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Examples  of  computationally  simplifying  some  sequences  of  non-nega-
tive  integers  are  presented.  The  reduction  might  be  at  the  cost  of  leav-
ing out a set of exceptional inputs of zero or rather small density. 

Iterations  amm∈ℕ  of  2 + x  with  specific  initial  values  x ∈ -2, 2

are  considered.  Modulo  base-4  normality  of  
1

π2
,  when  x  0  and  m  is

outside  a  set  of  density  about  

1

12
,  

1

2-am
  equals  

4m+1

π2
;  plus  1  on  the

exceptional  set.  Adding  the  second  term  of  a  series  for
1

2-am


1

4
csc2 

π

2m+2 , it is asked whether any exceptions remain.

Next, Wolfram sequences c, of iterated 
3

2
x starting at 2, s of their

base-2  lengths  and  rm  min k sk ≥ m  are  discussed.  Under  some

conditions,  including  c  not  achieving  a  power  of  2  greater  than  4,

rm 
m

log2
3

2

+ γ - 1  with  γ ≈ 0.0972…  expressible  via  an  Odlyzko–

Wilf constant. Unconditionally, γ can be removed if outside a set of den-
sity between 0.9027 and 0.9028, so is -1.

Introduction1.

For  a  positive  real  number  θ,  the  roots  

 θ
n 

n∈ℕ≥1 ,  when  the  index  n

goes to infinity, tend to 1. For θ > 1, the sequence 
1

θ
n

-1
n∈ℕ≥1  pro-

vides another form of real number representation for θ. It was shown

in  [1]  that  for  a  fixed  parameter  θ  and  given  n,  the  nth  term  
1

θ
n

-1


equals  the  nth  term  of  one  of  the  two  inhomogeneous  Beatty

sequences  
n

ln θ
±

1

2
n∈ℕ.  Both  candidate  patterns  have  slope  

1

ln (θ)
,

but  their  intercepts  or  inhomogeneity  terms  are  ±
1

2
,  and  the  agree-

ment is dominantly with the lower possibility 
n

ln θ
-

1

2
, co-finitely so
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when ln θ is rational with a bound given in [1]. This path of research
was followed in [2], where it was shown that for all θ > 1 the excep-

tional  case  (agreement  with  
n

ln θ
+

1

2
)  is  of  density  0,  for  almost  all

θ > 1  the  counting  function  is  asymptotic  to  

ln θ

12
ln n,  and  for  certain

numbers  like  e 5 -1
 the  exceptional  case  is  empty,  while  for  e2 5

 it

is infinite. So although the sequence 
1

e2 5 n-1
n∈ℕ≥1  takes the value


n

2 5
+

1

2
  infinitely  many  times,  outside  this  set  of  density  0  it

agrees  with  the  expression  
n

2 5
-

1

2
,  which  is  simpler  than


1

e2 5 n-1
.

We  show  later  in  the  introduction  how  these  types  of  functions
lead  to  the  optimal  modulus  of  convergence,  where  the  ϵ  are  of  the

form 

1

n
 for positive integer inputs n. With all this in mind, and further

motivated  by  the  recently  developed  notion  of  coarse  computability
[3]  where  a  membership  decision  procedure  for  a  set  of  non-negative
integers  may  give  an  incorrect  output  on  a  vanishing  fraction  of
inputs,  we  present  new  instances  of  arithmetically  and  computation-
ally simplifying some sequences involving integer parts. The reduction
might be at the cost of leaving out a set of exceptional inputs of zero
or rather small density. A typical simplified output would most likely
be  the  exact  intended  value,  and  when  it  is  not,  it  would  just  be  the
predecessor  of  the  actual  value.  We  would  have  a  supplementary
standby  program  of  higher  complexity  to  determine  whether  1  must
be  added.  In  Section  2,  we  deal  with  integer  parts  of  some  increasing
unbounded  sequences  of  reals,  and  in  Section  3,  the  floor  is  invoked
at each iteration. 

Our  first  group  of  examples  would  have  their  generalized  inverse
(G-inverse,  for  short)  serve  as  the  least  modulus  of  convergence

(linear, i.e., when ε is of the form 

1

k
). Broadly speaking, given a func-

tion  g,  its  G-inverse  h  is  defined  by  h m  μ k g k ≥ m.  Here  μ

stands  for  “the  least”  over  integers  or  the  “inf”  over  the  reals.
G-inverses  are  usually  considered  for  increasing  functions   → ,  see
[4],  and  they  are  left  continuous.  The  examples  will  include  how

nested square roots with addition, obtained by iterating 2 + x  with

special initial values in 

-2, 2, converge to 2. The simplified represen-

tation  candidate  would  be  of  the  type  
4m+1

π2
+

1

12
,  where  m  is  the

number of iterations. 
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Countless  examples  of  this  sort  could  be  considered;  for  example,

for  f n  
1

π2-6 ∑i1
n 1/i2

  we  have  f 25 000  4166.  Here  is  a  much

faster  sequence  g k 
1

3- 6+ 6+⋯+ 6

k times

,  where  the  Mathematica

code

Table[Floor[
1

3-NestFunctiont, t+6 ,0,k
] ,{k,10}] 

gives the first 10 terms

{1,10,64,385,2310,13862,83174,499045,2994272,17965635}.

