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The complicated and puzzling neuronal structure of human and animal
brains  is  responsible  for  mental  abilities.  Concerning  a  mechanistic
understanding of brain activities, the crucial question refers to the prop-
erties of a single neuron versus neurons’ spatial arrangement and inter-
connection as a whole. In this paper we adopt the point of view that a
significant  share  of  neurons  in  a  being  can  be  modeled  by  (in  our
approach  complex-valued)  dynamical  systems  based  on  a  manageable
number  of  phase-space  dimensions,  thus  representing  a  macroscopic
overall  description  of  the  totality  of  highly  redundant  neuronal  pro-
cesses.  This  agrees  with  the  general  theory  of  interacting  many-particle
systems that usually undergo a dramatic reduction of complexity in the
spirit  of  the  Kolmogorov  entropy,  due  to  collective  behavior.  Then,
emergence  is  understood  as  a  complexity  increase  in  the  dynamics
under  consideration,  where  the  K-entropy  characterizes  and  summa-
rizes  the  time  evolution  of  many  physiological  details.  Analogies  and
their limits with respect to the dynamics of selected physical many-parti-
cle systems are investigated. 

Introduction1.

It  is  probably  impossible  to  trace  brain  research  back  to  some  incep-
tion,  but  as  far  as  we  can  see,  two  major  goals  have  always  been  in
the focus of interest. First, we want to understand how the brain oper-
ates, since it is of utmost importance and ability. Second, much effort
goes  into  medicating  diseases  and  malfunctions.  The  pertinent  meth-
ods  and  approaches  frequently  are  cross-disciplinary  and  sometimes
also  involve  analogies  to  computational  or  engineering  questions,  for
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example, neuronal networks and cellular automata. Particularly in the
mind-brain context, even philosophers like to address related issues. 

Concerning  analytical  tools  of  investigation,  electrophysiology  and
particularly  electroencephalograms  (EEGs)  are  quite  successful,  since
they  measure  an  effective  physical  output  of  the  brain,  in  an  uncon-
scious or “unbiased” manner. We cannot even prevent our own ongo-
ing  EEG  pattern,  whereas  reaction  to  mental  tasks  strongly  depends
on external circumstances, such as the way a task gets posed or intro-
duced.  In  [1]  a  far-reaching  overview  of  most  aspects  in  the  field  of
EEG techniques and interpretations is provided. Then there is magne-
toencephalography (MEG), a related and nevertheless complementary
way  to  look  at  the  internal  electric  brain  activity  mainly  caused  by
ionic currents within the neurons. We mention the work of [2], partic-
ularly  because  of  its  thorough  way  of  tackling  the  effect  of  stimuli.
However,  we  do  not  enter  the  vast  research  domain  concerning  spa-
tial  resolution  between  functional  “modules”  within  the  brain.  In
addition  to  EEG  and  MEG,  there  are  various  pertinent  tomography
techniques,  ultrasound  imaging,  magnetic  resonance  imaging  and
more. 

Instead, we go back to EEG properties, where we highlight an inter-
esting  category  of  features  due  to  nonlinearity  in  the  underlying
dynamics. The question of how the EEG relates to the theory of differ-
ential  equation  sets,  particularly  ordinary,  finite  dimensional  and
autonomous ones, has a long and sometimes doleful tradition (doleful
primarily due to the largely unknown amount and origin of noise). In
short, we deal with the question of determinism, attractor and phase-
space  dimensionality,  dissipation  and  their  implications  for  mental
brain  performance.  We  think  [3–7]  have  contributed  interesting  new
insights, but particularly toward the end of the past century, many fur-
ther  instructive  and  seminal  investigations  have  emerged.  The  field
continues to be active and sometimes beyond electrophysiology; mean-
while  it  extends  to  qualitatively  new  viewpoints  of  neuronal  dynam-
ics; for contemporary examples see [8–11].

We  also  dedicated  ourselves  to  related  questions,  with  particular
emphasis on generalized entropies [12]. In the past we mainly investi-
gated  semi-invasive  and  also  invasive  recordings,  and  so  we  were  in
quite a comfortable situation with respect to a trustworthy distinction
between  noise  and  “true”  signal.  Our  present  article,  however,
intends  to  make  a  significant  additional  step.  To  a  great  extent  we
abandon  the  ambition  to  explain  observable  brain  functions  in  a
mechanistic  way;  instead,  we  ask  what  the  minimum  requirements  of
emergence  are.  We  anticipate  that  one  of  our  major  ingredients  will
be  the  use  of  complex-valued  sets  of  nonlinear  differential  equations,
since their special properties prove extremely beneficial. However, we
still maintain the demand for an EEG-like output of our “brain simu-
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lations.”  But,  analogous  to  several  amazingly  powerful  solid-state
theories, we deal with a jellium approach that “smears out” the inter-
nal microstructure of neurons. At first glance this appears rather unre-
alistic,  but  we  carefully  restrict  ourselves  to  the  quite  limited  catalog
of  properties  and  abilities  of  such  models.  Conversely,  in  our  view
there are also firm justifications within electrophysiology, particularly
since  an  EEG  channel  represents  a  summary  output  produced  by
many largely synchronized neurons. Thus, we measure voltage fluctua-
tions  that  in  fact  originate  from  neuronal  activity,  but  on  the  other
hand,  the  EEG  is  rather  unspecific  to  neuronal  interconnection  in  the
near  (say,  a  few  millimeters)  environment.  On  top  of  that,  even  EEG
channels all over the scalp are not too different in their statistical long-
term  properties,  at  least  in  the  absence  of  external  stimuli.  Further,
the  EEG  certainly  cannot  settle  the  question  of  why  we  are  able  to
think,  to  feel  or  to  communicate.  Regarding  EEGs,  apparently  the
overall  situation  is  not  that  far  from  our  intention  to  scrutinize  the
dynamics of jellium models. 

