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NK-Kauffman networks ℒK
N, where N is the number of Boolean vari-

ables and K the average number of connections, are studied. The K con-
nections are random and chosen with equal probability, while the
Boolean functions are randomly chosen with a bias p. The injectivity of
the map Ψ : ℒK

N → 2N , where 2N is the set of functional graphs with

2N nodes, is studied. In the asymptotic regime N ≫ 1, it is found that a

critical connectivity Kc ~ ln lnN exists such that Ψ is many-to-one

for K < Kc and injective for K > Kc. The analysis is extended when the

tautology and contradiction Boolean functions are excluded from the
construction of ℒK

N. For such a case, it is found that Ψ always remains

injective.

Introduction1.

NK-Kauffman networks were proposed by Stuart A. Kauffman in
1969 as a starting point for a mechanism that mimics cell metabolic
behavior, and also as a way to study the transition from disorder to
order in living organisms [1, 2]. There exists an extensive literature
about the subject, with analytical and computational calculations that
have been dedicated to the subject and many extensions of it; see
[2–6] and references therein.

Since the impact of the modern synthesis of evolutionary theory,
numerous researchers have been expanding the structural elements to
comprehend and theorize about evolutionary processes and then en-
hance abilities that test and measure them [7–9]. They have studied
the role of epigenetics in speciation, and particularly, how they could
improve variations and promote or repress fitness: in brief, they have
addressed the question of the processes of development and evolution-
ary change at genomic levels [10, 11]. Of the utmost importance is
the mapping of a set of genotypes to a set of phenotypes, called the
genotype-phenotype map, which we will refer to as Ψ throughout the
paper. It is difficult to comprehend the entire structure of Ψ; however,
many properties are well known [12–16]. One of the most remark-
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able is that Ψ should be a many-to-one map, due to the robustness of
living organisms against mutations and/or replication errors during
mating [13–16]. Nevertheless, Kauffman networks are very simplified
models of real metabolic processes and give good insight into them.
See, for example, the case studied by Kauffman about cellular differen-
tiation [1, 2]. For these reasons, and also for the pure mathematical
understanding of the dynamics of Kauffman networks, it is important
to study the map Ψ, which is the main subject of this paper. Two ap-
proximations of Ψ follow from the structure of NK-Kauffman net-
works: (i) Ψ is not an stochastic map; and (ii) the map Ψ is a function
in the mathematical sense. Let us go into the mathematical model.

Let [N]  1, 2, … , N denote the set of the first N natural num-

bers. A Kauffman network consists of a set of N Boolean variables
Si(t) ∈ ℤ2, with i ∈ [N], which evolve deterministically and syn-

chronously in a discrete time t  0, 1, 2, … according to N different
K-Boolean functions

bK
(i) :ℤ2

K → ℤ2, i  1, … , N. (1)

The evolution rule, at each time step t, given by

Sit + 1  bK
(i)Si1

(t), Si2
(t), … , SiK

(t), i  1, … , N, (2)

where

CK
(αi)  {i1, … , iK} ⊆ [N]αi  1, … ,

N

K
,

constitutes the K-connection set of inputs at site i. The elements  of

CK
(αi) are selected randomly, with equal probability and without repeti-

tion. Also, each K-Boolean function bK
(i) is chosen randomly and inde-

pendently, with a bias

0 < p < 1,

such that bK
(i)  +1 with probability p, and bK

(i)  0 with probability

1 - p, for each of its 2K arguments.
Once this random selection is done, a Kauffman network has been

constructed, and its subsequent dynamics is deterministically given by
iterations of equation (2).

Let us rewrite the dynamical rule of equation (2) in a notation

more suitable for counting purposes: to each K-connection set CK
(αi),

we assign a K-connection function

CK
*(αi) :ℤ2

N⟶ℤ2
K,
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defined by

CK
*(αi)S  CK

*(αi)S1, … , SN  Si1
, … , SiK

 ∀ S ∈ ℤ2
N.

Then equation (2) may be recast through the composition

ℤ2
NCK

*αi

ℤ2
K⟶

bK
(i)

ℤ2 , i  1, … , N,

which defines the star functions

bK
*(αi) ≡ bK

(i) ∘CK
*(αi) :ℤ2

N → ℤ2. (3)

So, equation (2) is equivalent to

Sit + 1  bK
*(αi)S(t), i  1, … , N.