For  the  latter  sequence,  given  a  positive  integer  m,  for  an  integer

k > 0  to  satisfy  3 - 6 + 6 +⋯ + 6

k times

<
1

m
,  it  is  equivalent  that

m ≤ g k.  The  least  k  where  this  holds,  that  is  the  k  with

g k - 1 < m ≤ g k,  is  the  G-inverse  of  g  evaluated  at  m.  Call  that
G-inverse  function  h.  For  m  1,  we  have  h m  1;  for

m  2, … , 10,  we  have  h m  2;  for  m  11, … , 64,  we  have

h m  3; for m  65, … , 385 we have h m  4; and so on. 

In  Section  2,  we  raise  plausible  identities  like


1

4
csc2

π

2m+2   
4m+1

π2
+

1

12
.  Any  counterexamples,  if  they  exist,

would  have  to  make  the  fractional  part  of  
4m+1

π2
+

1

12
 close  to  1  while

making  the  fractional  part  of  

1

4
csc2 

π

2m+2   small.  We  entertain  the

reader  by  some  near  integers  in  a  rather  similar  context  presented  by
Myerson [5]: 

16 sin 
π

9
 sin 

5 π

18
 sin 

11 π

39
 sin 

3 π

8
  2.9999999975… and 

16 sin 
2 π

45
 sin 

4 π

25
 sin 

20 π

49
 sin 

17 π

40
  1.0000000054…. 

However,  for  any  potential  counterexample  in  our  situation,  the
closeness  to  integers  would  have  to  be  much  more.  For  example,  at
around  m  20 000  the  two  sides  agree  for  more  than  12000  digits
after  the  decimal  point.  For  20 000,  the  fractional  parts  start  with
0.64, and the first difference appears in position 12 042 after the deci-
mal  point,  namely  …54623086494529269182 162…  versus

…54623086494529269182 097….  (The  integer  parts  are  also  big;
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e.g.,  for  m  20 000  the  common  value  of  the  two  floors  is  about
four  pages  long  in  a  normal  Mathematica  output  when  printed  out.
They end with … 139 769790 512309 585196.) 

Our  second  group  of  examples  includes  the  base-2  lengths  of

approximate multiplications by 

3

2
 obtained by iterating 

3

2
x, initially

at  2,  and  the  generalized  inverse  of  that  length  function.  Our  interest
in this originated from [6, pp. 122, 123], and an early example briefly
mentioned  in  [7,  pp.  19,  20].  Quoting  the  latter,  “…  embedding  of
commands, one within another, but taken to another level” and what
a  fascinating  level  it  turned  out  to  be.  The  simplified  and  conditional
representation  candidate  would  be  the  Sturmian  sequence

n log2 
3

2
 + γ + 1,  and  for  the  mentioned  G-inverse  it  would  be

another  Sturmian  


m

log2 
3

2

+ γ′


- 1  with  rather  small  γ ≈ 0.113  and

γ′ ≈ 0.097,  both  expressible  via  an  Odlyzko–Wilf  constant  (see  Sec-
tion  3).  With  lower  complexity,  we  can  calculate  the  values

n log2 
3

2
 + 1,  respectively  


m

log2 
3

2
 
- 1.  Most  likely  (for  about

90%), that would be the exact intended value, and when it is not, it is
just the predecessor of the actual value. 

Assuming  further  powers  of  2  do  not  appear  after  2,  3,  4  in  the

approximate multiplication by 

3

2
 starting from 2, we present some dis-

cretization of a linear function of slope log2
3

2
 by a path in the inte-

ger  lattice  closest  to  the  corresponding  line  from  below,  a  Christoffel
word, see [8, Part I]. 

How Iterated 2 + x  Converges to 2, for x ∈ (-2, 2) 2.

For  an  increasing  and  bounded  sequence  bn  of  reals  converging  to  ℓ,

consider  the  errors  ℓ - bn.  The  manner  of  convergence  of  these  errors

to 0 and the reciprocals  1  ℓ - bn to infinity can be studied in some

aspects  via  the  sequence  1  ℓ - bn.  This  type  of  Nathanson–

O’Bryant  approach  and  the  G-inverse  of  the  resulting  sequence  moti-
vate  this  section.  Our  sequences  in  this  section  involve  nested  square
roots  of  2,  and  we  use  [9,  Example  2].  Also  see  [10,  11]  for  further
related studies.

