
Rigorous Measurement of the Internet 
Degree Distribution

Matthieu Latapy1

Élie Rotenberg1,2

Christophe Crespelle2

Fabien Tarissan2

1Université Paris-Sorbonne, UPMC Univ. Paris 06, CNRS
LIP6 UMR 7606, 4 place Jussieu 75005 Paris
2Université Claude Bernard Lyon 1, DANTE/INRIA
LIP UMR CNRS 5668, ENS de Lyon, Université de Lyon
Firstname.Lastname@lip6.fr 

The  degree  distribution  of  the  internet,  that  is,  the  fraction  of  routers
with k links for any k, is its most studied property. It has a crucial influ-
ence  on  network  robustness,  spreading  phenomena  and  protocol
design.  In  practice,  however,  this  distribution  is  observed  on  partial,
biased and erroneous maps. This raises serious concerns about the true
knowledge  we  actually  have  of  this  key  property.  Here,  we  design  and
run a drastically new measurement approach for the reliable estimation
of the degree distribution of the internet, without resorting to any map.
It  consists  of  sampling  random  core  routers  and  precisely  estimating
their  degree  with  probes  sent  from  many  monitors  scattered  over
the  internet.  Our  measurement  shows  that  the  true  degree  distribution
significantly  differs  from  classical  assumptions:  it  is  heterogeneous
but  it �decreases  sharply,  in  a  way  incompatible  with  a  heavy-tailed
power law. 

Introduction1.

The internet has become a crucial infrastructure sustaining our social,
economic,  cultural  and  scientific  lives  at  both  local  and  worldwide
scales.  Despite  this,  our  understanding  of  its  structure  remains  very
limited.  To  gain  more  insight,  the  internet  is  often  modeled  as  a  net-
work where nodes represent routers and links represent direct connec-
tions  between  them  (wires,  satellites,  etc.).  The  degree  distribution
(i.e., for each integer k, the fraction pk of nodes having k links) of this

network  is  particularly  important:  it  plays  a  key  role  for  resilience  to
failures  and  attacks  [1,  2],  cascade  and  spreading  phenomena  [3,  4],
and  protocol  and  network  design  [5,  6].  As  a  consequence,  it  is  an
essential building block of most modern models of the internet [7–10].
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However, current knowledge of this degree distribution is far from
satisfactory,  and  it  is  at  the  core  of  a  lively  scientific  controversy
[11–18].  Indeed,  the  degree  distribution  is  known  only  from  internet
maps  obtained  through  intricate  measurement  procedures  giving  par-
tial,  biased  and  erroneous  views.  These  measurements  generally  rely
on  the  use  of  the  traceroute  tool,  which  provides  in  principle  a  route
in the network from the monitor running the measurement to a given
target.  By  collecting  and  merging  many  such  routes,  one  obtains
a map of the internet. See Figure 1(a) for an illustration. However, the
traceroute  tool  is  prone  to  numerous  errors  [16,  19–21]  and,
most �importantly,  the  procedure  itself  is  intrinsically  biased  [11,  14,
22, 23]. 

(a) (b)

(c)

Figure 1. Comparison of our method to the classical traceroute method. (a) A
traceroute  measurement  from  one  monitor  (square  node)  toward  25  targets
(bullet nodes). This measurement needs 97 probes. (b) Measurement with our
method  from  nine  monitors  (square  nodes)  toward  10  targets  (bullet  nodes).
Figure  2  details  how  the  links  of  each  target  are  discovered.  This  measure-
ment  needs  90  probes.  (c)  The  true  degree  distribution  of  the  network
together with the estimates obtained by both methods.

For all these reasons, much effort is devoted to the design of more
accurate  internet  measurement  tools  and  to  the  collection  of  larger
and  larger  maps  [20,  24–30].  However,  as  measurement  capabilities
remain  limited  and  as  the  internet  evolves  faster  than  our  ability  to
measure it, this may very well be a dead end. 
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Figure 2. Measurement of the degree of 10 targets using our method. We dis-
play  10  copies  of  the  network,  one  for  each  target  measurement.  On  each
copy we show the routes followed by the probes sent from our nine monitors
(square nodes) toward the corresponding target (bullet node).

We  present  here  a  drastically  new  approach  able  to  reliably  esti-
mate  the  degree  distribution  of  the  internet  without  resorting  to  any
map.  We  probe  randomly  chosen  routers  from  monitors  scattered  all
over  the  internet  and  obtain  an  accurate  estimate  of  their  degree.  We
infer from these degrees a rigorous estimate of the internet degree dis-
tribution,  far  more  reliable  than  previous  knowledge.  See  Figure  1(b)
and (c) for an illustration. This methodological shift raises challenging
questions, which we address here. We conclude that, contrary to what
most  current  studies  assume,  the  degree  distribution  is  heterogeneous
but is not a heavy-tailed power law. 

Our Measurement Method2.

A machine on the internet (a router or an end host) may have several
interfaces, each corresponding to a connection to a neighbor machine.
Each interface has its own address, and the degree of a router is noth-
ing but its number of interfaces/addresses. 

Let us consider an address t, which we call target, and let us denote
by r(t) the node (router or end host) to which t belongs. Internet pro-
tocol  specifications  [31,  32]  state  that  when  a  monitor  m  sends  a
packet  to  destination  t  on  an  unallocated  port,  then  r(t)  should
answer m with an error packet (ICMP Destination Unreachable, Code
3/Port  Unreachable).  An  important  detail  is  that  the  source  of  this
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error packet is in principle the address of the interface i by which r(t)
sent it; see Figure 3.

Figure 3. Monitor m sends a packet to destination address t on an unallocated
port; the node r(t) answers with an error packet with source address i, and
thus m discovers interface i of r(t).

Let us temporarily assume that r(t) implements this feature cor-
rectly (we handle other cases in Section 3). Now consider a set M of
monitors that all send such a probe toward address t. If for each inter-
face i of r(t) there is a monitor m in M that r(t) answers using i, then
one obtains the set of all interfaces of r(t), and so its degree. This con-
stitutes our basic measurement primitive: (1) from each monitor of a
set M, we send a packet to an unallocated port of target address t;
and (2) we collect the set M(t) of all addresses used by r(t) to answer
monitors in M.

Depending on the target t and on the set of monitors M, this mea-
surement primitive may succeed or fail to discover all the interfaces of
r(t). In particular, one has to distinguish between two very different
kinds of targets: (1) the target node r(t) is in the core internet
(Figure 4(b)); or (2) the target node r(t) is in the border (Figure 4(c)).