Thus, we are left with the question of what physical quantities com-
prise the power to notice or to assess emergence. We adopt the point
of view that the Kolmogorov entropy (see below) largely suits the per-
tinent demands, although the realm of living beings definitely exhibits
mysterious  things  far  beyond  such  well-defined  quantities.  The  K-
entropy  measures  the  complexity  in  dynamical  systems,  and  hence,  it
shows how much such a system is unpredictable or “creative.” More-
over, an increase in any kind of entropy is also inherently an informa-
tion  loss,  and  again  we  think  this  points  to  a  potential  emergence  of
the unexpected. 

Dynamical Equation Sets and Electroencephalograms2.

Jellium (or Mean Field) Models2.1

As we understand it, in a physiology context, models within the cate-
gory  under  consideration  are  mainly  addressed  as  mean  field  models,
rather  than  jellium  approaches.  The  two  terms  just  accentuate  differ-
ent aspects, and so we do not distinguish them anymore (with regard
to  dynamics,  actually  both  expressions  appear  somewhat  inadequate
or  misleading).  For  instance,  [13,  14]  have  attracted  our  attention,
and  [15]  provides  an  interesting  attempt  to  bridge  the  gap  between
physics  and  physiology  as  well  as  between  micro-  and  macroscopic
theories.

Usually  such  mean  field  approaches  deal  with  the  summary  effect
of  excitatory  and  inhibitory  neuronal  activity,  the  latter  being  a  sup-
pression  of  the  postsynaptic  overall  potential  caused  by  a  large  num-
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ber of neurons. Many of the potential generating mechanisms may be
found in the literature we have quoted so far. However, in this paper
we  pursue  another  course.  We  model  important  aspects  of  brain
dynamics  by  means  of  a  manageable  number  of  degrees  of  freedom;
that  is,  we  consider  dynamical  equation  sets  attended  with  a  limited
phase space. Obviously this gateway to a description of many-neuron
activity  has  already  been  considered  ([8,  14]  are  examples),  but  these
authors largely focused on aspects we do not primarily have in mind.
Our  equation  sets  are  not  supposed  to  map  physically  true  neuronal
processes  such  as  firing  patterns  or  variations  in  a  summary  voltage
onto  a  few  dynamical  variables.  We  consider  systems  that  are  not
motivated  or  justified  on  a  physical  construction  level,  and  so  their
individual variables generally do not correspond to physical quantities
that might be subject to a measurement. Instead, our chosen equation
sets  are  carriers  for  mathematical  properties  that  we  purposely  select
in  order  to  meet  certain  electrophysiological  facts.  At  first  glance  this
is  just  a  fit,  but  we  have  obtained  evidence  that  there  is  more  to  it.
Such models also reproduce things we did not at all plug in initially. 

We may exemplify the preceding statements by a well-known physi-
cal  theory,  conveniently  also  in  a  jellium  context.  We  think  of  Som-
merfeld’s  way  of  describing  the  electron  gas  in  solids.  This  ansatz
ignores  the  atomic  microstructure  in  a  lattice,  but  on  the  other  hand,
it  makes  use  of  the  most  important  properties  of  (quasi)  free  elec-
trons; see [16]. Electrons with energies close to the Fermi edge are rele-
vant  to  most  (but  not  all)  of  the  macroscopic  properties  of  metals,
including  electronic,  magnetic,  thermal  and  even  elastic  phenomena.
Therefore, the Sommerfeld approach in some sense is much more suc-
cessful than a cursory guess (based on the theory of atoms and on geo-
metrical  lattice  structure  arguments)  might  suggest.  Likewise,  we
ignore  the  abilities  of  a  single  neuron  as  well  as  the  internal  spatial
structure of brain tissue, and we purposely focus on aspects where we
have a chance to get by without these difficult-to-handle things. 

On top of that, dynamical equation sets based on “true” physiolog-
ical  quantities  and  known  neuronal  mechanisms  suffer  from  a
notoriously  large  parameter  space;  [13]  brings  the  problem  to  light.
However,  there  is  also  an  opposing  fact.  Complex  systems  (in  the
spirit  of  processes  attended  with  nonzero  Kolmogorov  entropies)
described  in  high-dimensional  phase  spaces  usually  are  “less  com-
plex” than the number of phase-space dimensions might admit. Some-
times this observation is addressed as the presence of sleeping degrees
of  freedom.  Atmospheric  physics  probably  provides  the  most  striking
example, since there we face collective modes that summarize the over-
all dynamics into macroscopic motions and processes. Thus, the num-
ber  of  actual  phase-space  dimensions  gets  dramatically  reduced.
Apparently  this  applies  to  all  complex  systems,  and  in  this  particular
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respect, we assume brain complexity to be no exception. Neurons gen-
erally  tend  to  synchronize,  and  in  the  case  of  epileptic  seizures  this
even  becomes  strongly  manifest  in  the  EEG.  Based  on  intracranial
multichannel  EEGs,  we  quantified  the  “remaining”  complexity  [12],
namely  what  finally  is  left  over  in  the  signal  where  these  (poorly
understood) collective long-range effects are operative. Besides certain
unavoidable  numerical  ambiguities,  in  our  view  the  resulting
Kolmogorov  entropy  as  well  as  phase-space  dimensionality  then  are
irreducible; that is, they cannot be further lowered by a new represen-
tation of brain activity in another set of dynamical variables. 

