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Rules for speeding up SK combinator evaluation were investigated, and
experiments were performed to determine the proportion of SK combi-
nator expressions that reach a fixed point before exceeding certain com-
putational  limits.  It  was  found  that  approximately  80.3  percent  of  SK
combinator  expressions  with  size  100  reach  a  fixed  point  within  300
steps  and  also  without  having  reached  a  combinator  size  of  200000
sometime during evaluation.

Introduction1.

Combinators  are  constructs  that  can  be  understood  as  functions  in  a
certain  abstract  sense  [1]  and  that  are  useful  as  a  simplified  model  of
computation. There are two very interesting combinators called S and
K,  which  can  be  used  together  to  write  any  computer  program  (the
two  together  are  Turing  complete,  so  can  be  used  as  a  universal
language). 

To  work  with  these  combinators,  we  can  look  at  transformations
of  combinator  expressions.  This  involves  starting  out  with  an  initial
combinator  expression,  which  is  made  by  calling  S  and  K  combina-
tors on each other in some order. Once an SK combinator expression
has been generated, we apply the rules for evaluating the combinators
repeatedly.  The  rules  are  to  replace  K[x_][y_]  with  y,  and
S[x_][y_][z_]  with  x[z][y[z]].  So  for  example,  we  start  out  with  the
expression S[S[S]][S][K][K], and running it step by step, we would get

S[S[S]][S][K][K]
S[S][K][S[K]][K]
S[S[K]][K[S[K]]][K]
S[K][K][K[S[K]][K]]
K[K[S[K]][K]][K[K[S[K]][K]]]
K[S[K]][K]
S[K]
S[K]

The  evaluation  “halts”  when  applying  the  rules  no  longer  changes
the expression, so the “output” of S[S[S]][S][K][K] is S[K].

One detail that was glossed over in the previous explanation is the
order in which rules are applied to the expression. There are two stan-
dard  ways  in  which  to  apply  the  rules,  normal  order  and  applicative
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order. In applicative order, the rules are applied at each step by scan-
ning  once  from  left  to  right  and  applying  the  rule  wherever  possible
without overlapping. This leads to larger parts of the combinator hav-
ing the rules applied to them first. In normal order, the rules are again
applied  from  left  to  right  without  overlapping,  but  the  parts  deepest
inside  brackets  (the  arguments  of  the  functions)  are  evaluated  before
the outer parts. 

Normal  order  will  be  used  exclusively  in  this  paper.  It  turns  out
that there are often combinator expressions that reach a fixed point in
normal  order  but  not  in  applicative  order.  This  is  because  sometimes
there  will  be  a  subpart  of  a  combinator  that  would  continuously
expand  if  evaluated  over  and  over,  but  if  that  subpart  is  inside  a  K
combinator,  evaluating  the  K  function  before  the  arguments  deletes
the whole expression that was going to grow before it could begin its
continuous growth. For example, S[S[S]][S][S][S][S] never stops grow-
ing [2], so evaluating K[S][S[S[S]][S][S][S][S]] in applicative order will
never  stop  growing  either,  whereas  evaluating  the  same  in  normal
order  will  cause  the  expression  to  become  just  S  and  to  then  stop
changing, after just one step. In this case, the K simply deletes the sec-
ond part containing the potential to grow.

In  general,  some  combinator  expressions  reach  a  fixed  point  and
stop  changing,  which  is  referred  to  as  “halting,”  whereas  some  never
stop growing, or begin to continuously loop through a set of states.

This paper discusses how certain patterns in combinator evaluation
were discovered. Extra combinator rules based on these patterns were
used  in  attempts  to  speed  up  the  evaluation  of  large  combinators.
Also,  experiments  were  performed  to  determine  the  proportion  of  SK
combinator expressions that reach a fixed point before exceeding cer-
tain computational limits.

In  [3],  the  authors  created  databases  of  combinator  reductions  to
speed  up  computation.  Here  a  slightly  different  approach  to  finding
extra combinator rules for speeding up combinator reductions is used.
In  [3],  a  sort  of  “multiplication  table”  was  built  up  of  different  ways
combinators can evaluate, whereas in this paper, combinators up to a
certain  size  were  evaluated  with  different  combinator  parts  being
replaced by variables, as described in Section 2.

Patterns in Combinator Evolution2.

