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Since  Conway  proposed  the  Game  of  Life,  it  has  attracted  researchers’
attention  due  to  complex  “life”  evolutions  despite  simple  rules.  It  is
known  that  the  Game  of  Life  exhibits  self-organized  criticality,  which
might  be  related  to  scale-free  evolutions.  Despite  the  interesting  phe-
nomenon  of  self-organized  criticality,  the  Game  of  Life  turns  to  steady
states  within  several  generations.  Here,  we  demonstrate  a  new  version
of  the  Game  of  Life  in  which  cells  tried  to  stay  “alive”  even  though
neighboring  sites  were  over-  or  underpopulated.  These  rule  changings
enabled the system to show scale-free evolutions for many generations. 

Introduction1.

The  Game  of  Life  (GoL)  was  proposed  by  Conway  [1].  The  GoL
describes the complexity and the evolution of “life” using simple local
rules.  Despite  its  simplicity,  the  GoL  generates  complex  patterns  and
therefore has attracted a lot of attention. Biological systems computed
algorithmically  can  be  described  using  the  GoL,  since  cellular
automata  defined  by  the  GoL  are  related  to  a  universal  Turing
machine [2, 3].

Biological  systems  exhibit  self-organized  criticality  (SOC)  [4–6].
Bak  and  his  colleagues  showed  the  existence  of  SOC  in  the  GoL  [7].
In  their  research,  perturbations  were  added  after  the  system  reached
“rest”—the  steady  states  in  simple  periodic  states.  Thus,  the  classical
GoL  reaches  steady  states,  which  no  longer  generate  new  patterns.
Several  versions  of  the  GoL  were  performed.  For  example,  stochastic
components  and  reversibility  were  introduced  [8,  9].  However,  there
are few studies showing spontaneous pattern generations for long peri-
ods with scale-free properties. 
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Scale-free  properties  may  be  related  to  SOC  [10,  11].  Systems  that
are  “scale  free”  can  be  adaptive  thanks  to  their  hierarchical  transi-
tions  [12].  Although  biological  systems  employ  local  interactions,
many  SOC  systems  demand  global  information  [13,  14].  In  this
paper,  we  constructed  a  new  version  of  the  GoL  in  which  each  cell
estimated global information using only local information. Cells some-
times tried to remain “alive” even if their neighboring cells were over-
or  underpopulated,  to  prevent  the  system  from  being  a  low-density
system.  As  a  result,  the  system  could  evolve  with  power-law  proper-
ties without reaching steady states. 

Materials and Methods2.

We proposed a new version of the Game of Life called Rule-Changed
Game of Life (RCGoL).

This algorithm initially follows the rules of the classical GoL. 

On each time step, each cell labeled (i, j) will change its state based
on the current rule. However, if each cell experiences the following sit-
uations, then it changes the current rule:

If statei,j
t  1 && presumed_statei,j

t  0 && 

sumi,j
t - presumed_sumi,j

t < 0, 

then Fi,j1, sumi,j
t   1 with probability P1. 

Else if presumed_statei,j
t  1 && sumi,j

t - presumed_sumi,j
t > 0, 

then all rules are reset to initial conditions (the rules of the 
classical GoL) with probability P2,

where

statei,j
t

 represents the current state; “alive” (1) or “dead” (0);

presumed_statei,j
t

 represents  temporary  next-generation  statei,j
t

 esti-

mated from the current state and the rules;

sumi,j
t

 represents the total number of “alive” neighboring sites;

presumed_sumi,j
t

 represents  temporary  next-generation  sumi,j
t

 estimated

from the current state and the rules. 

The rules for each cell are defined as follows:

Fi,jstatei,j
t , sumi,j

t   1 or 0.