Let us denote by ℒK
N the set of NK-Kauffman networks so defined.

They constitute a subset of the Boolean endomorphisms

ℬN  F :ℤ2
N⟶ℤ2

N

that is isomorphic to the set 2N of functional graphs with 2N nodes,

as shown in [5].
In the mathematical language of NK-Kauffman networks, Ψ is rep-

resented by

Ψ :ℒK
N⟶2N . (4)

It associates its dynamics to each Kauffman network through the func-
tional graph g ∈ 2N [6]. It is to be noted that only for the case

K  N, Ψ is a bijection [3–6]. In Kauffman’s models, Si  +1 repre-

sents an active gene, while Si  0 represents a passive one, so Ψ repre-

sents the way in which Kauffman networks (genotypes) are translated
into functional graphs (phenotypes) [6, 16].

In addition to biological applications, the mathematical understand-
ing of Kauffman networks is important, as long as they are con-
structed with an elementary cellular automaton that has been well
studied, and whose behavior is not a simple function of its Wolfram
number [see equation (6b) in the next section].

In [6] a classification of Boolean functions was introduced as a way

to study the injective properties of Ψ for the case p  1  2 [5]. The

purpose of this paper is to extend the analysis to the cases of general

p and p  1  2, but with the tautology and contradiction Boolean

functions excluded from the construction of ℒK
N.

Once the exact combinatorial formulas have been obtained, the
analysis is done in the asymptotic regime N ≫ 1, the so-called thermo-
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dynamical limit. Calculations show that there is a critical connectivity

that  is  not  a  constant  but  grows  slowly  as Kc ~ ln lnN,  with  a

width decreasing like (1/ln N). 
The  paper  is  organized  as  follows:  in  Section  2,  we  introduce  the

formal  mathematical  concepts  to  be  used,  as  well  as  the  concept  of
Boolean irreducibility as a tool for making the combinatorial calcula-

tions. In Section 3, the equiprobable case p  1  2, for the extraction

of  the  K-Boolean  functions  in  equation  (1),  is  reviewed  and  intro-
duced  as  a  starting  point  for  the  generalization  to  the  case  0 < p < 1.
In Section 4, the injective properties of Ψ for general p are studied. In

Section  5,  the  case  p  1  2  with  the  tautology  and  contradiction

Boolean  functions  excluded  is  studied.  In  Section  6,  the  conclusions
are  drawn,  with  implications  for  the  context  of  theoretical  biology.
The Appendices are intended to provide mathematical support for the
interested reader. 

General Concepts2.

For  the  sake  of  simplicity,  we  will  omit  subindexes  or  superindexes,
such as (i) or others, when not necessary. In what follows, we denote
by ⊕ the addition modulo 2 for the elements of ℤ2, and by

ΓK
N  CK

(α) ⊆ [N] #CK
(α)  Kα1,…,

N
K


the  set  of  K-connections  CK
(α).  For  any  K-Boolean  function  in

equation�(1),

bK :ℤ2
K → ℤ2,

its negation ¬ bK is defined by

¬ bK  bK ⊕ 1.

A well-known fact is that any K-Boolean function is completely deter-
mined by its truth table 

bK  [σ1, σ2, … , σ2K ], (5)

where σs ∈ ℤ2 is the sth image of bK given by

s  sS  1 +
i1

K

Si2
i-1, 1 ≤ s ≤ 2K, (6a)

and defines a total order among the 2K  possible arguments of bK. The

K-Boolean functions also may be classified and totally ordered accord-
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ing to Wolfram’s notation, by a natural number n given by [17, 18]

n  
s1

2K

2s-1σs, 0 ≤ n ≤ 22
K
- 1. (6b)

Of particular importance are the tautology τK ≡ bK
22

K
-1

and con-

tradiction ¬ τK ≡ bK
(0) K-Boolean functions, with images:

(τK)  [1, 1, … , 1
2K

]
(7)

and

(¬ τK)  [0, 0, … , 0
2K

].
(8)

Let us add, when appropriate, a superscript n to each of the
K-Boolean functions and denote by

ΞK  bK
(n) :ℤ2

K⟶ℤ2n0,1,…,22
K
-1 (9)

its set.

