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Rules for speeding up SK combinator evaluation were investigated, and
experiments were performed to determine the proportion of SK combi-
nator expressions that reach a fixed point before exceeding certain com-
putational limits. It was found that approximately 80.3 percent of SK
combinator expressions with size 100 reach a fixed point within 300
steps and also without having reached a combinator size of 200000
sometime during evaluation.

I 1. Introduction

Combinators are constructs that can be understood as functions in a
certain abstract sense [1] and that are useful as a simplified model of
computation. There are two very interesting combinators called S and
K, which can be used together to write any computer program (the
two together are Turing complete, so can be used as a universal
language).

To work with these combinators, we can look at transformations
of combinator expressions. This involves starting out with an initial
combinator expression, which is made by calling S and K combina-
tors on each other in some order. Once an SK combinator expression
has been generated, we apply the rules for evaluating the combinators
repeatedly. The rules are to replace K[x_][y_] with y, and
S[x_]ly_llz_] with x[z][y[z]]. So for example, we start out with the
expression S[S[S]][S][K][K], and running it step by step, we would get
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The evaluation “halts” when applying the rules no longer changes
the expression, so the “output” of S[S[S]][S][K][K] is S[K].

One detail that was glossed over in the previous explanation is the
order in which rules are applied to the expression. There are two stan-
dard ways in which to apply the rules, normal order and applicative
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order. In applicative order, the rules are applied at each step by scan-
ning once from left to right and applying the rule wherever possible
without overlapping. This leads to larger parts of the combinator hav-
ing the rules applied to them first. In normal order, the rules are again
applied from left to right without overlapping, but the parts deepest
inside brackets (the arguments of the functions) are evaluated before
the outer parts.

Normal order will be used exclusively in this paper. It turns out
that there are often combinator expressions that reach a fixed point in
normal order but not in applicative order. This is because sometimes
there will be a subpart of a combinator that would continuously
expand if evaluated over and over, but if that subpart is inside a K
combinator, evaluating the K function before the arguments deletes
the whole expression that was going to grow before it could begin its
continuous growth. For example, S[S[S]][S][S][S][S] never stops grow-
ing [2], so evaluating K[S][S[S[S]I[S][S][SI[S]] in applicative order will
never stop growing either, whereas evaluating the same in normal
order will cause the expression to become just S and to then stop
changing, after just one step. In this case, the K simply deletes the sec-
ond part containing the potential to grow.

In general, some combinator expressions reach a fixed point and
stop changing, which is referred to as “halting,” whereas some never
stop growing, or begin to continuously loop through a set of states.

This paper discusses how certain patterns in combinator evaluation
were discovered. Extra combinator rules based on these patterns were
used in attempts to speed up the evaluation of large combinators.
Also, experiments were performed to determine the proportion of SK
combinator expressions that reach a fixed point before exceeding cer-
tain computational limits.

In [3], the authors created databases of combinator reductions to
speed up computation. Here a slightly different approach to finding
extra combinator rules for speeding up combinator reductions is used.
In [3], a sort of “multiplication table” was built up of different ways
combinators can evaluate, whereas in this paper, combinators up to a
certain size were evaluated with different combinator parts being
replaced by variables, as described in Section 2.

I 2. Patterns in Combinator Evolution

Out of all possible SK combinator patterns up to size five (of which
there were 2582), just 13 are non-redundant as defined in a certain
way. These 13 rules are rules in which evaluating the left side to get
the right side takes more than just one step. Also, less general rules
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are excluded in favor of more general rules (for instance, the more
general S[K][y_][x_] :> x is included but not the more specific
S[K][S][x_] :> x). Also, cases where applying a shorter combinator
rule has the same effect as applying a larger combinator rule are not
included. The rule S[S[K][y_][x_]] = S[x] is not included, since the
shorter rule S[K][y_][x_] = x applied to S[S[K][y_][x_]] will also give

S[x] in one step. The 13 non-redundant rules, which are general ways
in which combinators up to size five evaluate, are the following:

KIx_ly_] = x

Sixly_liz_] = x[z]ly[z]]
SIKIx_ly_1 =y
KIKDX_ly_liz_] = x
KIKIx_Ily_lz_] = x
KIKIxJlyiz_1 >y
SIXIKIy_1lz_] = x[z][y]
SIKIX_Ily_l[z_] = x[y[zI]
SIx_ly_1[z_] = ylzZIx{yl[z]]
SIxly_llz_1 = XIylz]lizly(z]l]
SIX_1KIYy_1=y
SIKNX_Ily_1 = Xyl
SIKIXly_] = XIylix]

There are 22 994 possible rules of size six, and again a relatively
small number, 67, are non-redundant in this way.