Starting with 0 or 2  with a Modified Number of Iterations2.1

For any positive integer m, we have 
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1

2 - 2 + 2 +⋯ + 2

m times


1

4
csc2

π

2m+2
≥

4m+1

π2
.

To  see  this,  just  use  basic  facts  like  cos
π

4


2

2
,  the  half-angle

formula  for  cos,  and  limx→0+
sin x

x
 1  (this  convergence  is  in  an

increasing  fashion).  The  latter  shows  the  ratio  of  the  left  side  of  the
preceding inequality to its right side (which is greater than or equal to
1) tends to 1, as m → ∞. 

For m  1, … , 10, the terms on the left, respectively the rightmost
terms,  are  approximately  as  follows  (shown  with  eight  significant
digits): 

1 2 3 4 5

1.7071068 6.5685356 26.021717 103.83627 415.09491

1.6211389 6.4845558 25.938223 103.75289 415.01157

6 7 8 9 10

1660.1296 6640.2684 26 560.824 106 243.04 424 971.93

1660.0463 6640.1851 26 560.740 106 242.96 424 971.85

We  consider  whether  
1

4
csc2

π

2m+2   
4m+1

π2
  or


1

4
csc2

π

2m+2  > 
4m+1

π2
. 

Using  the  expansion  csc2 x 
1

x2
+

1

3
+

x2

15
+ x4  about  0,  we  see

that  

1

4
csc2

π

2m+2 
4m+1

π2
+

1

12
+

π2

15⨯4m+3 + 4-2m,  as  m → ∞.  There-

fore, if the two floors are not the same, then 

1

2 - 2 + 2 +⋯ + 2

m times

 1 +
4m+1

π2
.

Call this “high,” and let “regular” be the one without +1.

The  following  remark  is  on  the  density  of  the  set  of  high  numbers

m and relies on the condition that 
4m+2

π2
m∈ℕ  be uniformly distributed

mod 1. Recall that this is equivalent to 

1

π2
 being normal to the base 4,

which is not known to hold. 
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Remark 1.  With  the  regular  case  being  when  
1

4
csc2

π

2m+2   
4m+1

π2


and  the  complementary  high  case  being  when


1

4
csc2

π

2m+2   1 + 
4m+1

π2
, if 

1

π2
 is normal to the base 4, then the high

set has density at least 
1

12
, and approximately just that. 

Question 1.  Does  the  representation  
1

4
csc2

π

2m+2   
4m+1

π2
+

1

12
  hold

for all m?

We used Mathematica and found there are no counterexamples for
Question 1 for m ≤ 100000. 

Example 1.  These  high  case  numbers  m  up  to  400  where  the  values

equal  1 + 
4m+1

π2
  are  as  follows:  3,  9,  25,  26,  85,  95,  112,  115,  123,

142,  143,  157,  158,  165,  170,  171,  208,  209,  236,  263,  284,  285,
310, 311, 312, 313, 314, 315, 319, 320, 325, 335, 355, 397. 

Looking  back  at  our  starting  inequality,  we  multiply  the  leftmost

and rightmost sides by π2  and compare the integer parts of the result-
ing numbers (this time the simplified value is far more so). 

Corollary 1. For every m, we have 
π2

2- 2+ 2+⋯+ 2

m times

 4m+1. 

Proof.  The  fractional  part  of  the  expression  in  the  floor  is
π2

12
+

π4

15⨯4m+3 + 4-2m, with the first term being approximately 0.82

and the next starting at approximately 0.025 when m  1. □

Starting with - 2 , 3  or - 32.2

Here we deal with three other sequences where we have varied the ini-
tial  point  from  the  preceding  consideration.  For  any  positive  integer
m, we have

1 2 - 2 + 2 +⋯ + 2 - 2

(m+1) times, different innermost sign



1

4
csc2

3 π

2m+3
≥

4m+2

9 π2
,
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1 2 - 2 + 2 +⋯ + 2 + 3

(m+1) times, different innermost number



1

4
csc2

π

3⨯2m+2
≥

9⨯4m+1

π2

and

1 2 - 2 + 2 +⋯ + 2 - 3

(m+1) times, different innermost sign and number



1

4
csc2

5 π

12⨯2m
≥

9⨯4m+1

25 π2
.

Again,   these  can  be  seen  by  just  using  basic  facts  like

cos
3 π

8


2- 2

2
,  cos

π

3


1

2
,  cos

π

12


2+ 3

2
,  the  half-angle  for-

mula for cos, and limx→0+
sin x

x
 1, in an increasing fashion. The lat-

ter  shows  the  ratio  of  the  left  side  of  any  of  the  three  preceding
inequalities to its right side (which is greater than or equal to 1) tends
to 1, as m → ∞. 

