last of these ideas was
proposed, under a different name and with some variations, by Ben-
Amram and Petersen in 2002 [11]. These three ideas are explained in
more detail in Subsections 3.1, 8.1 and 8.3, respectively, but we sum-
marize them very briefly here.

The first idea is simply to use the research done by Friedman [12]
into finding simple-to-express statements that are equivalent to the
consistency of various axiomatic systems. In particular, we use a state-
ment discovered by Friedman to be equivalent to the consistency of a
set theory stronger than ZFC (and whose consistency, therefore,
would imply the consistency of ZFC) [13]. (Admittedly, it is not obvi-
ous that using Friedman’s current statements does decrease the state
count of the Turing machines. It is possible that one could do as well
or better by directly searching for contradictions in ZFC, and indeed,
recent unpublished work by O’Rear has given some evidence for that
[14]. On the other hand, Friedman’s statements can be translated into
code without using the apparatus of first-order logic, which arguably
gives us a conceptual simplification. In addition, statements like Fried-
man’s seem like the most plausible path forward for further reduc-
tions in the state count, beyond whatever lower limit one hits when
one needs to encode the ZFC axioms explicitly.)

The second idea, on-tape processing, is a way to encode high-level
commands into a Turing machine parsimoniously. Instead of convert-
ing commands to groups of states directly, which incurs a multiplica-
tive overhead based on how large these groups need to be, on-tape
processing begins by writing the commands onto the tape, using as ef-

302 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

ficient an encoding as possible. Then, once the commands are on the
tape, the commands are processed by a single group of states that un-
derstands how to interpret them.

The third idea, introspective Turing machines, is a way to write
long strings onto the tape using as few states as possible. The idea is
to encode information in one of each state’s transitions, instead of en-
coding information in each state’s write field. This is advantageous be-
cause there are many choices for which state to point a transition to,
but only two choices for which bit to write. Therefore, more informa-
tion can be encoded in each state using this method.

Implementation Overview1.5

To generate descriptions of Turing machines with nice mathematical
properties entirely by hand is a daunting task. Rather than approach
the problem directly, we created tools for generating parsimonious
Turing machines while presenting an interface that is comfortably fa-
miliar to most programmers (and to us!).

We created two tools. At the top level is the Laconic programming
language, whose syntax and capabilities are similar to those of most
programming languages, such as Java or Python. Beneath it we cre-
ated a lower-level language called Turing Machine Descriptor (TMD).
TMD is quite unlike most programming languages and is better
thought of as a convenient way to describe a multi-tape, three-symbol
Turing machine plus a function stack. The style of multi-tape Turing
machine used in TMD is the commonly used “one-tape-at-a-time” ab-
straction: only one tape at a time can be interacted with, for reading,
writing and moving the head. Laconic compiles down to a TMD pro-
gram, and TMD compiles down to a description of a single-tape, two-
symbol Turing machine. This process is illustrated in Figure 1.

We recommend that programmers hoping to use our tools to gener-
ate their own encodings of mathematical statements or algorithms as
Turing machines use Laconic. Laconic’s interface is perfect for some-
body hoping to write in a “traditional” language. On the other hand,
if the programmer wishes to improve upon Laconic’s compilation pro-
cess, writing code directly in TMD is likely to be the better option.

Related Work2.

Gregory Chaitin raised the problem of proving a version of our result
in his book The Limits of Mathematics [15]. He wrote:

I would like to have somebody program out Zermelo–Fraenkel
set theory in my version of LISP, which is pretty close to normal
LISP as far as this task is concerned, just to see how many bits

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 303

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

Figure 1. A visual overview of the compilation process.

of complexity mathematicians normally assume … If you pro-
grammed ZF, you’d get a really sharp incompleteness result. It
wouldn’t say that you can get at most H(ZF) + 15 328 bits of
[Chaitin’s halting probability] Ω, it would say, perhaps, at most
96 000 bits! We’d have a much more definite incompleteness
theorem.

We did not program ZF set theory in LISP, but we programmed it
in an even simpler language—thereby answering Chaitin’s call for an
explicit number of bits to attach to the complexity of ZF set theory.
(As many as required to fully describe our Turing machine—or more
precisely, 157 819.)

This paper is not the first to attempt to quantify the complexity of
arithmetical statements. Calude and Calude [16, 17] define a register
machine of their own design and provide quantifications of the com-
plexity of Legendre’s conjecture, Fermat’s last theorem, Goldbach’s
conjecture, Dyson’s conjecture, the Riemann hypothesis and the four
color theorem. (Because Fermat’s last theorem and the four color theo-
rem have been proved, their “complexity” is now known to be 1—the
minimum number of states in a Turing machine that runs forever.) In
addition, Koza [18] and Pargellis [19] each invent instruction sets that
are particularly well suited to representing self-reproducing programs
simply and show that starting from a “primordial soup” of such in-
structions distributed about a large memory, along with an increasing
number of program threads, a rich ecosystem of increasingly efficient
self-reproducing programs starts to dominate the “landscape.”

304 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

This paper differs from the previous work in two ways: first, it is
the first to give explicit, relatively small machines whose behavior is
provably independent of the standard axioms of modern mathemat-
ics. Second, to our knowledge, this paper is the first concrete study of
parsimony to use Turing machines themselves as the model of compu-
tation—rather than (for example) a new programming language pro-
posed by the authors, or a complex on-tape description of Turing
machines! We consider it important to use the weakest and most com-
mon model of computation for complexity comparisons across differ-
ent mathematical statements. This is because the more powerful and
complex the model of computation used, the more of the complexity
of the algorithm can be “shunted” onto the model of computation,
and the greater the potential distortion created by the choice of
model. As a reductio ad absurdum, we could imagine a programming
language that included “test the Riemann hypothesis” and “test the
consistency of ZFC” as primitive operations. By using the “weakest”
model of computation that is commonly known, we hope to avoid
this pitfall and make it easier to interpret our results in a model-inde-
pendent way.