S|
S|
S|
S|
S|

I 3. Applying Optimization

Next there is the matter of applying the rules that were found to com-
binator expressions. Combinators of various sizes were randomly gen-
erated. These combinators were then evaluated, while adding extra
rules to see if this sped up the combinator evolution. It is expected
that the more steps and the more often rules are applied, the more
extra rules would help speed up evolution. Large combinators gener-
ally have more rule applications and run for more steps. Larger and
larger combinators were tested to look for any speedups.

There is one issue with using large combinators, however, which is
discussed more in Section 4. Basically, the issue is that larger combina-
tors were more likely not to reach a fixed point within 300 steps. Gen-
erally, only combinators that reach a fixed point were of interest for
testing optimizing rules, since the extra rules would likely be used pri-
marily for evaluating halting combinators. (If we were looking at
nonhalting combinators, we would presumably want to look at step-
by-step evolution, and the extra rules would likely be skipping steps
in unpredictable increments.)

Based on some preliminary experimenting into how large combina-
tors evolved, combinators that seemed unlikely to halt in two ways
were first analyzed. Combinators that did not halt after a certain num-
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ber of steps and combinators that did not halt before growing to a
certain size were selected. As elaborated more in Section 4, larger com-
binators do seem to either quickly begin to grow exponentially or to
quickly begin evolving in a repetitive way. A small minority of combi-
nators that did neither of these things, but instead grew non-exponen-
tially, but in a complex way for many steps, were ignored. (These are
rather interesting combinators; however, it seems especially hard to
predict what they will do in the future: whether they will continue
having complicated slow growing behavior, whether they will begin
growing exponentially at some point, or whether they will in the end
exhibit repetitive behavior after all.)

However, even with combinators of size 1000, the extra rules only
modestly sped up evaluation. With only S and K rules, Mathematica
took an average of 1.20 seconds each to repeatedly evaluate 200 ran-
domly generated size 1000 combinators (these were also selected as
combinators that reached a fixed point before reaching either 10000
iterations or a size of 10000). With the extra 11 rules, this took 1.13
seconds, and with only one extra rule, S[K][x_][y_] = vy, this took
1.06 seconds. All timing measurements here were performed with
Mathematica 11 on a 3.40 GHz Intel Core i7-6700 processor.

Different selections and orders of the 11 optimization rules found,
along with the original S and K rules, were tested to see which would
speed up evaluation the most. First, each extra rule was added one at
a time, and the added rule was added at almost each possible index in
the rule list. Some positions were not checked. For example, putting
the extra rule S[K][x_][y_] = y after S[x_][y_]lz_] = x[z][y[z]], as
opposed to before it, would mean the extra rule would not be used.
The extra rule would be skipped over by the original and more gen-
eral rule. The fastest rule permutation turned out to be {K[x_][y_] =
x, SIK][x_][_] = x, S[x_][y_llz_] = x[z][ylz]]}, which took an average
of 1.00 second to evaluate the same combinators as before.

This is interesting: since S[K][x_][y_] = y is equivalent to the iden-
tity or “I” combinator, (I[y_] = y, I is essentially the same as
S[K][x_]), which can be used in practice to simplify the use of SK com-
binators. Extra rules were added in all possible combinations. Two,
three and then four different rules were added. These are the fastest
rules in each of those situations, with rules on the left and time in sec-
onds on the right of each list:

RepeatedTimingl[a /. {b :» c}]

9.8x1077, a}

epeatedTiming[a /. {b:» ¢, d > e}]
{1.4x1076, a}
RepeatedTiming[a /. {b:> c,d > e, e > f}]
{2.02x1075, a}

The extra rules can be used for speeding up combinator evaluation.
However, there is a tradeoff when using them, as more rules can help
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in skipping steps, but extra rules also generally slow down evaluation.
This is due to the interpreter needing to scan for more rule matches.