A Suitable Example of Jellium Models2.2

At this point we would like to present a numerical example that quali-
tatively  and  to  a  fair  extent  also  quantitatively  meets  our  claims  and
intentions.  We  look  for  a  dynamical  system  with  three  major  charac-
teristics, namely: (i) to be irregular in the sense of deterministic chaos;
(ii)  to  be  almost  oscillatory  in  all  the  solution  components,  that  is,
without spikes, steps, too-strong frequency changes or other extraordi-
nary variations as a function of time; and (iii) it should be strongly dis-
sipative,  since  we  deal  with  biological  processes.  The  archetypal
Lorenz  model  indeed  satisfies  all  these  needs,  and  later  we  shall  also
consider  alternate  possibilities.  Recall  that  we  just  intend  to  establish
certain mathematical properties, and we largely will get rid of the spe-
cific features of this particular system. For instance, concerning physi-
ological interpretation, the form of the nonlinearities in the following
equations  does  not  enter  our  present  considerations.  We  rewrite  the
Lorenz  system  in  complex  variables  zi(t)  xi(t) + iyi(t)  with  yi(t)

being the imaginary parts, namely

z1

 σ(z2 - z1)

z2

 -z1z3 + rz1 - z2

z3

 z1z2 - bz3.

(1)

With  regard  to  the  (six  altogether)  real  and  imaginary  parts  and  the
renaming yi  xi+3, as well as complex multiplication, we get the six-

dimensional system

x1

 σ(x2 - x1)

x2

 -x1x3 + x4x6 + rx1 - x2

x3

 x1x2 - x4x5 - bx3

x4

 σ(x5 - x4)

x5

 -x1x6 - x3x4 + rx4 - x5

x6

 x1x5 + x2x4 - bx6

(2)
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with  eight  nonlinearities,  and  we  point  to  the  fact  that  even  the  first
three  equations  for  the  real  parts  differ  from  the  original  Lorenz
model.  We  consider  one  of  the  standard  parameter  settings,  namely

σ  r  b  16  40  4, which in the original system leads to chaotic

solutions  or  trajectories  x(t).  However,  with  these  parameters,  equa-
tion  (2)  produces  just  dissipative  limit  cycles.  In  other  words,  if  we
take  the  zi(t)  in  equation  (1)  to  be  real  numbers,  as  is  the  case  in  the

original  Lorenz  system,  we  notice  that  properties  such  as  chaos  or
periodicity (and also fixed points) generally do not survive transforma-
tions between related systems in the spirit of equations (1) and (2).

Now we may apply a parameter modification to equation (2) that,

in  our  view,  entails  a  remarkable  change.  The  setting  σ  r  b  no

longer  means  just  three  real  numbers;  instead  we  consider  these
parameters  to  be  three  projection  operators  onto  the  real  axis  in  the
Gaussian  plane.  For  the  sake  of  transparency,  we  present  the  altered
equation (2) in full. This reads 

x1

 16(x2 - x1)

x2

 -x1x3 + x4x6 + 40x1 - x2

x3

 x1x2 - x4x5 - 4x3

x4

 0(x5 - x4)

x5

 -x1x6 - x3x4 + 0x4 - x5

x6

 x1x5 + x2x4 - 0x6,

(3)

where  the  terms  in  the  equations  for  the  imaginary  parts,  provided
they  include  any  of  the  parameters,  just  vanish.  Note  that  one  of  the
equations  reduces  to  x4


 0,  and  so  x4(t)  keeps  just  the  constant

value of its initial condition (we might condense equation (3) into five
irreducible  ones).  As  indicated  previously,  the  solutions  of  equa-
tion�(3) are worthy to be inspected in more detail.

Figure 1 presents a three-dimensional phase plot of the real parts in
equation  (3),  namely  the  components  (or  coordinates  in  a  scalar  per-
ception)  x1  through  x3.  Obviously,  the  major  properties  of  the

original  Lorenz  system  are  still  there.  However,  we  stress  that  the
additional  contributions  (beyond  the  Lorenz  system)  x4x5  and  x4x6
are by no means negligible. By virtue of the chosen initial conditions,
there  is  x4(t) ≡ 1.0  permanently,  and  x5(t)  as  well  as  x6(t)  exhibits

amplitudes  comparable  to  the  three  real  parts  plotted  in  Figure  1.  In
short, Figure 1 just mimics the Lorenz system; in fact, however, it dis-
plays a different one that largely brings along the same properties. 

Next  we  may  look  at  the  two  nonconstant  imaginary  parts  as  a
function  of  time;  that  is,  at  last  we  consider  the  relevant  quantities
that are supposed to simulate true EEGs. In Figure 2, we picture x6(t)
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or Im z3(t), and it is one of our more important findings that the char-

acteristics  of  the  Lorenz  model  have  disappeared  almost  completely.
We  shall  disregard  the  scaling  of  time  and  intensity,  since  in  equa-
tion�(3)  this  might  be  organized  arbitrarily.  In  the  untouched  Lorenz
system,  time  and  state  variables  are  rescaled  in  a  peculiar  way  that
comprises thermal and geometrical quantities of the respective convec-
tion problem, and we do not discuss these issues any further. 

Figure 1. This  is  not  the  Lorenz  system;  we  plot  the  three  real  parts  x1
through  x3  out  of  the  six-dimensional  equation  (3);  see  text.  With  regard  to

the  Lorenz  model,  the  three  solution  components  used  already  involve  two
more nonlinearities that numerically are of the same order as the variables xi
in the equations for the xi


 i  1, 2, 3.

