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This  is  a  study  of  localized  structures  in  one-dimensional  cellular
automata,  with  the  elementary  cellular  automaton  rule  54  as  a  guiding
example. 

A formalism for particles on a periodic background is derived, appli-
cable to all one-dimensional cellular automata. We can compute which
particles  collide  and  in  how  many  ways.  We  can  also  compute  the  fate
of a particle after an unlimited number of collisions—whether they only
produce  other  particles,  or  the  result  is  a  growing  structure  that
destroys the background pattern. 

For  rule  54,  formulas  for  the  four  most  common  particles  are  given
and  all  two-particle  collisions  are  found.  We  show  that  no  other  parti-
cles arise, which particles are stable and which can be created, provided
that  only  two  particles  interact  at  a  time.  More  complex  behavior  of
rule 54 requires therefore multi-particle collisions. 

Introduction1.

This  paper  is  part  of  a  project  to  develop  a  higher-level  language  for
the dynamical behavior of cellular automata. In the current investiga-
tion, we search for an intermediate-level description of the elementary
cellular  automaton  rule  54,  in  order  to  learn  how  to  handle  periodic
background structures and simple particle interactions. The investiga-
tion leads to further streamlining and an extension of the existing for-
malism. This article started as an extension of [1], but has now grown
considerably and is completely rewritten. 

The formalism is called Flexible Time. It was introduced in [2] and
further  developed  in  [3].  Flexible  Time  makes  it  possible  to
“calculate”  with  the  localized  structures  in  a  cellular  automaton  and
to  determine  their  development  over  time.  The  structures  in  Flexible
Time resemble the way in which a human observer views an evolution
diagram  of  a  cellular  automaton  (like  Figure  1):  by  grouping  the
states  of  cells  from  different  times  and  places  to  a  single  pattern  in
spacetime. 

Rule  54  is  an  elementary  cellular  automaton  that  was  first  investi-
gated in detail by Boccara et al. [4]. When evolving from random ini-

https://doi.org/10.25088/ComplexSystems.26.1.39

mailto:markus2.redeker@mail.de
https://doi.org/10.25088/ComplexSystems.26.1.39


tial  configurations,  it  develops  a  simple  background  pattern  with  a
small  number  of  interacting  particles  that  move  on  this  background.
While it has not been shown to be computationally universal, it can at
least  evaluate  Boolean  expressions  [5].  So  it  is  a  rather  simple  system
(but not too simple) and therefore an ideal test object for a formalism
that is still under development. 

Figure 1. Development  of  a  random  initial  configuration  under  rule  54.  Time
runs from bottom to top.

The right methods to handle large complex structures must still be
found.  In  this  paper  new  questions  are  asked  about  the  behavior  of
rule  54,  and  Flexible  Time  must  “learn”  how  to  handle  them.  As  a
result,  there  are  differences  and  extensions  of  the  formalism  in  this
paper  that  were  not  present  in  [3].  They  will  be  pointed  out  and
reviewed at the end. 

Context1.1

Researchers  on  cellular  automata  have  developed  a  number  of  con-
cepts  to  describe  the  localized  structures  that  arise  in  a  cellular
automaton.

The oldest named structures must be the particles (also called glid-
ers or signals) and their collisions. This goes back at least to Zuse [6],
whose cellular automaton simulates idealized physical particles. Parti-
cle-based research has continued since then, with Cook’s construction
of a universal computer in rule 110 as its most spectacular result [7]. 

This rule and rule 54 belonged also to those rules in which a stable
periodic background pattern occurred; it was called ether by Cook. 

For  rule  54,  the  starting  point  was  the  work  by  Boccara  et  al.  [4];
they identified the most common particles that arise from random ini-
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tial  configurations,  described  their  interactions  and  gave  them  the
names  that  are  still  used.  This  research  was  later  continued  by  the
group  around  McIntosh  [5,  8,  9],  who  found  more  complex  particles
and interactions. 

The  descriptions  of  these  particles  were  mostly  given  by  pictures
and  by  a  simple  symbolism  that  showed  which  particle  collides  with
which.  But,  especially  to  find  general  theorems  about  cellular
automata, more abstract representations were developed too. 

There  is  a  more  detailed  investigation  of  particles  and  what  they
can achieve [10, 11]. For rule 110 there is an approach for the system-
atic  specification  of  initial  configurations  with  interacting  gliders  [9],
and to express the behavior of the cellular automaton through a block
substitution system [12]. 

There are also the approaches by Hordijk et al. [13] and by Martin
[14],  who  use  properties  of  the  background  and  draw  conclusions
about  the  particles  and  particle  interactions  that  are  possible.  More
generally, the cellular automaton is subdivided into “regular” regions
and  the  boundaries  between  them  [15–19];  the  boundaries  move,
often  in  an  almost  random  fashion,  and  are  thus  a  generalization  of
the more straight-moving particles. 

Other  approaches  view  the  evolution  of  the  cellular  automaton  as
two  dimensional,  with  one  space  and  one  time  dimension.  The  cellu-
lar spacetime is then subdivided into finite patches that represent, for
example,  a  piece  of  the  background  or  a  collision  between  particles.
The  theory  of  cellular  automata  then  becomes  a  special  tiling  prob-
lem.  We  can  do  this  in  a  more  informal  way,  like  McIntosh  and
Martínez  [20],  or  develop  a  complex  formal  theory  around  it,  as
Ollinger  and  Richard  [21,  22]  do.  (This  approach  is  closest  to  the
work described here.) 

Overview1.2

After  an  introductory  section  about  cellular  automata  and  rule  54,
Section  3  recapitulates  the  work  in  [3],  as  far  as  it  is  relevant  for  the
present work. At its end, a representation of rule 54 as a reaction sys-
tem (defined below) is shown, the same that was derived in [3]. In Sec-
tion  4,  we  then  find  a  way  to  compress  this  and  similar  systems,  and
we use the compressed reaction system to understand the local behav-
ior  of  rule  54  better.  Section  5  then  turns  to  larger  patterns  and
describes  the  triangular  structures  in  rule  54  and  the  stable  back-
ground  pattern  that  is  formed  by  them.  Then,  in  Section  6,  the  four
kinds of particles found by Boccara et al. [4] are represented in Flexi-
ble  Time,  together  with  the  collision  between  the  particles.  A  sum-
mary follows in Section 7.
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Cellular Automata and Rule 542.

Elementary Cellular Automata2.1

Rule 54 is a one-dimensional cellular automaton, more specifically an
elementary  cellular  automaton.  This  kind  of  cellular  automaton  was
made popular by Stephen Wolfram [23], who also introduced the sys-
tem of code numbers from which rule 54 got its name.

One-dimensional cellular automata are dynamical systems with dis-
crete time. The state of such an automaton is called a configuration. It
consists  of  an  infinite  sequence  of  simpler  objects,  the  cells.  The  state
of each cell is an element of a finite set Σ; the configuration at time t is
therefore  a  function  ct :ℤ → Σ.  We  write  Σℤ  for  the  set  of  configura-

tions; ct(x) is then the state of the cell at position x at time t. 

The  evolution  of  the  automaton  is  then  a  sequence  (c0, c1, c2, …)

of  configurations  that  follow  a  common  rule  that  is  described  below
in equation (2). While the sequence here starts at time 0, we will also
accept other starting times.

