
Patterns in Combinator Evolution

Eric James Parfitt

eparfitt84@gmail.com

Rules for speeding up SK combinator evaluation were investigated, and
experiments were performed to determine the proportion of SK combi-
nator expressions that reach a fixed point before exceeding certain com-
putational limits. It was found that approximately 80.3 percent of SK
combinator expressions with size 100 reach a fixed point within 300
steps and also without having reached a combinator size of 200000
sometime during evaluation.

Introduction1.

Combinators are constructs that can be understood as functions in a
certain abstract sense [1] and that are useful as a simplified model of
computation. There are two very interesting combinators called S and
K, which can be used together to write any computer program (the
two together are Turing complete, so can be used as a universal
language).

To work with these combinators, we can look at transformations
of combinator expressions. This involves starting out with an initial
combinator expression, which is made by calling S and K combina-
tors on each other in some order. Once an SK combinator expression
has been generated, we apply the rules for evaluating the combinators
repeatedly. The rules are to replace K[x_][y_] with y, and
S[x_][y_][z_] with x[z][y[z]]. So for example, we start out with the
expression S[S[S]][S][K][K], and running it step by step, we would get

S[S[S]][S][K][K]
S[S][K][S[K]][K]
S[S[K]][K[S[K]]][K]
S[K][K][K[S[K]][K]]
K[K[S[K]][K]][K[K[S[K]][K]]]
K[S[K]][K]
S[K]
S[K]

The evaluation “halts” when applying the rules no longer changes
the expression, so the “output” of S[S[S]][S][K][K] is S[K].

One detail that was glossed over in the previous explanation is the
order in which rules are applied to the expression. There are two stan-
dard ways in which to apply the rules, normal order and applicative

https://doi.org/10.25088/ComplexSystems.26.2.119

mailto:eparfitt84@gmail.com
https://doi.org/10.25088/ComplexSystems.26.2.119

order. In applicative order, the rules are applied at each step by scan-
ning once from left to right and applying the rule wherever possible
without overlapping. This leads to larger parts of the combinator hav-
ing the rules applied to them first. In normal order, the rules are again
applied from left to right without overlapping, but the parts deepest
inside brackets (the arguments of the functions) are evaluated before
the outer parts.

Normal order will be used exclusively in this paper. It turns out
that there are often combinator expressions that reach a fixed point in
normal order but not in applicative order. This is because sometimes
there will be a subpart of a combinator that would continuously
expand if evaluated over and over, but if that subpart is inside a K
combinator, evaluating the K function before the arguments deletes
the whole expression that was going to grow before it could begin its
continuous growth. For example, S[S[S]][S][S][S][S] never stops grow-
ing [2], so evaluating K[S][S[S[S]][S][S][S][S]] in applicative order will
never stop growing either, whereas evaluating the same in normal
order will cause the expression to become just S and to then stop
changing, after just one step. In this case, the K simply deletes the sec-
ond part containing the potential to grow.

In general, some combinator expressions reach a fixed point and
stop changing, which is referred to as “halting,” whereas some never
stop growing, or begin to continuously loop through a set of states.

This paper discusses how certain patterns in combinator evaluation
were discovered. Extra combinator rules based on these patterns were
used in attempts to speed up the evaluation of large combinators.
Also, experiments were performed to determine the proportion of SK
combinator expressions that reach a fixed point before exceeding cer-
tain computational limits.

In [3], the authors created databases of combinator reductions to
speed up computation. Here a slightly different approach to finding
extra combinator rules for speeding up combinator reductions is used.
In [3], a sort of “multiplication table” was built up of different ways
combinators can evaluate, whereas in this paper, combinators up to a
certain size were evaluated with different combinator parts being
replaced by variables, as described in Section 2.

Patterns in Combinator Evolution2.