Figure 2. Again we look at equation (3), but this time we plot the time depen-
dence of one of the imaginary parts, namely x6(t) or Im z3(t), that picture our

“simulated EEG.” The peculiarities of the Lorenz model have vanished. Note
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also that in equations (2) and (3) (just as in the original Lorenz model) there

is  constant  divergence ∇ · x

(t)  of  the  vector  field x


(t),  and  so  this  divergence

just equals the sum of all the d Lyapunov exponents ∑i1
d λi (see text), which is

the dissipation.

While Figure 2 shows the long-term evolution, Figures 3 and 4 are
devoted to the shape of typical EEG features. In a sense, Figure 3 may
be taken as an “EEG” that exhibits certain artifacts, whereas Figure 4
appears  not  too  different  from  a  surface  EEG  of  a  healthy  individual
with  (preferably)  closed  eyes.  Regarding  physiological  interpretation,
we  may  hardly  be  able  to  proceed  further,  but  this  is  not  really  our
goal.  We  intend  to  simulate  the  EEG-generating  mechanisms  in  more
depth than just optical similarity between the calculation’s output and
a true measurement. We have the strong impression that agreement in
certain mathematical properties of the dynamics indeed means compa-
rable peculiarities or basic characteristics in the signal-generating pro-
cesses.  Apparently  some  of  the  complexity  indicators  (above  all
Kolmogorov  entropy  and  Lyapunov  spectrum,  see  below)  together
with  a  suitable  phase-space  dimensionality  have  the  power  to  act  in
the  desired  manner.  We  are  aware  that  an  integral  quantity  such  as
the  EEG  or  its  numerical  simulation  cannot  admit  too  far-reaching
conclusions on a neuronal level; we have already addressed the point.
However,  in  this  paper  we  would  like  to  single  out  a  major  issue,
namely model simulation of emergence, where our tools and methods
presented here actually might turn out to be sufficient. 

Figure 3. As  in  Figure  2,  but  this  time  we  stretch  a  small  segment  of  the
abscissa.  We  observe  substantial  similarities  to  a  typical  surface  EEG  that,
however, still exhibits certain artifacts that are not likely to be of physiologi-
cal origin. Again we use the Lorenz default units; see text.
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Figure 4. Unlike in Figure 3, we now display Im z2(t). This resembles a surface

EEG  of  a  (healthy)  individual  with  closed  eyes.  In  the  text  we  substantiate
that  the  units  may  well  be  adapted  to  physiologically  realistic  situations,  a
procedure that then simply would be part of the numerical model.

Alternate Possibilities for Neuronal Dynamics2.3

The  previous  section  exemplifies  that  it  is  quite  possible  to  separate
off  the  solution  specifics  of  a  dynamical  model  system  from  the
wanted  properties  in  terms  of  generalized  entropies,  dissipation  and
to  some  extent  also  frequency  spectrum;  see  our  pertinent  Figures  2
through  4.  Nevertheless,  the  question  arises  concerning  what  alter-
ations  appear  if  we  start  with  another  system  with  entirely  different
properties.  We  experienced  that  our  three  criteria  (i)–(iii)  in  Sec-
tion�2.2,  among  them  the  requirement  of  strong  dissipation,  in  fact
are indispensable. This may be visualized by means of the generalized
driven Van der Pol oscillator that, for the sake of practical ease, again
is  represented  as  a  set  of  three  autonomous  first-order  equations.  A
sketchy  survey  over  the  parameter  space  and  even  more  useful  infor-
mation  is  provided  by  [17].  In  analogy  to  the  above,  we  again  apply
the complex variables zi(t)  xi(t) + iyi(t). Altogether, the system

z1

 z2

z2

 a1 - z1

2z2-z1
n+k cos z3

z3

 Ω

(4)

serves now as our new example that replaces equation (1). For param-
eters attended with chaotic solutions, in the original system (real vari-
ables  and,  for  the  sake  of  full  comparability,  rescaled  time  according
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to equally rapid time variations as in the Lorenz system) there is only
minor  dissipation.  If  we  take  the  discussed  Lorenz  model  as  a  bench-
mark,  things  get  worse  if  we  gradually  approach  the  Hamiltonian
limit  case  with  no  dissipation.  Clearly,  from  a  technical  viewpoint,  a
related procedure as in the previous section then is possible again. But
the outcome of the enlarged system that also accommodates the imagi-
nary parts no longer exhibits the outward appearance of an EEG.

We  think  it  is  instructive  to  look  at  various  well-known  toy  mod-
els,  since  they  cover  much  of  the  phenomenology  within  the  realm  of
dynamical  systems  theory.  This,  however,  cannot  be  the  subject  mat-
ter of our present paper. There are equation sets with a spiky solution
component  as  well  as  further  off-standard  features;  for  example,  the
four-dimensional Rössler system [18] is of this type. Conversely, there
exist  systems  whose  solutions  in  almost  every  respect  resemble  the
Lorenz  model:  the  Rikitake  two-disk  generator  is  the  example  we
have in mind; see [19] for an interesting application thereof. It is quite
elaborate to explore the situation for higher phase-space dimensionali-
ties,  and  also  for  lengthy  equations  with  complicated  nonlinearities.
Therefore,  our  model  systems,  generalizations  and  parameter  settings
have been chosen with care, although they are just a selection from all
the possibilities. 