Also related to the work of this paper is the famous search for the
smallest universal Turing machine, which has a relatively long his-
tory. A survey is available at [20]. Here a universal Turing machine is
a Turing machine that can simulate any other Turing machine, when
a description of the latter is provided on its input tape. The smallest
known universal Turing machine has only two states and a three-
symbol alphabet. It was found and conjectured to be universal by
Wolfram [21] and then proved to be universal by Smith [22] in 2007.
The search for the smallest universal Turing machine is closely related
to the smallest Turing machine that is independent of ZFC, in that
both constitute a search for simplicity according to some rigorous met-
ric. From the perspective of this paper, however, the problem is that
the known small universal Turing machines achieve their small size
only at the cost of an extremely complicated description format for
the input machine. That is, most of the complexity gets “shunted”
from the Turing machine itself to the input encoding format. By con-
trast, with small Turing machines to test Con(ZFC), such as the Rie-
mann hypothesis, Goldbach’s conjecture, or others, and which run on
an initially blank tape, there is no analogous trick for hiding the state-
ment’s complexity.

Finally, let us mention that, after we circulated a preprint of this
work, O’Rear [23] created a different 1919-state Turing machine
whose behavior is equivalent to the consistency of ZFC. O’Rear was
directly inspired to do this by our result; his result, however, is
stronger than ours in two ways. First, his machine is substantially
smaller than ours, yielding a tighter upper bound on the lowest busy

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 305

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

beaver number whose value is independent of ZFC. Second, the non-
halting of his machine is directly equivalent to Con(ZFC), whereas
proving the non-halting of our machine seems to require assuming the
consistency of a stronger system than ZFC (known as “stationary
Ramsey property”).

In order to create his machine, O’Rear adapted our Laconic lan-
guage, creating a slightly different language which he called Not
Quite Laconic (NQL). O’Rear then wrote a short NQL program that
directly iterates through all theorems of a formal system called Meta-
math, which is known to have the same consistency strength as ZFC.

We hope that future work will manage to tighten the upper bound
still further.

A Turing Machine That Cannot Be Shown to Run Forever
Using ZFC

3.

We present a 7910-state Turing machine whose behavior is indepen-
dent of ZFC; it is not possible to prove that this machine halts or does
not halt using the axioms of ZFC, assuming that a stronger set theory

is consistent. It is therefore impossible to prove the value of BB7910

to be any given value without assuming axioms more powerful than
ZFC, assuming that ZFC is consistent.

For an explicit listing of this machine, see Appendix C.

We call this machine Z. One way to build this machine would be
to start with the axioms of ZFC and apply the inference rules of first-
order logic repeatedly in each possible way so as to enumerate every
statement ZFC could prove, and to halt if ever a contradiction was
found. While this method is conceptually simple, to actually construct
such a machine would lead to a huge number of states, because it
would require writing a program to manipulate the axioms of ZFC
and the inference rules of first-order logic and then compiling that pro-
gram all the way down to Turing machine states.

Friedman’s Mathematical Statement3.1

Thankfully, a simpler method exists for creating Z. Friedman [13]
was able to derive a graph theoretic statement whose truth implies the
consistency of ZFC and that is false if ZFC is inconsistent. Moreover,
like most such conditional statements about the consistency of formal
systems, Friedman’s theorem could itself be formalized and proved in
a fragment of Peano arithmetic, so we can talk about it in the same
theory-independent terms with which we talk about (say) the prime
number theorem or any other result in elementary number theory. In
fact, Friedman’s statement is equivalent to the consistency of SRP

306 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

(“stationary Ramsey property”), which is a system of axioms more
powerful than ZFC. Because SRP is strictly more powerful than ZFC
(it in fact consists of ZFC plus some additional axioms), the consis-
tency of SRP implies the consistency of ZFC, and the inconsistency of
ZFC implies the inconsistency of SRP. Here is Friedman’s statement
(the notation will be explained in the rest of this section):

Statement 1. For all k, n, r > 0, every order invariant graph on []≤k

has a free x1, … , xr, ush(x1), … , ush(xr) of complexity ≤ 8knr !,

each x1, … , x(8kni)!, for i > 0 and 8kni ! ≤ r, reducing x1 ⋃⋯

⋃xi ⋃ 0, … , n≤k [13].

If s is a set, the operation (.)≤k refers to the set of all subsets of s
with size at most k.

A graph on []≤k is an irreflexive symmetric relation on []≤k. In
other words, it can be thought of as a graph whose vertices are ele-

ments of []≤k, and whose edges are undirected, connected pairs of
vertices. These edges never connect vertices to themselves.

A free set is a set such that no pair of elements in that set are con-
nected by an edge.

A number of complexity at most c refers to a number that can be

written as a fraction a  b, where a and b are both integers with abso-

lute value less than or equal to c. A set has complexity at most c if all
the numbers it contains have complexity at most c.

An order invariant graph is a graph containing a countably infinite
number of nodes. In particular, it has one node for each finite set of
rational numbers. The only numbers relevant to the statement are

numbers of complexity 8knr ! or smaller. In every description of

nodes that follows, the term node refers both to the object in the or-
der invariant graph and to the set of numbers that it represents.

In an order invariant graph, two nodes a, b have an edge between

them if and only if each other pair of nodes c, d that is order equiva-

lent with a, b has an edge between them. Two pairs of nodes a, b

and c, d are order equivalent if a and c are the same size and b and d

are the same size and if for all 1 ≤ i ≤ a and 1 ≤ j ≤ b, the ith ele-

ment of a is less than the jth element of b if and only if the ith element

of c is less than the jth element of d.
To give some trivial examples of order invariant graphs: the graph

with no edges is order invariant, as is the complete graph. A less triv-

ial example is a graph on []≤2, in which each node corresponds to a
set of two rational numbers of a given complexity, and there is an
edge between two nodes if and only if their corresponding sets a and

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 307

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

b satisfy a  b  2 and a1 < b1 < a2 < b2. (Because edges are undi-

rected in order invariant graphs, such an edge will exist if either as-
signment of the vertices to a and b satisfies the inequality above.)