An  elementary  cellular  automaton  is  a  one-dimensional  cellular
automaton  with  two  states  and  a  three-cell  neighborhood.  The  set  of

states is Σ  0, 1, and its behavior is given by its local transition rule:

φ : Σ3 → Σ. (1)

This  is  the  function  with  which  the  configuration  ct+1  is  computed

from  its  predecessor  ct.  To  do  this,  we  apply  φ  to  every  three-cell

neighborhood of ct, and the result is the next state of the middle cell:

ct+1(x)  φct x - 1, ct (x), ct x + 1 for all t, x ∈ ℤ. (2)

The  function  φ  defines  then  a  global  transition  rule  φglobal:  it  is  the

function that maps the configuration ct  to its successor ct+1  according

to equation (2).
The transition rule in equation (2) is also called a rule of radius 1,

because only the ct(y) with x - y ≤ 1 contribute to ct+1(x). Rules with

other radii are defined similarly. 

Rule 542.2

Rule 54 has a left-right symmetric transition rule:

φ (s) 
1 for s ∈ 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1,

0 otherwise.
(3)

The rule is easier to remember in the form of the following slogan [3],

“φ(s)  1 if s contains at least one 1, except if the cells in state 1
touch.” 
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Here we say that two cells “touch” if they are direct neighbors. Thus

the two cells in state 1 touch in the neighborhood 1, 1, 0 but not in

the neighborhood 1, 0, 1.

Figure  2  shows  how  the  neighborhoods  influence  the  next  state  of
the  central  cell.  White  squares  are  in  state  0,  black  squares  are  in
state�1,  and  the  time  runs  upward.  This  is  also  our  convention  in  the
other  diagrams,  even  if  white  and  black  may  also  become  dark  and
bright gray in the parts of the diagram that are less emphasized. 

Figure 2. Rule icon for rule 54.

Flexible Time3.

Situations3.1

We need a means to describe and understand the interactions of glid-
ers  and  other  patterns  under  rule  54.  Flexible  Time  was  developed  in
[3]  for  this  task.  The  motivation  was  that  it  is  easier  to  find  patterns
in  the  evolution  of  cellular  automata  if  we  work  with  structures  that
involve the states of cells at different times. These structures are called
here situations.

They generalize the finite sequences of cells that are part of the con-
figurations  ct  described  earlier.  In  order  to  express,  for  example,  that

ct0  ct1  0  and ct2  1,  we  would  often  write  that  the  subse-

quence of ct  that begins at cell position 0 is 001. Situations generalize

this  notation.  They  may  extend  not  only  over  space  but  also  over
time.  To  write  them,  we  use  additional  symbols  that  express  a  jump
in spacetime. 

Under rule 54, situations are written as sequences of the symbols 0,

1, ⊖i  and ⊕i, for i ∈ 1, 2. The intended interpretation can most eas-

ily  be  described  in  terms  of  instructions  to  write  symbols  on  squares

in a grid. The squares are labeled by pairs (t, x) ∈ Z2; x is the position
of a cell and t a time step in its evolution. The writing rules are: 

◼ Start reading at the first symbol. For writing, place the cursor at square

0, 0 of the grid. 

◼ If the cursor is at (t, x) and the current symbol is: 

an  element  of  Σ,  write  it  down  and  move  the  cursor  one  square  to

the right, to t, x + 1
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⊖i, move the cursor to t - 1, x - i

⊕i, move the cursor to t + 1, x - i
Then continue with the next symbol.

◼ No  overwriting:  different  symbols  cannot  be  written  on  the  same
square. 

To  get  an  example  for  such  a  writing  process,  let  us  set  for  a

moment Σ  0, 1, 2, 3 and look at the situation 01⊕1 23. First, the

cell states 0 and 1 are written to the squares 0, 0 and 0, 1. The cur-

sor  is  then  at  square  0, 2.  Now  the  symbol  ⊕1  moves  the  cursor  to

1, 1. The following symbols 2 and 3 are then written to the squares

1, 1 and 1, 2, leaving the cursor at 1, 3. The result is then the fol-

lowing grid: 

t  1 2 3 — —

t  0 — — 0 1

x  -2 -1 0 1 2 3 4

The  horizontal  rules  mark  the  beginning  and  end  of  the  symbol
sequence,  or,  more  exactly,  the  squares  left  of  the  starting  point  and
right  of  the  end  point  of  the  state  sequence.  Similar  lines  will  later
appear in the illustrations.

Now we need to express this construction in a mathematical form.
We  will  use  two-dimensional  coordinates  and  call  a  coordinate  pair

(t, x) ∈ ℤ2
 a spacetime point. A pair (p, σ) ∈ ℤ2⨯Σ is a cellular event.

The  event  ((t, x), σ)  provides  the  information  “at  time  t,  the  cell  at
position  x  is  in  state  σ.”  We  will  usually  write  them  [t, x]σ  or  [p]σ
for better readability. A situation is then a sequence of cellular events,
together with the final cursor position:

s  (([p0]σ0, … , [pn-1]σn-1), pn). 

For  the  final  cursor  position  of  s,  we  write  δ(s),  the  size  of  s.  This
means that we have in our example δ(s)  pn. 

In a situation, the sequence of the cellular events is significant, and
the  size  too,  since  they  make  algebraic  operations  possible.  In  many
cases,  however,  we  want  to  ignore  this  information:  then  we  will  use
the  cellular  process  that  belongs  to  a  situation;  it  is  simply  the  set  of
its cellular events. The cellular process of a situation s is written pr(s).
In our example, with s  01⊕1 23, we have therefore 

s  0, 00, 0, 11, 1, 12, 1, 23, 1, 3.

This  long  expression  means  that  δ(s)  1, 3  and  pr(s)  0, 00,

0, 11, 1, 12, 1, 23.
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Usually  we  will  not  need  this  explicit  form,  since  situations  are
meant  to  make  this  unnecessary.  However,  it  helps  us  to  explain
the  “no  overwriting”  rule  above.  This  rule  concerns  expressions
like  01⊕1 2⊖1 3,  where  the  cursor  reaches  the  same  point  twice.

If  it  were  a  situation,  its  cellular  process  would  be

0, 00, 0, 11, 1, 12, 0, 13.  This  would  provide  contradictory

information  about  the  spacetime  point  0, 1:  At  time  0,  is  the  cell  at

position 1 in state 0 or 3? The overwriting rule prevents this problem. 
The  most  important  algebraic  property  of  situations  is  that  they

can be multiplied. The product of s1 and s2 is found by first writing s1
and then, with the cursor at δ(s1), writing s2. The resulting product is

written s1s2, but due to the overwrite rule, it may not always exist. 

More  complex  terms  of  situations  are  defined  in  the  usual  way:  s2

is the result of writing s twice, and so on. The Kleene closure of a situ-
ation s is the set 

s*  sk : k ≥ 0. (4)

The Kleene closure always contains the empty situation, which is writ-

ten 0.

In  Flexible  Time,  situations  are  used  to  express  the  evolution  of  a
cellular  automaton.  But  in  order  to  understand  how  this  is  done,  we
first  have  to  look  at  the  way  in  which  the  evolution  of  a  cellular
automaton is expressed by cellular processes. 

Evolution Expressed with Cellular Processes3.2

In  a  similar  way  to  that  in  which  a  configuration  c0 ∈ Σ
ℤ

 can  be  the

starting  point  of  an  evolution  (c0, c1, c2, …),  a  cellular  process  π  can

be  extended  to  a  larger  process  cl π,  its  closure.  Figure  3  shows  how

this  is  meant  for  the  initial  configuration  π  pr1013 1.  The  cellular

events  of  the  original  process  π  are  displayed  in  black  and  white;
together with the events in gray they form the process cl π. Each hori-
zontal row in the diagram contains the events that belong to a specific
time  step.  We  see  that  the  diagram  becomes  smaller  at  the  top;  this
means  that  as  time  progresses,  fewer  cell  states  can  be  deduced  from
the information given by the initial process π.