As illustrated in Figure 4(c), when the target address belongs to a
border node, our measurement primitive may miss many of its inter-
faces and most likely discovers only the interface directed toward the
core. The situation regarding core interfaces of core routers is quite
different (see Figure 4(b)). Indeed, such interfaces route traffic toward
a non-negligible part of the internet, and one may therefore expect
that a reasonably large and well-distributed set M of monitors discov-
ers them. Of course, this highly depends on the considered set of
monitors, and we explain in supplementary material how to assess the
quality of a monitor set in practice.

We focus here on the core, which is the key part of the network: it
performs the nontrivial routing of packets from one point to another
point of the network, while the border is a set of trees connected to
this core, where packets are just forwarded up or down the tree (see
Figure 4(a)). We therefore discard target addresses that belong to bor-
der nodes; see Section 3.
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(a) (b)

(c)
Figure 4. (a) The core and the border of the network; the border is the set of
all trees connected to the network; the core is the part remaining when one
removes these trees. (b) A set of monitors (the squared nodes) sends probes
toward a target address t belonging to a core router r(t) and obtains its four
core interfaces of r(t). (c) The same monitors send probes toward another tar-
get t′ belonging to a border router r(t′) and miss most interfaces of r(t′).

In summary, we expect a good enough set of monitors M to be
able to discover all or almost all core interfaces of any core router,
leading to an estimate of its degree in the core internet. Once this mea-
surement primitive is implemented, one may use it to observe the
degree of all targets in a set T. If T is a set of core routers sampled
uniformly at random (which means that all core routers have the
same probability to appear, independently from their degree), then
the distribution of degrees observed for T is an estimate of the degree
distribution of core routers.

Measurement3.

We present in this section practical measurements we conducted fol-
lowing our approach. We describe the whole procedure step by step,
as well as the obtained dataset.

We first built an initial target set by sending (from a machine in
our lab) a probe to addresses corresponding to 32-bit integers sam-
pled uniformly at random. We stopped this process when we obtained
correct answers (i.e., ICMP Destination Unreachable (Code 3/Port
Unreachable) error packets) from three million such targets (we con-
sidered that no answer would arrive after one minute). This took
approximately 10 hours.
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https://doi.org/10.25088/ComplexSystems.26.1.1

https://doi.org/10.25088/ComplexSystems.26.1.1


Our  initial  monitor  set  was  composed  of  the  approximately  700
machines of the PlanetLab platform [25], which is a distributed infra-
structure  provided  to  researchers  to  conduct  network  experiments.
Some  of  these  potential  monitors  are  of  little  interest  (they  have  very
poor  connections,  for  instance,  or  they  belong  to  networks  that  filter
our  probes)  and  some  are  colocated,  therefore  providing  redundant
information  in  our  measurement.  However,  we  present  in  the  supple-
mentary  material  several  assessments  of  this  monitor  set,  which  all
show that it fits our needs. 

Given  these  initial  target  and  monitor  sets,  we  uploaded  the  target
set  to  each  monitor  and  remotely  asked  the  monitors  to  send  probes
to  all  targets  (in  a  random  order  to  avoid  situations  where  targets
would  receive  many  probes  in  a  short  period  of  time).  This  lasted
approximately  four  hours  (and  so  each  target  received  at  most  700
probes  during  this  period,  which  is  a  reasonable  load).  In  order  to
explore the stability of our measurements, we repeated this operation
three times in a row. The whole measurement (building the target set
and probing each target from each monitor three times) took less than
24  hours,  with  a  very  reasonable  load  for  targets  and  monitors.  At
this stage, we obtained for each target its answers to the probes from
all  monitors  (repeated  three  times),  which  we  gathered  onto  a  local
machine for analysis. 

We then applied a drastic filtering process (detailed in Section 6) in
order to ensure we kept only data relevant to our needs: we removed
monitors  and  targets  that  behaved  incorrectly,  as  well  as  border
nodes.  We  also  conducted  an  auxiliary  measurement  able  to  obtain
the  set  of  all  border  interfaces  visible  from  our  monitors.  Thanks  to
this,  we  were  able  to  keep  only  target  addresses  that  were  core  inter-
faces  of  core  routers  answering  our  probes  correctly.  Unsurprisingly,
most  target  addresses  belonged  to  border  nodes.  We  finally  obtained
for  each  of  our  three  measurements  approximately  5600  targets
belonging to reliable core routers. The output of our measurements is
the observed degree of these routers, from which we will estimate the
degree distribution of internet core routers. 

We  provide  our  measurement  tools  (source  code  and  documenta-
tion), as well as the raw dataset at rmidd.complexnetworks.fr. 

Unbiased Estimation4.

Based on the preceding procedure, we can achieve the crucial point of
our method, namely estimating the degree of core routers sampled uni-
formly at random. Note that until now, we only sampled uniformly at
random  the  addresses  of  their  interfaces,  not  core  routers  themselves.
Indeed, one has k possibilities to sample a router with k interfaces, so
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high-degree  routers  appear  in  our  target  list  with  probability  higher
than low-degree ones. In order to correct this bias a posteriori, we dis-
card  from  the  result  of  the  measurement  the  core  routers  whose
address t present in the target set turns out to be the address of one of
their  border  interfaces.  After  this  discarding  step,  the  probability  that
a core router has been sampled is proportional to its number k of core
interfaces  (which  is  precisely  what  we  measure).  Then,  the  observed
fraction  pk

′
 of  routers  of  core  degree  k  sampled  with  this  bias  is  pro-

portional  to  k  times  the  fraction  pk  of  routers  of  core  degree  k  sam-

pled uniformly at random: pk
′ ~ k · pk. As a consequence, we obtain: 

pk 
pk
′

k
·

1

∑i>1
pi
′

i

,

where  the  second  term  is  nothing  but  a  normalization  constant  to
ensure that ∑k pk  1.

We  then  use  this  formula  to  estimate  the  true  degree  distribution

pk from the observed one pk
′ . 

Obtained Degree Distribution5.

The  degree  distributions  observed  from  our  three  measurements  after
bias  correction  following  the  preceding  formula  are  given  in  Fig-
ure�5(a). We plot the inverse cumulative distributions in Figure 5(b).

First,  notice  that  the  results  of  all  measurements  are  very  similar,
which confirms that our results are stable in this setup. We present in
Section 6 several other assessments of the quality of our final observa-
tion,  all  confirming  that  the  obtained  distributions  are  good  approxi-
mations of the true one. 

Obtained  distributions  show  clearly  that  low-degree  core  routers
are  prevalent:  approximately  75%  of  them  have  degree  2  only,  and
almost 20% have degree 3. This is not surprising, as we observe core
interfaces only: these routers certainly have other interfaces connected
to border routers and/or end hosts. The number of interfaces they use
to actually route traffic in the core internet, however, is very low. 