It may be noteworthy that there is also a qualitatively different way
to tackle this category of questions, namely complex-valued dynamics
that mimic EEGs in all (or most) of the crucial respects. We still post-
pone the phenomenon of emergence, and so for the moment we stick
to  simulated  time  series.  The  alternate  possibility  refers  to  path  inte-
grals in the Gaussian plane, namely 


Γ

f(z)dz  
a

b
f(z(t))z (t)dt  F(z(b)) - F(z(a)), (5)

where the function f(z(t)) and the time derivative z (t) are multiplied in
the  spirit  of  complex  numbers.  Provided  f(z)  is  analytic  within  some
domain under consideration, the Cauchy theorem states that the inte-
gral does not depend on the path Γ between the given points (or actu-
ally moments) a and b that correspond to the beginning and end of Γ.
This  way  we  recognize  many  interesting  results  in  complex  analysis,

such  as  ∮ Γf(z)dz  0  for  closed  loops,  but  this  is  not  really  what  we

are after. Rather, we aim at the infinity of possibilities to parametrize
the  curve  Γ.  Since  equation  (5)  does  not  refer  to  some  specific
parametrization, for any choice of f(z) as well as z(a) and z(b) we face
a  wealth  of  different  time-dependent  signals.  Things  get  significantly
more  complicated  if  the  antiderivative  F(z)  again  is  a  variable  that  is
part of a coupled equations set, but this is not really a matter of prin-
ciple.  Clearly,  it  is  close  to  impossible  to  gain  an  overview  about  the
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numerical outcome of these many options, but we appreciate that we
definitely are not limited to the few model systems we have shown or
at least addressed.

Neuronal Firing Patterns, Electroencephalograms and Emergence3.

Modeling of Firing Patterns3.1

In  view  of  the  hurdles  to  overcome,  we  renounce  the  already  intro-
duced  parametrized  Cauchy  integrals.  Instead,  we  return  to  our
complex-valued  straightforward  generalization  of  dynamical  systems
with  well-chosen  properties.  But  this  time  we  focus  on  the  peculiari-
ties  of  firing  neurons  within  the  framework  of  jellium  models.  These
two  seemingly  contradictory  viewpoints  for  neuronal  dynamics
become  reconciled  if  we,  analogous  to  the  EEG  case,  concentrate  on
the  relevant  mathematical  properties  of  firing  in  general,  rather  than
on the physically observable action potential of a single neuron.

Again we consider equation (3) with some zero terms in the imagi-
nary  parts  due  to  projection  onto  the  real  axis.  Its  last  (sixth)  equa-
tion 

x6

 x1x5 + x2x4 - 0x6 (6)

gets modified now in such a way that the last term constitutes a drive,
rather than a dissipative term (i.e., a damping) with negative prefactor
such as in equation (2). This reads

x6

 x1x5 + x2x4 + 4x6, (7)

and in Figure 5 we consider just the component x6(t) out of the com-

plete  set  of  equation  (3)  with  the  only  alteration  according  to  equa-
tion  (7).  The  nearby  symmetry  of  peaks  and  troughs  in  fact  differs
from  what  we  know  about  neuronal  firing  patterns  (or  spike  trains).
We also may shape such patterns by means of quite simple measures;
for example, the minor parameter modulation

x6

 x1x5 + x2x4 + 4 + 0.01x6x6 (8)

with 1% of the x6  amplitude renders things somewhat more irregular;

see  Figure  6.  However,  we  shall  not  try  to  optimize  such  patterns,
since they are just model simulations. Instead, we aim at those mathe-
matical  properties  that  carry  the  potential  for  emergent  phenomena,
and we ask whether they relate to signals that model different types of
neuronal  dynamics,  primarily  EEGs  and  firing  patterns.  In  this
respect,  we  hope  for  certain  complexity  measures,  above  all  the  Kol-
mogorov  entropy,  as  we  have  stated  already.  We  intend  to  substanti-
ate these anticipations. 
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Figure 5. In an oversimplified graphic, we describe the properties of firing neu-
rons,  although  we  never  leave  the  scope  of  jellium  models.  On  this  account,
we  replace  a  dissipative  term  in  equation  (2)  by  a  “drive”;  see  text.  The  out-
ward properties of the signal mimic a stronger chaos than in Figures 3 and 4,
but  as  a  numerical  fact,  the  actual  K-entropy  here  is  lower  than  in  the  EEG
case. This is one of the possibilities to achieve emergence caused by intercon-
nection  of  neurons  to  a  totality  that  is  assembled  such  that  the  outcome  is
EEG-like.

Figure 6. With  respect  to  Figure  5,  we  now  apply  a  minor  change  according
to  equation  (8),  in  order  to  illustrate  a  possibility  to  shape  such  signals.

The  full  Lyapunov  spectrum  reads  in  this  example  0.69  0  0 

-0.79  -4.17  -13.61  reciprocal  natural  time  units.  The  two  degenerate

zeros  arise  from  the  special  situation  in  the  fourth  line  of  equation  (3)  (see
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text),  and  in  an  irreducible  representation  we  get  the  same  spectrum,  as
expected, except that there is only a single zero exponent left over.

Complexity Indicators3.2

The relationship between complexity and emergence is not always evi-
dent.  Part  of  the  reason  is  the  fact  that  an  increase  as  well  as  a
decrease  in  complexity  may  cause  pattern  formation  or  self-organiza-
tion. To put it simply, an interacting many-particle system on the way
to  (usually  thermodynamic)  equilibrium  frequently  undergoes  an
“optimum situation” close to equilibrium where spatial and/or tempo-
ral  structures  preferably  occur.  Then,  if  we  proceed  further  toward
equilibrium  from  this  quasi-equilibrium,  we  lose  the  structures  and
thus approach statistical disorder.