With only S and K rules, Mathematica took an average of 1.20 sec-
onds each to repeatedly evaluate 200 randomly generated size 1000
combinators that were also selected as combinators that reached a
fixed point before reaching either 10000 iterations or a size of
10 000. With the extra 11 rules, this took 1.13 seconds, and with only
one extra rule, S[K][x_][y_] = y, this took 1.06 seconds.

When only one to four extra rules were used, the rule selection and
order that were fastest for each were found to be the following:

extral » {KIx_ly_] = x, S[KIx_Ily_] = y, SIx_Ily_liz_] = x(z]ly[z]], 1.}

extra2 - {(S[K[x_IIly_l[z_] = xlyz], KIx_Ily_] = X, SIKIX_Ily_] = Y,

Sixly_1(z_] = x[z]ly[zI], 0.959}
extra3 - {S[K[x_Jlly_liz_] = xly([z]], KIKIX_Ily_llz_] > y, SIKIX_]ly_] =y,
Six_ly_1[z_1 = x[2]ly(zl, KIxly_] = X, 0.79}

extra4 » {S[KIx_Ily_] =y, KIKIX_Ily_1[z_] = y, KIKIx_IIly_][z_] = X,

KXy = x, SIKIX_JIly_1{z_] = XIy[z]], SIx_ly_liz_] = X[z]ly[z]], 0.765625}

Interestingly, when looking at all possible rule sets of a given size,
the fastest always has the same elements as the rule set one size
smaller, but with one new rule added, and in most cases in a different
order. Also, the one extra rule that is in all of these fastest rule selec-
tions is S[K][x_][y_] - y, which again is equivalent to the identity, or
“I” combinator I[x_] = x.

In the graphs in Figure 1, the x axis represents rules in the order
that they show up using the Permutations function. The y axis shows
the average time in seconds for evaluating sets of large combinators.

When one of each extra rule was added to extra4, the rule with a
fifth extra rule that was fastest was

{SIKIx1_][x2_] = x2, K[K][x1_][x2_][x3_] =» x2, S[S][x1_][K][x2_] =» x2,

KIKIx1_]J1[x2_][x3_] = x1, K[x_][y_] = X, S[K[x1_]1[x2_][x3_] =» x1[x2[x3]], S[x_][y_][z_] =»

x(2]ly(z]]},
which took 0.915 seconds to go through all the combinators. This
rule set was slower than extra4.

To speed up finding rules of size 7, only rules similar to the fastest
rule of size 6, but with one new rule part added, were tested.

The fastest of these, however, was slower than the fastest rule set
that has one less rule. The rule was

{SIKI[x1_][x2_] = x2, K[K][x1_][x2_][x3_] > x2, S[S][X1_][K][x2_] > x2,

KIK[x1_]1[x2_][x3_] =» x1, K[x_][y_] = X, SIK[x1_]][x2_][x3_] =» x1[x2[x3]], S[x_][y_l[z_] =»

x[z]ly[z]1},
which took 0.915 seconds to go through all the combinators. This
could be due to the fact that extra rules will generally significantly
slow down evolution, if the rule has no effect of skipping steps in
evaluation.
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Figure 1. Timing versus permutation index of implementing combinator rules.
This shows how different rules speed up or slow down the evaluation of large
combinators. The x axis represents rules in the order that they show up using
the Permutations function. The y axis shows the average time in seconds for
evaluating sets of large combinators. (a) An extra optimization rule is added
in different ways to the standard S and K rules. (b) Two extra rules are
added. (c) Three extra rules are added. (d) Four extra rules are added.

Thus, extra rules can only help in the case of large combinators,
and it appears that only up to a certain point do extra rules continue
to speed up evolution. Taking into consideration that extra rules had
a modest effect on speeding up evolution of size 100 combinators,
and that extra rules would slow down the evolution of smaller combi-
nators, in the end only the combinator rule that corresponds to the
“I” combinator was added to the actual EvaluateCombinator function.

I 4. Random Long-Running Combinators

The way in which large combinators evaluated was investigated in
order to learn more about why the rules found only had a modest
effect on the speeding up of combinator evolution.