Table 1 gives an example of the truth table for the 16 possible
K  2 Boolean functions listed according to their Wolfram number
from equation (6b).

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 1. The truth table for the 16 K  2 Boolean functions. In the left col-
umn are its inputs s as given by equation (6a). The following columns contain
the outputs ordered by Wolfram’s number n as given by equation (6b).

The average number of Kauffman networks ϑ(N, K, p) that Ψ maps
into the same functional graph g is given from equation (4) by

ϑ(N, K, p) 
1

#ΨℒK
N



g∈ΨℒK
N

#Ψ-1(g), (10)

where

Ψ-1(g)  f ∈ ℒK
N Ψf  g.

This implies

Ψ-1(g)⋂Ψ-1(g′)  ∅ ∀ g ≠ g′.
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So, ℒK
N

 may be disjointedly decomposed as

ℒK
N  ⊔

g∈ΨℒK
N

Ψ-1(g),

so that

#ℒK
N  

g∈ΨℒK
N

#Ψ-1(g).

Then, from equation (10)

ϑ(N, K, p) 
#ℒK

N

#ΨℒK
N

. (11)

The value of #ℒK
N

 is easily calculated, noting that for each site i, there

are 22
K
 K-Boolean functions bK  and 

N

K
 different K-connections. So,

the number of different inputs ℑ at any site is

ℑ  22
K N

K
, (12a)

and then

#ℒK
N  22

K N

K

N

, (12b)

for the N sites.

For  the  calculation  of  #ΨℒK
N,  we  must  take  into  account  that  for

each  site,  not  all  the  inputs  of  equation  (12)  give  a  different  output,
because  there  may  be  some  repetitions  ℜ  due  to  the  noninjectivity  of
Ψ. This is because not all of the bK depend completely on their K argu-

ments,  as  we  will  explain  soon.  So,  from  equation  (12a),  at  any  site
the number of outputs Ω is 

Ω  ℑ -ℜ  22
K N

K
-ℜ. (13)

In  order  to  calculate  ℜ,  the  concepts  of  Boolean  irreducibility  and
degree of irreducibility were introduced in [6] as follows: 

A  K-Boolean  function  bK  is  irreducible  in  its  mth
 argument

Sm  1 ≤ m ≤ K,  if  and  only  if  there  exists  an  input

S1, … , Sm, … , SK ∈ ℤ2
K

 such that 

1.

bKS1, … , Sm ⊕ 1, … , SK  bKS1, … , Sm, … , SK ⊕ 1.

Otherwise, the K-Boolean function bK is reducible in the argument Sm. 2.
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If bK  is irreducible on λ of its arguments and reducible in the remaining

K - λ, then we say that it has a degree of irreducibility λ 0 ≤ λ ≤ K. We

denote by λbK the function 

3.

λ : ΞK → K ⋃ 0,

and by λ its value.

If λbK  K, bK is called totally irreducible. 4.

Table 2 shows the values of λ for the K  2 Boolean functions. 

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λ 0 2 2 1 2 1 2 2 2 2 1 2 1 2 2 0
ω 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Table 2. The degree of irreducibility λ and weight ω for the 16 K  2 Boolean
functions. 

We define the sets of λ-irreducible functions by 

K(λ)  bK ∈ ΞK λbK  λ, (14)

and denote by βK(λ) their cardinalities

βK(λ)  #K(λ).

The values of βK(λ) were calculated in [19, 20]. In Appendix A, we in-

clude  the  calculation  of  them  for  the  interested  reader.  Of  particular
importance are the values:

βK0  2 (15)

corresponding to the set

K0  {τ, ¬ τ},

and

βK1  2K (16)

corresponding to the set

K1  bK ∈ ΞK bK  Si ⋁ bK  Si ⊕ 1, ∀ i ∈ [K].

As  an  example,  for  the  case  K  2  in  Table  2,  it  can  be  seen  that

K0 has as its elements the functions 0 (¬ τ) and 15 (τ), while K1

has the functions 3 ¬ S2, 5 ¬ S1, 10 S1 and 12 S2.

In terms of equation (14), equation (9) may be disjointedly decom-
posed as 

ΞK  ⊔
λ0

K
K(λ). (17)

On the Number of NK-Kauffman Networks Mapped into a Functional Graph 335

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.4.329



The Case p 1 /23.