In  this  paper  we  cover  just  one  of  these  aspects  or  possibilities,
with regard to temporal structures only. We purposely focus on situa-
tions  where  an  increase  in  complexity  offers  the  chance  for  emergent
phenomena,  in  accordance  with  common  sense.  Under  these  assump-
tions,  the  Kolmogorov  entropy  as  well  as  the  entire  Lyapunov  spec-
trum  are  our  major  indicators  of  complexity,  and  we  recall  our  brief
description thereof in [20]. 

Summarized  even  more  briefly,  we  retrace  the  method  of  Benettin
et  al.  to  calculate  Lyapunov  exponents  (LEs)  given  in  [21],  supple-
mented  by  an  orthogonalization  procedure  in  order  to  also  harvest
the  local  expansion  rates  in  directions  other  than  the  principal  one.
This  method  is  based  on  a  direct  evaluation  of  distances;  namely  at
every  mesh  point  it  measures  to  what  extent  initially  nearby  trajecto-
ries  are  separated  after  a  time  step.  On  this  score,  let

ξit  0i  1, … , d  be  a  set  of  d  orthonormal  d-dimensional  vec-

tors,  d  being  the  number  of  phase-space  dimensions.  This  set  may
have any orientation, and the length of all the d vectors is normalized

to  some  small  value  ξ.  The  points  x0 + ξi0  serve  as  initial  condi-

tions  for  the  neighboring  trajectories  of  the  fiducial  one  x(t),  and  by
virtue  of  a  dynamical  law  such  as,  for  example,  the  one  in  equa-
tion�(2), we inspect their time evolution after a mesh interval τ. Then,
the  difference  vectors  between  the  neighboring  trajectories  and  the
fiducial  or  primary  one  provide  a  new  set  ξi

*(τ)  that  is  no  longer

orthogonal.  These  vectors  have  changed  their  directions  as  well  as
their magnitudes, and after a few further integration steps, all of them
would  collapse  into  the  direction  of  maximum  average  separation.
Therefore,  at  every  time  step  we  reorthogonalize  them  by  means  of
the  well-known  Gram–Schmidt  procedure,  and  we  rescale  them  to
their  original  magnitude  ξ.  This  way,  in  the  next  step  we  arrive  at
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some  new  orthonormal  set  ξi(τ)  that,  by  further  integration  of  the

dynamical  law  under  consideration,  yields  ξi
*2τ,  and  so  on.  The  d

LEs λi then may be written as 

λi  lim
N→∞

1

N

n1

N

γi(nτ), (9)

where the γi(nτ) are the local expansion exponents

γi(nτ) 
1

τ
ln

ξi∥
* (nτ)

ξ
, (10)

and the index ∥ denotes the projection onto the directions ξi(nτ) of the

respective  orthonormal  set.  For  i  1,  that  is,  the  direction  of  maxi-
mum average growth, this projection has no effect, since at every time
step  the  directions  of  ξi1

* (nτ)  and  ξi1(nτ)  coincide:  the  orthogonal-

ization  gets  started  this  way.  The  d  LEs  λi  are  now  evaluated

according  to  equations  (9)  and  (10),  and  the  ξi(nτ)  always  arrange

themselves according to the size of their respective LEs λi, namely

λ1 ≥ λ2 ≥ ⋯ ≥ λd. (11)

After  all,  the  small  reorthonormalization  steps  nτ  are  not  explicitly
stated  anymore,  and  the  time  evolution  of  local  (thus  also  momenta-
neous) quantities such as the γi(t) is considered to be continuous.

Further, in a commonly used notation a Lyapunov spectrum is said
to  be  the  set  of  all  the  d  LEs.  At  sufficiently  large  d,  these  exponents
then  may  be  represented  as  a  spectral  density.  A  system’s  solution  or
trajectory  x(t)  is  regarded  as  chaotic  if  at  least  one  of  the  d  LEs  λi  is

positive. In the most important special case of a single so-called basin
of  attraction,  we  may  now  also  quantify  the  Kolmogorov  entropy:  it
represents  the  sum  of  the  positive  LEs,  and  frequently  this  is  said  to
be  the  “complexity”  of  a  system.  Actually  it  is  the  sum  of  the  non-
negative LEs, since the periodic (or quasi-periodic) case attended with
zero  complexity  is  also  admitted.  Further,  the  sum  of  all  the  d  LEs  is
the  dissipation,  that  is,  the  (global  or  average)  shrinking  rate  of  the
phase volume. A zero dissipation again is a special situation of utmost
importance. In this case, a system is meant to be Hamiltonian, but in
a biology context that is less common. 

Emergence in Our Category of Models3.3

With  regard  to  the  above  preliminaries,  it  is  now  quite  straightfor-
ward  to  recognize  (and  to  quantify)  the  phenomenon  of  emergence.
However, first we should once again supplement a technical issue. We
tacitly  have  insinuated  that  to  rewrite  model  systems  with  desired