First, the evolution of 400 randomly generated size 100 combina-
tors was run, and most of these combinators quickly did one of two
things. They either began growing exponentially or began having
repetitive behavior. Only one, in fact, appeared to be doing neither.
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First of all, it is known that two of the 16 896 possible size 7 com-
binators do not reach fixed points, and these combinators grow
exponentially [2]. Also, “At size 8, out of all 109 824 combinator
expressions it appears that 49 show exponential growth. And many
more show roughly linear growth.” [2] It seems that this becomes a
trend, with even larger combinators being more and more likely to
grow at an exponential rate, at least for a large number of steps. This
could be partially due to a larger combinator being more likely to con-
tain a smaller combinator part that grows exponentially.

The behavior of larger combinators that do not halt before reach-
ing certain computational limits was investigated. Four hundred ran-
dom size 100 SK combinators were generated, using SeedRandom[1]
as a starting seed for the random combinator generator. These combi-
nators were then evaluated, with evolution pausing when one of three
outcomes happened: (1) the combinator evolution reached a fixed
point (no longer changed with replacement rules applied); (2) the com-
binator evolution reached 300 steps; or (3) the size of the combinator
went above 2000.

Combinators that led to criterion 1 (reached a fixed point) were fil-
tered out, leaving only combinators that took many steps and/or
became very large without halting. Only 66 of the original 400 ran-
domly generated combinators had not halted or had grown too large
by this number of steps. These 66 combinators were then evaluated a
second time, again for a maximum of 300 steps, but for a maximum
combinator size of 200000, to see if they would halt after reaching
this size. Figure 2 shows combinators that did not halt after 300 steps
or before reaching size 200 000.
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Figure 2. Randomly selected non-terminating combinator growth. This shows
the growth of randomly selected combinators that were also selected under
the criterion that they not terminate after many steps.

Figure 3 shows the same plots, but with the natural logarithm
taken of each size point, and then with the differences taken between
those. It shows that most of the combinators that do grow exponen-
tially still appear to be exhibiting complex behavior.
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Figure 3. Logarithmic differences of randomly selected non-terminating combi-
nator growth. This shows the growth of randomly selected combinators that
do not terminate after many steps. The y axis shows the logarithms of the dif-
ferences between combinator lengths from step to step.

Of the 66 combinators, 53 appear to have been selected by going
above length 2000 before they reached step 200. One of them got
above size 2000 but below 200000 (it reached a maximum size of
3861), but reached a fixed point anyway before step 300. Four of
them got to step 300 by beginning to loop through the same few val-
ues repeatedly. Six of them began to grow in what appears to be a
repetitive pattern.

Figure 4 shows the two combinators that appeared to be showing
complex behavior without growing exponentially, this time with a cut-
off of 2000 steps. They both appeared to show complicated behavior
without becoming repetitive or growing exponentially, although the
behavior may be nested.

1000 1 100000 [
80000 [-
60000 [
40000 [

20000

I I
L L
500 1000 1500 2000 500 1000 1500 2000

Figure 4. Two large combinators that appear to show complicated behavior
without becoming repetitive or growing exponentially.

It should be noted, however, that the combinators that appeared to
be growing at an exponential rate or that seemed to be exhibiting
complex behavior even after many steps or reaching a large size could
still potentially reach a fixed point if run for more steps or to larger
sizes. However, with the limited computational resources given, this
was not observed in most of the large combinators.
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I 5. Random Terminating Combinators
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Figure 5 shows 62 combinators selected from 200 randomly chosen
size 1000 combinators that did terminate. All of the ones that reached
a fixed point did so within 100 steps (one ran for exactly 100 steps).
The largest size any of them reached at any time during its evaluation
was 154 820 (it ran for a total of 44 steps).
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Figure 5. (continues)
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Figure 5. Randomly selected terminating combinator growth. This shows the
growth of randomly selected combinators that terminate before a given large

number of steps.