For m  1, … , 10, the terms on the left, respectively the rightmost
terms,  are  approximately  as  follows  (shown  with  eight  significant
digits): 

1 2 3 4 5

0.80995720 2.9668240 11.611795 46.195820 184.53294

0.72050619 2.8820248 11.528099 46.112396 184.44959

6 7 8 9 10

737.88168 2951.2767 11 804.857 47 219.177 188 876.46

737.79834 2951.1934 11 804.773 47 219.094 188 876.38

and

1 2 3 4 5

14.673870 58.444407 233.52736 933.85937 3735.1874

14.590250 58.361002 233.44401 933.77603 3735.1041

6 7 8 9 10

14 940.500 59 761.749 239 046.75 956 186.74 3 824 746.7

14 940.416 59 761.666 239 046.66 956 186.65 3 824 746.6
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and

1 2 3 4 5

0.67459909 2.4195891 9.4215417 37.434486 149.48753

0.58361002 2.3344401 9.3377603 37.351041 149.40416

6 7 8 9 10

597.70000 2390.5500 9561.9499 38 247.549 152 989.95

597.61666 2390.4666 9561.8665 38 247.466 152 989.86

We  would  have  to  continue  a  bit  to  get  the  first  index  where  the
corresponding  floors  differ  (by  1  again);  those  indices  are  15,  38  and
16, respectively (see Example 2). 

Using the expansion of csc2 x about 0 as before, we see that 

1

4
csc2

3 π

2m+3


4m+2

9 π2
+

1

12
+

3 π2

5⨯4m+3
+ 4-2m,

1

4
csc2

π

3⨯2m+2


9⨯4m+1

π2
+

1

12
+

π2

135⨯4m+3
+ 4-2m,

1

4
csc2

5 π

12⨯2m


9⨯4m+1

25 π2
+

1

12
+

5 π2

27⨯4m+3
+ 4-2m, m → ∞.

Consider  the  new  regular  and  high  complementary  cases  for  each
of the three examples: 

1

4
csc2

3 π

2m+3


4m+2

9 π2
vs.

1

4
csc2

3 π

2m+3
 1 +

4m+2

9 π2
,

1

4
csc2

π

3⨯2m+2


9⨯4m+1

π2
vs. LHS  1 +

9⨯4m+1

π2
and

1

4
csc2

5 π

12⨯2m


9⨯4m+1

25 π2
vs. LHS  1 +

9⨯4m+1

25 π2
.

The  following  remark  is  on  the  density  of  the  set  of  high  numbers
in each case and relies on the condition that (a fixed rational multiple

in each case of) 
4m+2

π2
m∈ℕ  be uniformly distributed mod 1. Recall that

this  is  equivalent  to  

1

π2
 being  normal  to  the  base  4,  which  is  not

known to hold. 

Remark 2.  If  
1

π2
 is  normal  to  the  base  4,  then  the  high  set  for  each  of

the three cases has density at least 
1

12
, and approximately just that. 
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Question 2. Do we have the representation 

1

4
csc2

3 π

2m+3


4m+2

9 π2
+

1

12
,

1

4
csc2

π

3⨯2m+2


9⨯4m+1

π2
+

1

12
or

1

4
csc2

5 π

12⨯2m


9⨯4m+1

25 π2
+

1

12

for all m? 

We used Mathematica and found there are no counterexamples for
any of these for m ≤ 20 000. 

Example 2.  Starting  with - 2 ,  the  high  case  numbers m  up  to  400

where the values equal 1 + 
4m+2

9 π2
 are as follows: 15, 47, 61, 62, 134,

136,  152,  160,  161,  178,  179,  192,  195,  203,  207,  208,  209,  210,
217,  227,  234,  248,  254,  264,  265,  269,  297,  327,  331,  334,  335,
336, 363, 371, 384, 388, 391, 394. 

Starting  with  3 ,  the  high  case  numbers  m  up  to  400  where  the

values  equal  1 + 
9⨯4m+1

π2
  are  as  follows:  38,  41,  49,  56,  59,  60,  61,

62, 68, 73, 74, 92, 139, 140, 145, 146, 148, 149, 157, 170, 197, 204,
205,  217,  218,  219,  251,  252,  266,  284,  295,  296,  302,  307,  310,
311, 312, 313, 314, 319, 329, 383, 384. 

Starting with - 3 , the high case numbers m up to 400 where the

values  equal  1 + 
9⨯4m+1

25 π2
  are  as  follows:  16,  17,  18,  49,  50,  51,  56,

81,  82,  87,  99,  129,  130,  140,  165,  195,  196,  238,  288,  290,  296,
317, 318, 338, 339, 381, 383. 