On  the  other  hand,  some  core  routers  have  much  larger  degrees,
and  the  highest  one  we  observe  is  29.  We  may  possibly  miss  a  few
interfaces of this router, but there is little chance that the true largest
degree is much higher: we perform measurements from a much larger
number  of  monitors,  and  so  the  fact  that  observed  degrees  are
bounded  by  this  number  plays  no  role.  Of  course,  core  routers  with
degree  significantly  higher  than  29  may  exist,  and  they  probably  do.
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There  are,  however,  none  in  our  random  target  set,  and  we  therefore
expect them to be extremely rare (which is reinforced by the sampling
bias toward high-degree routers explained in Section 4). 

(a)

(b)

Figure 5. (a)  The  degree  distributions  obtained  from  our  three  measurements
(after bias correction): for each degree k, we give the estimated fraction pk  of

core routers with degree k. (b) Plot of the inverse cumulative degree distribu-
tions  obtained  from  our  three  measurements,  after  bias  correction:  for  each
value  x  on  the  horizontal  axis,  we  plot  the  fraction  of  core  routers  having
degree  higher  than  or  equal  to  x  (log-log  scale).  We  also  plot  the  power  law
of  exponent  α  3.8  to  show  that  obtained  distributions  are  incompatible
with a power law of exponent lower than this.

Going  further,  we  observe  that  the  first  values  of  the  obtained  dis-
tribution (pk  for k < 10) are reasonably well fitted by a power law (a

straight line in a log-log plot of the distribution). After that, the distri-
bution experiences a sharp decrease. The first values are the ones that
our  method  estimates  best,  and  so  one  may  ask  if  the  obtained  dis-
tribution  is  compatible  with  a  power  law.  As  highest  degree  may  be
underestimated, this may even be in accordance with the shape of the
whole obtained distribution. 

8 M. Latapy, É. Rotenberg, C. Crespelle and F. Tarissan

Complex Systems, 26 © 2017



In order to explore this question, we compute a lower bound α for
power-law  exponents  compatible  with  the  first  values  (the  most  reli-
able  ones).  It  is  the  slope  of  a  straight  line  fitting  the  distribution  in
log-log  scale.  The  exponent  would  clearly  be  larger  than  α  3.8;  see
Figure 5(b), which discards the usual assumption of an exponent close
to  2.  This  also  shows  that  if  the  true  degree  distribution  is  a  power
law, it is hardly distinguishable from an exponential decrease in prac-
tice [33], even for a system the size of the internet. 

Supplementary Material6.

Proof of Concept6.1

In order to assess the relevance of our approach, we conducted a com-
prehensive set of simulations, which we present in this section. Assum-
ing that we are able to build appropriate sets of monitors and targets,
the key questions we want to answer are, what is the risk that our esti-
mate  of  a  node’s  degree  is  different  from  its  true  degree?  and  how
many monitors do we need to have an accurate estimate of the degree
distribution?

To  investigate  this,  we  have  conducted  simulations  as  follows  (see
[34]  for  more  details):  we  considered  different  kinds  of  artificial
graphs  to  represent  the  network,  we  used  as  monitors  random  nodes
with degree one (representing end hosts), and we used all core targets
(i.e.,  nodes  in  the  graph  obtained  by  iteratively  removing  degree-one
nodes).  We  then  assumed  that  each  target  answers  probes  from  each
monitor  using  one  (randomly  chosen)  of  its  interfaces  that  starts  a
shortest  path  from  the  target  to  the  monitor.  We  used  two  different
kinds of graphs: one with Poisson degree distribution, which is a typi-
cal homogeneous distribution, and one with a power-law degree distri-
bution, which is a typical heterogeneous distribution. These two kinds
of  distributions  are  considered  as  extreme  cases  for  what  the  true
degree distribution may be. 

Figure  6  shows  the  results  of  the  simulations  for  Poisson  and
power-law  graphs  of  2.5  million  nodes.  Figure  6(a)  presents  the
degree  distribution  observed  with,  respectively,  12,  25,  50,  100,  200,
400  and  800  monitors.  As  one  could  expect,  with  12  monitors  the
degree distribution is poorly estimated in the two cases. Nevertheless,
it  is  remarkable  that,  even  with  this  poor  level  of  quality,  the  nature
of  the  distribution  (i.e.,  homogeneous  or  heterogeneous)  appears
clearly.  When  the  number  of  monitors  grows,  so  does  the  quality  of
the observed degree distribution. 

With 200 monitors in particular, the observed and the true distribu-
tions  become  visually  indistinguishable  in  the  homogeneous  case
(left). For the heterogeneous case (right), one can observe a cutoff for
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very  large  degrees.  This  comes  from  a  limitation  of  our  method:  the
observed degree cannot exceed the number of monitors, and more gen-
erally,  the  estimate  becomes  inaccurate  for  targets  whose  degree  is
close  to  the  number  of  monitors.  On  the  other  hand,  for  reasonably
low-degree targets, up to approximately 20, the observed distribution
and the true one are visually indistinguishable with 200 monitors. 

(a) Observed degree distribution

(b) Scatter plot of the true degree versus the observed degree

Figure 6. Simulations  with  different  numbers  of  monitors  (12,  25,  50,  100,
200,  400  and  800)  over  graphs  of  2.5 * 106  nodes  whose  degree  distribution
follows  either  a  Poisson  law  with  average  degree  25  or  a  power  law  with
exponent 2.1.

These  last  statements  are  strengthened  by  the  plots  in  Figure  6(b),
which  shows  the  scatter  plot  of  true  degree  (on  the  x  axis)  and
observed degree (on the y axis) for all targets and for the two kinds of
graphs.  We  can  see  that  with  200  monitors,  the  estimate  degree  of
each node is quite close to its true degree for the Poisson graphs, thus
proving that our method performs very well on this kind of graph. As
regards  power-law  graphs,  we  can  see  that  using  200  monitors,  the
estimate  degree  of  low-degree  nodes  is  quite  close  to  the  true  one.
More  than  95%  of  degree-2  nodes  are  correctly  observed,  and  this
proportion drops to 85% when considering all nodes whose degree is
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lower  than  10.  This  shows  that,  for  this  type  of  node  at  least,  our
method also performs very well on power-law graphs. 

Therefore,  the  only  limitation  of  our  method  in  this  theoretical
setup seems to be the estimation of the degree of high-degree nodes in
power-law  graphs.  Indeed,  an  intrinsic  limitation  of  our  method  is
that  we  cannot  obtain  a  degree  estimate  larger  than  the  number  of
monitors M. However, this limitation has to be put in perspective, as
Figure  6(b)  shows  that,  even  if  poorly  estimated,  they  still  cannot  be
confused  with  low-degree  nodes.  Whatever  the  number  of  monitors,
the  worst  estimation  (lower  point  on  the  y  axis)  grows  as  the  true
degree grows. 