The ush() function takes as input a set and returns a copy of that
set with all non-negative numbers in that set incremented by 1.

For vertices x and y, x ≤rlex y if and only if x  y or xx-i < yy-i,

where i is the least integer such that xx-i ≠ yy-i. (Friedman recom-

mended in private communication that we use the ≤rlex comparator to

compare vertices, instead of comparing their maximum elements as
described in his manuscript.) (The ≤rlex operation creates a lexico-

graphic ordering over the vertices, weighting the last and largest ele-
ments of those vertices most heavily. Like with lexicographic order-
ings, if the two vertices are identical but one is longer, the shorter one
comes first.)

Finally, a set of vertices X reduces a set of vertices Y if and only if
for all y ∈ Y, there exists x ∈ X such that either x  y or x ≤rlex y and

an edge exists between x and y.

Implementation Methods3.2

To create Z, we needed to design a Turing machine that halts if State-
ment 1 is false and loops if Statement 1 is true. Such a Turing ma-
chine’s behavior is necessarily independent of ZFC, because the truth
or falsehood of Statement 1 is independent of ZFC, assuming the con-
sistency of SRP [13]. SRP is an extension of ZFC by certain relatively
mild, large cardinal hypotheses and is widely regarded by set theorists
as consistent. For more information about SRP, see [24].

To design such a Turing machine, we wrote a Laconic program
that encodes Friedman’s statement, then compiled the program down
to a description of a single-tape, two-symbol Turing machine. What
follows is an extremely brief description of the design of the Laconic
program; for the documented Laconic code itself, along with a de-
tailed explanation of the full compilation process, see [25].

Our Laconic program begins by looping over all non-negative val-

ues for k, n and r. For each trio k, n, r, our program generates a list

N of all numbers of complexity at most 8knr !. These numbers repre-

sent the vertices in our putative order invariant graph. Because
Laconic does not support floating-point numbers, the list is entirely
composed of integers; it is a list of all numbers that can be written in

the form 8knr! !(i / j), where i and j are integers satisfying

- 8knr ! ≤ i ≤ 8knr ! and 1 ≤ j ≤ 8knr !. (Note that any number

that can be expressed in this form is necessarily an integer, because of
the large scaling factor in front.)

308 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

After we generate N, we generate the nodes in a potential order in-
variant graph by adding to N all possible lists of k or fewer numbers
from N. We call this list of lists V.

We iterate over all binary lists of length V2. Any such list E repre-
sents a possible set of edges in the graph. To be more precise, we say
that an edge exists between node i and node j (represented by Vi and

Vj respectively) if and only if EiV+j is 1.

For any graph (V, E), we say that it is “valid” if the following three
conditions hold:

No node has an edge to itself. 1.

If an edge exists between node i and node j, an edge also exists between
node j and node i.

2.

The graph has a free x1, … , xr, ush(x1), … , ush(xr), each

x1, … , x8kni! reducing x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k.

3.

For each list of nodes V, we loop over every possible binary list E,
and if no pair (V, E) yields a valid graph, we halt.

When verifying the validity of a graph, checking the first two
conditions is trivial, but the third merits further explanation. In order
to verify that a given graph (V, E) has a free

x1, … , xr, ush(x1), … , ush(xr), each x1, … , x(8kni)! reducing

x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k, we look at every possible subset of the

nodes in V. For each subset, we verify that it has length r, that

ush(x1), … , ush(xr) all exist in V, and for each i such that 8kni ! ≤ r,

that x1, … , x(8kni)! reduces x1 ⋃⋯⋃ xi ⋃ 0, … , n≤k. Once we

have found such a subset, we know that the third condition is
satisfied.

A Turing Machine That Encodes Goldbach’s Conjecture4.

We present a 4888-state Turing machine that encodes Goldbach’s con-
jecture; in other words, to know whether this machine halts is to
know whether Goldbach’s conjecture is true. It is therefore impossible

to prove the value of BB4888 without simultaneously proving or dis-

proving Goldbach’s conjecture. (Note that our tools were primarily
meant to encode complex statements into Turing machines, such as
Statement 1. Because Goldbach’s conjecture is so simple, it is feasible
in that case to make dramatically smaller Turing machines through a
more direct approach. Indeed, after a preprint of this paper was
circulated online, “Jared S” and “code golf addict” created Turing

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 309

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

machines for Goldbach’s conjecture with 47 and 31 states, respective-
ly�[14].)

Recall that Goldbach’s conjecture is as follows:

Statement 2. Every even integer greater than 2 can be expressed as the
sum of two primes.

Because Goldbach’s conjecture is so simple to state, the Laconic
program encoding the statement is also quite simple. It can be found
in Appendix A. A detailed explanation of the compilation process,
documentation for the Laconic language and an explicit description
of this Turing machine are available at [25].

A Turing Machine That Encodes the Riemann Hypothesis5.

We present a 5372-state Turing machine that encodes the Riemann
hypothesis; in other words, to know whether this machine halts is to
know whether the Riemann hypothesis is true. An explicit description
of this machine can be found at [25].

The Riemann hypothesis is traditionally stated as follows:

Statement 3. The Riemann zeta function has its zeros only at the nega-

tive even integers and the complex numbers with real part 1  2.

Equivalent Statement5.1

Instead of encoding the Riemann zeta function into a Laconic pro-
gram, it is simpler to use the following statement, which was shown
by Davis, Matijasevic and Robinson [26] to be equivalent to the Rie-
mann hypothesis:

Statement 4. For all integers n ≥ 1,


k≤δ(n)

1

k
-
n2

2

2

< 36n3.

The function δ(n) used in Statement 4 is defined as follows:

η (j) p if j  pk, p is prime, k is a positive integer

η (j) 1 otherwise

δ (x)
n<x


j≤n

η(j).