Out of all possible SK combinator patterns up to size five (of which
there were 2582), just 13 are non-redundant as defined in a certain
way. These 13 rules are rules in which evaluating the left side to get
the right side takes more than just one step. Also, less general rules

120 E. J. Parfitt

Complex Systems, 26 © 2017

are excluded in favor of more general rules (for instance, the more
general S[K][y_][x_] :> x is included but not the more specific
S[K][S][x_] :> x). Also, cases where applying a shorter combinator
rule has the same effect as applying a larger combinator rule are not
included. The rule S[S[K][y_][x_]] ⧴ S[x] is not included, since the
shorter rule S[K][y_][x_] ⧴ x applied to S[S[K][y_][x_]] will also give
S[x] in one step. The 13 non-redundant rules, which are general ways
in which combinators up to size five evaluate, are the following:

K[x_][y_] ⧴ x
S[x_][y_][z_] ⧴ x[z][y[z]]
S[K][x_][y_] ⧴ y
K[K[x_][y_]][z_] ⧴ x
K[K[x_]][y_][z_] ⧴ x
K[K][x_][y_][z_] ⧴ y
S[x_][K[y_]][z_] ⧴ x[z][y]
S[K[x_]][y_][z_] ⧴ x[y[z]]
S[S][x_][y_][z_] ⧴ y[z][x[y][z]]
S[S[x_]][y_][z_] ⧴ x[y[z]][z[y[z]]]
S[S][x_][K][y_] ⧴ y
S[S[K]][x_][y_] ⧴ x[y]
S[S][K][x_][y_] ⧴ x[y][x]

There are 22 994 possible rules of size six, and again a relatively
small number, 67, are non-redundant in this way.

Applying Optimization3.

Next there is the matter of applying the rules that were found to com-
binator expressions. Combinators of various sizes were randomly gen-
erated. These combinators were then evaluated, while adding extra
rules to see if this sped up the combinator evolution. It is expected
that the more steps and the more often rules are applied, the more
extra rules would help speed up evolution. Large combinators gener-
ally have more rule applications and run for more steps. Larger and
larger combinators were tested to look for any speedups.

There is one issue with using large combinators, however, which is
discussed more in Section 4. Basically, the issue is that larger combina-
tors were more likely not to reach a fixed point within 300 steps. Gen-
erally, only combinators that reach a fixed point were of interest for
testing optimizing rules, since the extra rules would likely be used pri-
marily for evaluating halting combinators. (If we were looking at
nonhalting combinators, we would presumably want to look at step-
by-step evolution, and the extra rules would likely be skipping steps
in unpredictable increments.)

Based on some preliminary experimenting into how large combina-
tors evolved, combinators that seemed unlikely to halt in two ways
were first analyzed. Combinators that did not halt after a certain num-

Patterns in Combinator Evolution 121

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

ber of steps and combinators that did not halt before growing to a
certain size were selected. As elaborated more in Section 4, larger com-
binators do seem to either quickly begin to grow exponentially or to
quickly begin evolving in a repetitive way. A small minority of combi-
nators that did neither of these things, but instead grew non-exponen-
tially, but in a complex way for many steps, were ignored. (These are
rather interesting combinators; however, it seems especially hard to
predict what they will do in the future: whether they will continue
having complicated slow growing behavior, whether they will begin
growing exponentially at some point, or whether they will in the end
exhibit repetitive behavior after all.)

However, even with combinators of size 1000, the extra rules only
modestly sped up evaluation. With only S and K rules, Mathematica
took an average of 1.20 seconds each to repeatedly evaluate 200 ran-
domly generated size 1000 combinators (these were also selected as
combinators that reached a fixed point before reaching either 10000
iterations or a size of 10000). With the extra 11 rules, this took 1.13
seconds, and with only one extra rule, S[K][x_][y_] ⧴ y, this took
1.06 seconds. All timing measurements here were performed with
Mathematica 11 on a 3.40�GHz Intel Core i7-6700 processor.

Different selections and orders of the 11 optimization rules found,
along with the original S and K rules, were tested to see which would
speed up evaluation the most. First, each extra rule was added one at
a time, and the added rule was added at almost each possible index in
the rule list. Some positions were not checked. For example, putting
the extra rule S[K][x_][y_] ⧴ y after S[x_][y_][z_] ⧴ x[z][y[z]], as
opposed to before it, would mean the extra rule would not be used.
The extra rule would be skipped over by the original and more gen-
eral rule. The fastest rule permutation turned out to be {K[x_][y_] ⧴
x, S[K][x_][_] ⧴ x, S[x_][y_][z_] ⧴ x[z][y[z]]}, which took an average
of 1.00 second to evaluate the same combinators as before.