In  conclusion,  both  for  Poisson  graphs  and  power-law  graphs,  the
nature and the shape of the degree distribution are correctly observed
even with a low number of monitors. In addition, the observed distri-
bution  quickly  converges  to  the  true  one  when  the  number  of  moni-
tors grows. The true degree of low-degree nodes is correctly observed
(also true for high-degree nodes in the homogeneous case), and a high-
degree node is never observed as a low-degree node. 

One  may  wonder  if  these  results  still  hold  for  graphs  of  different
sizes and with different parameters, average degree for Poisson graphs
and  exponent  for  power-law  graphs.  These  questions  were  investi-
gated in [34], as well as the influence of some other parameters of the
simulations.  It  turns  out  that  the  conclusions  we  derive  here  are  still
valid for different sizes and parameters. In particular, [34] shows that
the size of the graph has very little importance, if any, for the quality
of the observation with a given number of monitors. Then, the conclu-
sion obtained by simulations on graphs of a few millions of nodes still
holds for graphs of the size of the internet. 

Comparison with Traceroute Measurements6.2

In  this  section,  we  deepen  the  comparison  between  our  method  and
the classical traceroute method with regard to two criteria: the correct-
ness  of  observed  degree  distribution  and  the  load  induced  on  the
network  by  the  measurement  (number  of  probes  sent).  We  simulate
measurements  with  our  method  as  in  Section  6.1  but  using  only  a
restricted set of targets. To simulate traceroute measurements, we fol-
low the method of [14]: we give to each link a weight 1 + ϵ, where ϵ is

uniformly randomly chosen in -1  n, 1  n, which ensures with very

high probability that there is a unique shortest path between any two
nodes.  Then,  for  each  monitor  we  compute  the  shortest  path  tree
from  this  monitor  to  all  the  other  nodes  of  the  network  using  Dijk-
stra’s algorithm. From these trees, we extract the set of shortest paths
from  all  monitors  to  all  targets  in  the  target  list  and  we  aggregate  all
these  paths  together  into  one  graph,  which  is  the  map  resulting  from
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the traceroute measurement, and on which the degree distribution is
then observed.

We present here the results for two graphs on five million nodes of
the same kind as those of Section 6.1: a Poisson graph of average
degree 25 and a power-law graph of exponent 2.1. For clear compari-
son, we use the same set of monitors for both methods, composed of
200 monitors for Poisson graphs and 800 monitors for power-law
graphs. Our method always uses 5000 targets, which is close to the
number of correct core routers in the real-world measurement pre-
sented in Section 3. We simulate traceroute measurements with vari-
ous numbers of targets, resulting in a different number of probes sent
on the network (from the same number of probes as our method to a
number 2000 times larger).

Figure 7 shows results for the Poisson graph. First, notice that our
method accurately estimates the true degree distribution, while trace-
route with the same number of probes completely fails. The distribu-
tion obtained with traceroute even looks closer to a power-law
distribution than to a Poisson distribution, which is a known bias of
the traceroute method [11, 14]. Using 10 times more probes does not
significantly improve this situation. Only when using 500 times more
probes than the number used by our method does the distribution
observed by traceroute start to look like a Poisson distribution, even
though it remains far from the true one. Still, even with a load 2000

Figure 7. Comparison between our method and traceroute on a five-million-
node Poisson graph of average degree 25. We use 200 monitors, and the com-
parison is done with regard to the number of probes sent. Our method
requires 1 000 000 probes for 5000 targets (similarly to our real-world mea-
surement). We compare it to the traceroute method when it is allowed to send
the same number of probes (which results in 986 targets) and up to 2000
times more probes (which results in 1 972 000 targets). (a) True degree distri-
bution and estimates obtained by both methods. (b) Average observed degree
(y axis) as a function of true degree (x axis).
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times larger, that is, probing about 40% of all nodes of the network,
which is hardly possible to achieve in practice, the degree distribution
observed by traceroute is clearly distinct from the true one. 

Figure  7(b)  explains  this  situation:  it  gives  the  average  observed
degree  (y  axis)  for  nodes  of  given  true  degree  (x  axis).  The  average
degree  observed  by  our  method  is  almost  indistinguishable  from  the
true  degree.  Instead,  degrees  observed  by  traceroute  measurement
with  up  to  10  times  more  probes  are  barely  correlated  to  the  true
degree: the average observed degree remains very low almost indepen-
dently of the true degree. When the number of probes grows, the situa-
tion gradually improves, but even with a load 2000 times larger than
the  one  of  our  method,  traceroute  still  is  less  accurate  than  our
method,  therefore  explaining  that  the  distribution  itself  is  not  cor-
rectly observed. 

Going further, let us mention that we pushed the number of targets
used  by  traceroute  up  to  90%  of  all  nodes.  For  this  huge  value  only,
which is infeasible in practice, the traceroute method performs as well
as  our  method:  average  error  made  on  observed  degree  of  a  node  is
0.03  (0.04  with  our  method)  and  97%  of  all  nodes  have  their  degree
perfectly measured (96% with our method). With this number of tar-
gets,  traceroute  uses  a  number  of  probes  4500  times  larger  than  our
method (and the same number of monitors). 

Figure  8  shows  results  for  the  power-law  graph.  Our  method
observes  the  degree  distribution  accurately  for  degrees  up  to  60,
whereas  traceroute  obtains  a  much  poorer  estimate,  even  with  up  to
100  times  more  probes.  However,  when  traceroute  is  allowed  500
times  more  probes  than  our  method,  it  obtains  a  better  estimate,
which is visually almost perfect. Surprisingly, using even more probes
then  reduces  the  quality  of  the  estimate,  which  finally  becomes  less
accurate  than  our  method.  This  is  explained  by  Figure  8(b):  even
when  traceroute  obtains  a  good  estimate  of  the  distribution,  this  is
not  the  consequence  of  an  accurate  estimate  of  individual  node
degrees.  Therefore  the  good  performance  of  the  traceroute  method  is
for some specific values of the number of targets only, and it is a side
effect  of  its  own  bias.  One  cannot  rely  on  such  artifacts  to  properly
estimate the distribution. 

To  deepen  this,  we  show  in  Figure 8(c)  the  converse  statistics:  for
each observed degree (x axis) we plot the average true degree (y axis)
of  nodes  that  were  observed  with  this  degree.  Figure  8(d)  gives  the
ratio  between  the  average  true  degree  and  the  observed  degree.  For
traceroute  with  a  load  500  times  higher  than  our  method,  this  shows
that  nodes  of  a  given  degree  in  the  observed  distribution  have  a  true
degree  that  is  on  average  2.5  to  3  times  higher:  nodes  observed  with
degree 5 have on average a true degree above 12, nodes observed with
degree 10 have on average a true degree above 25, and so forth. Our
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method performs much better: the ratio between the average true
degree and the observed degree remains close to 1 for most nodes, in
particular for those having degree up to 20.