Implementation Methods5.2

Statement 4 is equivalent to the following statement, which involves
only positive integers:

l(n) < r(n)

310 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

for all positive integers n, where

l(n)  a(n)2 + b(n)2

r(n)  36n3(δ(n) !)2 + 2a(n)b(n)

a(n)  
k≤δ(n)

δ(n) !

k

b(n) 
n2δ(n) !

2
.

Although it is not immediately obvious, δ(n) !  k is necessarily an

integer for all k ≤ δ(n), and δ(n) !  2 is an integer for all n > 1.

To check the Riemann hypothesis, our program computes a(n),
b(n), l(n) and r(n), in that order, for each possible value of n. If
l(n) ≥ r(n), our program halts.

Laconic6.

Laconic is a programming language designed to be both user friendly
and easy to compile down to parsimonious Turing machine
descriptions.

Laconic is a strongly typed language that supports recursive func-
tions. Laconic compiles to an intermediate language called TMD.
TMD programs are spread across multiple files and grouped into
directories. TMD directories are meant to represent sequences of com-
mands that could be given to a multi-tape, three-symbol Turing ma-
chine, using the Turing machine abstraction that allows the machine
to read and write from one head at a time.

For an example of a Laconic program, see Appendix A. For an il-
lustration of the compilation process, see Figure 1.

Turing Machine Descriptor7.

TMD is a programming language designed to help the user describe
the behavior of a multi-tape, three-symbol Turing machine with a
function stack. Each tape is infinite in one direction and supports
three symbols: _, 1 and E. The blank symbol is _; that is, _ is the only
symbol that can appear on the tape an infinite number of times. The

tape must always have the form _?1 E+_∞; in other words, each

tape must always contain a string of 1s and Es of size at least 1, possi-
bly preceded by a _ symbol and necessarily followed by an infinite
number of copies of the _ symbol.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 311

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

What is the purpose of having a language like TMD as an interme-
diary between Laconic and a description of a single-tape machine?
The concept of tapes in a multi-tape Turing machine and the concept
of variables in standard imperative programming languages map to
one another very nicely. The idea of the Laconic-to-TMD compiler is
to encode the value of each variable on one tape. Then, each Laconic
command that manipulates the value of one or more variables com-
piles down to a TMD function call that manipulates the tapes that cor-
respond to those variables appropriately.

As an example, consider the following Laconic command:

���������

This Laconic command assigns the value of b*c to the variable a. It
compiles down to the following TMD function call:

��������������������������������

This function call will result in BUILTIN_multiply being run on
the three tapes a, b and c. This will cause the symbols on tape a to
take on a representation of an integer whose value is equal to bc.

In turn, the TMD code compiles directly to a string of bits that is
written onto the tape at the start of the Turing machine’s execution.

A TMD directory consists of three types of files:

The functions file. This file contains a list of the names of all the func-
tions used by the TMD program. The top function in the file is pushed
onto the stack at initialization. When this top function returns, the Tur-
ing machine halts.

1.

The initvar file. This file contains the non-blank symbols that start in
each register (or tape) at initialization.

2.

Any files used to describe TMD functions. These files all end in a .tfn
extension and only have any relevance to the compiled program if they
show up in the functions file.

3.

Compilation and Processing8.

There are two ways to think about the layout of the tape symbols:
with a four-symbol alphabet ({_, 1, H, E}, blank symbol _) and with a
two-symbol alphabet ({a, b}, blank symbol a). The two-symbol alpha-
bet version is the one that is ultimately used for the results in this
paper, since we advertised a Turing machine that used only two sym-
bols. However, in nearly all parts of the Turing machine, the two-sym-
bol version of the machine is a direct translation of the four-symbol
version, according to the following mapping:

312 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

_↔ aa

1↔ ab

H↔ ba

E↔ bb

The sections that follow sometimes refer to the ERROR state. Transi-
tions to the ERROR state should never be taken under any circum-
stances and are useful for debugging purposes.

Concept8.1

A directory of TMD functions is converted at compilation time to a
string of bits to be written onto the tape, along with other states de-
signed to interpret these bits. The resulting Turing machine has three
main components, or submachines:

The initializer sets up the basic structure of the variable registers and
the function stack.

1.

The printer writes down the binary string that corresponds to the com-
piled TMD code.

2.

The processor interprets the compiled binary, modifying the variable
registers and the function stack as necessary.

3.

The Turing machine’s control flow proceeds from the initializer to
the printer to the interpreter. In other words, initializer states point
only to initializer states or to printer states, printer states point only
to printer states or to interpreter states and interpreter states point
only to interpreter states or the HALT state.

This division of labor, while seemingly straightforward, actually
constitutes an important idea. The problem of the compiler is to con-
vert a higher-level representation—a machine with many tapes, a
larger alphabet and a function stack—to the lower-level representa-
tion of a machine with a single tape, a two-symbol alphabet and no
function stack. The immediately obvious solution, and the one taught
in every computability theory class as a proof of the equivalence of
different kinds of Turing machines, is to have every “state” in the
higher-level machine compile down to many states in the lower-level
machine.

While simple, this approach is suboptimal in terms of the number
of states. As is nearly always true when designing systems to be parsi-
monious, the clue that improvement is possible lies in the presence of
repetition. Each state transition in the higher-level machine is con-
verted to a group of lower-level states with the same basic structure.
Why not instead explain how to perform this conversion exactly
once, and then apply the conversion many times?

This idea is at the core of the division of labor described previ-
ously. We begin by writing a description of the higher-level machine

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 313

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

onto the tape and then “run” the higher-level machine by reading
what is on the tape with a set of states that understands how to
interpret the encoded higher-level machine. We refer to this idea as
on-tape processing.