Looking back at our three starting inequalities, we multiply the left-

most  and  rightmost  sides  by  π2  and  compare  the  integer  parts  of  the
resulting numbers (and the presented equal values are far simpler). 

Corollary 2. If m ≡ 1 (mod 3), then 

π2

2 - 2 + 2 +⋯ + 2 - 2

(m+1) times, different innermost sign


4m+2 - 1

9
.
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If  m ≡ 0,  respectively  2  (mod  3),  then  the  corresponding  value  is
4m+2+2

9
, respectively 

4m+2+5

9
. 

Proof. We have 

π2

2 - 2 + 2 +⋯ + 2 - 2

(m+1) times, different innermost sign



4m+2

9
+
π2

12
+

3 π4

5⨯4m+3
+ 4-2m ,

with  the  term  

π2

12
 being  approximately  0.82,  and  the  next  term  start-

ing  at  approximately  0.23  when  m  1  and  phasing  out.  We  observe
that  all  m ≡ 1  (mod  3)  with  the  exception  of  m  1  follow  the  for-

mula 
4m+2

9
, while all m ≡ 0, 2 (mod 3) follow 1 + 

4m+2

9
. □ 

Corollary 3. For all m ∈ ℕ, we have 

π2

2 - 2 + 2 +⋯ + 2 + 3

(m+1) times, different innermost number

 9⨯4m+1.

Proof.  The  fractional  part  of  the  expression  in  the  floor  is
π2

12
+

π4

135⨯4m+3 + 4-2m,  with  

π2

12
≈ 0.82  and  the  next  term  starting

at less than 0.003 when m  1. □ 

Corollary 4. If m ≡ 2, respectively 3 (mod 10), then 

π2

2 - 2 + 2 +⋯ + 2 - 3

(m+1) times, different innermost sign and number


9⨯4m+1 - 1

25
,

respectively 

9⨯4m+1-4

25
.
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If m ≡ 0, 1, 4, 5, 6, 7, 8, 9 (mod 10), then the corresponding value

is 
9⨯4m+1+t

25
 with t  14, 6, 9, 11, 19, 1, 4, 16, respectively. 

Proof. We have 

π2

2 - 2 + 2 +⋯ + 2 - 3

(m+1) times, different innermost sign and number



9⨯4m+1

25
+
π2

12
+

5 π4

27⨯4m+3
+ 4-2m ,

where  again  

π2

12
≈ 0.82,  and  the  next  term  starts  at  roughly  0.07  and

phases out. We observe that all m ≡ 2, 3 (mod 10) follow the formula


9⨯4m+1

25
 and all of the other m follow 1 + 

9⨯4m+1

25
. □ 

Dilating by 

3

2
 and Rounding Down, Starting from 23.

The  G-inverses  we  dealt  with  in  the  previous  section  were  to  the
floors  of  multiplicative  inverses  of  the  error  in  approximating  limits
by  sequence  terms.  In  Section  3.2,  we  will  consider  the  G-inverse  of
an  increasing  function  whose  defining  equation  here  is  not  of  that
sort. We begin with this sequence itself.

Base-2 Length of Iterated 
3

2
x, Initially 2 3.1

Let  c1  2,  and  for  all  n ∈ ℕ,  cn+1  
3

2
cn.  Also  define

sn  log2 cn + 1.

The first 20 terms of the sequence c are 

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141,
211, 316, 474, 711, 1066, 1599, 2398, 3597;

and the sequence s starts with

2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12.

The  predecessor  sequence  to  c  is  generated  via  b1  1,

bn+1  
3

2
bn  (a  simple  induction  shows  that  bn  cn - 1  for  all  n).

Similarly, the sequence a1  1 and an+1  3 
an
2
 gives the sequence b

when  all  the  terms  except  the  first  are  divided  by  3.  The  sequences
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c, b, a  are  A061418,  A061419  and  A070885  on  OEIS  [12],  respec-
tively. Some related studies (besides [6]) are [13, Section 5] and [14]. 

Another  easy  induction  shows  that  
3

2

n
≤ bn  and  so  

3

2

n
< cn.