Figure 8. Comparison between our method and traceroute on a five-million-
node power-law graph of exponent 2.1. We use 800 monitors, and the com-
parison is done with regard to the number of probes sent. Our method
requires 4 000 000 probes for 5000 targets (similarly to our real-world mea-
surement). We compare it to the traceroute method when it is allowed to send
the same number of probes (which results in 1602 targets) and up to 2000
times more probes (which results in 3 204 000 targets). (a) True degree distri-
bution and estimates obtained by both methods. (b) Average observed degree
(y axis) as a function of true degree (x axis). (c) Average true degree (y axis)
as a function of observed degree (x axis). (d) Ratio between average true
degree and observed degree (y axis) as a function of observed degree (x axis).

When traceroute uses more than 500 times as many probes as our
method, the obtained degrees become more accurate; see Figure 8(b).
However, the accuracy of the observed distribution decreases at the
same time. This is due to the fact that, even with 64% of the nodes as
targets (i.e., a number of probes 2000 times larger than our method),
the quality of degree estimates remains poor, and the ratio between
average true degree and observed degree remains close to 2 for most
observed degrees. Then, nodes of observed degree d with traceroute
have a very different true degree. This is yet another demonstration of
the issues of traceroute for degree distribution estimation.
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Returning to the comparison between the two methods, let us men-
tion  that  even  when  traceroute  targets  90%  of  all  nodes  (i.e.,
4 500 000  nodes  here)  it  does  not  reach  the  accuracy  of  our  method
(although  both  use  the  same  monitors,  and  our  method  uses  only
5000 targets). For nodes of degree at most 60 (which represents 98%
of  all  nodes),  the  average  error  made  by  traceroute  on  the  degree  of
individual  nodes  is  1.52  and  it  perfectly  measures  the  degree  of  55%
of  these  nodes.  The  average  error  for  our  method  is  only  0.74  and  it
perfectly measures the degree of 71% of these nodes. 

Core versus Border6.3

Intuitively, the border of the internet is the part of the network made
of  all  trees  connected  to  the  rest  of  the  network,  which  is  called  the
core. More formally, the core, also called 2-core in graph theory, may
be  defined  as  follows.  Consider  the  pruning  process  that  iteratively
removes  all  nodes  of  the  network  having  degree  exactly  one,  until
there  remains  no  such  node.  Border  routers  are  the  nodes  removed
during  this  process  when  it  is  applied  to  the  physical  internet  graph,
while  core  routers  are  the  nodes  that  remain  when  the  process
terminates.

Then,  by  definition,  core  routers  necessarily  have  more  than  one
interface  linking  them  to  other  core  routers,  and  we  call  such  inter-
faces  core  interfaces,  their  other  interfaces  being  called  border  inter-
faces.  On  the  other  hand,  note  that  any  border  node  has  exactly  one
interface  directed  toward  the  core  of  the  network,  namely  the  one
that is linked to its unique neighbor when it is removed from the net-
work  during  the  pruning  process.  We  also  call  core  interface  this
unique interface of a border node and we call border interfaces all its
other interfaces. The core degree (resp. border degree) of a node is its
number of core (resp. border) interfaces. 

Distinguishing between Core and Border Interfaces6.3.1

We  also  conduct  an  auxiliary  measurement  in  order  to  obtain  for
each  monitor  m  the  set  of  border  interfaces  it  may  see.  To  that  pur-
pose,  monitor  m  iteratively  sends  k  packets  to  k  random  addresses
(for  a  given  integer  k)  with  increasing  TTLs:  the  first  k  packets  are
sent  with  TTL  1,  the  k  next  packets  with  TTL  2,  and  so  on.  Thanks
to the ICMP Time-Exceeded packets issued by the nodes at distance d
from  m  (we  discuss  later  the  case  of  machines  that  do  not  send  such
packets),  for  each  value  d  of  the  TTL,  m  discovers  a  set  of  interfaces
at distance d from m. We denote this set of interfaces by Id(m). Let us

denote  by  δ(m)  the  smallest  d  such  that  Id(m) > 1,  that  is  the  first

TTL at which m discovers more than one interface. We have by defini-
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tion Iδ(m)(m) > 1 and Ij(m)  1 for all j < δ(m). The set of border
interfaces visible from m is then precisely ⋃j<δ(m) Ij(m). All other inter-
faces visible from m are core interfaces belonging to some core router
or belonging to some border node that is not on the path between m
and the core of the network. Proceeding in this way for all monitors,
we build the set B(M)  ⋃m∈M ⋃j<δ(m) Ij(m) of all border addresses
that can be seen from them. Consequently, for each interface seen in
the measurement, we are able to determine whether it is a core inter-
face or a border interface: it is in the core if and only if it is not in the
set B(M) of border interfaces visible from M.

Recognizing Core Routers6.3.2

Once we can distinguish between core and border interfaces, we can
also distinguish between core and border routers. If a target address t
belongs to a border node r(t), our measurements are likely to see only
one interface of r(t). In some cases, we may see more than just one
interface; see Figure 9. Indeed, r(t) may be a router on the route
between some monitor m ∈ M and the core of the network. In this
case, our measurement will also discover the border interface i of r(t)
that is directed toward m. By definition, this interface i belongs to the
set B(M) of border interfaces that are visible from the set M of moni-
tors (see Section 6.3.1). The key point here is that if r(t) is a border
router then, from what precedes, it follows that our measurements see
only one interface not in B(M) for r(t). On the other hand, if r(t) is a
core router, our measurement will discover at least two core inter-
faces of r(t) (provided that M is of sufficient quality), which do not
belong to B(M) by definition.

Figure 9. If we target an interface i that belongs to a border router ri, then

our measurements may see more than one interface for ri, here two. How-

ever, only one of them does not belong to BM, as displayed in this graphic

where all interfaces of BM are marked with a small dash.

Thus, in the result of our measurement, we are able to distinguish
which answering addresses belong to a core router and which of them
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belong to a border router. And from Section 6.3.1, we can also deter-
mine  for  each  answering  address  whether  it  is  the  address  of  a  core
interface or a border interface. This plays a key role for our unbiased
estimation, detailed in the next section. 

Uniformly Sampling Core Routers6.4

Being able to sample a core router uniformly at random on the inter-
net  (recall  that  uniformly  at  random  means  that  all  possible  elements
are sampled with the same probability) is at the core of our approach.
Unfortunately, there is no direct way to do so. Instead, it is straightfor-
ward  to  get  addresses  uniformly  at  random,  as  they  are  nothing  but
32-bit  integers.  Of  course,  sampling  such  a  random  integer  does  not
necessarily  give  a  relevant  address  with  regard  to  our  measurement
needs:  this  address  may,  for  instance,  be  unallocated  or  belong  to  an
end host or a router that does not answer our probes.