Out  of  all  possible  SK  combinator  patterns  up  to  size  five  (of  which
there  were  2582),  just  13  are  non-redundant  as  defined  in  a  certain
way.  These  13  rules  are  rules  in  which  evaluating  the  left  side  to  get
the  right  side  takes  more  than  just  one  step.  Also,  less  general  rules
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are  excluded  in  favor  of  more  general  rules  (for  instance,  the  more
general  S[K][y_][x_]  :>  x  is  included  but  not  the  more  specific
S[K][S][x_]  :>  x).  Also,  cases  where  applying  a  shorter  combinator
rule  has  the  same  effect  as  applying  a  larger  combinator  rule  are  not
included.  The  rule  S[S[K][y_][x_]]  ⧴  S[x]  is  not  included,  since  the
shorter  rule  S[K][y_][x_]  ⧴  x  applied  to  S[S[K][y_][x_]]  will  also  give
S[x] in one step. The 13 non-redundant rules, which are general ways
in which combinators up to size five evaluate, are the following:

K[x_][y_] ⧴ x
S[x_][y_][z_] ⧴ x[z][y[z]]
S[K][x_][y_] ⧴ y
K[K[x_][y_]][z_] ⧴ x
K[K[x_]][y_][z_] ⧴ x
K[K][x_][y_][z_] ⧴ y
S[x_][K[y_]][z_] ⧴ x[z][y]
S[K[x_]][y_][z_] ⧴ x[y[z]]
S[S][x_][y_][z_] ⧴ y[z][x[y][z]]
S[S[x_]][y_][z_] ⧴ x[y[z]][z[y[z]]]
S[S][x_][K][y_] ⧴ y
S[S[K]][x_][y_] ⧴ x[y]
S[S][K][x_][y_] ⧴ x[y][x]

There  are  22 994  possible  rules  of  size  six,  and  again  a  relatively
small number, 67, are non-redundant in this way.

Applying Optimization3.

Next there is the matter of applying the rules that were found to com-
binator expressions. Combinators of various sizes were randomly gen-
erated.  These  combinators  were  then  evaluated,  while  adding  extra
rules  to  see  if  this  sped  up  the  combinator  evolution.  It  is  expected
that  the  more  steps  and  the  more  often  rules  are  applied,  the  more
extra  rules  would  help  speed  up  evolution.  Large  combinators  gener-
ally  have  more  rule  applications  and  run  for  more  steps.  Larger  and
larger combinators were tested to look for any speedups. 

There is one issue with using large combinators, however, which is
discussed more in Section 4. Basically, the issue is that larger combina-
tors were more likely not to reach a fixed point within 300 steps. Gen-
erally,  only  combinators  that  reach  a  fixed  point  were  of  interest  for
testing optimizing rules, since the extra rules would likely be used pri-
marily  for  evaluating  halting  combinators.  (If  we  were  looking  at
nonhalting  combinators,  we  would  presumably  want  to  look  at  step-
by-step  evolution,  and  the  extra  rules  would  likely  be  skipping  steps
in unpredictable increments.) 

Based on some preliminary experimenting into how large combina-
tors  evolved,  combinators  that  seemed  unlikely  to  halt  in  two  ways
were first analyzed. Combinators that did not halt after a certain num-
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ber  of  steps  and  combinators  that  did  not  halt  before  growing  to  a
certain size were selected. As elaborated more in Section 4, larger com-
binators  do  seem  to  either  quickly  begin  to  grow  exponentially  or  to
quickly begin evolving in a repetitive way. A small minority of combi-
nators that did neither of these things, but instead grew non-exponen-
tially, but in a complex way for many steps, were ignored. (These are
rather  interesting  combinators;  however,  it  seems  especially  hard  to
predict  what  they  will  do  in  the  future:  whether  they  will  continue
having  complicated  slow  growing  behavior,  whether  they  will  begin
growing  exponentially  at  some  point,  or  whether  they  will  in  the  end
exhibit repetitive behavior after all.) 

However, even with combinators of size 1000, the extra rules only
modestly  sped  up  evaluation.  With  only  S  and  K  rules,  Mathematica
took an average of 1.20 seconds each to repeatedly evaluate 200 ran-
domly  generated  size  1000  combinators  (these  were  also  selected  as
combinators  that  reached  a  fixed  point  before  reaching  either  10000
iterations or a size of 10000). With the extra 11 rules, this took 1.13
seconds,  and  with  only  one  extra  rule,  S[K][x_][y_]  ⧴  y,  this  took
1.06  seconds.  All  timing  measurements  here  were  performed  with
Mathematica 11 on a 3.40�GHz Intel Core i7-6700 processor.