84 H. R. Moser and R. Otte

Complex Systems, 26 © 2017



dynamical  properties  in  a  complex-valued  manner  also  answers  our
most urgent questions concerning emergence. Moreover, we suggested
that alternate procedures such as indicated in equation (5) in all prob-
ability would prove troublesome. In various respects, the special prop-
erties  of  complex  numbers  indeed  match  our  needs,  and  so  they  do
much  more  than  just  enlarge  a  given  dynamical  system.  This  may  be
further illustrated in a “minimum example.” Consider the system

z1

 z2

z2

 -z1 - iz1

2
(12)

that in second-order notation reads z¨  -z - iz 2, which does not even
have  an  index  anymore,  and  the  bar  means  complex  conjugate.  Note
that there is just a single nonlinearity, namely the square that actually
is  the  simplest  imaginable  one.  With  z1  x1 + ix2  and  z2  p1 + ip2,

we recover the quite well-known four-dimensional chaotic and conser-
vative  Hénon–Heiles  (HH)  model  [22],  where  the  xi(t)  and  pi(t)  are

the position and momentum coordinates, respectively.
From a physical viewpoint, it appears convenient and instructive to

look at the HH system by means of its Hamiltonian function 

H(x1, … , xN, p1, … , pN) 
1

2

i1

N pi
2

mi

+V(x1, … , xN), (13)

which is now specified as

H(x1, x2, p1, p2) 
1

2

p1
2

m
+
p2
2

m
+ x1

2 + x2
2 + x1

2x2 -
1

3
x2
3, (14)

and  by  virtue  of  the  canonical  equations,  again  renders  the  original
HH model (not shown here). It may be helpful to interpret the result-
ing dynamics as the motion of a point mass in a suitably shaped bowl,
the  xi(t)  being  spatial  coordinates  in  the  plane  as  shown  in  Figure  7,

and  the  momentaneous  height  refers  to  potential  energy.  Then,  the
total energy is determined by the initial conditions and serves as a con-
trol  parameter.  As  long  as  we  stick  to  a  representation  in  terms  of
scalar  variables,  equation  (12)  probably  constitutes  one  of  the  sim-
plest ways to generate chaos, or rather to “write it down.” The actual
HH  model  expressed  by  four  real-valued  variables  looks  significantly
more complicated, in particular with regard to its three nonlinearities.
Clearly,  the  HH  system  is  Hamiltonian,  and  hence,  it  may  hardly
serve  as  a  representative  for  dynamical  models  in  biology-related
mechanisms.  However,  complex  variables  are  able  to  condense
remarkable  properties  into  formally  simple  systems,  as  we  already
experienced  in  the  dissipative  cases  related  to  equation  (1).  And  the
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wealth of possibilities that accompany equation (5), we have not even
touched yet. Altogether, we are firmly convinced that complex-valued
models  carry  a  tremendous  potential  with  respect  to  nontrivial  (and
yet  unknown)  dynamics,  particularly  within  the  domain  of  collective
neuronal processes. 

Figure 7. Two-dimensional  phase  plot  (spatial  coordinates)  of  the  HH  model
that  is  our  example  of  Hamiltonian  systems.  These  are  not  very  suitable  for
our  modeling  purposes,  since  they  inherently  already  comprise  the  structure
achieved  by  the  complexification  procedure,  and  so  it  is  hard  to  get  rid  of
their special features. This agrees well with the obvious circumstance that bio-
logical systems generally are strongly dissipative.

Now  we  keep  our  promise  to  present  emergent  phenomena,  to  the
extent where they show up in the so-far-presented systems. In the pre-
ceding  section  on  complexity  indicators,  we  announced  that  we
would  restrict  ourselves  to  cases  associated  with  a  (dynamical)  com-
plexity increase, and we substantiated that there are also qualitatively
different  situations.  We  evaluate  the  Kolmogorov  entropy  of  equa-
tion�(3)  that  simulates  our  model  EEG;  see  Figures  2  through  4.  This
is  equal  to  the  principal  LE  λi1,  since  the  system  exhibits  only  one

positive LE. In the default units of the Lorenz system (see above), we
obtain  K  1.27  reciprocal  time  units,  a  value  that  serves  now  as  a
benchmark  for  further  numerical  K-entropies.  Figures  5  and  6  based
on  equations  (7)  and  (8)  yield  significantly  lower  entropies,  namely
K  0.67 and K  0.69, respectively. 

At  first  glance  these  numerical  findings  are  not  overly  surprising,
but  we  point  to  certain  facts  that  in  our  view  are  remarkable.  The
spiky  solutions  in  Figures  5  and  6  that  simulate  the  neuronal  firing
properties  actually  should  manifest  a  stronger  chaos,  particularly
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since the “basic frequency” apart from the spikes compares to the one
in  Figure  2.  In  most  cases  (i.e.,  mathematical  models)  that  can  be
encountered,  this  is  so.  We  think  the  EEG-like  situation  in  Figure  2
has undergone a kind of emergence, relative to the neuron-like case. 

We are aware of contributions that provide quite a straightforward
manner  to  tackle  emergence,  and  some  of  the  proposed  concepts  in
fact overlap with our own work. This is expected, since the pertinent
ideas  certainly  cannot  be  completely  disjoint.  A  recent  analysis  on  a
general  level  is  presented  in  [23],  while  [24,  25]  are  much  closer  to
neuronal  physiology.  The  latter  approaches  introduce,  among  other
issues, new aspects concerning the interesting viewpoint of phase tran-
sitions  in  the  brain,  and  this  is  also  the  crucial  point  in  the  seminal
work of [26]. Clearly, our present approach ignores or at least under-
estimates  all  the  spatial  aspects  in  the  greater  context  of  emergence.
However,  the  spatial  neuronal  complexity  is  really  immense,  and  so
we  are  still  far  from  a  macroscopically  sound  description.  Hence,  to
“split off” EEG-related dynamical aspects in our view is justified. 

Another  issue  concerns  the  general  phenomenon  of  complexity
reduction  due  to  collective  behavior  of  many  constituents;  we  have
already  addressed  this  point.  The  dynamics  of  an  EEG  by  no  means
can  map  the  actual  brain  complexity  in  the  sense  of  physiological
mechanisms  and  mental  abilities.  However,  this  circumstance  cannot
fully  compensate  for  the  complexity  increase  caused  by  the  assembly
of  many  neurons,  and  we  stick  to  our  plausible  (but  oversimplified)
picture of emergence detected in the K-entropy. 