In  this  section,  we  first  show  how  to  sample  uniformly  at  random
an  interface  of  an  internet  core  router  that  correctly  answers  our
probes,  which  we  call  a  correct  core  router.  From  this  sampling,
which  is  not  a  uniform  sampling  of  core  routers  themselves  but  only
of their interfaces, we rigorously deduce an estimate of the degree dis-
tribution  of  all  internet  core  routers.  In  other  words,  from  the
observed  distribution  resulting  from  a  uniform  sample  of  the  inter-
faces  of  core  routers,  we  deduce  the  observed  distribution  resulting
from a uniform sample of the core routers themselves. 

The  general  scheme  of  the  way  we  proceed  is  as  follows.  We  first
perform a measurement on a target list uniformly sampled at random
among  32-bit  integers  (see  Section  3).  Afterward,  we  select  into  this
target  list  the  addresses  of  core  routers  correctly  answering  our
probes, which we determine thanks to the result of the measurement.
Then,  we  restrict  these  results  to  the  set  of  target  interfaces  that
belong  to  correct  core  routers.  Finally,  we  use  the  results  for  this  set
of targets only to infer the degree distribution of internet core routers. 

For  the  rest  of  this  section,  we  assume  that  given  an  address  t,
we  are  able  to  decide  whether  t  belongs  to  a  host  that  correctly
answers our probes. We show how to do so in Section 6.5. From Sec-
tion  6.3.2,  we  are  also  able  to  decide  based  on  the  result  of  the  mea-
surement  whether  a  given  address  belongs  to  a  core  router  or  not.
Consequently, extracting from our uniformly randomly generated tar-
get  list  the  addresses  that  belong  to  a  host  that  correctly  answers  our
probes  and  that  is  a  core  router,  we  obtain  a  uniform  sample  of  the
interfaces of correct core routers. 

This  is  not  enough  for  our  goal,  as  we  need  a  uniform  sample  of
(correct)  core  routers  themselves,  not  just  of  their  interfaces,  as  it
turns out that when interfaces are uniformly sampled, routers are not.
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Indeed, one has k possibilities to sample a router with k interfaces, so
high-degree  routers  appear  in  our  target  list  with  probability  higher
than  low-degree  ones.  This  introduces  a  bias  in  the  sampling  of
routers  that  one  can  correct  if  one  knows  for  each  router  its  number
of  interfaces.  Unfortunately,  our  measurement  does  not  provide  this
information  but  instead  gives  the  number  of  core  interfaces  of  each
router (provided that the set of monitors is of sufficient quality). 

In  order  to  correct  the  bias  in  the  number  of  interfaces  of  routers
introduced by our target selection method, we introduce a supplemen-
tary  bias  in  this  method:  we  discard  all  the  target  addresses  that  are
not core interfaces of core routers. We are able to do so as we can dis-
tinguish  between  core  and  border  interfaces  (see  Section  6.3.1).  Then
the  number  of  possible  addresses  to  select  a  router  so  that  it  will  still
be in the target list after this last discarding step is no longer its num-
ber  of  interfaces  but  instead  its  number  of  core  interfaces.  The  great
benefit here is that, since our measurement determines the number of
core  interfaces  of  each  core  router,  we  are  now  able  to  correct  the
bias introduced by this target selection procedure. 

The  observed  fraction  pk
′
 of  routers  of  core  degree  k  sampled  with

this  bias  is  proportional  to  k  times  the  fraction  pk  of  routers  of  core

degree k sampled uniformly at random: pk
′ ~ k · pk. As a consequence,

we obtain: 

pk 
pk
′

k
·

1

∑i>1
pi
′

i

,

where  the  second  term  is  nothing  but  a  normalization  constant  to
ensure that ∑k pk  1. We may therefore use this formula to infer the

true degree distribution pk from the observed one pk
′ .

In summary, our method to build target sets is as follows. We sam-
ple  random  32-bit  integers  and  we  select  the  addresses  that  are  core
interfaces of core routers that correctly answer our probes. This proce-
dure and the result of its application on our sample measurement are
further detailed and discussed in Section 6.5.

Data Filtering and Processing6.5

In  this  section,  we  describe  step  by  step  the  way  we  process  the  raw
data  obtained  from  our  measurement,  containing  some  irrelevant  or
inappropriate data, in order to extract from it the part we use to faith-
fully estimate the degree distribution of internet core routers. The key
numbers  encountered  during  the  different  steps  of  this  processing  are
summarized in Table 1.
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Table 1. Key post-processing steps for our three measurements.

Step  0.  Reserved  addresses.  As  explained  in  Section  3,  before  the
measurement starts, we build the list of targets by sampling uniformly
at  random  addresses  corresponding  to  32-bit  integers  and  by  keeping
the  first  three  million  of  these  addresses  that  answered  the  probe  we
sent to each of them from a single monitor. For the sake of complete-
ness, let us mention that we actually apply one additional filter at this
step:  if  the  address  sampled  at  random  belongs  to  a  known  class  of
reserved  addresses  [36],  then  we  simply  discard  it  and  pick  another
one at random. Thus, in the measurement itself, all the targets we use
do not belong to such a reserved class of addresses (and they correctly
answered the monitor we use in this step). 

All  the  subsequent  filters  are  based  on  the  result  of  the  measure-
ment and are therefore applied afterward. The numbers of targets and
monitors they apply to are given in Table 1. 

Step  1.  Targets  giving  multiple  answers.  Some  targets  in  our  list
behaved  incorrectly:  they  sent  several  answers  to  a  unique  probe  sent
by  one  monitor.  As  these  targets  do  not  behave  correctly  with  regard
to  our  measurement  primitive,  we  simply  discarded  them  and  kept
only those that sent a single answer to the probe of each monitor. The
number of discarded targets is given in Table 1. 

Step  2.  Targets  and  monitors  with  only  a  few  answers.  Some  tar-
gets  answered  a  few  monitors  only,  probably  because  of  shutdowns
during  measurements,  very  low  ICMP  rate  limiting  or  other  specific
reasons.  Conversely,  some  monitors  received  surprisingly  few
answers, probably due to a very poor local connection, shutdowns or
to  the  fact  that  PlanetLab  machines  may  be  overloaded  (they  are
shared  by  numerous  users).  We  plot  these  numbers  in  Figure  10,
which  shows  that  most  monitors  received  answers  from  most  targets,
as  we  expected.  In  practice,  we  discarded  monitors  that  received
answers to fewer than 80% of their probes, and conversely all targets
that  sent  answers  to  fewer  than  80%  of  monitors.  See  numbers  in
Table 1. 
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Figure 10. (a) For each number x on the horizontal axis, we plot the number y
of targets that sent at least x answers to our probes. (b) For each number x on
the horizontal axis, we plot the number y of monitors that received at least y
answers to our probes.