Different  selections  and  orders  of  the  11  optimization  rules  found,
along with the original S and K rules, were tested to see which would
speed up evaluation the most. First, each extra rule was added one at
a time, and the added rule was added at almost each possible index in
the  rule  list.  Some  positions  were  not  checked.  For  example,  putting
the  extra  rule  S[K][x_][y_]  ⧴  y  after  S[x_][y_][z_]  ⧴  x[z][y[z]],  as
opposed  to  before  it,  would  mean  the  extra  rule  would  not  be  used.
The  extra  rule  would  be  skipped  over  by  the  original  and  more  gen-
eral  rule.  The  fastest  rule  permutation  turned  out  to  be  {K[x_][y_]  ⧴
x, S[K][x_][_] ⧴ x, S[x_][y_][z_] ⧴ x[z][y[z]]}, which took an average
of 1.00 second to evaluate the same combinators as before.

This is interesting: since S[K][x_][y_] ⧴ y is equivalent to the iden-
tity  or  “I”  combinator,  (I[y_]  ⧴  y,  I  is  essentially  the  same  as
S[K][x_]), which can be used in practice to simplify the use of SK com-
binators.  Extra  rules  were  added  in  all  possible  combinations.  Two,
three  and  then  four  different  rules  were  added.  These  are  the  fastest
rules in each of those situations, with rules on the left and time in sec-
onds on the right of each list:

RepeatedTiming[a /. {b ⧴ c}]
9.8×10-7, a
RepeatedTiming[a /. {b ⧴ c, d ⧴ e}]
1.4×10-6, a
RepeatedTiming[a /. {b ⧴ c, d ⧴ e, e ⧴ f}]
2.02×10-6, a

The extra rules can be used for speeding up combinator evaluation.
However, there is a tradeoff when using them, as more rules can help
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in skipping steps, but extra rules also generally slow down evaluation.
This is due to the interpreter needing to scan for more rule matches.

With only S and K rules, Mathematica took an average of 1.20 sec-
onds  each  to  repeatedly  evaluate  200  randomly  generated  size  1000
combinators  that  were  also  selected  as  combinators  that  reached  a
fixed  point  before  reaching  either  10000  iterations  or  a  size  of
10 000. With the extra 11 rules, this took 1.13 seconds, and with only
one extra rule, S[K][x_][y_] ⧴ y, this took 1.06 seconds. 

When only one to four extra rules were used, the rule selection and
order that were fastest for each were found to be the following:

extra1 → {K[x_][y_] ⧴ x, S[K][x_][y_] ⧴ y, S[x_][y_][z_] ⧴ x[z][y[z]], 1.}

extra2 → {S[K[x_]][y_][z_] ⧴ x[y[z]], K[x_][y_] ⧴ x, S[K][x_][y_] ⧴ y,
S[x_][y_][z_] ⧴ x[z][y[z]], 0.959}

extra3 → {S[K[x_]][y_][z_] ⧴ x[y[z]], K[K][x_][y_][z_] ⧴ y, S[K][x_][y_] ⧴ y,
S[x_][y_][z_] ⧴ x[z][y[z]], K[x_][y_] ⧴ x, 0.79}

extra4 → {S[K][x_][y_] ⧴ y, K[K][x_][y_][z_] ⧴ y, K[K[x_]][y_][z_] ⧴ x,
K[x_][y_] ⧴ x, S[K[x_]][y_][z_] ⧴ x[y[z]], S[x_][y_][z_] ⧴ x[z][y[z]], 0.765625}

Interestingly,  when  looking  at  all  possible  rule  sets  of  a  given  size,
the  fastest  always  has  the  same  elements  as  the  rule  set  one  size
smaller, but with one new rule added, and in most cases in a different
order. Also, the one extra rule that is in all of these fastest rule selec-
tions is S[K][x_][y_] ⧴ y, which again is equivalent to the identity, or
“I” combinator I[x_] ⧴ x.

In  the  graphs  in  Figure  1,  the  x  axis  represents  rules  in  the  order
that they show up using the Permutations function. The y axis shows
the average time in seconds for evaluating sets of large combinators.