To  motivate  the  exact  definition  of  the  closure,  we  first  express
the  configurations  of  the  cellular  automaton  and  their  evolution  in
terms  of  cellular  processes.  This  will  then  allow  us  to  generalize
the  definition  of  evolution  to  processes  that  do  not  correspond  to
configurations. 

Now let c be the configuration of a cellular automaton. We define
the embedding of c at time t to be the process 

ηt(c)  {[t, x]c(x) : x ∈ ℤ}. (5)
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Figure 3. A process and its closure.

A  kind  of  inverse  of  the  function  ηt  is  the  concept  of  time  slices.  The

time slice at time t of a process π is the process

π(t)  {[t, x]σ : x ∈ ℤ}. (6)

The  time  slice  is  a  process  and  not  a  configuration  because  π(t)  must
exist for all processes, not just for embeddings of configurations.

With these concepts, the cellular process that belongs to the evolu-
tion  sequence  (co, c1, c2…)  is  γ  ⋃t≥0 ηt(ct).  It  has  the  time  slices

γ(t)  ηt(ct), which represent the configurations ct. The process γ must

then be the closure of η0(c0). 

A  time  slice  π(t)  of  an  arbitrary  process  is  then  understood  as  par-
tial  knowledge  about  the  state  of  a  cellular  automaton  at  time  t.  In
order  to  determine  the  state  of  the  automaton  at  time  t + 1,  we  take
all  configurations  that  are  compatible  with  this  knowledge,  evolve
them for one time step and accept only the states of those cells about
which all configurations agree. The result is the cellular process 

Δt(π) ηt+1φglobal(c) : ηt(c) ⊇ π
(t) (7)

of  those  events  that  are  determined  by  π(t).  The  cellular  events  of
which it consists all belong to time t + 1.

We  can  now  easily  check  that  the  process  γ  has  the  property  that

γ(t)  Δt(γ) for all t > 0. Every time slice, except the first, can be com-

puted  from  the  previous  one.  Only  γ(0),  which  represents  the  initial
configuration, must still be handled separately. 

This  inconvenience  is  resolved  in  the  full  definition  of  the  closure.
In it, the initial process no longer needs to be the embedding of a con-
figuration. This is possible because it is now split into time slices and
then added piecewise to the partial results of the computation. 

Definition 1.  (Closure  [3,  Def.  3.10])  Let  π  be  a  cellular  process  for

which there is a time t0 ∈ ℤ such that π(t)  ∅ for all t < t0. 

If there is a process γ with the property that 

γ(t) 
 Δt(γ)⋃π(t)  for t ≥ t0, 

 ∅  for t < t0, 
(8)

then we write γ  cl π and say that it is the closure of π.
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It is easy to see that the choice of t0 has no influence on cl π. 

We can now see that the set γ that was defined above satisfies equa-

tion  (8)  if  we  set  t0  0  and  π  η0(c0):  then  we  have  γ(t)  ∅  for

t < 0,  γ(0)  η0(c0),  and  γ(t)  Δt(γ)  for  t > 0,  and  indeed

γ  cl η0(c0).  Definition  1  is  thus  a  generalization  of  the  transition

rule in equation�(2) to cellular processes. 
Not  to  all  cellular  processes,  however.  One  of  the  requirements  of

Definition 1 is that γ must be a process, and this can easily be broken.

All  we  need  is  conflicting  information  in  Δt(γ)  and  π(t):  if  there  is  a

time step t at which there is an event [t, x]σ ∈ Δt(γ) and another event

[t, x]τ ∈ γ(t)  with σ ≠ τ, then γ(t)  is no cellular process, and neither is
γ. 

However,  in  the  next  subsection  we  introduce  a  class  of  situations
whose  cellular  processes  all  have  a  closure:  they  will  then  be  used  to
describe the evolution of cellular automata in an economical way. 

Reactions3.3

The evolution of a cellular automaton is represented in Flexible Time
by  reactions.  We  will  say  that  there  is  a  reaction  between  two  situa-
tions  a  and  b  if  the  situation  b  consists  only  of  events  that  are  deter-
mined by the events of a. They belong to the future of a, so to speak.

Figure 4 shows a reaction. On the left side we see the process of the

situation  a  1013 1,  together  with  its  closure.  As  in  Figure  3,  the
events of pr(a) are highlighted, while the remaining cells of the closure
are  displayed  in  gray.  On  the  right  side  we  see  the  same  closure,  but
with  different  events  highlighted.  This  time  they  belong  to  the  situa-

tion  b  10⊕71⊖017.  With  these  diagrams,  we  therefore  see  that

the events of the process b are determined by the process a. 

10131→(10⊕)71(⊖01)7

Figure 4. A reaction under rule 54.

The formal definition of reactions is then: 

Definition 2.  (Reactions  [3,  Def.  4.8])  Let  a  and  b  be  two  situations
with 

cl pr(a) ⊇ prb and δ(a)  δb. (9)
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Then  the  pair a, b  is  the reaction  from a  to b.  It  is  usually  written

a → b.

We  will  use  the  expression  a → b  also  as  a  proposition,  meaning
that there is  a reaction from a  to b. The symbol  “→” then specifies a
relation,  and  as  it  is  normal  for  relations,  we  can  also  write  longer
chains of reactions, like a → b → c. We can verify that if such a chain
exists, then there is also a reaction a → c. 

Reactions  are  useful  because  they  can  be  applied  to  situations.  It
can  be  shown  [3,  Th.  4.11]  that  if  there  are  situations  x,  y  and  a  for
which  cl pr(xay)  exists  and  if  there  is  a  reaction  a → b,  then  there  is
also a reaction xay → xby. This reaction is then called the application
of a → b to xay. 

Now  it  is  possible  that  there  is  also  a  reaction  that  can  be  applied
to  xby.  We  would  then  have  a  reaction  b′ → c  and  two  processes  x′

and  y′  such  that  xby  x′b′y′ → x′cy′  and  therefore,  by  transitivity,
also a reaction xay → x′cy′. This way application allows us to specify
a  large  set  of  reactions  by  a  small  set  of  “generator  reactions,”  pro-
vided only that there is a large enough set of situations to which they
can be applied. 

The  result  is  a  reaction  system.  It  is  the  foundation  of  all  calcula-
tions in Flexible Time. 

Definition 3.  (Reaction  System  [3,  Def.  4.13])  Let  D  be  a  set  of  situa-
tions and R a set of reactions between them. We say that R is a reac-
tion system with domain D if the following is true: 

If a ∈ D, then a → a is in R. 1.

If a → b and b → c are in R, then a → c is in R. 2.

R is closed under application of reactions to the situations in D. 3.

We  will  now  define  a  reaction  system  by  specifying  D  and  a  set
G ⊆ R  of  generators;  it  is  then  extended  by  repeated  application  and
concatenation  of  reactions,  as  described  above.  The  system  describes
rule 54; its derivation is described in detail in Chapters 6 and 7 of [3]. 

The reaction system is summarized in Table 1. The top of the table,
entitled  “Generating  Slopes,”  specifies  the  domain  D  of  Φ.  More
specifically,  it  lists  the  neighborhoods  that  a  ⊖  or  ⊕  operator  may
have  if  it  is  part  of  a  situation  s ∈ D.  The  first  entry,  ⊖100,  specifies

that a ⊖1  may occur in s at the left of the term 00; the second entry,

1⊖1 01,  specifies  that  it  may  occur  between  a  1  (at  its  left)  and  a  01

(at  its  right).  No  other  possibilities  exist,  since  the  remaining  entries
refer  to  other  operators.  It  can  be  proved  [3,  Th.  6.10]  that  all  situa-
tions in D have a closure. 