In this paper, we use TMD as the representation of the higher-level
machine. (Note that instead of TMD, the on-tape processing scheme
could be used for any language, assuming the designer provides both
a processor and an encoding for that language. We chose TMD be-
cause it made the interpreter easy to write, but other minimalist lan-
guages, like Unlambda [27], BF [28] or Iota and Jot [29], might be
good candidates for parsimonious designs, with the additional advan-
tage of being already known to some programmers! Thanks to Luke
Schaeffer for this point.) The printer writes the TMD program onto
the tape, and the processor executes it. As a result of using this
scheme, we incur a constant additive overhead—we have to include
the processor in our final Turing machine—but we avoid the constant
multiplicative overhead required for the naïve scheme.

Is this additive overhead small enough to be worth it? We found
that it is. Our implementation of the processor requires 3860 states.
(See Section 8.5 for a detailed breakdown of the state cost by subma-
chine.) In contrast to this additive overhead of 3860, the naïve ap-
proach incurs a large multiplicative overhead that depends in part on
how many states must be used to represent each higher-level state
transition, and in part on how efficient an encoding scheme can be de-
vised for the on-tape approach. Table 1 compares the performance of
on-tape processing to the performance of an implementation that
used the naïve approach. The comparison is shown for three kinds of
machines: a machine that halts if and only if Goldbach’s conjecture is
false, a machine that halts if and only if the Riemann hypothesis is
false and a machine whose behavior is independent of ZFC.

As can be seen from Table 1, on-tape interpretation results in huge
gains, particularly in large and complex programs.

The subsections that follow describe each of the three subma-
chines—the initializer, the printer and the processor—in greater
detail.

Program States (Naïve) States (On-Tape Processing)
Goldbach 7902 4888

Riemann 36146 5372

ZFC 340943 7910

Table 1.A comparison of Turing machine size with and without on-tape pro-
cessing. On-tape processing leads to vastly more parsimonious Turing
machines.

314 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

The Initializer8.2

The initializer starts by writing a counter onto the tape that encodes
how many registers there will be in the program. Using the value in
that counter, it creates each register, with demarcation patterns be-
tween registers and unique identifiers for each register. Each register’s
value begins with the pattern of non-blank symbols laid out in the
initvar file. The initializer also creates the program counter, which
starts at 0, and the function stack, which starts out with only a single
function call to the top function in the functions file.

Figure 2 is a detailed diagram describing the tape’s state when the
initializer passes control to the printer.

Figure 2. The state of the Turing machine tape after the initializer completes.
The TMD program being expressed in Turing machine form is described in
full in Appendix B. The top bar is a high-level description of what each part
of the Turing machine tape represents. The middle bar is an encoding of the
tape in the standard four-symbol alphabet; the bottom bar is simply the trans-
lation of that tape into the two-symbol alphabet. For a more detailed explana-
tion of how to interpret the tape patterns, see [25].

The Printer8.3
Specification8.3.1

The printer writes down a long binary string that encodes the entirety
of the TMD program onto the tape.

Figure 3 shows the tape’s state when the printer passes control to
the processor.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 315

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

Figure 3. The state of the Turing machine tape after the printer completes.
The TMD program being expressed in Turing machine form is described in
full in Appendix B. The top bar is a high-level description of the entire tape;
unfortunately, at this point there are so many symbols on the tape that it is
impossible to see everything at once. For a detailed view of the first two-
thirds of the tape (registers, program counter and stack), see Figure 2. The
bottom three bars show a zoomed-in view of the program binary. From the
top, the second bar gives a high-level description of what each part of the pro-
gram binary means; the third bar gives the direct correspondence between
four-symbol alphabet symbols on the tape and their meaning in TMD; the
fourth and final bar gives the translation of the third bar into the two-symbol
alphabet. For a more detailed explanation of the encoding of TMD into tape
symbols, see [25].

Introspection8.3.2

Writing down a long binary string onto a Turing machine tape in a
parsimonious fashion is not as straightforward as it might initially ap-
pear. The first idea that comes to mind is simply to use one state per
symbol, with each state pointing to the next, as shown in Figure 4.

On closer examination, however, this approach is quite wasteful
for all but the smallest binary files. Every a transition points to the
next state in the sequence, and none of the b transitions are used at
all! Indeed, the only information-bearing part of the state is the single
bit contained in the choice of which symbol to write. But in theory,
far more information than that could be encoded in each state. In a

316 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

Figure 4. A naïve implementation of the printer. In this example, the hypothet-
ical program is 10 bits long, and the printer uses 10 states, one for each bit.
In the diagram, the blue symbol is the symbol that is read on a transition, the
red letter indicates the direction the head moves and the green symbol indi-
cates the symbol that is written. Note the lack of transitions on reading a b;
this is because in this implementation, the printer will only ever read the
blank symbol, which is a, since the head is always proceeding to untouched
parts of the tape. It therefore makes no difference what behavior the Turing
machine adopts upon reading a b in states 1 through 10 (and therefore b tran-
sitions are presumed to lead to the ERROR state)

machine with n states, each state could contain 2log2(n) + 1 bits of

information, because each of the state’s two transitions could point to
any of the n states, and the machine will write either an a or a b onto
the tape. Of course, this is only in theory; in practice, to extract the in-
formation contained in the Turing machine’s states and translate it
into bits on the tape is nontrivial.

We will use a scheme originally conceived by Ben-Amram and
Petersen [11] and refined further and suggested to us by Luke Schaef-
fer. It does not achieve the optimal theoretical encoding described
above, but it is relatively simple to implement and understand and is
within a factor of 2 of optimal for large binary strings. Schaeffer
named Turing machines that use this idea introspective.

Introspection works as follows. If the binary string contains k bits,
then let w be the word size. The word size w takes the largest value it
can such that w2w ≤ k. We can split the binary string into

nw  k w words of w bits each (we can pad the last word with the

blank symbol). In our scheme, each word in the bit string is repre-
sented by a data state. Each data state points to the state representing
the next word in the sequence for its a transition, but which state

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 317

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

the b transition points to encodes the next word. Every b transition
points to one of the last 2w data states, thereby encoding w bits of
information.