When  one  of  each  extra  rule  was  added  to  extra4,  the  rule  with  a
fifth extra rule that was fastest was 

{S[K][x1_][x2_] ⧴ x2, K[K][x1_][x2_][x3_] ⧴ x2, S[S][x1_][K][x2_] ⧴ x2, 
K[K[x1_]][x2_][x3_] ⧴ x1, K[x_][y_] ⧴ x, S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]], S[x_][y_][z_] ⧴ 

x[z][y[z]]}, 

which  took  0.915  seconds  to  go  through  all  the  combinators.  This
rule set was slower than extra4.

To speed up finding rules of size 7, only rules similar to the fastest
rule of size 6, but with one new rule part added, were tested.

The  fastest  of  these,  however,  was  slower  than  the  fastest  rule  set
that has one less rule. The rule was 
{S[K][x1_][x2_] ⧴ x2, K[K][x1_][x2_][x3_] ⧴ x2, S[S][x1_][K][x2_] ⧴ x2, 
K[K[x1_]][x2_][x3_] ⧴ x1, K[x_][y_] ⧴ x, S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]], S[x_][y_][z_] ⧴ 

x[z][y[z]]}, 

which  took  0.915  seconds  to  go  through  all  the  combinators.  This
could  be  due  to  the  fact  that  extra  rules  will  generally  significantly
slow  down  evolution,  if  the  rule  has  no  effect  of  skipping  steps  in
evaluation.
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Figure 1. Timing  versus  permutation  index  of  implementing  combinator  rules.
This shows how different rules speed up or slow down the evaluation of large
combinators. The x axis represents rules in the order that they show up using
the  Permutations  function.  The  y  axis  shows  the  average  time  in  seconds  for
evaluating  sets  of  large  combinators.  (a)  An  extra  optimization  rule  is  added
in  different  ways  to  the  standard  S  and  K  rules.  (b)  Two  extra  rules  are
added. (c) Three extra rules are added. (d)�Four extra rules are added.

Thus,  extra  rules  can  only  help  in  the  case  of  large  combinators,
and it appears that only up to a certain point do extra rules continue
to  speed  up  evolution.  Taking  into  consideration  that  extra  rules  had
a  modest  effect  on  speeding  up  evolution  of  size  100  combinators,
and that extra rules would slow down the evolution of smaller combi-
nators,  in  the  end  only  the  combinator  rule  that  corresponds  to  the
“I” combinator was added to the actual EvaluateCombinator function.

Random Long-Running Combinators4.

The  way  in  which  large  combinators  evaluated  was  investigated  in
order  to  learn  more  about  why  the  rules  found  only  had  a  modest
effect on the speeding up of combinator evolution.

First,  the  evolution  of  400  randomly  generated  size  100  combina-
tors  was  run,  and  most  of  these  combinators  quickly  did  one  of  two
things.  They  either  began  growing  exponentially  or  began  having
repetitive behavior. Only one, in fact, appeared to be doing neither. 
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First of all, it is known that two of the 16 896 possible size 7 com-
binators  do  not  reach  fixed  points,  and  these  combinators  grow
exponentially  [2].  Also,  “At  size  8,  out  of  all  109 824  combinator
expressions  it  appears  that  49  show  exponential  growth.  And  many
more  show  roughly  linear  growth.”  [2]  It  seems  that  this  becomes  a
trend,  with  even  larger  combinators  being  more  and  more  likely  to
grow at an exponential rate, at least for a large number of steps. This
could be partially due to a larger combinator being more likely to con-
tain a smaller combinator part that grows exponentially. 

The  behavior  of  larger  combinators  that  do  not  halt  before  reach-
ing  certain  computational  limits  was  investigated.  Four  hundred  ran-
dom  size  100  SK  combinators  were  generated,  using  SeedRandom[1]
as a starting seed for the random combinator generator. These combi-
nators were then evaluated, with evolution pausing when one of three
outcomes  happened:  (1)  the  combinator  evolution  reached  a  fixed
point (no longer changed with replacement rules applied); (2) the com-
binator evolution reached 300 steps; or (3) the size of the combinator
went above 2000. 