The  bottom  of  Table  1  contains  the  generating  reactions  of  Φ.  Its
upper  part  (i.e.,  the  middle  of  the  whole  table)  contains  the  reactions
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that  involve  a  single  ⊖  or  ⊕  operator.  If  we  had  only  them,  no  reac-
tion  could  have  an  element  of  Σ*  at  its  left  side:  therefore  we  have  at
the bottom left of the table a set of reactions that create a ⊖ and a ⊕

operator from an element of Σ*. Their converses are listed at the bot-
tom  right:  reactions  that  destroy  a  ⊖  and  a  ⊕  operator.  All  reactions
of  Φ  are  the  results  of  repeated  applications  of  these  four  types  of
generators. 

The  arrangement  of  the  reactions  in  Table  1  also  has  another  pur-
pose. It allows us to read off two important subsystems of Φ. 

GeneratingSlopes :

⊖100, 1 ⊖1 01, 1 ⊖2 10, 00 ⊖2 11,  00 ⊕1, 01 ⊕2 1, 10 ⊕1 1, 11 ⊕2 00.

Reactions: ⊖1000 → 0 ⊖1 00 000 ⊕1 → 00 ⊕1 0 

⊖1001 → 1 ⊖1 01 100 ⊕1 → 10 ⊕1 1 

1 ⊖1 010 → 111 ⊖2 10 010 ⊕1 1 → 01 ⊕2 111 

1 ⊖1 011 → 100 ⊖2 11 110 ⊕1 1 → 11 ⊕2 001 

1 ⊖2 100 → 1 ⊖1 00 001 ⊕2 1 → 00 ⊕1 1 

1 ⊖2 101 → 1 ⊖1 01 101 ⊕2 1 → 10 ⊕1 1 

00 ⊖2 110 → 001 ⊖2 10 011 ⊕2 00 → 01 ⊕2 100 

00 ⊖2 111 → 000 ⊖2 11 111 ⊕2 00 → 11 ⊕2 000 

00 → 00 ⊕1 ⊖100 ⊖100 ⊕1 → 0 

01 → 01 ⊕2 1 ⊖1 01 1 ⊖1 01 ⊕2 1 → 1 

10 → 10 ⊕1 1 ⊖2 10 1 ⊖2 10 ⊕1 1 → 1 

11 → 11 ⊕2 00 ⊖2 11 00 ⊖2 11 ⊕2 00 → 00

Table 1. The local reaction system for rule 54, long form.

Definition 4. (Slopes) Let R be a reaction system with domain D. 

The system R+  (with domain D+) of positive slopes consists of the

situations  of  D  that  only  contain  ⊕  operators  and  the  reactions
between these situations. 

The system R-  (with domain D-) of negative slopes consists of the
situations  of  D  that  only  contain  ⊖  operators  and  the  reactions
between these situations. 

In  the  case  of  rule  54,  we  can  find  the  generators  of  Φ-  if  we  take
only  the  generating  slopes  at  the  right  and  the  generator  reactions  at
the  top  right  of  the  middle  section  in  Table  1.  Similarly,  Φ+  is  repre-

sented by the slopes and reactions at the top right of the table. 
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Details of the Reaction System3.4

We will now have a closer look at the way in which the reaction sys-
tem Φ represents rule 54.

We  begin  with  the  slopes.  Figure  5  displays  the  generating  slopes
for Φ, first the negative slopes and then their mirror images, the posi-
tive slopes. 

Figure 5. Generating slopes.

In  this  and  in  later  diagrams,  the  endpoints  of  the  situations  are
marked  by  horizontal  lines.  They  represent  the  places  where  the  sur-
rounding  events  would  be  expected  if  the  slopes  were  parts  of  larger
situations.  Or,  in  the  interpretation  of  Section  3.1,  the  square  at
which the left horizontal line ends is always one point left of the coor-
dinate origin, while the right horizontal line always begins at δ(s). The
beginning  of  the  situation  is  also  marked  by  the  small  vertical  bar,
which  is  located  at  the  left  boundary  of  the  square  at  the  coordinate
origin. 

An  important  property  of  the  generating  slopes  is  that  they  trace
the  boundaries  of  the  closure.  We  can  see  in  Figure  6  what  this
means.  It  shows  a  situation,  110 101 000,  together  with  two  genera-
tions  of  its  closure.  We  see  at  its  left  the  slope  00⊕2 11  (the  mirror

image of  11⊖2 00 in Figure  5), and at its  right, the term ⊖1, both in

bolder  colors.  Note  that  the  situation  ⊖100  reaches  over  two  time

steps  and  has  its  starting  point  directly  at  the  right  end  of  the  second
time  step  of  the  closure.  This  is  the  way  the  slope  terms  trace  the
boundary of a closure. 

Figure 6. Generating slopes as boundaries of the closure.

The  generator  reactions  of  Φ-  are  designed  with  the  goal  that  the
reaction  result  consists  of  events  near  the  right  boundary  of  the  clo-
sure  of  the  initial  situation.  (For  Φ+  it  is  similar,  with  left  and  right

50 M. Redeker

Complex Systems, 26 © 2017



exchanged.) How this is done is shown in Figures 7 and 8. They con-

tain  reactions  of  the  form a → b  and  display pr(a)  and prb  in rela-

tion to the closure of pr(a). Figure 7 shows the generator reactions of
Φ-.  In  it,  we  see  that  the  process  of  b  is  always  located  more  to  the
right than pr(a) and that it touches the right boundary of cl pr(a). The
reactions  involve  only  two  time  steps,  and  one  of  the  ⊖  operators
must  always  be  present.  To  get  the  system  started  from  situations  in
Σ*,  we  need  the  reactions  at  the  right  side  of  Figure  8.  Here  we  see

reactions in which prb completely fills the closure of pr(a), and b is a

situation with both a ⊕ and a ⊖ operator. 

Figure 7. Reactions of Φ- as motion toward the boundaries of the closure.

The converses of the reactions at the left side of Figure 8 are shown
at its right side: reactions a → b in which a contains one ⊖ and one ⊕,
while  b  contains  none.  We  can  use  them  for  cleanup,  since  they
remove  pairs of  neighboring  ⊖  and  ⊕  operators.  The same  maneuver
is also possible in all other cases where a ⊖ is left of a ⊕, and we get a
result  that  for  every  situation  a  there  is  a  reaction  a → b+b-  with

b+ ∈ D+  and  b- ∈ D-.  If  we  start  from  a  and  continue  to  apply  the

generator  reactions  as  long  as  possible,  we  can  even  enforce  that  b+
and b- trace the boundaries of cl pr(a). 

This  was  a  summary  of  the  content  of  [3]  as  far  as  it  concerns
rule�54. 
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Figure 8. Reactions  that  generate  and  destroy  slopes.  The  generator  reactions
are shown at the left, the destructors at the right.

Understanding the Reaction System4.

Up  to  now,  the  representation  of  rule  54  in  Table  1  looks  complex
and does not provide much insight. This makes it difficult to do calcu-
lations  about  rule  54  without  always  looking  at  the  table.  We  will
therefore  develop  a  more  compact  representation  of  the  reaction  sys-
tem.  The  goal  is  to  find  “slogans”  for  it  that  are  easy  to  remember,
analogous to the slogan for φ in Section 2.2.