This is interesting: since S[K][x_][y_] ⧴ y is equivalent to the iden-
tity or “I” combinator, (I[y_] ⧴ y, I is essentially the same as
S[K][x_]), which can be used in practice to simplify the use of SK com-
binators. Extra rules were added in all possible combinations. Two,
three and then four different rules were added. These are the fastest
rules in each of those situations, with rules on the left and time in sec-
onds on the right of each list:

RepeatedTiming[a /. {b ⧴ c}]
9.8×10-7, a
RepeatedTiming[a /. {b ⧴ c, d ⧴ e}]
1.4×10-6, a
RepeatedTiming[a /. {b ⧴ c, d ⧴ e, e ⧴ f}]
2.02×10-6, a

The extra rules can be used for speeding up combinator evaluation.
However, there is a tradeoff when using them, as more rules can help

122 E. J. Parfitt

Complex Systems, 26 © 2017

in skipping steps, but extra rules also generally slow down evaluation.
This is due to the interpreter needing to scan for more rule matches.

With only S and K rules, Mathematica took an average of 1.20 sec-
onds each to repeatedly evaluate 200 randomly generated size 1000
combinators that were also selected as combinators that reached a
fixed point before reaching either 10000 iterations or a size of
10 000. With the extra 11 rules, this took 1.13 seconds, and with only
one extra rule, S[K][x_][y_] ⧴ y, this took 1.06 seconds.

When only one to four extra rules were used, the rule selection and
order that were fastest for each were found to be the following:

extra1 → {K[x_][y_] ⧴ x, S[K][x_][y_] ⧴ y, S[x_][y_][z_] ⧴ x[z][y[z]], 1.}

extra2 → {S[K[x_]][y_][z_] ⧴ x[y[z]], K[x_][y_] ⧴ x, S[K][x_][y_] ⧴ y,
S[x_][y_][z_] ⧴ x[z][y[z]], 0.959}

extra3 → {S[K[x_]][y_][z_] ⧴ x[y[z]], K[K][x_][y_][z_] ⧴ y, S[K][x_][y_] ⧴ y,
S[x_][y_][z_] ⧴ x[z][y[z]], K[x_][y_] ⧴ x, 0.79}

extra4 → {S[K][x_][y_] ⧴ y, K[K][x_][y_][z_] ⧴ y, K[K[x_]][y_][z_] ⧴ x,
K[x_][y_] ⧴ x, S[K[x_]][y_][z_] ⧴ x[y[z]], S[x_][y_][z_] ⧴ x[z][y[z]], 0.765625}

Interestingly, when looking at all possible rule sets of a given size,
the fastest always has the same elements as the rule set one size
smaller, but with one new rule added, and in most cases in a different
order. Also, the one extra rule that is in all of these fastest rule selec-
tions is S[K][x_][y_] ⧴ y, which again is equivalent to the identity, or
“I” combinator I[x_] ⧴ x.

In the graphs in Figure 1, the x axis represents rules in the order
that they show up using the Permutations function. The y axis shows
the average time in seconds for evaluating sets of large combinators.

When one of each extra rule was added to extra4, the rule with a
fifth extra rule that was fastest was

{S[K][x1_][x2_] ⧴ x2, K[K][x1_][x2_][x3_] ⧴ x2, S[S][x1_][K][x2_] ⧴ x2,
K[K[x1_]][x2_][x3_] ⧴ x1, K[x_][y_] ⧴ x, S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]], S[x_][y_][z_] ⧴

x[z][y[z]]},

which took 0.915 seconds to go through all the combinators. This
rule set was slower than extra4.

To speed up finding rules of size 7, only rules similar to the fastest
rule of size 6, but with one new rule part added, were tested.

The fastest of these, however, was slower than the fastest rule set
that has one less rule. The rule was
{S[K][x1_][x2_] ⧴ x2, K[K][x1_][x2_][x3_] ⧴ x2, S[S][x1_][K][x2_] ⧴ x2,
K[K[x1_]][x2_][x3_] ⧴ x1, K[x_][y_] ⧴ x, S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]], S[x_][y_][z_] ⧴

x[z][y[z]]},

which took 0.915 seconds to go through all the combinators. This
could be due to the fact that extra rules will generally significantly
slow down evolution, if the rule has no effect of skipping steps in
evaluation.