Now we have all the concepts to calculate ℜ in equation (13) for the

case p  1  2. For that scope, note that for any site, the star functions

bK
*(α) ≡ bK ∘CK

*(α) in equation (3) may give the same output if the con-

nection set CK
(α) is changed to another connection set, depending on

the degree of irreducibility of the bK associated to bK
*(α). Let bK

*(α) be

such that λbK  λ, and let ℐλ
(α) ≡ i1

(α), … , iλ
(α) be the set  of

subindexes of the irreducible arguments of bK. Then

ΛK
NbK

*(α), λ  CK
(β) ∈ ΓK

N ℐλ
(α) ⊆ CK

(β) ⋀CK
(β) ≠ CK

(α)

is the set of connections, apart from CK
(α), such that bK

*(α) :ℤ2
N → ℤ2

gives the same output ∀ S ∈ ℤ2
N. Note that any CK

(β) ∈ ΛK
NbK

*(α), λ has

λ indexes fixed and K - λ indexes free, which are elements in

[N] \ ℐλ
(α). So #ΛK

NbK
*(α), λ is equal to the number of subsets  of

[N] \ ℐλ
(α) that have cardinality K - λ, minus one; then

#ΛK
NbK

*(α), λ 
N - λ

K - λ
- 1.

So, the number of repetitions that a function with a λ degree of irre-
ducibility produces is

βK(λ)
N - λ

K - λ
- 1,

giving in equation (13):

Ω  22
K N

K
-

λ0

K

βK(λ)
N - λ

K - λ
- 1. (18)

Then, we obtain

#ΨℒK
N  22

K N

K
-

λ0

K

βK(λ)
N - λ

K - λ
- 1

N

, (19)

and from equation (11)

ϑ-1 N, K,
1

2


22
K N

K
-∑λ0

K βK(λ)
N - λ

K - λ
- 1

22
K N

K

N

. (20)
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In the asymptotic regime N ≫ 1, K ~ ln lnN, we may apply Stir-

ling’s approximation for the factorial [21]

(N -K) ! ≈ 2π e-NNN-K+1/2.

For the combinatorial coefficients, this gives

N

K
≈
NK

K !
. (21)

Since

N - 1

K - 1


K

N

N

K
, (22)

and from equation (14) or (A.1) βK(λ) < 22
K
∀ λ, we obtain the follow-

ing asymptotic formula using equations (15) and (16):

ϑ-1 N, K,
1

2
≈ 1 -

2

22
K
-

K2

N2

N

.

Then

ϑ-1 N, K,
1

2
≈ e-Nφ(K) 1 +

1

N
, (23)

with

φ(K) ≡
2

22
K
.

As we may see from equation (23), for N → ∞, ϑ-1N, K, 1  2 goes

to zero exponentially for K  constant. However, if K grows with N
in such a way that the product N φ (K) remains constant as N grows,
we may obtain values for equation (23) throughout the range

0 < ϑ-1N, K, 1  2 ≤ 1. From equation (10), Ψ is a many-to-one func-

tion in the case where ϑ-1N, K, 1  2 ≈ 0, and an injective function

if and only if ϑ-1N, K, 1  2  1. From equation (20), injectivity is

only obtained in the extreme case in which K  N, where ℒK
N ≅ 2N .

As we are going to see, there is a critical connectivity Kc that grows

with N, such that for K < Kc, ϑ
-1N, K, 1  2 ≈ 0, making Ψ a many-

to-one function. While for K > Kc, ϑ
-1N, K, 1  2 ≈ 1, making Ψ ap-

proach an injective function. The critical connectivity Kc is defined by

the equation

ϑ-1 N, Kc,
1

2


1

2
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with the result [5, 6]

Kc ≈ log2 log2
2N

ln 2
. (24)

The width of the transition ΔKc at Kc may be estimated by expanding

ϑ-1N, K, 1  2 in Taylor series up to the first order in K -Kc:

ϑ-1 N, K,
1

2
≈

1

2
1 -Nφ′(Kc)(K -Kc),

where φ′(K)  dφ(K)  dK. Then we may define

ΔKc ≡ K1 -K0,

where K0 and K1 are such that ϑ-1N, K0, 1  2  0 and

ϑ-1N, K1, 1  2  1 in the first-order approximation. This gives

ΔKc  -
2

Nφ′(Kc)


2

ln 23log2
2N

ln 2


~ 
1

lnN
.