A Simpler Rule Table4.1

As a first simplification, we omit the indices from the ⊕ and ⊖ opera-
tors.  This  is  possible  because  the  indices  of  the  operators  are  always
determined  by  the  environment.  We  can  see  from  the  list  of  generat-
ing slopes in Table 1 that if ⊖i  is followed by a 0, then always i  1,

and  if  it  is  followed  by  a  1,  then  i  2.  A  similar  law  is  valid  for  ⊕i,

and we can recover the indices of ⊖ and ⊕ from the equations

⊖0  ⊖10, ⊖1  ⊖21,

0⊕  0⊕1, 1⊕  1⊕2 .
(10)

52 M. Redeker

Complex Systems, 26 © 2017



This kind of abbreviation is possible in every reaction system, because
in  a  generating  slope  u⊖i v,  the  term  u⊖i  is  completely  determined

by�v.
For  the  same  reason,  we  can  shorten  the  generator  reactions  by

removing common factors from their left and right sides. The genera-
tor reactions of Φ- all have the form u⊖ vσ → ux⊖ v′, with a generat-
ing slope u⊖ v. When such a reaction is applied to a situation s, there
must  always  be  a  factor  u  to  the  left  of  ⊖v  in  s.  Therefore  we  can
shorten  these  generator  reactions  to  the  form  ⊖vσ → x⊖ v′  and  do
not get new reactions when the shortened reactions are applied. 

We then get four pairs of reactions as generators for Φ-: 

⊖000 → 0⊖ 00, ⊖010 → 11⊖ 10,

⊖001 → 0⊖ 01, ⊖011 → 00⊖ 11,
(11a)

⊖100 → ⊖00, ⊖110 → 1⊖ 00,

⊖101 → ⊖01, ⊖111 → 0⊖ 01 .
(11b)

They can be compressed further with the help of a new notation. For
a  cell  state  σ ∈ Σ,  we  will  write  σ  for  the  complementary  state,  such

that  0  1  and  1  0.  Then  we  can  write  the  following  reactions,
valid  for  all  σ  (the  bottom-left  reaction  has  been  shortened  even
more; it should have been ⊖10σ → ⊖0σ),

⊖00σ → σ⊖ 0σ, ⊖01σ → σσ⊖ 1σ, (12a)

⊖10 → ⊖0, ⊖11σ → σ⊖ 1σ . (12b)

Written  in  this  form,  we  will  analyze  the  reaction  system  and  show
what  the  generator  reactions  actually  mean.  But  before  we  can  do
this, we must see how to simplify the rest of Table 1.

The reactions at the bottom of the table can be brought easily to a
common  form,  when  we  define  the  set  of  negative  generating  slopes

G-  ⊖00, 1⊖ 01, 1⊖ 10, 00⊖ 11.  With  this  name  at  hand,  we

can see that the bottom reactions have the common form 

v → v⊕ u⊖ v u⊖ v⊕ u → u (13)

whenever u, v ∈ Σ* and u⊖ v ∈ G-. This then completes the compres-
sion of Table 1. The result is Table 2.
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Generating Slopes
G-  ⊖00, 1 ⊖ 01, 1 ⊖ 10, 00 ⊖ 11

G+  00 ⊕, 01 ⊕ 1, 01 ⊕ 1, 11 ⊕ 00

Reactions
⊖00σ→σ ⊖ 0σ

⊖10→⊖0

⊖01σ→σσ ⊖ 1σ

⊖11σ→σ ⊖ 1σ

u ⊖ v ⊕ u→u

v→v ⊕ u ⊖ v

σ00 ⊕→σ0 ⊕

01 ⊕→0 ⊕

σ10 ⊕→σ1 ⊕ σσ

σ11 ⊕→σ1 ⊕ σ

for u ⊖ v ∈ G-

Abbreviations
⊖0⊖10

⊖1⊖21

0 ⊕0 ⊕1

1 ⊕1 ⊕2

Table 2. The local reaction system for rule 54, short form.

Relation to the Transition Rule4.1.1

In  order  to  understand  this  new  form  of  the  reaction  system  and  to
see how it is related to the transition rule φ, we write the reactions of
Φ- in the following manner:

τ0 τ1 τ2 

⊖100σ → τ0 ⊖1 0σ φ0, 0, σ  σ φ0, σ, ·  

⊖210 → ⊖10 φ0, σ, ·  

⊖101σ → τ0τ1 ⊖2 1σ φ0, 1, σ  σ φ1, σ, ·  σ φ(σ, · , ·)  

⊖211σ → τ0 ⊖2 1σ φ1, σ, ·  σ φ(σ, · , ·)  

In  the  reactions  in  the  leftmost  column  of  the  table,  each  variable  τi

stands  for  the  state  of  the  cell  at  position  0, i.  The  other  columns

then  show  for  each  τi  the  computation  that  determines  its  value—or,

if it cannot be computed, which application of φ fails to have a deter-
mined value.

We can see, for example, in the first row that the state of the cell at

0, 0  can  be  computed  from  the  information  presented  in  the  initial

situation  ⊖100σ.  The  cellular  process  of  this  situation  consists  of  the

events -1, -10, -1, 00 and -1, 1σ, and therefore the state τ0  of

the cell at 0, 0 must be φ0, 0, σ. 

In the same way, we can see that in the third row, τ0  is φ0, 1, σ.

However,  the  diagram  also  contains  entries  for  which  not  all  argu-
ments  of  φ  are  known.  The  missing  arguments  are  marked  by  a  dot.
When  the  value  of  φ  is  independent  of  the  missing  argument,  it  is
entered in the table; otherwise, the entry is marked with an arrow. 
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We  can  see  that  the  values  of  the  τi  only  depend  on  three  equa-

tions, 

φ0, 0, σ  σ, φ0, 1, σ  σ, φ1, σ, ·  σ. (14)

They  all  can  be  derived  from  the  rule  that  a  pair  of  touching  ones
cause a φ value of 0, while one or more isolated ones make the value

equal  to  1.  In  the  case  of  φ0, 0, σ,  a  pair  of  touching  ones  cannot

occur, therefore the value of φ is one if and only if σ  1. In the other
two  cases,  σ  1  creates  a  touching  pair  and  σ  0  inhibits  it,  there-
fore  the  function  value  is  σ.  In  a  similar  way,  we  can  see  that  in  the
remaining entries of the table, the value of φ is undefined. This is how
φ influences the reactions in Φ.

In the table, the ⊖ have been written once again with indices—not
just  to  ease  the  translation  from  situations  to  cellular  processes,  but
also  because  with  them  we  can  see  how  many  new  events  are  gener-
ated  in  the  reactions.  We  can  thus  see  that  in  the  first  reaction  one

new  event  is  generated  because  δ⊖100σ  must  be  equal  to

δτ0 ⊖1 0σ, and so on. If the left side of a reaction has a ⊖i  operator

and the right side a ⊖j, then j - i new cell states must be generated in

the reaction. 

Slogans4.1.2

These considerations may help to understand the reactions of the sys-
tem  Φ  a  bit  better.  To  help  with  memorizing  them,  we  introduce  two
slogans. Both refer to the left side of the reactions of Φ-. This side can
always be written as ⊖αβσ, with α, β, σ ∈ Σ. The first slogan tells in
which  cases  the  value  of  αβ  makes  the  reaction  product  longer  or
shorter than the initial term:

“01 causes growth, 10 shrinking, everything else no change.” 

The  second  slogan  describes  the  influence  of  βσ  on  the  newly  gener-
ated  cell  states.  They  can  either  be  a  copy  (σ)  or  the  inversion  (σ)  of
the variable σ, and the rule is:

“0σ copies and 1σ inverts.” 

Triangles and Ether5.

In  the  rest  of  this  paper,  we  will  describe  the  behavior  of  larger  sys-
tems of cells under rule 54. We want to describe the interaction of par-
ticles  that  move  on  a  periodic  background,  the  so-called  ether.  So  we
will now introduce, as a first step, reactions for the ether. Since it has
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been done already to some extent in [3, Ch. 8], we will do it here in a
shorter form and from a higher point of view.

The  first  tool  that  we  will  use  is  reaction  families,  which  allow  us
to represent many similar reactions in a single formula. Reaction fami-
lies  appeared  already  in  [3],  but  here  we  use  a  more  streamlined
notation. 