For example, the rules of the classical GoL are described as follows
(also see Figure 1):
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Fi,j0, 0  0 Fi,j1, 0  0

Fi,j0, 1  0 Fi,j1, 1  0

Fi,j0, 2  0 Fi,j1, 2  1

Fi,j0, 3  1 Fi,j1, 3  1

Fi,j0, 4  0 Fi,j1, 4  0

Fi,j0, 5  0 Fi,j1, 5  0

Fi,j0, 6  0 Fi,j1, 6  0

Fi,j0, 7  0 Fi,j1, 7  0

Fi,j0, 8  0 Fi,j1, 8  0

On  each  time  step  (generation),  the  current  state  is  updated  as
follows:

statei,j
t+1  Fi,jstatei,j

t , sumi,j
t .

Note that statei,j
t+1 ≠ presumed_statei,j

t . The presumed_statei,j
t

 is just

a  temporary  state  and  used  for  changing  the  rules.  The  actual  next-

generation state (statei,j
t+1) is determined using “changed rules.” 

We  simulate  RCGoL  on  finite  lattices  of  size  100⨯100.  Periodic
boundary  conditions  are  chosen.  We  set  10000  time  steps
(generations)  as  the  calculation  length  of  one  trial.  However,  we  run
100 000  time  steps  (generations)  when  evaluating  scale-free  proper-
ties.  Random  initial  configurations  are  assumed.  The  probabilities  P1
and  P2  are  set  to  0.25,  0.75,  respectively;  (P1, P2)  0.25, 0.75.

Later, we will discuss the relation between these two parameters. 

Figure 1. Cell  state  transition  of  the  classical  GoL.  The  transition  rules  are
described  in  a  classical  automaton  state  transition  diagram.  Nodes  are  states
of a cell. Arcs indicate cell state transitions, which are labeled by the numbers
of neighbors.
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Results3.

Figure  2(a)  represents  one  example  of  the  relationship  between  den-
sity  and  time  evolution.  In  this  example,  initial  density  was  set  to
0.50.  Even  after  one  trial,  new  patterns  emerged  (Figures  2(b)  and
2(c)). Actually, we conducted 100 trials and evaluated whether or not

the last configuration (10 000th generation) matched any previous con-
figurations.  The  RCGoL  generated  new  patterns  after  10 000  time
steps,  which  was  never  observed  in  the  classical  GoL  (N  of  matching
trials  0  (RCGoL)  versus  100  (classical  GoL);  chi-squared  test,
P < 1.0E - 15).

(a) (b) (c)

Figure 2. Examples of pattern evolutions when initial density was set to 0.50.
(a)  The  relationship  between  density  and  time  evolution.  (b)  Life  patterns  at
t  5000. (c) Life patterns at t  10 000.

Next,  we  examined  the  existence  of  the  scale-free  property  in  the
RCGoL  system  by  evaluating  the  duration  of  high-density  phases.
Here,  the  duration  of  any  high-density  phase  was  defined  as  the  time
interval  between  two  consecutive  low-density  phases.  We  conducted
one  trial  regarding  each  initial  density  (0.30,  0.50,  0.70).  We  defined
the  high-density  phase  as  when  the  density  was  more  than  0.05.  As
shown  in  Figure  3,  we  found  power-law  distributions  for  each  initial
density (initial density  0.70: n of data  38, μ  1.43, AIC weights
of  power-law  against  exponential  law  1.00;  initial  density  0.50:
n of data  35, μ  1.44, AIC weights of power-law against exponen-
tial law  1.00; initial density  0.30: n of data  29, μ  1.36, AIC
weights of power-law against exponential law  1.00). 

Finally,  we  compared  the  (P1, P2)  0.25, 0.75  version  with  the

(P1, P2)  0.40, 0.90  and  (P1, P2)  0.75, 0.25  versions.  Figure  4

indicates  the  relationship  between  initial  density  and  final  density
after  10 000  time  steps  for  each  version.  Averaged  data  was  shown

from  10  trials  for  each  initial  density  0.10, 0.20, … , 0.10.  In  every

condition,  the  RCGoL  appeared  to  maintain  certain  densities  after
many  generations.  However,  final  densities  were  higher  in  the  (0.75,

34 T. Sakiyama and Y.-P. Gunji

Complex Systems, 26 © 2017



Figure 3. The  relationship  between  the  duration  (interval)  of  the  high-density
phase  and  cumulative  distribution.  (a)  Initial  density  0.70.  (b)  Initial  den-
sity  0.50.  (c)  Initial  density  0.30.  Note  that  calculations  were  conducted
for 100 000 time steps (generations).