Equation (24) is in good agreement with the results of theoretical
biology when N represents the number of genes of living organisms

on Earth that have a typical value of N ~ 104, predicting a robust
genotype-phenotype map Ψ for K ≲ 4, where Ψ is a many-to-one map
as expected in genetics [2, 12–16]. Moreover, the connectivity K corre-
sponds in genetics to the average number of epistatic interactions that
are known to be of order K ~ 4 [2, 13–15]. So Kauffman networks,
notwithstanding their simplicity, give good insight into biological
processes.

The Case for General p4.

Now we are going to extend the analysis to when the outputs of the

K-Boolean functions bK
(i) are extracted with probability p that

bK
(i)  +1 for a given input. Then, the extraction probability of bK is

given by

ΠpbK  Πp ∘ωbK  pω1 - p2
K-ω, (25)

where ω  0, 1, … , 2K is the weight of bK, defined by the weight

function

ωbK  
s1

2K

σs,
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with  σs  given  by  equation  (5).  The  last  row  of  Table  2  gives  the  val-

ues of ω for the K  2 Boolean functions. Now #ΨℒK
N may be calcu-

lated  by  taking  averages  in  equation  (18).  Multiplying  equation  (18)
by equation (25), we have

ΩΠpbK  22
K N

K
ΠpbK - 22

K


λ0

K

ΠpbK λ 
N - λ

K - λ
- 1,

where

ΠpbK λ 
βK(λ)

22
K
ΠpbK

is the conditional probability of extracting a bK such that it has a λ de-

gree of irreducibility. Taking the average, we obtain

〈Ω〉  22
K N

K
- 22

K


λ0

K

Πp(K(λ))
N - λ

K - λ
- 1,

where

Πp(K(λ))  
bK∈ΞK

ΠpbK λ ≡ 
bK∈K(λ)

ΠpbK

is the probability that bK ∈ K(λ). So for #ΨℒK
N, we have:

#ΨℒK
N  22

K N

K
- 22

K


λ0

K

Πp(K(λ))
N - λ

K - λ
- 1

N

.

Note that because of the uncorrelated random extraction of CK
(αi)

 and

bK
(i), we may do a mean field approximation and take the average be-

fore taking the Nth
 power in order to obtain #ΨℒK

N. Then from equa-

tion  (11),  by  applying  equation  (21)  we  obtain  in  the  asymptotic

regime N ≫ 1, K ~ ln lnN:

ϑ-1(N, K, p) ≈ 1 - φ(K, p)N ≈ e-φN, (26a)

where

φ  φ(K, p)  ΠpK0.

The probabilities Πp(K(λ)) were calculated in [23] and we report the

result  in  Appendix  B  for  the  interested  reader.  However,  ΠpK0

may  be  easily  calculated  by  noting  that  K0  {τ, ¬ τ}.  So,  from

equations (8) and (25) 

φ(K, p)  p2
K
+ 1 - p2

K

. (26b)
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As for the equiprobable case p  1  2, the transition from a many-to-

one  to  an  injective  function  is  obtained  from  equations  (26a)  and

(26b)  by  setting  e-φN  1  2,  which  now  leads  to  the  transcendental

equation

p2
Kc + 1 - p2

Kc
≈

ln 2

N
. (27)

Calculations  using  equations  (26a)  and  (26b)  show  that

Δ Kc ~  1  lnN  for  the  width  of  the  transition.  Clearly,  equa-

tion�(27)  reduces  to  equation  (24)  at  p  1  2  and  is  symmetrical  in

that  point,  as  it  should  be.  Equation  (27)  may  be  solved  numerically

for Kc  versus p, for a fixed N. This is shown in Figure 1 for N  104.

Below the curve, Ψ is a many-to-one function, while above, it is injec-
tive.  Note  also  from  the  graph  that  deviations  from  the  equiprobable

case p  1  2 may conform to the expected values of the epistatic con-

nections for living organisms on Earth, which go from 6⨯103  in yeast

to less than 4⨯104  for H. sapiens [12–15]. This makes Kauffman net-
works  a  robust  model  for  mathematical  biology,  even  in  the  case  of
adding a bias p. 