Definition 5. (Reaction Families) If there is a reaction ak → bk  for every

k ≥ 0, we will write this as 

ak → bkk. (15)

The  notation  will  be  extended  in  the  usual  way  to  expressions  like

ak → bkk≥N  or aj, k → bj, kj, k. We will also speak of (ak)k  as a situa-

tion family.

Triangle Reactions5.1

We will first find general formulas for reactions that represent triangu-
lar structures like that in Figure 4.

There  are  two  general  laws  that  we  will  use  here.  The  first  one
makes  it  possible  to  iterate  a  reaction  of  a  special  form.  This  can  be
done in two ways, 

if ax → ya, then axk → ykbk, (16a)

if xa → ay, then xka → bykk. (16b)

The second law iterates a specific reaction family; in it, n is a constant:

if (ak+n → xaky)k, then akn+i → xkaiy
ki,k. (17)

Both laws can easily be proved by induction [3, Ch. 8.1].

We now search for cases in which the first law can be applied and
in  which  the  left  side  is  a  generator  reaction.  There  are  two  candi-
dates, ⊖000 → 0⊖ 00 and ⊖111 → 0⊖ 11. The first one has a  ⊖00
and x  y  0 and leads to

⊖0k+2 → 0k ⊖ 00k, (18a)

while the second reaction has a  ⊖11, x  1 and y  0 and leads to

⊖1k+2 → 0k ⊖ 11k. (18b)

The  family  in  equation  (18a)  is  the  more  interesting  one.  It
becomes the core of another reaction family, 

10k+2 1 → 10⊕ 10k 1k, (19)

whose  derivation  is  shown  here  in  detail,  as  an  example  for  calcula-
tion with reactions:
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1000k 1 → 10⊕ 1⊖1000k 1

→ 10⊕ 1⊖000k1

→ 10⊕ 10k⊖001 → 10⊕ 10k 1⊖ 01 .

Parts  of  the  situations  are  underlined;  they  are  the  places  that  change
in  the  next  reaction  step.  We  will  use  this  notation  in  later  calcula-
tions without special notice.

The  reaction  family  in  equation  (19)  can  now  be  iterated  by  equa-

tion (17), with ak  10k 1 and n  2. The result is 

102k+i 1 → 10⊕k10i 1⊖01ki, k. (20)

In  families  like  these,  the  cases  with  i < 2  are  the  most  important
ones,  since  the  reactions  in  equation  (19)  have  been  applied  in  them
for the largest number of times. For i  1, we can add one more step,
since  we  have  101 → 10⊕ 1⊖ 101 → 10⊕ 1⊖ 01.  Therefore,  equa-

tion (20) can be written as two families,

102k 1 → 10⊕k11⊖01kk, (21a)

102k+1 1 → 10⊕k+11⊖01k+1k . (21b)

They, and all reactions of the form ak+n → xkany
kk, are called trian-

gle reactions.
Diagrams for the reactions with k  3 are shown in Figure 9. 

106 1→(10⊕)311(⊖01)3 107 1→(10⊕)41(⊖01)4

Figure 9. Triangle reactions for k  3.

If  we  try  the  same  maneuver  with  the  other  reaction  family,  equa-

tion  (18b),  we  get  01k+2 0 → 01⊕ 10k+2 1⊖ 10k.  This  is  a  family  to

which  equation  (17)  cannot  be  applied.  Therefore,  we  will  now  use
the  reaction  families  in  equation  (21)  as  our  base  for  the  description
of the ether. 

The Ether5.2

We will now represent the ether of rule 54 by reactions. The reactions
for rule 54 will turn out to be a special case of a generic scheme that
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applies  to  periodic  patterns  in  any  one-dimensional  cellular
automaton.

In  rule  54  [4],  the  ether  is  a  periodic  structure  whose  configura-
tions  consist  of  alternating  the  two  patterns  …100010 001…  and
…011 101110….  When  one  of  them  occurs  again,  it  is  shifted  hori-
zontally by two cells, so that the true time period is four. 

Our  starting  point  for  representing  them  by  reactions  must  be  the
configuration  …100010001… ,  since  to  it  we  can  apply  one  reaction
of the type in equation (21b), 

10 001 → 10⊕21⊖012. (22)

It would therefore be advantageous to decompose the initial configura-
tion  into  components  of  the  form  10001.  With  a  small  extension  of
our notation, this is actually possible.

Definition 6. (Overlapping Situations) Let ax be a situation. The a〈x〉 is
also a situation, and 〈x〉 is the overlapping part. We have 

pr(a〈x〉)  pr(ax) and δ(a〈x〉)  δ(a) . (23)

A  product  of  situations  with  overlap,  like  axby,  is  only  allowed  if

the situation by begins with x; then axby  aby.

A reaction that begins with a〈x〉 must have the form 

a〈x〉 → a′〈x〉; (24)

it exists if ax → a′x is a reaction.

If  we  remind  ourselves  that  the  transitions  of  a  cellular  automaton
are  defined  in  terms  of  overlapping  cell  neighborhoods,  then  the  new
extension looks quite natural. 

We  can  now  write  a  term  like  1000k1  as  a  product  10001k1

and apply the ether reactions in parallel to each factor, except for the
final 1. In this style, the reaction of equation (22) is best written in the

form 10001 → 10⊕ 121⊖ 012. 

But now we should better introduce abbreviations. We will write 

ε+  10⊕ 1 and ε-  1⊖ 01, (25)

such that equation (22) becomes

10001 → ε+
2ε-

2 . (26)

The  terms  ε+  and  ε-  are  the  simplest  of  the  higher-level  structures  in

rule 54 that we will identify.
There is also a complementary reaction to equation (26), 

ε-
2ε+

2 → 10001. (27)
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In contrast to equation (26), this reaction does not belong to a known
family,  and  we  will  derive  it  by  hand  (see  below).  Together  the  two
reactions form a type that naturally represents the periodic patterns of
one-dimensional  cellular  automata.  Before  a  formal  definition  is
given, we introduce the abbreviations

e-  ε-
2 , e+  ε+

2 , b  10001. (28)

Then we see that equations (26) and (27) are examples of the follow-
ing general pattern:

Definition 7.  (Background  Pairs)  Two  situations,  e-,  e+,  form  a  back-

ground pair if there is a reaction 

e-e+ → e+e-. (29a)

If there is also a situation b ∈ Σ* with

e-e+ → b → e+e-, (29b)

then b is the baseline of the background pair.

A  background  pair  represents  the  elementary  region  of  a  tiling  of
the  two-dimensional  spacetime  (Figure  10).  If  a  background  pair  is
present, we automatically get the reaction families 

bk → e+
ke-

k k, (30a)

e-
ke+

ℓ → e+
ℓ e-

k k, ℓ, (30b)

which  represent  larger  patches  of  the  background.  As  we  can  see  in
Figure 10, the reactions of equation (30a) represent the generation of
a  larger  piece  of  ether  from  an  initial  configuration,  while  equa-
tion�(30b)  represents  the  development  of  a  background  fragment  at  a
later time.

Figure 10. An ether, represented by a background pair e-, e+ with baseline b.
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Derivation of the Remaining Ether Reaction5.2.1

We  have  not  yet  proved  equation  (27),  the  reaction e-e+ → 10001.