Combinators that led to criterion 1 (reached a fixed point) were fil-
tered  out,  leaving  only  combinators  that  took  many  steps  and/or
became  very  large  without  halting.  Only  66  of  the  original  400  ran-
domly  generated  combinators  had  not  halted  or  had  grown  too  large
by this number of steps. These 66 combinators were then evaluated a
second  time,  again  for  a  maximum  of  300  steps,  but  for  a  maximum
combinator  size  of  200 000,  to  see  if  they  would  halt  after  reaching
this size. Figure 2 shows combinators that did not halt after 300 steps
or before reaching size 200 000.
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Figure 2. (continues)
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Figure 2. (continues)
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Figure 2.Randomly  selected  non-terminating  combinator  growth.  This  shows
the  growth  of  randomly  selected  combinators  that  were  also  selected  under
the criterion that they not terminate after many steps.

Figure  3  shows  the  same  plots,  but  with  the  natural  logarithm
taken of each size point, and then with the differences taken between
those.  It  shows  that  most  of  the  combinators  that  do  grow  exponen-
tially still appear to be exhibiting complex behavior.
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Figure 3. Logarithmic differences of randomly selected non-terminating combi-
nator  growth.  This  shows  the  growth  of  randomly  selected  combinators  that
do not terminate after many steps. The y axis shows the logarithms of the dif-
ferences between combinator lengths from step to step.

Of  the  66  combinators,  53  appear  to  have  been  selected  by  going
above  length  2000  before  they  reached  step  200.  One  of  them  got
above  size  2000  but  below  200 000  (it  reached  a  maximum  size  of
3861),  but  reached  a  fixed  point  anyway  before  step  300.  Four  of
them got to step 300 by beginning to loop through the same few val-
ues  repeatedly.  Six  of  them  began  to  grow  in  what  appears  to  be  a
repetitive pattern. 

Figure  4  shows  the  two  combinators  that  appeared  to  be  showing
complex behavior without growing exponentially, this time with a cut-
off of 2000 steps. They both appeared to show complicated behavior
without  becoming  repetitive  or  growing  exponentially,  although  the
behavior may be nested.
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Figure 4. Two  large  combinators  that  appear  to  show  complicated  behavior
without becoming repetitive or growing exponentially.

It should be noted, however, that the combinators that appeared to
be  growing  at  an  exponential  rate  or  that  seemed  to  be  exhibiting
complex behavior even after many steps or reaching a large size could
still  potentially  reach  a  fixed  point  if  run  for  more  steps  or  to  larger
sizes.  However,  with  the  limited  computational  resources  given,  this
was not observed in most of the large combinators.
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Random Terminating Combinators5.

Figure  5  shows  62  combinators  selected  from  200  randomly  chosen
size 1000 combinators that did terminate. All of the ones that reached
a  fixed  point  did so  within  100  steps  (one  ran for  exactly  100  steps).
The largest size any of them reached at any time during its evaluation
was 154 820 (it ran for a total of 44 steps). 
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Figure 5.Randomly  selected  terminating  combinator  growth.  This  shows  the
growth  of  randomly  selected  combinators  that  terminate  before  a  given  large
number of steps.

Frequency of Optimization Rule Usages6.

This  shows  what  fraction  of  the  time  an  extra  optimization  rule
(besides the usual S and K rules) was used during the attempt at opti-
mized  evolution.  The  combinators  are  sorted  by  how  often  the  rules
were  used.  Each  letter  corresponds  to  a  different  size  1000
combinator.
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{A → 0.0257056, B → 0.024629, C → 0.0246223, D → 0.024045, E → 0.0235916,
F → 0.0225295, G → 0.0222673, H → 0.021963, I → 0.0212766, J → 0.0210058,
K → 0.0209823, L → 0.0209536, M → 0.0209166, N → 0.0208107, O → 0.0206622,
P → 0.0205735, Q → 0.0205672, R → 0.0204877, S → 0.0204736, T → 0.0204562,
U → 0.0202132, V → 0.0200748, W → 0.0200241, X → 0.0199806, Y → 0.0196201,
Z → 0.0193757, A1 → 0.0192907, B1 → 0.0192356, C1 → 0.0191463,
D1 → 0.0190822, E1 → 0.0189619, F1 → 0.0188708, G1 → 0.0188185,
H1 → 0.0185733, I1 → 0.0185015, J1 → 0.0184146, K1 → 0.0183781,
L1 → 0.0183239, M1 → 0.0182556, N1 → 0.018183, O1 → 0.0181257,
P1 → 0.0180765, Q1 → 0.0179722, R1 → 0.0178833, S1 → 0.0173198,
T1 → 0.0171956, U1 → 0.0161381, V1 → 0.0160847, W1 → 0.0159823,
X1 → 0.015799, Y1 → 0.0156495, Z1 → 0.0155909, A2 → 0.0155469, B2 → 0.015438,
C2 → 0.0148621, D2 → 0.0146095, E2 → 0.0141228, F2 → 0.0138126,
G2 → 0.0107118, H2 → 0.00715231, I2 → 0.00564804, J2 → 0.0050268}