Patterns in Combinator Evolution 123

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

0 5 10 15 20 25 30

1.05

1.10

1.15

1.20

1.25

1.30

0 100 200 300 400

1.0

1.2

1.4

1.6

��� ���

0 1000 2000 3000

0.8

0.9

1.0

1.1

1.2

1.3

10000. 20000. 30000.

0.8

1.0

1.2

1.4

��� ���

Figure 1. Timing versus permutation index of implementing combinator rules.
This shows how different rules speed up or slow down the evaluation of large
combinators. The x axis represents rules in the order that they show up using
the Permutations function. The y axis shows the average time in seconds for
evaluating sets of large combinators. (a) An extra optimization rule is added
in different ways to the standard S and K rules. (b) Two extra rules are
added. (c) Three extra rules are added. (d)�Four extra rules are added.

Thus, extra rules can only help in the case of large combinators,
and it appears that only up to a certain point do extra rules continue
to speed up evolution. Taking into consideration that extra rules had
a modest effect on speeding up evolution of size 100 combinators,
and that extra rules would slow down the evolution of smaller combi-
nators, in the end only the combinator rule that corresponds to the
“I” combinator was added to the actual EvaluateCombinator function.

Random Long-Running Combinators4.

The way in which large combinators evaluated was investigated in
order to learn more about why the rules found only had a modest
effect on the speeding up of combinator evolution.

First, the evolution of 400 randomly generated size 100 combina-
tors was run, and most of these combinators quickly did one of two
things. They either began growing exponentially or began having
repetitive behavior. Only one, in fact, appeared to be doing neither.

124 E. J. Parfitt

Complex Systems, 26 © 2017

First of all, it is known that two of the 16 896 possible size 7 com-
binators do not reach fixed points, and these combinators grow
exponentially [2]. Also, “At size 8, out of all 109 824 combinator
expressions it appears that 49 show exponential growth. And many
more show roughly linear growth.” [2] It seems that this becomes a
trend, with even larger combinators being more and more likely to
grow at an exponential rate, at least for a large number of steps. This
could be partially due to a larger combinator being more likely to con-
tain a smaller combinator part that grows exponentially.

The behavior of larger combinators that do not halt before reach-
ing certain computational limits was investigated. Four hundred ran-
dom size 100 SK combinators were generated, using SeedRandom[1]
as a starting seed for the random combinator generator. These combi-
nators were then evaluated, with evolution pausing when one of three
outcomes happened: (1) the combinator evolution reached a fixed
point (no longer changed with replacement rules applied); (2) the com-
binator evolution reached 300 steps; or (3) the size of the combinator
went above 2000.

Combinators that led to criterion 1 (reached a fixed point) were fil-
tered out, leaving only combinators that took many steps and/or
became very large without halting. Only 66 of the original 400 ran-
domly generated combinators had not halted or had grown too large
by this number of steps. These 66 combinators were then evaluated a
second time, again for a maximum of 300 steps, but for a maximum
combinator size of 200 000, to see if they would halt after reaching
this size. Figure 2 shows combinators that did not halt after 300 steps
or before reaching size 200 000.

0 50 100 150 200 250 300

100

200

300

400

0 10 20 30 40

10000

20000

30000

40000

0 10 20 30

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30

10000

20000

30000

40000

0 50 100 150 200 250 300

200

400

600

800

1000

0 10 20 30 40

20000

40000

60000

80000

0 5 10 15 20 25 30 35

20000

40000

60000

80000

0 10 20 30 40

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250 300

1000

2000

3000

4000

5000

0 10 20 30 40

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50

20000

40000

60000

Figure 2. (continues)