Of course, the encoding is useless until we specify how to extract
the encoded bit string from the data states. The extraction scheme

works as follows. To query the ith data state for the bits it encodes,

we run the data states on the string ai-1ba∞ (a string of i - 1 as fol-

lowed by a b in the ith position). After running the data states on that

string, what remains on the tape is the string bi-1abra∞, assuming

that the ith data state pointed to the rth-to-last data state. Thus, what
we are left with is essentially a unary encoding of the “value” of the
word in binary. Thus, the job of the extractor is to set up a binary
counter that removes one b at a time and increments the counter ap-
propriately. Then afterward, the extractor reverts the tape back to the

form aiba∞, shifts all symbols on the tape over by w bits and repeats
the process. Finally, when the state beyond the last data state sees a b
on the tape, we know that the process has completed, and we can
pass control to the processor. Figure 5 shows the whole procedure.

Figure 5. An introspective implementation of the printer. In this example, the
hypothetical program is k  10 bits long, and so the word size must be 2
(since w  2 is the largest w such that w2w ≤ 10). There are therefore

nw  k w  5 data states, each encoding two bits. The b transitions carry

the information about the encoding; note that each one only points to one of
the last four data states. The last four data states have in parentheses what
word we mean to encode if we point to them.

How much have we gained by using introspection for encoding the
program binary, instead of the naïve approach? It depends on how

318 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

large the program binary is. Using introspection incurs an Olog k ad-

ditive overhead, because we have to include the extractor in our ma-
chine. (Our implementation of the extractor takes 10w + 17 states. It
is possible to build a constant-size extractor, but it is not worth it for
our value of w.) In return, we save a multiplicative factor of w (which
scales with log k) on the number of data states needed.

This is plainly not worth it for the 10-bit example binary shown in
Figures 4 and 5. For that binary, we require 69 additional states for
the extractor in order to save five data states. For real programs, how-
ever, it is worth it, as can be seen from Table 2.

Program
Binary

Size w

nw

Extractor
Size

States
(Naïve)

States
(Introspective)

Example TMD 116 4 29 57 116 86
Goldbach 4964 9 552 107 4964 659
Riemann 9532 10 1024 117 9532 1141
ZFC 38864 11 3534 127 38864 3661

Table 2. Statistics relating to the printer, with and without using introspective
techniques. Introspection leads to substantially more parsimonious Turing ma-
chines, particularly when the Turing machine is complex and the program bi-
nary is long.

One minor detail concerns the numbers presented for the Riemann
program. Ordinarily, with a binary of size 9532, we would opt to
split the program into 1060 words of nine bits each plus a 107-state
extractor, since nine is the greatest w such that w2w < 9532. But be-
cause 9532 is so close to the “magic number” 10 240, it is actually
more parsimonious to pad the program with copies of the blank sym-
bol until it is 10 240 bits long and split it into 1024 words of 10 bits
each plus a 117-state extractor.

The Processor8.4

The processor’s job is to interpret the code written onto the tape and
modify the variable registers and function stack accordingly. The pro-
cessor does this by the following sequence of steps:

START:

Find the function call at the top of the stack. Mark the function f in the
code whose ID matches that of the top function call.

1.

Read the current program counter. Mark the line of code l in f whose
line number matches the program counter.

2.

Read l. Depending on what type of command l is, carry out one of the
following three lists of tasks.

3.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 319

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

IF l IS AN EXPLICIT TAPE COMMAND:

Read the variable name off l. Index the variable name into the list of
variables in the top function on the stack. This list of variables corre-
sponds to the mapping between the function’s local variables and the
register names.

1.

Match the indexed variable to its corresponding register r. Mark r.
Read the symbol sr to the right of the head marker in that register.

2.

Travel back to l, remembering the value of sr using states. Find and

mark the reaction x corresponding to the symbol. See what symbol sw
should be written in response to reading sr.

3.

Travel back to r, remembering the value of sw using states. Replace sr
with sw.

4.

Travel back to x. See which direction d the head should move in re-
sponse to reading sr.

5.

Travel back to r, remembering the value of d using states. Move the
head marker accordingly.

6.

Travel back to x. See if a jump is specified. If a jump is specified, copy
the jump address onto the program counter. Otherwise, increment the
program counter by 1.

7.

Go back to START. 8.

IF l IS A FUNCTION CALL:

Write the function’s name to the top of the stack. 1.

For each variable in the function call, index the variable name into the
list of variables in the top function on the stack. This list of variables
corresponds to the mapping between the function’s local variables and
the register names. Push the corresponding register names in the order
that they correspond to the variables in the function call.

2.

Copy the current program counter to the return address of the newborn
function call at the top of the stack.

3.

Replace the current program counter with 0 (meaning “read the first
line of code”).

4.

Go back to START. 5.

IF l IS A RETURN STATEMENT:

Replace the current program counter with f ’s return address. 1.

Increment the program counter by 1. 2.

Erase the call to f from the top of the stack. 3.

Check if the stack is now empty. If so, halt. 4.

Go back to START. 5.

320 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

Cost Analysis8.5

It is worthwhile to analyze the relative contributions of the initializer,
the printer and the processor to the machine’s final state count.
Table�3 lists the number of states in each submachine for each of the
four different TMD programs under discussion.

Program Initializer Printer Processor Total
Example TMD 349 86 3860 4295
Goldbach 369 659 3860 4888

Riemann 371 1141 3860 5372

ZFC 389 3661 3860 7910

Table 3. State cost of each submachine. The cost of the processor is substantial
but fixed; as the Turing machine becomes more complicated, the cost of the
printer becomes increasingly important.

As can be seen from Table 3, the processor makes the largest contri-
bution to all four programs. Improving the processor, therefore, is
probably the best approach for improving upon the bounds we pre-
sent. Equally clear, however, is that for programs more complicated
than the ones presented here, the cost of the printer will grow almost
linearly, but the cost of the processor will stay the same. The cost of
the initializer grows very slightly with the complexity of programs be-
cause of the need to initialize additional registers.