This will be done now.
The computation is an example for a larger calculation with Flexi-

ble Time. We will prove equation (27) via the two reactions 

ε-ε+ → 121, (31a)

ε-
2ε+

2 → 10001 (31b)

and the auxiliary step

013 0 → 01⊕ 103 1⊖ 10. (31c)

The last reaction is an element of the reaction family 

01k+2 0 → 01⊕ 10k+2 1⊖ 10k. (32)

Its  derivation  uses  the  reaction  family  of  equation  (18b)  and  is  done
in the following way: 

0111k 0 → 01⊕ 1⊖ 0111k 0 

 → 01⊕ 1⊖ 111k0 

 → 01⊕ 1000k⊖ 110 → 01⊕ 10k+2 1⊖ 10. 

Now we can derive the other two reactions of equation (31):

 ε-ε+  1⊖ 0110⊕ 1 

   1⊖ 010⊕ 1 

  → 111⊖ 10⊕ 1 → 111, 

 ε-ε-ε+ε+ → ε-111ε+ 

   1⊖ 0111110⊕ 1 

   1⊖ 013 10⊕ 1 

  → 1⊖ 01⊕ 1031⊖ 01⊕ 1 → 1031. 

In the second computation, we have used equations (31a) and (31c).

Particles6.

In  the  ether,  particles  move.  Boccara  et  al.  [4]  have  found  four  of

them and called them w, w, go and ge (Figure 11). We will refer to the

moving  particles  w  and  w  sometimes  as  gliders,  in  contrast  to  the
static particles go and ge. 
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w w go ge

Figure 11. Particles under rule 54. The diagrams show the four types of parti-
cles on an ether background.

Now  we  will  represent  these  particles  by  situations  and  reactions.
The  characterization  of  particles  is  a  natural  generalization  of  that  of
a background: 

Definition 8.  (Particles)  Let  b-, b+  be  a  background  pair.  A  particle

that  moves  in  this  background  is  a  situation  p  for  which  there  is  a
reaction

b-
mpb+

n → b+
npb-

m. (33)

The pair (m, n) is the type of the particle.

The  type  of  p  represents  its  speed  relative  to  the  background.  To
convert it to a more conventional form, we notice that in the initial sit-
uation of the reaction in equation (33), the left side of p is located at

the spacetime point mδb-, while in its final situation, it is at nδb+.

The period vector (Δt, Δx)  nδb+ -mδb- is therefore the displace-

ment that p undergoes during one cycle of its existence. After Δt time
steps,  the  particle  is  in  the  same  state,  and  it  has  Δx  positions  to  the
right. The speed of p is then Δx / Δt (Figure 12).

Figure 12. A  particle  of  type  2, 3  as  part  of  a  periodic  background.  Its  rela-

tive speed is 1  5.

Often it is simpler to work with speeds relative to the background.

For this we use the vectors T  δb+ - δb- and X  δb+ + δb- as
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our base, the first one pointing to the future and the second one to the
right. A particle of type (m, n) has then a period vector of

n +m

2
T +

n -m

2
X

and we can say that its relative speed is (n -m) / (n +m). 

The Particles of Rule 546.1

For rule 54 we use the following definitions:

w  ε-1
21, go  ε+ε-, 

w  12ε+, ge  ε+1ε-. 
(34)

They have this specific form because we can then use a simple subset
of  our  reaction  system  to  represent  their  behavior.  This  subset  con-
sists of two reaction families and one extra reaction,

ε-1
2kε+ → ε+

k+1ε-
k+1k≥1, ε-ε+ → 121, (35a)

ε-1
2k+1ε+ → ε+

k+11ε-
k+1k, (35b)

which transform situations that consist only of ε-, ε+  and 1 into each

other.  They  can  easily  be  derived  from  the  reaction  families  in  equa-
tions  (32)  and  (21).  With  the  reactions  of  equation  (35a),  the  ether
reaction ε-ε+ can be proved, as we have seen in Section 5.

With  these  reactions,  we  can  now  verify  that  the  terms  in  equa-
tion�(34) are indeed particles: 

we+  ε-1
2ε+

2 → ε+
2ε-

2ε+ → ε+
2ε-1

21  e+w, (36a)

e-goe+  ε-
2ε+ε-ε+

2 → ε-1
2 12ε+ → ε+

3ε-
3  e+goe-, (36b)

e-gee+  ε-
2ε+1ε-ε+

2 → ε-1
2 112ε+ → ε+

31ε-
3  e+gee-. (36c)

The reaction e-w → we- has been omitted since the reactions in equa-
tion  (34)  are  left-right  symmetric.  We  see  from  these  reactions  that

the types of w and w are 0, 1 and 1, 0, while go  and ge  both have

type 1, 1. Figure 13 contains diagrams of the reactions.

Collisions of Two Particles6.2

With  the  reactions  of  equation  (35),  we  can  already  find  out  simple
facts  about  the  particles  and  their  interactions.  One  fact  is  hidden  in
equation (36b): the reaction

ww → e+goe- (37)
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we+ → e+w

e-goe+ → ww → e+goe-

e-gee+ → w1w → e+gee-

Figure 13. Evolution  of  the  rule  54  particles.  The  particles  are  shown  in
strong colors, and the outlined squares are ether.

can  easily  be  recognized  once  we  remember  that  ww  ε-1
2 12ε+.

This is the reaction in which two colliding w particles create a go. It is

in  fact  the  only  reaction  that  is  possible  between  the  two  w  particles.

To  see  this,  we  note  that  if  w  moves  toward  w  with  nothing  other

than  ether  between  them,  this  must  be  represented  by  a  situation

wEw,  where  E  is  a  product  of  an  arbitrary  number  of  e-  and  e+
terms. Then there must be a reaction E → e+

me-
n , where m is the num-

ber of e+  factors in E and n is the number of e-  factors. This leads to

a reaction chain

wEw → we+
me-

nw → e+
mwwe-

n (38)

to  which  we  can  apply  equation  (37).  We  have  thus  seen  that  two  w
gliders  always  move  toward  each  other  unchanged  until  they  react  to

the  position  ww,  and  that  therefore  equation  (37)  is  their  only  possi-
ble collision.

The same principle can be applied to any pair of colliding particles.
We then have the following theorem: 

Theorem 1.  (Particle  Collisions)  Let  p  and  p′  be  two  particles  of  types
(m, n)  and  (m′, n′),  with  p  left  of  p′.  Then  p  moves  toward  p′  if
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nm′ > mn′  and  away  from  p′  if  nm′ < mn′;  otherwise,  they  keep  the
same distance. 

If  they  collide,  then  there  are  nm′
 possible  interactions  between

them. 

Proof. If p and p′  collide, the relative speed of p must be greater than
that of p′. This means that

n -m

n +m
>
n′ -m′

n′ +m′
,

or equivalently that nm′ > mn′. The other two cases are similar. 

For  the  second  statement,  we  represent  the  relative  positions  of  p

and p′ by a situation apbp′c with a, b, c ∈ b-, b+
*. Here a and c rep-

resent  the  empty  space  left  and  right  of  the  particles.  We  can  make
them arbitrarily large without changing the relative positions of p and
p′. (A change of a changes the absolute positions of p and p′, but that
has  no  influence  on  their  behavior.)  Especially,  we  can  assume  that
a  b-

m
 and  c  b+

n′ .  The  situation  b  represents  the  space  between  p

and p′, and we can always bring it about by the application of back-

ground reactions to the form b+
i b-

j . 

So  we  can  assume  that  the  environment  of  the  particles  has  the

form  b-
mpb+

i b-
j p′b+

n′ .  Since  p  and  p′  collide,  none  of  the  reactions

b-
mpb+

n → b+
npb-

m
 and b-

m′
p′b+

n′ → b+
n′p′b-

m′
 can be applied to this situa-

tion.  This  means  that  i < n  and  j < m′,  for  which  there  are  nm′

possibilities. □

Interaction between the Static Particles and the w Gliders6.3

When  we  start  with  a  random  initial  configuration  and  let  it  evolve
for a short time, we typically see some go  and ge  particles on a back-

ground,  with  w  and  w  moving  between  them  (Figure  1).  The  formal-
ism  for  rule  54  is  now  developed  far  enough  to  describe  with  it  the
behavior of these particles in reasonable detail.