I 6. Frequency of Optimization Rule Usages

This shows what fraction of the time an extra optimization rule
(besides the usual S and K rules) was used during the attempt at opti-
mized evolution. The combinators are sorted by how often the rules
were used. Each letter corresponds to a different size 1000

combinator.
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{A > 0.0257056, B - 0.024629, C -» 0.0246223, D —» 0.024045, E —» 0.0235916,
F - 0.0225295, G -» 0.0222673, H -» 0.021963, | - 0.0212766, J - 0.0210058,
K - 0.0209823, L -» 0.0209536, M - 0.0209166, N —» 0.0208107, O - 0.0206622,
P - 0.0205735, Q -» 0.0205672, R - 0.0204877, S -» 0.0204736, T —» 0.0204562,
U - 0.0202132, V - 0.0200748, W - 0.0200241, X -» 0.0199806, Y - 0.0196201,
Z - 0.0193757, Al - 0.0192907, B1 -» 0.0192356, C1 - 0.0191463,
D1 - 0.0190822, E1 -» 0.0189619, F1 -» 0.0188708, G1 - 0.0188185,
H1 - 0.0185733, I1 -» 0.0185015, J1 - 0.0184146, K1 -» 0.0183781,
L1 - 0.0183239, M1 - 0.0182556, N1 - 0.018183, O1 - 0.0181257,
P1 - 0.0180765, Q1 -» 0.0179722, R1 -» 0.0178833, S1 - 0.0173198,
T1-0.0171956, U1 - 0.0161381, V1 —» 0.0160847, W1 - 0.0159823,
X1 - 0.015799, Y1 - 0.0156495, Z1 - 0.0155909, A2 -» 0.0155469, B2 - 0.015438,
C2 - 0.0148621, D2 -» 0.0146095, E2 -» 0.0141228, F2 - 0.0138126,
G2 - 0.0107118, H2 - 0.00715231, 12 - 0.00564804, J2 - 0.0050268}

Figure 6 labels the combinator optimization rules. Figure 7 breaks
down how often each of these labeled rules is used individually in eval-
uation out of 100000 and also shows the number of times out of
100000 when a part of the combinator evolution does not match any
rule.

a - S[S]IXL_]K][x2_] =» x2

b - S[S[KII[x1_][x2_] = x1[x2]

¢ > S[SIKIIX1_]Ix2_] = x1[x2][x1]

d - K[K][x1_][x2_][x3_] =» x2

e - KIK[X1_]JI[x2_][x3_] = x1

f > KIKX1_][X2_1I[x3_] = x1

g - S[X1_][KIx2_]JI[x3_] = x1[x3][x2]

h - SIK[x1_J][x2_][x3_] =» x1[x2[x3]]

i - S[SIXL_][X2_]Ix3_] = X2[x3X1[x2][x3]]
j = S[S[X1_]1[x2_][x3_] = x1[x2[x3]][x3[x2[x3]]]
k = S[K][Xx1_][x2_] = x2

[ > Kx_ly_]=»x

m - S[x_ly_1[z_] = X[Z]ly[z]]

n-X_=»X

Figure 6. Labeling optimization rules for the table in Figure 7.

a b [4 d e f g h i j k § m n

45 | 93 405 [ 546 | 45 | 11 | 270 | 138 | 546 | 186 | 286 | 1823 | 808 [ 94798
213 [225| 6 |599 | 33 | 18 | 198 | 189 | 362 | 295 | 325 | 2484 | 888 | 94165 |
51 | 87 | 29 | 298 | 414 | 15 | 327 | 247 | 283 | 189 | 523 | 1816 | 1148 | 94574
12 [257 | 17 | 82 | 29 | 48 | 149 | 596 | 125 [ 580 | 510 | 1485 | 1489 94621
76 | 76 | 84 | 353 | 260 [ 126 | 294 | 134 | 260 | 118 | 571 | 2359 | 1192 [ 94089 |
24 | 48 | 83 | 238 | 191 | 83 | 274 | 215 | 215 | 453 | 429 | 2134 | 1359 | 94254
78 | 78 [ 90 | 90 | 66 | 84 | 394 | 149 [ 310 | 173 | 716 | 2298 | 1128 | 94347
30 | 76 | 45 | 197 | 121 | 76 | 288 | 257 [ 151 | 273 | 682 | 2196 | 1621 | 93987
89 [ 113 [ 122 [215 | 85 [122 | 300 [ 178 | 349 | 150 | 405 | 2610 | 1325 [ 93937
21 | 106 | 38 | 458 | 168 | 14 | 322 | 147 [ 192 | 144 | 493 | 1796 | 1020 | 95084
5 | 21 | 72 | 257 | 370 | 26 | 257 | 77 | 216 | 108 | 689 | 2294 | 1353 | 94256
64 | 64 | 86 | 278 | 107 | 21 | 257 | 150 | 214 | 214 | 641 | 2651 | 1219 | 94035
7 | 145 | 51 | 232 | 174 | 138 | 254 | 240 | 203 | 196 | 450 | 2142 | 1118 | 94647
22 | 185 [ 115 | 393 | 153 | 70 | 118 | 80 221 | 211 | 511 | 2986 | 1132 | 93802
85 [ 109 [193 [ 169 | 97 [ 133 | 169 [ 230 | 290 | 205 | 387 | 2127 | 1112 | 94696 |