Improving the printer, and with it the TMD and Laconic lan-
guages, is probably the best approach for reducing state count for
very large and complex programs.

Future Work9.

This paper still leaves a three-orders-of-magnitude gap between the
smallest n, namely 7910, for which BB(n) is known to be independent
of ZF set theory, and the largest n, namely 4, for which BB(n) is
known to be determinable. We regard it as a fascinating problem to

pin down the truth here: for example, is it conceivable that BB10 or

even BB6 might be independent of ZF? If so, that would arguably

force a qualitative change in our understanding of the Gödel incom-
pleteness phenomenon—showing that incompleteness from strong set
theories rears its head for much simpler arithmetical questions than
had previously been known.

A more immediate question is how much further Z’s state count
can be reduced. We are optimistic about the possibility of further re-
ductions. For example, one could adapt the processor-printer model
to use a better language than TMD. Ideally, one wants a language

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 321

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

whose processor contains fewer states than TMD’s, and whose typical
programs are also shorter than TMD programs. A few ideas have
been proposed for this [14], many of them related in some way to
lambda calculus.

Other future work might involve further use of our Laconic lan-
guage to upper-bound the “complexities” of mathematical statements
and algorithms, in as standardized and model-independent a way as
possible. Perhaps Laconic could be used to measure the complexity of
other well-known conjectures, or even to compare different algo-
rithms for solving the same problem (e.g., to try to quantify the no-
tion that an insertion sort is simpler than a merge sort)!

Acknowledgments

We thank Harvey Friedman for having done the crucial theoretical
work that made this project feasible. He was endlessly available over
email and provided us with detailed clarifications when we needed
them.

We thank Luke Schaeffer for his early help, as well as his help de-
signing introspective Turing machines.

We thank Alex Arkhipov for introducing us to the term “code
golfing.”

We thank the commenters on Scott Aaronson’s blog [14] for their
ideas and suggestions.

Supported by an Alan T. Waterman Award from the National Sci-
ence Foundation, under grant number 1249349.

Appendices

Example Laconic Program: Goldbach’s ConjectureA.

The following is an example Laconic program, which compiles down
to the Turing machine G mentioned in Section 4 (which halts if and
only if Goldbach’s conjecture is false).

��������������
���������
����������
�

�������������
���������
����������
�

322 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

��������������
�������������
����������
�

�������������������������
�������������������������
�����������
���

���������������������
���������������������
����
���

����������
�

�����������������������������
�������������
����������
�

���
�����������������������������������
�����������������������
����������������
���������������
��������������
����
���

���������
���

������������������
������������������������
���

��������������������
�������������������
������������������
��������
���������������
����
���

����������
�

���������������
�����������������
�������������������
�������������
������

���������������
��������������

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 323

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

������������������
������������������
�������������������������������
���������������������
���

��
��
�������

����������������������������
��
��
��
�����������

��������������������������������
��������������������������������
����������������������������������
���������������

�����������������������������
������������
��������
�������

����������������������������
�������������
�

�����

For detailed documentation of the Laconic programming language,
see [25]. To find this file specifically, navigate to parsimony/src/
laconic/laconic_files/goldbach.lac at [25].

Example Turing Machine Descriptor ProgramB.

The following is an example TMD directory, which compiles down to
a binary string to be written on a Turing machine tape. It is the exam-
ple used in illustrations throughout this paper, most notably in the ex-
ample compilation shown in Figures 2 and 3. The program calls itself
recursively three times until the starting symbol on each tape E is re-
placed with a 1, at which point the program halts.

This TMD directory is called example_tmd_dir and contains four
files: f.tmd, g.tmd, initvar and functions.

�������
�����������

��

�������������
��������������������
����������������

324 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

��������������

�������
�������

��������������������������������

���������
������

�����������
�
�

���������
�����

For detailed documentation of the TMD programming language,
see [25]. To find this directory specifically, navigate to parsimony/src/
tmd/tmd_dirs/example_tmd_dir at [25].

Explicit Listing of ZC.

To find an explicit description of our Turing machine Z, please visit
our repository at [25].

We ran this Turing machine for 10000 000000 steps (more than
half a day on our simulators), and within that time it did not halt. We
note, however, that Z was designed for parsimony rather than effi-
ciency, and that this “experiment” is of little consequence! We simi-
larly ran a Turing machine designed to test the conjecture that all
perfect squares are less than 5, and it ran for 2 895 083899 steps (a
couple of hours on our simulator) before it found the counterexample
9 and halted.

References

[1] K. Gödel, The Consistency of the Axiom of Choice and of the General-
ized Continuum-Hypothesis with the Axioms of Set Theory, Princeton,
NJ: Princeton University Press, 1940.

[2] J. Schoenfield, “The Problem of Predicativity,” in Essays on the Founda-
tions of Mathematics (Y. Bar-Hillel et al., eds.), Jerusalem: Magnes
Press, Hebrew University, 1961 pp. 132–142.

[3] T. Rado, “On Non-computable Functions,” The Bell System Technical
Journal, 41(3), 1962 pp. 877–884.
doi:10.1002/j.1538-7305.1962.tb00480.x.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 325

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1002/j.1538-7305.1962.tb00480.x

[4] A. H. Brady, “Solution of the Non-computable ‘Busy Beaver’ Game for
k  4,” in Abstracts for: ACM Computer Science Conference, Washing-
ton, DC, 1975, New York: Association for Computing Machinery,
1975 p. 27.

[5] S. Lin and T. Rado, “Computer Studies of Turing Machine Problems,”
Journal of the ACM, 12(2), 1965 pp. 196–212.
doi:10.1145/321264.321270.

[6] H. Marxen. “Busy Beaver.” (Oct 4, 2016) www.drb.insel.de/~heiner/BB.

[7] Wythagoras. “A Good Bound for S(7)?” (Sep 20, 2016)
googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_
S%287%29%3F.