Step 3. Recognizing core routers. The aim of this filtering step is to
select  only  the  addresses  of  the  target  list  that  belong  to  correct  core
routers, with the method presented in Section 6.3: (i) we build the set
B(M) of the border interfaces visible from our set M of monitors (see
Section  6.3.1);  and  (ii)  we  keep  only  the  target  addresses  t  such  that
the  set  of  interfaces  M(t)  observed  for  t  contains  at  least  two  inter-
faces  that  do  not  belong  to  B(M)  (see  Section  6.3.2).  The  number  of
interfaces  in  B(M)  and  the  number  of  targets  filtered,  that  is,  that  do
not satisfy condition (ii), are given in Table 1. 

Step  4.  Uniform  sampling  of  core  routers.  In  order  to  correct  the
bias due to the fact that we uniformly sample interfaces instead of uni-
formly  sampling  routers,  we  perform  a  supplementary  filter.  This  fil-
ter  consists  of  discarding  all  addresses  of  the  target  list  that  are  not
addresses  of  core  interfaces.  The  effect  of  this  filter  is  to  replace  the
bias mentioned by another one that we can rigorously correct (see Sec-
tion  6.4).  Note  that  this  filtering  step  is  independent  of  Step  3:  they
can  be  performed  in  any  order,  and  even  simultaneously,  on  the
dataset.  Table 1  gives  the  number  of  addresses  in  the  target  list  that
are filtered at Step 4, independently of Step 3.

It  must  be  clear  that  a  core  router r  may  give  incorrect  answers  to
our  probes.  In  particular, r  may  give  no  answer  at  all,  or  it  may
always answer using the same interface independently of the monitor.
(Of  course,  more  intricate  behaviors  are  also  possible,  but  they  are
very unlikely [37] and we ignore them here.) In the former case, there
is only very little chance that an address of r is in our target list, as we
target  only  addresses  that  answered  one  probe  some  hours  before.
Nevertheless,  it  may  still  happen  that  a  router  behaves  this  way  dur-
ing our measurement, and in this case it will be removed from the tar-
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get list at Step 2. In the latter case, where the router r always answers
using the same interface independently of the monitor, it will be fil-
tered at Step 4. Conversely, if an address t of a correct core router r is
in our target list, then our measurement sees at least two of the inter-
faces of r (as long as monitors are reasonably well distributed), and
therefore t will successfully pass all filters. Then, our filtering process
is successful in the sense that it is able to distinguish between correct
core routers and other core routers.

Finally, note that there is no reason to assume that the degree of
core routers is correlated to whether they answer our probes correctly
or not. Indeed, low-degree core routers may a priori misbehave as
well as high-degree ones, and conversely. As a consequence, the
degree distribution of correct core routers, which we estimate here, is
the same as the degree distribution of all core routers.

Quality of the Monitor Set6.6
Our method relies on the use of a large set M of monitors scattered
over the internet. It is crucial that this set is large enough, since the
accuracy of the estimation of the degrees of targets highly depends on
this number (see Section 6.1). On the other hand, having several mon-
itors in the same location has limited interest: it is probable that most
targets use the same interface to answer probes coming from these
monitors (see Figure 11). Assessing the quality of a given set M of
monitors (regarding our measurement goals) is therefore crucial, and
we propose here three different and complementary approaches to
do so.

Figure 11. Three monitors m1, m2 and m3 are actually colocated, and there-

fore they may observe a unique interface for any given target router ri. They
are redundant regarding the quality of the measurement.

Colocated Monitors6.6.1

When a packet sent from one monitor m, which is an end host, goes
through the core of the internet, by definition of the core and the bor-
der (see Figure 4(a)), it always enters the core through the same
router, which we call the branching point of m. Thanks to the auxil-
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iary  measurement  method  described  in  Section  6.3,  any  monitor  may
identify  its  branching  point:  the  unique  interface  in  Iδ(m)-1(m)  is  the

(unique) interface of this branching point, which is directed toward m.
Now,  let  us  consider  two  monitors  m  and  m′

 such  that
Iδ(m)(m)  Iδ(m′)(m

′).  In  other  words,  the  first  time  m  and  m′
 see  sev-

eral  interfaces  they  see  the  exact  same  ones.  Then  certainly  having
both  m  and  m′

 in  the  monitor  set  has  little  interest  for  our  measure-
ments: m and m′

 enter in the core internet through very close routers
(probably  through  the  same  branching  point;  see  Figure  11).  We  say
that such monitors are colocated. The number of noncolocated moni-
tors  in  M  is  a  key  value  for  estimating  the  quality  of  M:  it  basically
represents the number of significantly different locations hosting moni-
tors in M. 

In  the  preceding  analysis,  we  ignored  machines  that  do  not  send
ICMP  Time-Exceeded  packets.  Because  of  them,  we  may  erroneously
decide that some monitors are colocated; this means that we underesti-
mate  the  quality  of  our  monitor  set,  which  has  no  important  conse-
quence in our context: the quality is only underestimated. Similarly, it
is  possible  that  two  monitors  m  and  m′

 have  different  branching
points  but  satisfy  Iδ(m)(m)  Iδ(m′)(m

′).  Again,  this  would  make  us

underestimate  the  quality  of  the  monitor  set  and  therefore  we  may
safely ignore this. Conversely, some monitors m and m′

 may have dif-
ferent  but  similar  sets  Iδ(m)(m)  and  Iδ(m′)(m

′),  indicating  that  they  are

not colocated but located close to each other. It may be interesting to
use  this  for  a  more  subtle  assessment  of  the  level  of  distribution  of
monitors, but we leave this for further work. 

We  used  the  method  we  just  described  and  the  auxiliary  measure-
ment  described  in  Section  6.3.1  to  identify  classes  of  colocated  moni-
tors,  which  provide  basically  redundant  information.  We  obtained
203  different  classes,  each  containing  on  average  2.11  monitors.  This
is  consistent  with  the  fact  that  each  institution  involved  in  PlanetLab
often contributes several monitors located at the same place. Examina-
tion  of  the  DNS  names  of  monitors  belonging  to  a  same  class  con-
firmed this: they typically match the same *.domain.tld pattern. 