It  is  also  clear  that  cn ≤
4

3

3

2

n

 (since  dropping  all  floors  cannot

make  it  bigger  than  what  is  inside).  Therefore

n log2 
3

2
 < log2 cn < n log2 

3

2
 + 0.42.  This  already  shows  that

log2 cn equals either n log2 
3

2
 or n log2 

3

2
 + 1 (and so sn  is the

successor  of  that  in  each  case).  We  would  like  to  have  estimates  on
the  density  of  the  types  of  n;  this  is  achieved  by  improving  the
bounds, where we also explore the possibility that our sequence is an
inhomogeneous  Beatty  sequence  (i.e.,  a  Sturmian  sequence).  The

sequence  c  is  also  K 3 
3

2

n-1
,  where  K 3  is  a  number  related  to

the Josephus problem; see [14], where the approximate value 

K 3 ≈ 1.62227050288476731595695098289932411…

is presented. Therefore

3

2

n

⨯
2 K 3

3
≤ cn <

3

2

n

⨯
2 K 3

3
+

2

3

n

and so 

n log2
3

2
+ log2

2 K 3

3
≤

log2 cn ≤ n log2
3

2
+ log2

2 K 3

3
+

2

3

n

.

We  used  Mathematica  to  find  that  the  leftmost  and  rightmost  sides

agree  for  m ≤ 200000.  The  inhomogeneity  term  log2 
2 K (3)

3
+ 

2

3

n


computed  to  its  first  26  terms  decreases  from  about  0.8058  to  about
0.1130,  and  the  latter  agrees  to  four  decimals  with  its  limit

log2 
2 K (3)

3
. Hence we have the following:

Proposition 1.  On  a  set  of  n  with  density  from  0.8869  to  0.8870,  we

have  sn  n log2 
3

2
 + 1,  and  on  an  exception  set  of  density  from

0.1130  to  0.1131,  we  have  sn  n log2 
3

2
 + 2.  If  cn  for  n > 3  is

never  a  power  of  2,  then  sn  n log2 
3

2
 + log2 

2 K (3)

3
 + 1  for  all

n ≠ 1, 3. 

Example 3.  Here  is  a  list  of  the  exceptional  numbers  up  to  400  found
with  Mathematica  (similar  to  the  code  we  will  see  in  the  next  few
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pages  for  the  G-inverse):  1,  3,  5,  17,  29,  34,  41,  46,  58,  70,  82,  87,
94, 99, 111, 123, 135, 140, 147, 152, 164, 176, 188, 193, 200, 205,
217,  229,  241,  246,  253,  258,  270,  282,  294,  299,  306,  311,  323,
335, 340, 347, 352, 364, 376, 388, 393, 400. 

G-Inverse of Base-2 Length of Iterated 
3

2
x, Initially 23.2

Let  us  now  turn  to  the  G-inverse  of  s,  namely  define
rm  μ n sn ≥ m.  For  any  m,  the  predicate  sr ≥ m  is  successively

equivalent to the following: log2 cr ≥ m - 1, cr ≥ 2m-1
 (if cn  for n ≥ 4

is never a power of 2, then cr > 2m-1
 (*); this is referred to in what fol-

lows in the proof),

K 3
3

2

r-1

≥ 2m-1, K3
3

2

r-1

> 2m-1 - 1,

3

2

r-1

>
2m-1 - 1

K 3
, r - 1 log2

3

2
> log2

2m-1 - 1

K 3
,

r - 1 >

log2
2m-1-1

K (3)


log2 
3

2


, r > 1 +

log2
2m-1-1

K (3)


log2 
3

2


.

If the latter compound fraction is not an integer, then

rm  1 +

log2
2m-1-1

K (3)


log2 
3

2


 2 +

log2
2m-1-1

K(3)


log2 
3

2


 2 +

log2
2m-1 1-

1

2m-1 

K (3)

log2 
3

2




m

log2 
3

2


+ 3 +
log2 1 -

1

2m-1  - log2 K 3 - 1

log2 
3

2


- 1

(under (*)  this  would  be  

m

log2 
3

2

+ 3 +

-log2 K (3)-1

log2 
3

2


- 1,  and  we  used

Mathematica  to  find  that  the  two  agree  for  m ≤ 200 000).  In  any

case,  the  inhomogeneity  term  3 +
log2 1-

1

2m-1 -log2 K (3)-1

log2 
3

2


 computed  for

6 ≤ m ≤ 18 increases from about 0.0189 to about 0.0972, and the lat-

ter  agrees  to  four  decimals  with  its  limit  3 +
-log2 K (3)-1

log2 
3

2


.  Hence  we

have: 
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Proposition 2. On a set of n with density between 0.9027 to 0.9028 we

have  rm  
m

log2 
3

2
 
- 1,  and  on  an  exception  set  of  density  between

0.0972  to  0.0973  we  have  rm  
m

log2 
3

2
 
.  If  cn  for  n > 3  is  never  a

power  of  2,  and  

2m-1-1

K (3)
 is  never  a  power  of  

3

2
,  then

rm 
m

log2 
3

2

+ 3 +

-log2 K (3)-1

log2 
3

2


- 1 for all m ≥ 4. 