OIZZl—xt_—IIm'nrHIUnw>I

Figure 7. (continues)
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a b [ d e f g h i j k l m n

P | 16 | 43 | 155 | 187 | 224 | 32 | 197 | 155 | 352 | 165 | 533 | 2473 | 911 | 94558
Q | 27 J127 | 63 | 136 | 399 | 136 | 263 | 109 [ 181 | 190 | 426 | 2600 | 870 | 94473
R |31 | 13 | 82 |308 | 195 | 258 | 145 | 176 | 201 | 44 | 597 | 2709 | 1276 | 93967
S |25 | 99 | 49 [345|173 | 74 |247 |222 | 123 | 271 | 419 | 2935 | 1184 | 93833
T |26 | 22 | 26 |232 318 | 45 |310 | 90 | 303 | 131 | 542 | 1421 | 1144 | 95389
U | 61 1104 | 141 202 | 37 | 37 | 147 ]202 | 392 | 233 | 466 | 3001 | 1133 | 93844
V | 25 J157 | 96 |298 |253 | 40 |243 | 162 | 233 | 172 | 329 | 2559 | 895 | 94539
W 28 | 51 | 79 J222 | 88 | 97 |357 | 121 | 334 | 167 | 459 | 2647 | 973 | 94377
X 6 11 ] 91 |194 | 194 ] 11 | 360 | 337 |280 | 6 |508 | 2546 | 1222 | 94234
Y | 37 | 31 |112 | 187 J156 | 93 | 187 | 212 | 336 | 137 | 473 | 1682 | 1046 | 95310
Z |20 | 20 J173 | 81 |243 | 66 | 173 | 234 | 228 | 141 | 557 | 1071 | 1135 | 95856
Al | 12 | 47 | 39 |304 | 126 | 20 | 201 | 158 ] 205 | 233 | 584 | 1333 | 1325 | 95412
Bl | 25 | 25 | 50 |225 250 | 75 |200 | 200 | 250 § 125 | 500 | 2698 | 999 | 94379
Cl1] 10 J1o5]| 33 J119| 95 | 43 |282 | 234 [ 115 | 363 | 516 | 1289 | 1289 | 95507
D1 ] 47 [102 | 37 | 168 [ 140 | 84 279 [ 112 | 205 | 307 [428 | 2523 | 1378 | 94192
E1 | 28 | 42 | 83 |249 |194 | 69 | 180 | 125|277 | 138 | 512 | 2920 | 955 | 94228
F1 1 5 |118 | 15 [159 | 67 | 62 | 257 | 293 | 129 | 221 | 560 | 1568 | 1203 | 95341
G139 [165] 24 |194 |204 | 53 179 | 58 | 189 | 247 | 529 | 2454 | 1174 | 94490
H1] 0 6 0 J296 661 3 340 ] 29 7 |498 ] 17 | 606 | 890 | 96647
11 185 | 23 | 85 |128 [124 | 43 | 113 | 346 | 283 | 274 | 345 | 2323 | 1444 | 94382
Jij46 | 63 | 11 193 J151 | 7 |319 |260 | 200 | 119 | 474 | 2483 | 1105 | 94570
KL| 5 49 | 16 | 65 |139| 84 272|383 | 92 |117 | 614 | 1283 | 1188 | 95691
L1 43 |36 | 25 [140 | 36 | 36 | 428 | 122 | 263 | 324 | 378 | 1120 | 1688 | 95360
M1] 16 | 54 | 13 |432 | 115 ] 51 | 192 | 67 | 192 | 144 | 550 | 2513 | 1148 | 94514
N1]86 |33 7 178 |119 | 26 | 198 | 224 | 250 | 79 | 619 | 1779 | 1252 | 95151
01]45 |58 | 58 |135]103 | 122 231 [180 212 | 96 |572 | 2410 | 1202 | 94575
PL}| 7 31 | 50 J474 | 67 | 22 | 87 | 50 | 87 | 132|800 | 1250 | 1382 | 95560
Q1] 54 |34 |41 |183]332] 27 |176 [ 122 | 264 | 109 | 454 | 2197 | 943 ]| 95063
R1| 9 48 | 18 254|169 | 16 229 |338 | 64 ]| 105 | 537 | 1301 | 1249 | 95662
S1 127 ]| 80 | 27 107 | 67 | 160 | 74 | 134 | 201 | 154 | 602 | 2213 | 1237 | 94817
T1] 6 18 | 54 |223 | 235|127 | 97 | 157 | 133 | 121 | 549 | 2552 | 887 | 94841
uiry 7 22 |31 J109 ]| 64 | 22 107 | 97 | 191 | 164 | 800 | 814 | 1113 | 96459
Vi) 75 0 19 [115| 71 | 14 | 105 | 104 | 441 | 113 | 551 | 1398 | 909 | 96084
W1] 15 | 29 | 18 [147 | 50 | 24 | 144 | 162 | 197 | 303 | 509 | 2028 | 1266 | 95108
X1] 5 25 5 123185 [125 231|181 |201 | 85 |406 |2112 | 828 | 95481
Y141 |36 |51 ]87 |31 5 |273 264 |351] 62 |364 | 1716 | 869 | 95851
Z1] 4 31 | 13 297 | 66 | 17 | 301 | 201 | 231 | 109 | 288 | 2328 | 926 | 95187
A2 | 20 | 55 | 25 |325 115 ] 90 | 170 | 195 | 115 | 200 | 245 ] 2050 | 915 | 95481
B2 | 6 9 J209] 91 |49 4 82 | 147 | 220 | 483 [ 242 | 743 | 911 [96802
C2 )63 |33 |37 |187| 53 | 57 |240 |224 [ 180 | 83 |327 | 1383 | 698 | 96433
D224 |77 | 19 | 89 [228 | 56 100 | 81 |212 J121 [453 | 1664 | 873 | 96002
E2 | 5 103 ]| 18 |166 | 27 | 10 | 161 |203 | 206 | 127 | 388 | 910 | 1153 | 96524
F2 115 | 15 | 10 [175 | 113 | 87 J277 | 252 | 67 | 62 |308 | 1951 | 703 | 95964
G2l 1 56 [ 33 J151 |82 | 68 J173 | 79 | 70 | 91 |268 | 935 | 653 | 97341
H2 111 |21 |35 |80 |17 2 J106 |125| 95 | 37 | 186 | 544 | 403 | 98338
12 1 23 4 14 9 4 32 | 38 | 15 | 38 |[387 | 291 | 674 [98470
J2J20 11814 |28 |18 1 25 | 72 | 59 | 57 [191 | 374 | 606 [98518