Figure  6  labels  the  combinator  optimization  rules.  Figure  7  breaks
down how often each of these labeled rules is used individually in eval-
uation  out  of  100 000  and  also  shows  the  number  of  times  out  of
100 000 when a part of the combinator evolution does not match any
rule.

a → S[S][x1_][K][x2_] ⧴ x2
b → S[S[K]][x1_][x2_] ⧴ x1[x2]
c → S[S][K][x1_][x2_] ⧴ x1[x2][x1]
d → K[K][x1_][x2_][x3_] ⧴ x2
e → K[K[x1_]][x2_][x3_] ⧴ x1
f → K[K[x1_][x2_]][x3_] ⧴ x1
g → S[x1_][K[x2_]][x3_] ⧴ x1[x3][x2]
h → S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]]
i → S[S][x1_][x2_][x3_] ⧴ x2[x3][x1[x2][x3]]
j → S[S[x1_]][x2_][x3_] ⧴ x1[x2[x3]][x3[x2[x3]]]
k → S[K][x1_][x2_] ⧴ x2
l → K[x_][y_] ⧴ x
m → S[x_][y_][z_] ⧴ x[z][y[z]]
n → x_ ⧴ x

Figure 6. Labeling optimization rules for the table in Figure 7.

a b c d e f g h i j k l m n

A 45 93 405 546 45 11 270 138 546 186 286 1823 808 94798

B 213 225 6 599 33 18 198 189 362 295 325 2484 888 94165

C 51 87 29 298 414 15 327 247 283 189 523 1816 1148 94574

D 12 257 17 82 29 48 149 596 125 580 510 1485 1489 94621

E 76 76 84 353 260 126 294 134 269 118 571 2359 1192 94089

F 24 48 83 238 191 83 274 215 215 453 429 2134 1359 94254

G 78 78 90 90 66 84 394 149 310 173 716 2298 1128 94347

H 30 76 45 197 121 76 288 257 151 273 682 2196 1621 93987

I 89 113 122 215 85 122 300 178 349 150 405 2610 1325 93937

J 21 106 38 458 168 14 322 147 192 144 493 1796 1020 95084

K 5 21 72 257 370 26 257 77 216 108 689 2294 1353 94256

L 64 64 86 278 107 21 257 150 214 214 641 2651 1219 94035

M 7 145 51 232 174 138 254 240 203 196 450 2142 1118 94647

N 22 185 115 393 153 70 118 80 221 211 511 2986 1132 93802

O 85 109 193 169 97 133 169 230 290 205 387 2127 1112 94696

Figure 7. (continues)
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a b c d e f g h i j k l m n