Figure 1. Graph of Kc versus p, for fixed N  104.
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Suppression of Tautology and Contradiction5.

Let us see what happens if the K-Boolean functions tautology τ and
contradiction ¬ τ are excluded from the construction of the NK-Kauff-
man networks. For simplicity, we consider the equiprobable case

p  1  2. As we have seen, K0  {τ, ¬ τ}. Let us denote by ℒ

K
N

the

set of NK-Kauffman networks constructed by excluding the functions

in K0. Then, the number of Boolean K-functions in the construc-

tion is 22
K
- 2, and we obtain instead of equations (12b) and (19)

#ℒ

K
N
 22

K
- 2

N

K

N

and

#Ψ(ℒ

K
N
)  22

K
- 2

N

K
-

λ1

K

βK(λ)
N - λ

K - λ
- 1

N

,

respectively. Once again

ϑ

N, K,

1

2


#ℒ

K
N

#Ψ(ℒ

K
N
)

.

Now, in the asymptotic regime, the leading term for the repetitions is
the one with λ  1. From equation (16) and from equations (21) and

(22), for N ≫ 1 and K ~ ln lnN, it follows that

ϑ

N, K,

1

2
≈ exp

2K2

22
K
- 2

1 -
1

N
, (28)

which goes exponentially to one. So we see that the presence or ab-
sence of the tautology and contradiction Boolean functions plays a
crucial role in the robustness of Kauffman networks. Now there is no
transition from many-to-one to injection and Ψ remaining injective.
This is in agreement with Kimura’s neutral theory, with τ and ¬ τ

playing the role of the random drift [2].

Conclusion6.

We have calculated the asymptotic equations (26a) and (26b), which
give the average number ϑ(N, K, p) of NK-Kauffman networks that
the function Ψ maps onto the same functional graph for general val-
ues of the bias p. The asymptotic expression of the transition from a
many-to-one to the injective function equation (27) was calculated
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and solved numerically for N fixed. We have seen that while
NK-Kauffman networks are simplified models of biological systems,
they give good insight into theoretical biology, since they have concor-
dance with biological theories. In particular, we have seen that the
suppression of tautology and contradiction Boolean functions from
the constructions of Kauffman networks makes them a non-robust
model, as long as Ψ remains injective. This is in good agreement with
Kimura’s neutral theory [2].

It is worth saying that the understanding of Ψ for Kauffman net-
works is also important from the strictly mathematical point of view,

since the dynamical behaviors of the elements in ℒK
N (the Kauffman

networks) are related by means of Ψ through functional graphs [3–6].
The relation with percolation and information flow was not ad-

dressed in this paper, though it is an open and important field for fu-
ture research.
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Appendix

The Coefficients βK (λ)A.

From equation (17), since the union is disjoint and #ΞK  22
K
, it fol-

lows that

22
K
 

λ0

K

βK(λ), (A.1)

but βK(λ) is equal to the number of ways to form λ irreducible argu-

ments from K arguments; that is,

βK(λ) 
K

λ
λ, (A.2)

where λ ≡ βλ(λ). Then

22
K
 

λ0

K
K

λ
λ. (A.3)
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Using the inversion formula of [24], which asserts that for any two se-

quences of real numbers frr0
n

 and {gr}r0
n , such that

fn  
r0

n
n

r
gr,

it follows that

gn  
r0

n

-1n-r
n

r
fr,

we  may  invert  equation  (A.3)  to  obtain  for  equation  (A.2)  the  closed
expression

βK(λ) 
K

λ

m0

λ

-1λ-m
λ

m
22

m
. (A.4)

The Expression for Πp(K (λ))B.

From  equation  (25),  the  probability  Πp(K(λ))  that  bK  is  in  K(λ)  is

given by 

Πp(K(λ))  
bK∈K(λ)

ΠpbK.

A  closed  expression  for  Πp(K(λ))  was  calculated  in  [23],  with  the

result

Πp(K(λ)) 
K

λ

m0

λ

-1λ-m
λ

m
p2

K-m
+ 1 - p2

K-m


2m

.

Note  that  for  the  case  p  1  2,  by  using  equation  (A.4)  we  obtain

Π1/2(K(λ))  βK(λ)  2
2K , as it should be.
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