Specifically, we can now describe the behavior of isolated go and ge
particles, which never interact with each other, only with w and w. In
Flexible Time we can express this requirement by restricting ourselves

to  the  reactions  that  start  from  a  situation  xgy  with  x ∈ e-, w
*,

g ∈ {go, ge} and y ∈ e+, w
*. 

The  go  case  is  the  simplest,  since  the  collision  with  a w  always

destroys  this  particle.  Up  to  symmetry,  we  have  only  the  following
reactions: 

wgoe+ → e+we-, wgow → e+
2e-

2 . (39)

They  could  be  verified  directly,  but  we  will  now  compute  them  in  a
way  that  is  also  useful  in  the  more  complex  case  of  ge.  For  this,  we
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begin  with wgo,  a  common  factor  of  the  two  left  sides  in  equa-

tion�(39),  and  also  the  smallest  situation  that  represents  a  collision  of

w  and  go.  Their  reaction  is  wgo  ε-1
2ε+ε- → ε+

2ε-
3  e+ε-e-.  The

end  result  is  here  interpreted  as  an  ε-  surrounded  by  two  ether  frag-
ments. We can consider it as a short-lived intermediate stage, or a res-
onance, if we use once again the jargon of particle physics. In the next
step,  we  ignore  the  ether  fragments  and  consider  only  the  develop-
ment  of  the  ε-.  There  are  two  ways  in  which  it  can  interact  with  an
ether  fragment  or  with  a  w  particle,  namely  through  the  reactions

ε-e+   ε-ε+
2 → 12ε+  w  and  ε-w  ε-1

2ε+ → ε+
2ε-

2  e+e-.  No  fur-

ther resonances arise from these reactions, so we can stop here.
The result is a scheme of three reactions; they describe the behavior

of go in the same way as equation (39): 

wgo → e+ε-e-, (40a)

ε-e+ → w,

ε-w → e+e-.
(40b)

We  can  use  these  reactions  to  derive  the  reactions  of  equation  (39),
for example, with the reaction chain 

wgoe+ → e+ε-e-e+ → e+ε-e+e- → e+we- 

for  the  first  reaction.  But  for  most  purposes,  equation  (40)  can  be
interpreted  directly  as  a  two-step  scheme  that  describes  how  an  ε-  is

created  (equation  (40a))  and  how  it  decays  to  w  or  ether
(equation�(40b)).  The  ether  particles  at  the  right  side  of  equa-
tion�(40a)  can  be  thought  of  as  becoming  part  of  the  surrounding
space, which is why they do not appear in equation (40b).

A  similar  but  more  complex  scheme  describes  the  collision  of  ge
with one or more w particles. Up to symmetry it has the intermediate

states 1, 1ε- and 151 and can be written as follows: 

wge → e+e-1ε-, (41a)

1ε-e+ → 1w

1ε-w → 1e+e-,
(41b)

e-1e+ → 151

e-1w → w1e-
w1w → e+gee-,

(41c)

e-1
5e+ → wgew

e-1
5w → we+

21e-
2

w15w → e+
2gee-

2 .

(41d)
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All  these  reactions  are  short  and  can  be  verified  directly.  They  show
that  an  isolated  ge  can  neither  be  destroyed  nor  does  it  explode  to  a

larger  structure.  (See  [14]  for  the  deeper  reasons  behind  this.)  The
intermediate  states  can,  however,  persist  for  an  indefinite  time  if  the
right  pattern  of  incoming  w  gliders  is  given.  We  can  see  this,  for

example, from the reaction e-1w → w1e-  in equation (41c). It can be

iterated  to  e-
k1wk

→ wk1e-
k k,  which  shows  how  the  intermediate

state  1  can  be  kept  alive  indefinitely  by  a  sequence  of  incoming  w
gliders.

In summary, we get a description of the behavior not just of a sin-
gle  go  and  ge,  but  also  of  a  whole  system  of  particles,  provided  that

the  g  particles  and  their  intermediate  states  all  keep  a  distance  from
each other. The distance must be so large that next to each g particle
or intermediate state there is always a w particle or an ether fragment.
As long as this is true, the go  particles are created (equation (37)) and

destroyed  (equation  (40))  by  w  gliders,  while  the  ge  persist  but  go

through intermediate states (equation (41)). 

Summary7.

This  text  consists  of  two  interleaving  tracks,  one  with  the  goal  of
understanding rule 54 better, the other to find concepts that are valid
for all cellular automata.

After  a  recapitulation  of  the  results  derived  in  [3],  we  began  with
constructing  a  shorter  representation  of  the  local  reaction  system  for
rule  54  (Table  2).  We  then  described  how  the  transition  rule  φ  influ-
ences  the  local  reaction  system  Φ  and  at  the  end  introduced  two  slo-
gans to summarize the generator reactions of the local system. 

With equations (16) and (17), we learned how to iterate reactions.
This  helped  to  derive  expressions  for  the  triangles  under  rule  54  and
to  find  a  subsystem  in  equation  (35)  of  Φ  that  consists  only  of  modi-
fied  triangle  reactions.  It  also  introduced  the  situations  ε-  and  ε+,

which,  together  with  the  situation  1,  were  the  building  blocks  of  the
following construction. 

We introduced definitions for the background and for particles and
explored particle collisions. A formula for the number of particle inter-
actions  was  already  found  in  [13]  under  a  different  framework,  but
the proof here seems more direct. 

Expressions  for  the  ether  and  the  main  particles  of  rule  54  were
found and the collisions of the particles computed. We could see that
an  isolated  ge  is  stable  under  all  collisions  with  incoming  w  gliders.

This  extends  in  a  way  a  result  in  [14],  which  already  showed  that  a
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single ge could not be destroyed, but the current, more detailed investi-

gation  also  shows  that  it  could  not  “explode”  either  and  become  a
steadily growing perturbation in the ether. 

On the way to this result, we saw an efficient method to display all
possible interactions of an isolated particle with all other particles and
the background (equation (41)). 

The  track  about  rule  54  led  therefore  to  results  about  the  interac-
tion  of  its  particles,  while  the  general  track  led  to  generic  definitions
of triangles, background and particles and a theorem about glider col-
lisions. Both show how Flexible Time helps to understand an automa-
ton like rule 54 as a system of interacting particles. 

Changes in the Formalism7.1

One of the aims of this work was to extend the capabilities of Flexible
Time  by  applying  it  to  the  understanding  of  a  “naturally  occurring”
cellular automaton, that is, one that was not constructed for a specific
purpose. This resulted in the following changes with respect to the ver-
sion in [3]:

The  interpretations  of  ⊖  and  ⊕  were  changed  silently  in  equation  (10).
In [3], they were abbreviations for ⊖r  and ⊕r, where r was the radius of

the cellular automaton. Now the horizontal offsets associated to ⊖ and

⊕ depend on the context in which the symbols occur. 

1.

Reaction  families,  which  were  already  present  in  [3],  got  a  shorter
notation. 

2.

A  short  notation  for  overlapping  situations  was  introduced  in  Defini-
tion  6.  There  was  already  an  overlap  notation  in  [3],  but  it  was  more
clumsy. Now overlapping situations are part of the normal formalism. 

3.

The new interpretations of ⊖ and ⊕ allowed us to write the formu-
las  of  the  local  reaction  system  completely  without  indices  and  to
make the similarities between the basic reactions more visible. 

With  overlaps,  definitions  like  those  of  a  background  pair
(equation (29)) could be written in a concise way. 
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