Diversity of Views6.6.2

In  this  approach,  we  estimate  an  intrinsic  quality  of  a  monitor  set  M
as the number of different locations hosting a monitor. A complemen-
tary view is obtained by evaluating the quality of a measurement from
M toward targets in a set T. For instance, one may evaluate the qual-
ity  of  M  as  the  number  of  distinct  interfaces  observed  from M:

Q0(M)  ∑t∈T M(t).  Clearly,  if  Q0(M
′) > Q0(M),  then  M′

 may  be

considered  as  better  than  M.  More  subtle  quality  functions  may  be
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defined.  In  particular,  it  is  interesting  to  take  into  account  the  fact
that  interfaces  of  low-degree  routers  are  easier  to  observe  than  the
ones  of  high-degree  routers.  This  leads  to  the  quality  function

Q1(M)  ∑t∈T M(t)d(t),  where  d(t)  stands  for  the  degree  of  target

router  r(t).  Of  course  we  do  not  have  the  value  of  d(t)  but  approxi-
mate it using the results of our measurements.

Given a quality function Q like the ones discussed, one may assess
the impact of the addition of a new monitor m to the current monitor

set by calculating Q(M) and QM⋃ {m}. Ideally, one wants to maxi-

mize  Q  to  collect  the  most  accurate  set  of  observed  interfaces  while
keeping  M  as  small  as  possible  to  prevent  redundant  measurements
(which may be costly). 

In practice, we want to assess a given monitor set M, and to do so
we start from an empty monitor set and compute the expected quality
improvement  when  monitors  are  added  one  by  one,  in  a  random
order.  The  quality  is  expected  to  grow  with  the  number  of  monitors
and  then  to  reach  a  steady  or  almost  steady  regime,  meaning  that
adding  more  monitors  would  not  improve  the  measurement  signifi-
cantly.  Of  course,  if  many  monitors  are  colocated  (for  instance,  if
they  are  all  at  the  same  location),  the  quality  will  have  precisely  this
behavior (as adding more monitors at the same location does not sig-
nificantly  improve  the  measurement).  This  is  why  this  quality  func-
tion approach is complementary to the colocation-based one: we first
perform the colocation and then plot the behavior of the quality func-
tion when noncolocated monitors are added. 

More precisely, once colocated monitors are identified, we proceed
as follows: we first estimate the quality of the monitor set when only
one  colocation  class  is  used,  then  two  colocation  classes,  and  so  on,
until  all  colocation  classes  (and  thus  all  monitors)  are  used.  We  add
colocation  classes  in  a  random  order  and  average  the  obtained  qual-
ity. The result is displayed in Figure 12(a). As expected, for both qual-
ity  functions,  the  quality  grows  sharply  at  the  beginning  and  rapidly
converges.  This  indicates  that  adding  more  monitors  at  more  loca-
tions  would  not  improve  the  results  much,  and  so  that  our  monitor
set and the number of locations hosting them are reasonable. 

Convergence of Observations6.6.3

Last but not least, a clear way to assess the quality of a given monitor
set  regarding  our  measurement  objectives  is  to  directly  observe  how
the  estimated  fraction  pk  of  routers  of  degree  k  converges  when  the

number of monitors grows, for all k. Here again, we expect these frac-
tions  to  converge  rapidly  to  a  steady  value,  which  is  our  final  esti-
mate.  This  would  indicate  that  the  last  monitors  we  added  were  not
necessary,  and  thus  that  we  have  obtained  an  accurate  view.  For  the
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same  reasons  already  discussed,  this  is  complementary  to  colocation
analysis.

In  order  to  examine  the  impact  of  adding  more  monitors  at  more
locations  on  the  estimated  fraction  pk  of  core  routers  with  degree  k

(which  is  what  we  are  interested  in),  we  proceed  as  follows:  we  add
colocation classes one by one and observe how pk  evolves. Results are

depicted in Figure 12(b). The estimates for small degrees rapidly con-
verge, which was expected, as only a few monitors (and locations) are
needed  to  correctly  estimate  them.  Interestingly,  only  very  few  loca-
tions  (approximately  10)  are  needed  to  obtain  an  estimate  of pk  for

k < 5 with 80% precision. Increasing the number of monitors rapidly
improves  the  quality  of  the  estimate.  Even  for  large  degrees,  the  esti-
mate  rapidly  reaches  a  value  comparable  to  the  final  one,  despite  the
fact that it only slowly converges after that. 

(a) (b)

Figure 12. (a) Evolution of the quality of the monitor set when we add coloca-
tion  classes.  (b)  Ratio  of  the  observed  fraction  pk(x)  of  routers  of  degree  k

with x colocation classes over the final obtained value pk (with all classes).

Conclusion6.6.4

Finally, this work on the monitor set shows that we have around 200
significantly  different  locations  hosting  monitors,  and  that  this  is
sufficient  to  ensure  a  reasonable  quality  for  our  results.  It  is  clear,
however,  that  increasing  the  number  of  monitors  and  the  number  of
locations hosting them would improve both the accuracy and the relia-
bility of our estimates.

Related Work7.

The  physical  and  IP-level  internet  structures  have  been  extensively
studied  since  the  seminal  papers  of  Pansiot  et  al.  [38]  and  Faloutsos
et�al.  [39].  The  most  classical  approach  consists  of  building  maps
from  traceroute-like  measurements.  However,  several  studies  have
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shown that obtained maps are intrinsically biased [11, 14, 16–18, 22,
23,  40],  and  even  that  traceroute  outputs  are  unreliable  [17,  19,  20].
The  hope  that  increasing  the  size  and  quality  of  maps  would  over-
come these issues has led to much effort, but the situation remains far
from satisfactory [12, 18, 40]. 

Conducting  precise  measurements  of  the  degree  of  random  nodes
to  obtain  a  reliable  estimate  of  the  degree  distribution  was  first  sug-
gested  in  [14].  We  explored  the  possibility  to  do  so  at  the  IP  level  in
[35] but we only partly succeeded, and we conducted thorough simu-
lations in [34]. Property-driven network measurements are also devel-
oped  in  other  contexts,  in  particular  online  social  networks  (OSNs)
[41, 42] and P2P overlay measurements [43]. 

Our  work  is  also  closely  related  to  alias  resolution  (which  plays  a
key  role  in  the  building  of  maps):  while  we  seek  all  (unknown)  inter-
faces of a given router identified by one of its interfaces, alias resolu-
tion  aims  at  identifying  in  a  given  set  of  interfaces  the  ones  that
belong  to  a  same  router  [37,  44–46].  Probes  similar  to  ours  are  used
in this context, in particular by the iffinder tool [47], as well as other
techniques.  Our  use  of  such  probes  was  clearly  inspired  by  these
works. 

Finally,  important  efforts  are  devoted  to  the  deployment  of  large
and  distributed  measurement  infrastructures,  which  are  crucial  for
this  field  of  research  [24,  25,  27,  29,  30].  Some  of  them  distribute
monitoring  capabilities  at  a  huge  scale  (typically  onto  thousands  of
end  hosts)  and  so  are  particularly  promising  for  extending  the  work
we present here [29, 30]. 
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