0.25)  version  than  other  versions,  suggesting  that  relative  relations
between P1 and P2 might determine density evolutions of the RCGoL.

A  scale-free  distribution  was  not  found  when  (P1, P2)  0.75, 0.25

but  was  when  (P1, P2)  0.40, 0.90  (Figure  5)  ((P1, P2) 

0.40, 0.90:  initial  density  0.50,  n  of  data  83,  μ  1.40,  AIC

weights  of  power-law  against  exponential  law  1.00;
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Figure 4. The  relationship  between  initial  density  and  final  density  after  one

trial.  Averaged  data  from  10  trials  is  shown.  P1, P2  0.25, 0.75,

P1, P2  0.40, 0.90 and P1, P2  0.75, 0.25 are plotted, respectively.

(P1, P2)  0.75, 0.25:  initial  density  0.50,  n  of  data  349,

λ  0.0035,  AIC  weights  of  power-law  against  exponential
law  0.00). Note that we defined the high-density phase as having a

density  more  than  0.05,  0.40  when  (P1, P2)  0.40, 0.90,

0.75, 0.25,  respectively.  These  results  again  suggest  that  the  relative

relations  between  P1  and  P2  might  influence  the  time  evolutions  of

the RCGoL. It appears to be necessary for P2  to be higher than P1  in

order to maintain scale-free properties. 

Discussion4.

Our  results  clearly  show  that  the  Rule-Changed  Game  of  Life
(RCGoL)  generates  various  patterns  for  long  periods.  This  system
also  exhibits  scale-free  distributions,  which  might  be  related  to  self-
organized  criticality  [10,  11].  Spontaneous  pattern  generations  for
long  periods  without  rest  are  not  observed  in  the  classical  Game  of
Life (GoL), even though it exhibits self-organized criticality [7]. In the
RCGoL, the rules are changed according to local situations. When the
total  number  of  “alive”  neighboring  sites  will  decrease  using  current
rules, the rules are changed in order to maintain the local density. The
important  point  is  that  each  cell  can  only  detect  local  neighbors.  It
evaluates the global density using the local density. To prevent density
decreasing, each cell sometimes remains “alive” by changing the rules
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even  when  almost  all  of  the  neighboring  sites  are  “dead.”  This  event
implies  that  cells  will  not  turn  “dead”  even  if  local  situations  are
over- or underpopulated. At the same time, there is always ambiguity
about  whether  the  local  density  condition  is  inconsistent  with  the
global  density  condition.  Therefore,  changed  rules  return  to  default
rules when the local density increases.

The  RCGoL  might  be  evolved  with  scale-free  properties  based  on
uncertain  relationships  between  local  and  global  situations.  Scale-free
properties that accompany biological evolutions would enable the sys-
tem  to  be  adaptive  due  to  large-scale  time  evolutions  without  facing
extinctions [10]. 

(a) (b)

(c) (d)

Figure 5. Density-time evolution and a distribution of the duration of the high-

density  phase  when  P1, P2  0.40, 0.90  or  P1, P2  0.75, 0.25.  Initial

density was set to 0.50. (a) The relationship between density and time evolu-

tion: P1, P2  0.40, 0.90. (b) The relationship between the duration of the

high-density  phase  and  cumulative  distribution:  P1, P2  0.40, 0.90.

(c)�The  relationship  between  density  and  time  evolution:

P1, P2  0.75, 0.25. (d) The relationship between the duration of the high-

density  phase  and  cumulative  distribution:  P1, P2  0.75, 0.25.  Note  that

calculations were conducted for 100 000 time steps (generations) when evalu-
ating scale-free properties ((b) and (d)).
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