P 16 43 155 187 224 32 197 155 352 165 533 2473 911 94558

Q 27 127 63 136 399 136 263 109 181 190 426 2600 870 94473

R 31 13 82 308 195 258 145 176 201 44 597 2709 1276 93967

S 25 99 49 345 173 74 247 222 123 271 419 2935 1184 93833

T 26 22 26 232 318 45 310 90 303 131 542 1421 1144 95389

U 61 104 141 202 37 37 147 202 392 233 466 3001 1133 93844

V 25 157 96 298 253 40 243 162 233 172 329 2559 895 94539

W 28 51 79 222 88 97 357 121 334 167 459 2647 973 94377

X 6 11 91 194 194 11 360 337 280 6 508 2546 1222 94234

Y 37 31 112 187 156 93 187 212 336 137 473 1682 1046 95310

Z 20 20 173 81 243 66 173 234 228 141 557 1071 1135 95856

A1 12 47 39 304 126 20 201 158 205 233 584 1333 1325 95412

B1 25 25 50 225 250 75 200 200 250 125 500 2698 999 94379

C1 10 105 33 119 95 43 282 234 115 363 516 1289 1289 95507

D1 47 102 37 168 140 84 279 112 205 307 428 2523 1378 94192

E1 28 42 83 249 194 69 180 125 277 138 512 2920 955 94228

F1 5 118 15 159 67 62 257 293 129 221 560 1568 1203 95341

G1 39 165 24 194 204 53 179 58 189 247 529 2454 1174 94490

H1 0 6 0 296 661 3 340 29 7 498 17 606 890 96647

I1 85 23 85 128 124 43 113 346 283 274 345 2323 1444 94382

J1 46 63 11 193 151 7 319 260 200 119 474 2483 1105 94570

K1 5 49 16 65 139 84 272 383 92 117 614 1283 1188 95691

L1 43 36 25 140 36 36 428 122 263 324 378 1120 1688 95360

M1 16 54 13 432 115 51 192 67 192 144 550 2513 1148 94514

N1 86 33 7 178 119 26 198 224 250 79 619 1779 1252 95151

O1 45 58 58 135 103 122 231 180 212 96 572 2410 1202 94575

P1 7 31 50 474 67 22 87 50 87 132 800 1250 1382 95560

Q1 54 34 41 183 332 27 176 122 264 109 454 2197 943 95063

R1 9 48 18 254 169 16 229 338 64 105 537 1301 1249 95662

S1 127 80 27 107 67 160 74 134 201 154 602 2213 1237 94817

T1 6 18 54 223 235 127 97 157 133 121 549 2552 887 94841

U1 7 22 31 109 64 22 107 97 191 164 800 814 1113 96459

V1 75 0 19 115 71 14 105 104 441 113 551 1398 909 96084

W1 15 29 18 147 50 24 144 162 197 303 509 2028 1266 95108

X1 5 25 5 231 85 125 231 181 201 85 406 2112 828 95481

Y1 41 36 51 87 31 5 273 264 351 62 364 1716 869 95851

Z1 4 31 13 297 66 17 301 201 231 109 288 2328 926 95187

A2 20 55 25 325 115 90 170 195 115 200 245 2050 915 95481

B2 6 9 209 91 49 4 82 147 220 483 242 743 911 96802

C2 63 33 37 187 53 57 240 224 180 83 327 1383 698 96433

D2 24 77 19 89 228 56 100 81 212 121 453 1664 873 96002

E2 5 103 18 166 27 10 161 203 206 127 388 910 1153 96524

F2 15 15 10 175 113 87 277 252 67 62 308 1951 703 95964

G2 1 56 33 151 82 68 173 79 70 91 268 935 653 97341

H2 11 21 35 80 17 2 106 125 95 37 186 544 403 98338

I2 1 23 4 14 9 4 32 38 15 38 387 291 674 98470

J2 20 18 14 28 18 1 25 72 59 57 191 374 606 98518

Figure 7. Shows  the  number  of  times  a  rule  was  used  during  the  evolution  of
different large combinators. Rules are column labels and combinators are row
labels. They are ordered by how many times total a rule (besides the S and K
rules)  matched,  from  most  to  least.  S  and  K  rules  are  third  and  fourth  from
the right, and the rightmost column shows the number of subpatterns of com-
binators that did not match any combinator rule.
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These are the rounded number of times a rule was used on average
out of 100000.

{a → 34, b → 65, c → 60, d → 215, e → 146, f → 58, g → 215,
h → 178, i → 216, j → 181, k → 467, l → 1918, m → 1083, n → 95163}

Conclusion7.

Out of the numerous possible rules up to size five that could be made
to  skip  combinator  evolution,  only  11  were  not  redundant  in  some
way.  This  made  it  easier  to  look  through  different  possible  ways  to
use  them  for  speeding  up  combinator  evolution.  In  the  end,  adding
too  many  extra  rules  also  generally  slows  down  evolution,  as  each
rule  needs  to  be  compared  with  all  parts  and  subparts  of  a  combina-
tor expression. 

Optimization rules are generally most helpful for combinators that
terminate. As for non-terminating combinators, we would most likely
want  to  look  at  the  evolution  step  by  step,  and  optimization  rules
would  skip  steps  in  a  generally  hard-to-predict  fashion.  The  majority
of  large  combinators,  say  of  size  100,  appear  to  not  terminate.  Most
begin to grow exponentially rather quickly, and some start exhibiting
repetitive  behavior.  A  couple  of  interesting  cases  were  found  where
there  was  no  exponential  growth,  but  there  also  seemed  to  be  less
repetitive  behavior,  and  it  is  unclear  whether  these  will  in  fact  termi-
nate at some point. 
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