The  inhomogeneity  terms  3 +
log2 1-

1

2m-1 -log2 K (3)-1

log2 
3

2


 for  m  among

2, 3, 4, 5  are  about  -1.6,  -0.6,  -0.2  and  -0.06  (and  then  become
positive).  The  first  two  of  these  do  cause  an  isolated  pair  of  excep-

tional values where rm  
m

log2 
3

2
 
- 2 for m  2, 3, but for m  4, 5,

the majority formula rm  
m

log2 
3

2
 
- 1 prevails. 

The  approximation  

m

log2
3

2


 for  rm  turned  out  to  be  a  good  one,

approximating  it  from  the  right  by  less  than  two  units.  We  can  pro-
duce  cn  up  to  n  being  the  mentioned  approximation  and  present  the

last  two  components,  where  the  intended  number  m  appears  as  the
first or just the second. In the former case, the right answer would be


m

log2
3

2
 
- 1  and  in  the  latter  case,  


m

log2
3

2
 
.  We  observe  that  most

would have 


m

log2
3

2
 
- 1, while some have 


m

log2
3

2
 
. The very first two

terms form an exceptional group of their own for which the G-inverse

rm follows 


m

log2 
3

2
 
- 2 and the values are 1 and 3. 

Example 4. We can proceed through the common value formula, which

most often would be 


m

log2 
3

2
 
- 1, and see whether that is short by 1: 

Table[m-Floor[Log[2,Last[RecurrenceTable[{c[n+1] Floor[
3 cn

2
], c[1]

2},c,{n,Floor[
m

Log2,
3

2


] -1}]]]+1],{m,4,60}] 

{0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0}. 

Here are the exceptional inputs.

Table[If[m-Floor[Log[2,Last[RecurrenceTable[{c[n+1]

Floor[
3 cn

2
], c[1]2},c, {n,Floor[

m

Log2,
3

2


] -1}]]]+1]1,m,""],{m,4,60}] 
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{ , , , 7, , , , , , , 14, , , , , , , , , , , , , , , , , 31, , , , , , , 38, , , , , , , 45, , , , , , , , , , , , , , , }. 

Regarding the high numbers in Example 3 (for s) and in Example 4
(for r), see Figure 1.

Figure 1. Beginning of evolution of s (step 1 up through step 53) and r (input
2  through  31),  easy/approximate/majority  bounds  shown  with  two  lines  in
blue,  refined  (conditional/plausible)  bounds  shown  with  two  lines  in  purple,
the  six  s-high  cases  3 < h < 53  (namely,  5,  17,  29,  34,  41,  46)  at  the  red
arrowheads (their outputs lie between the two bounds), the three r-high cases
3 < h ≤ 31  (namely,  7,  14,  31)  at  the  yellow  arrowheads  (for  these  the  blue
line crosses a rightmost vertical edge not precisely on top of another).
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Figure 2. We  zoom  in  on  Figure  1  and  look  at  a  region  around  h = 29  for  s
and h = 14 for r.

Example 5. The last exceptional input below 1000 is 995, as the code: 

Table[list{2}; c2; Do[cFloor[
c3

2
]; 

AppendTo[list,c],{n,Floor[
m

Log2,
3

2


] -2}]; 

If[m-Last[Floor[Log[2,list]]+1]1,m,""],{m,980,1000}] 

returns

{ , , , , , , , ,988, , , , , , ,995, , , , , }. 

Let us try the input 994 in that range not equal to either of these out-
puts; the code

Floor[
994

Log2,
3

2


] -1

outputs {1698}. 

Also the code

list{2}; c2; Do[cFloor[
c3

2
]; AppendTo[list,c], 

{n,Floor[
994

Log2,
3

2


] -2}]; 994-Last[Floor[ Log[2,list]] +1] 

outputs 0. So the value is indeed 1698.

For  the  bigger  of  the  two  exceptional  values,  we  first  get  the  at-
worst predecessor: 

Floor[
995

Log2,
3

2


] -1 

gives 1699. The standby algorithm can then be run and will output 1:

list{2}; c2; Do[cFloor[
c 3

2
]; AppendTo[list,c],{n,Floor[

995

Log2,
3

2


] -2}]; 995-Last[Floor[ 

Log[2,list]]+1]. 
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So 1 should be added, and the actual value is 1700. 

Putting  everything  together,  we  double-check  our  findings  (inputs
1697–1700 give outputs 993, 994, 994, 995): 

list{2}; c2; Do[cFloor[
c3

2
]; AppendTo[list,c],{n,1699}]; 

Take[Floor[Log[2,list]]+1,-4] 

{993,994,994,995}.

Example 6. The rate of exceptions through 6000, in groups of 100, can
be found with the code: 

Table[{k, Count[Table[list{2}; c2; Do[cFloor[
c3

2
] ; 

AppendTo[list,c],{n,Floor[
m

Log2,
3

2


] -2}]; 

m-Last[Floor[Log[2,list]]+1], {m,100 k+1,100 k+100}],x_/;x≠0] /100.}, {k,0,59}]. 