As  an  obvious  improvement,  we  might  repeatedly  apply  our  sug-
gested procedure and further complexify, say, the set of equation (2),
and  so  the  newly  achieved  number  of  phase-space  dimensions  would
be as many as 12 now. This then already reaches the real-life value we
presented  in  [12]  based  on  particularly  low-noise  intracranial  EEGs.
This  way,  in  all  probability  we  (realistically)  would  attain  more  than
one  positive  LE  where,  however,  the  parameter  handling  would  be
less  trivial.  On  the  other  hand,  pragmatically  speaking,  we  do  not
expect  too-prominent  new  dynamical  features  as  we  proceed  further
along  this  path,  since  the  major  novelties  are  “used  up”  after  a  one-
time complexification. 

In  this  respect,  it  may  be  instructive  to  consider  the  HH  system  of
this  section  again.  This  system  is  conservative,  and  so  the  preceding
complex  expansion  is  already  present.  Conversely,  the  reduction  to  a
system such as equation (12) thus is always possible (although it may
not  everywhere  look  that  simple),  which  is  easiest  seen  in  conjugate
variables.  Hamiltonian  systems  do  not  (or  to  a  much  lower  extent)
carry  the  potential  for  emergence  in  the  bearing  of  dynamical  com-
plexity  increase  by  virtue  of  simple  measures,  since  the  expansion
under consideration inherently is done already. In simple terms, dissi-
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pation  is  an  indispensable  prerequisite  to  emergence  in  the  spirit  of
this article, namely a type of emergence that likely occurs without cir-
cumstances that too rarely are present. 

Conclusion and Outlook4.

In  sum,  we  have  established  a  relation  between  electrophysiological
output  of  the  brain  and  a  signal-generating  mechanism  that  models
various  important  dynamical  aspects,  among  them  the  outward
appearance  of  an  electroencephalogram  (EEG)  amplitude’s  time
dependence.  We  adopt  the  point  of  view  that  the  more  properties
(and details) match, the more it becomes unlikely that this is all acci-
dental.  The  agreement  between  theory  and  experiment  is  not  yet  a
proof  of  the  theory  under  consideration,  but  in  an  overall  view,  it  is
still  one  of  the�strongest  and  most  meaningful  tools  in  science.  We
substantiated that the Kolmogorov entropy together with phase-space
and  attractor  dimensionality  as  well  as  dissipation  are  the  most
instructive  quantities  for  our  ansatz  to  tackle  the  question  of  emer-
gence.  Then,  in  a  neuronal  context  it  is  quite  obvious  that  we  scruti-
nized  the  dynamical  difference  between  single  neuron  behavior  and  a
large  coupled  assembly  of  them.  Our  pertinent  finding  there  is  the
complexity increase in the EEG case, although this is not evident in a
visual  inspection  of  its  dynamical  properties.  Moreover,  the  gain  in
dynamical  complexity  is  only  moderate,  in  agreement  with  general
theory of many-particle systems that exhibit self-organization.

Admittedly,  these  issues  taken  by  themselves  may  hardly  provide
new  insights  into  mental  processes  in  the  implication  of  the  mind-
brain problem. But in our view, to follow this line of inquiry someday
will answer long-standing questions. Apparently it is not really neces-
sary  to  know  and  to  interpret  all  the  details  of  neuronal  intercon-
nections  on  a  “hardware”  level.  There  is  an  amazing  degree  of
redundancy  in  the  way  these  neuronal  assemblies  operate,  which  can
readily be seen in the case of accident victims who have endured mas-
sive  brain  surgery.  In  addition,  not  all  of  these  neuronal  links  are  of
equal  importance.  How  much  and  what  is  important  await  further
investigations,  and  here  we  advance  just  a  few  of  the  pertinent
aspects.  We  think  the  role  of  redundancy  will  prove  significant,  since
this  offers  a  chance  to  uncover  the  difference  between  the  essentials
and  other  things  that  are  also  present,  maybe  because  they  are  relics
from former times in evolution. 

Altogether, we face various reasons to favor the dynamical aspects
in  the  spatio-temporal  phenomenon  of  neuronal  emergence,  that  is,
the  “sudden”  improvement  of  mental  abilities  that  undoubtedly  and
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frequently  happens  in  the  brains  of  humans  and  animals.  We  clearly
admit that practical feasibility is one of these reasons. Further, we feel
encouraged to explore the consequences of complex variables in vari-
ous types of differential equation sets in more depth. In equations (2)
and  (3)  we  exemplify  that  some  useful  properties  arise  from  the  spe-
cial  situation  that  these  systems  can  be  formally  condensed  into
complex-valued  form,  namely  into  equation  (1)  in  our  instance.
Maybe  there  are  other  higher-structured  (scalar)  variables  that  would
do  a  similar  job,  but  in  all  probability  the  outstanding  properties  of
complex  numbers  are  important.  A  practical  use  of  equation  (5)
might  turn  into  a  tremendous  effort,  but  again  we  see  the  potential
for  refined  modeling,  that  is,  for  a  way  to  tackle  desired  properties
more  directly.  With  regard  to  equation  (5),  we  might  even  get  closer
to  pertinent  spatio-temporal  approaches,  but  this  is  clearly  beyond
our present possibilities. In this paper we just try to open the gateway
to a largely new and in our view promising type of neuronal dynamics
modeling. 
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