Figure 7. Shows the number of times a rule was used during the evolution of
different large combinators. Rules are column labels and combinators are row
labels. They are ordered by how many times total a rule (besides the S and K
rules) matched, from most to least. S and K rules are third and fourth from
the right, and the rightmost column shows the number of subpatterns of com-
binators that did not match any combinator rule.
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These are the rounded number of times a rule was used on average
out of 100 000.

{a—34,b>65,c-60,d- 215 e > 146, f » 58, g - 215,
h - 178, i - 216, j - 181, k > 467, | » 1918, m - 1083, n - 95163}

I 7. Conclusion

Out of the numerous possible rules up to size five that could be made
to skip combinator evolution, only 11 were not redundant in some
way. This made it easier to look through different possible ways to
use them for speeding up combinator evolution. In the end, adding
too many extra rules also generally slows down evolution, as each
rule needs to be compared with all parts and subparts of a combina-
tor expression.

Optimization rules are generally most helpful for combinators that
terminate. As for non-terminating combinators, we would most likely
want to look at the evolution step by step, and optimization rules
would skip steps in a generally hard-to-predict fashion. The majority
of large combinators, say of size 100, appear to not terminate. Most
begin to grow exponentially rather quickly, and some start exhibiting
repetitive behavior. A couple of interesting cases were found where
there was no exponential growth, but there also seemed to be less
repetitive behavior, and it is unclear whether these will in fact termi-
nate at some point.
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