[8] H. Marxen and J. Buntrock, “Attacking the Busy Beaver 5,” Bulletin
of the EATCS, 40, 1990 pp. 247–251.
www.drb.insel.de/~heiner/BB/mabu90.html.

[9] Deedlit11. “Okay, More Turing Machines.” (Sep 20, 2016)
googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing
_machines.

[10] “Programming Puzzles & Code Golf.” (Sep 20, 2016)
codegolf.stackexchange.com.

[11] A. M. Ben-Amram and H. Petersen, “Improved Bounds for Functions
Related to Busy Beavers,” Theory of Computing Systems, 35(1), 2002
pp. 1–11. doi:10.1007/s00224-001-1052-0.

[12] H. Friedman. “Order Theoretic Equations, Maximality, and Incomplete-
ness.” (Oct 12, 2016) u.osu.edu/friedman.8/foundational-adventures/
downloadable-manuscripts #78.

[13] H. Friedman. “Order Invariant Graphs and Finite Incompleteness.”
(Sep 20, 2016)
u.osu.edu/friedman.8/files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf.

[14] S. Aaronson, “The 8000th Busy Beaver Number Eludes ZF Set Theory:
New Paper by Adam Yedidia and Me,” Shtetl-Optimized (blog).
(Sep�20, 2016) www.scottaaronson.com/blog/?p=2725#comments.

[15] G. Chaitin, The Limits of Mathematics, p. 79. (Sep 20, 2016)
archive.org/details/arxiv-chao-dyn9407003.

[16] C. S. Calude and E. Calude, “Evaluating the Complexity of Mathemati-
cal Problems: Part 1,” Complex Systems, 18(3), 2010 pp. 267–285.
www.complex-systems.com/pdf/18-3-1.pdf.

[17] C. S. Calude and E. Calude, “Evaluating the Complexity of Mathemati-
cal Problems: Part 2,” Complex Systems, 18(4), 2010 pp. 387–401.
www.complex-systems.com/pdf/18-4-1.pdf.

326 A. Yedidia and S. Aaronson

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1145/321264.321270
http://www.drb.insel.de/~heiner/BB/
http://googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_S%287%29%3F
http://googology.wikia.com/wiki/User_blog:Wythagoras/A_good_bound_for_S%287%29%3F
http://www.drb.insel.de/~heiner/BB/mabu90.html
http://googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing_machines
http://googology.wikia.com/wiki/User_blog:Deedlit11/Okay,_more_Turing_machines
http://codegolf.stackexchange.com
http://dx.doi.org/10.1007/s00224-001-1052-0
http://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts#78
http://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts#78
https://u.osu.edu/friedman.8/files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf
http://www.scottaaronson.com/blog/?p=2725#comments
https://archive.org/details/arxiv-chao-dyn9407003
http://www.complex-systems.com/pdf/18-3-1.pdf
http://www.complex-systems.com/pdf/18-4-1.pdf

[18] J. Koza, “Spontaneous Emergence of Self-Replicating and Evolutionarily
Self-Improving Computer Programs,” in Artificial Life III: Proceedings
of the Workshop on Artificial Life, held June 1992 in Santa Fe, New
Mexico (C. G. Langton, ed.), Reading, MA: Addison-Wesley, 1994
pp. 225–262.

[19] A. N. Pargellis,“The Spontaneous Generation of Digital ‘Life’,” Physica
D: Nonlinear Phenomena, 91(1–2), 1996 pp. 86–96.
doi:10.1016/0167-2789(95)00268-5.

[20] D. Woods and T. Neary, “The Complexity of Small Universal Turing
Machines: A Survey,” Theoretical Computer Science, 410(4–5), 2009
pp. 443–450. doi:10.1016/j.tcs.2008.09.051.

[21] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002 p. 709.

[22] A. Smith. “Universality of Wolfram’s 2, 3 Turing Machine.” Submitted
for the Wolfram 2, 3 Turing Machine Research Prize. (Sep 20, 2016)
www.wolframscience.com/prizes/tm23/TM23Proof.pdf.

[23] S. O’Rear. “Metamath Turing Machines.” (Sep 20, 2016)
github.com/sorear/metamath-turing-machines.

[24] H. Friedman. “The Upper Shift Kernel Theorems.” (Sep 20, 2016)
u.osu.edu/friedman.8/files/2014/01/KernStruThm100910-1lu0b8v.pdf.

[25] A. Yedidia. “Parsimony.” (Sep 20, 2016)
github.com/adamyedidia/parsimony.

[26] M. Davis, Y. Matijasevic and J. Robinson, “Hilbert’s Tenth Problem.
Diophantine Equations: Positive Aspects of a Negative Solution,” in
Mathematical Developments Arising from Hilbert Problems: Proceed-
ings of Symposia in Pure Mathematics, Vol. 28 (F. E. Browder, ed.),
Providence: American Mathematical Society, 1976 pp. 323–378.

[27] D. Madore. “The Unlambda Programming Language.” (Sep 20, 2016)
www.madore.org/david/programs/unlambda.

[28] U. Müller. “Brainfuck: An Eight-Instruction Turing-Complete Program-
ming Language.” www.muppetlabs.com/~breadbox/bf.

[29] C. Barker. “Iota and Jot: The Simplest Languages?” (Sep 20, 2016)
semarch.linguistics.fas.nyu.edu/barker/Iota.

A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory 327

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.4.297

http://dx.doi.org/10.1016/0167-2789(95)00268-5
http://dx.doi.org/10.1016/j.tcs.2008.09.051
http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf
https://github.com/sorear/metamath-turing-machines
https://u.osu.edu/friedman.8/files/2014/01/KernStruThm100910-1lu0b8v.pdf
https://github.com/adamyedidia/parsimony
http://www.madore.org/david/programs/unlambda/
http://www.muppetlabs.com/~breadbox/bf
http://semarch.linguistics.fas.nyu.edu/barker/Iota/