This  shows  the  following  three  classes  (roughly  0.0978  exception
rate through 6000): 

0, 3, 15, 27, 38, 50 : 0.11;

4, 6, 7, 9, 10, 11, 12, 16, 18, 19, 20, 21, 23,
24, 26, 30, 31, 32, 33, 35, 36, 39, 41, 42, 44,
45, 46, 47, 51, 53, 54, 56, 57, 58, 59 : 0.1;

1, 2, 5, 8, 13, 14, 17, 22, 25, 28, 29,
34, 37, 40, 43, 48, 49, 52, 55 : 0.09.

Example 7. Let us find any exceptional inputs from 59981 to 60000: 

Table[list{2}; c2; Do[cFloor[
c3

2
]; AppendTo[list,c], 

{n,Floor[
m

Log2,
3

2


] -2}]; If[m-Last[Floor[Log[2,list]]+1] 1,m,""],{m,59981,60000}]. 

We get 

{,59982, , , , , , , , , , , , , , , , ,59999,}.

Let us try the input 59981 in that range not equal to either of these
two outputs. The code 

Floor[
59981

Log2,
3

2


]-1 

returns {102537}. We would expect the next output to be 0, and that
is the case: 

list{2}; c2; Do[cFloor[
c3

2
]; AppendTo[list,c], 

{n,Floor[
59981

Log2,
3

2


]-1}]; 59981-Last[Floor[Log[2,list]]+1].
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The  output  is  {0},  and  so  the  original  output  is  confirmed  to  be
102537. 

For the smaller exceptional number we found there, the code 

Floor[
59982

Log2,
3

2


] -1

returns {102538}. 

Next we would expect an output 1: 

list{2}; c2; Do[cFloor[
c3

2
]; AppendTo[list,c], 

{n,Floor[
59982

Log2,
3

2


]-2}]; 59982-Last[Floor[Log[2,list]]+1] 

outputs  {1},  and  so  the  actual  output  for  the  original  would  be
102539. 

Putting  it  all  together,  things  match.  That  is,  inputs
102536–102539  give  outputs  {59980,  59981,  59981,  59982},  as  the
code below shows: 

Floor[Log[2, RecurrenceTable[{c[n+1]Floor[
3 cn

2
], c[1]2}, c, 

{n,102536,102539}]]]+1. 

Conclusion4.

On the Iterated 2 + x , and a Likely Σk0
∞ ak  Σk0

1 ak4.1

Section  2  included  some  results,  along  with  some  plausible  Diophan-

tine-analytic identities, as 
sin x

x
 converges to 1 along bisections of π. In

more  detail,  using  a  work  by  Kowalenko  [15,  p.  73,  equ.  (217)],  we
can see that

csc2 x  
k0

∞ 4 k - 2 ζ 2 k

π2 k
x2 k-2

and so

1

4
csc2

π

2m+2


4m+1

π2

k0

∞ 4 k - 2 ζ 2 k

4(m+2) k
.

We  talked  about  the  rather  large  density  of  m  where  the  initial  term
of the series already determines the integer part, and that when it does
not, we just need to add 1. We left it open whether for all m ∈ ℕ, the
floor  of  the  series  is  determined  by  just  the  first  two  terms.  We  note

that  for  each  positive  integer  m,  the  number  

1

4
csc2 

π

2m+2   is  an  alge-
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braic  number  of  degree  2m,  and  its  reciprocal  4 sin2 
π

2m+2   is  an  alge-

braic integer. This could be helpful in answering the question.

On the Iterated 
3

2
x, and the Apparently Balanced Words4.2

In  Section  3,  we  dealt  with  the  process  of  “start  with  2,  then  repeat:
multiply by 1.5 and round down,” which after two loops experiences

another  power  of  2.  If  it  never  later  lands  at  another  2k  (and  we
checked  that  up  to  5000  there  are  no  more),  our  “exact”  Sturmian
representation  formula  for  the  base-2  length  of  generated  iterations
holds. But the inhomogeneity term would involve the curious number

K 3,  so  using  our  mentioned  approximate  Beatty  representation
makes sense.

An  indirect  way  to  check  whether  a  fixed  initial  segment  of  the
sequence f m can be extended to a Sturmian sequence is whether it is

balanced, that is, whether

∀ x, y, zfx + y - fx - fz + y - fz ∈ -1, 0, 1,

see [16]. We used this for several blocks in the sequence with Mathe-
matica  and  did  not  find  a  counterexample  to  being  Sturmian.  For
example,  for  all  values  of  n  that  we  checked,  when  n  is  increased  by
900, s n increases by either 526 or 527. 
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