Patterns in Combinator Evolution 125

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

0 50 100 150 200 250 300

2000
4000
6000
8000

10000
12000
14000

0 10 20 30 40 50 60 70

10000

20000

30000

40000

50000

0 10 20 30 40

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70

50000

100000

150000

200000

0 20 40 60 80

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

2000

4000

6000

8000

0 5 10 15 20 25 30

10000
20000
30000
40000
50000
60000
70000

0 10 20 30 40

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35

10000

20000

30000

40000

50000

60000

0 10 20 30 40

10000

20000

30000

40000

50000

0 10 20 30 40

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60

10000

20000

30000

40000

0 5 10 15 20 25 30 35

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40

10000

20000

30000

40000

0 10 20 30 40

5000

10000

15000

20000

0 5 10 15 20 25 30

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35

10000

20000

30000

40000

0 10 20 30 40

10000

20000

30000

40000

0 20 40 60 80

20000

40000

60000

80000

0 50 100 150 200 250 300

500

1000

1500

0 5 10 15 20 25 30 35

20000

40000

60000

80000

0 50 100 150 200 250 300

20

40

60

80

100

120

0 5 10 15 20 25 30

10000

20000

30000

40000

50000

0 10 20 30 40 50

1000

2000

3000

4000

0 5 10 15 20 25 30 35

20000

40000

60000

80000

100000

0 10 20 30 40

10000
20000
30000
40000
50000
60000
70000

0 10 20 30 40 50 60 70

20000

40000

60000

80000

100000

0 10 20 30 40 50 60

10000

20000

30000

0 50 100 150 200 250 300

100

200

300

400

500

600

0 10 20 30 40 50

20000

40000

60000

80000

0 50 100 150 200 250 300

20

40

60

80

100

120

0 10 20 30 40

5000
10000
15000
20000
25000
30000
35000

0 10 20 30 40 50 60 70

50000

100000

150000

0 10 20 30 40 50

5000

10000

15000

20000

0 20 40 60 80 100

10000
20000
30000
40000
50000
60000
70000

0 5 10 15 20 25 30

20000
40000
60000
80000

100000
120000
140000

0 10 20 30 40

20000

40000

60000

80000

0 10 20 30 40 50 60

50000

100000

150000

200000

Figure 2. (continues)

126 E. J. Parfitt

Complex Systems, 26 © 2017

0 5 10 15 20 25

20000

40000

60000

80000

0 5 10 15 20 25 30 35

5000
10000
15000
20000
25000
30000
35000

0 50 100 150 200 250 300

100

200

300

400

500

600

0 50 100 150 200 250 300

1000

2000

3000

4000

0 20 40 60 80

20000
40000
60000
80000

100000
120000
140000

0 10 20 30 40

10000

20000

30000

40000

0 10 20 30 40 50 60 70

10000
20000
30000
40000
50000
60000
70000

0 5 10 15 20 25 30

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40

10000

20000

30000

40000

50000

60000

0 10 20 30 40

10000

20000

30000

40000

50000

60000

Figure 2.Randomly selected non-terminating combinator growth. This shows
the growth of randomly selected combinators that were also selected under
the criterion that they not terminate after many steps.

Figure 3 shows the same plots, but with the natural logarithm
taken of each size point, and then with the differences taken between
those. It shows that most of the combinators that do grow exponen-
tially still appear to be exhibiting complex behavior.

50 100 150 200 250 300

-2.0

-1.5

-1.0

-0.5

0.5

50 100 150 200 250 300

-1.0

-0.5

0.5

5 10 15 20 25 30 35

-0.2

-0.1

0.1

0.2

0.3

0.4

50 100 150 200 250 300

-1.0

-0.5

0.5

20 40 60 80

-0.6

-0.4

-0.2

0.2

0.4

0.6

5 10 15 20 25 30 35

-0.6

-0.4

-0.2

0.2

0.4

5 10 15 20 25 30 35

-0.6

-0.4

-0.2

0.2

0.4

5 10 15 20 25 30
-0.2

0.2

0.4

0.6

20 40 60 80

-1.0
-0.8
-0.6
-0.4
-0.2

0.2
0.4

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

10 20 30 40 50 60 70

-0.8
-0.6
-0.4
-0.2

0.2
0.4
0.6

50 100 150 200 250 300

-0.6

-0.4

-0.2

0.2

0.4

20 40 60 80 100

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40 50

-1.0

-0.5

0.5

5 10 15 20 25
-0.2

0.2

0.4

20 40 60 80

-0.6

-0.4

-0.2

0.2

0.4

5 10 15 20 25 30

-0.8
-0.6
-0.4
-0.2

0.2

0.4

0.6

10 20 30

-0.8
-0.6
-0.4
-0.2

0.2
0.4
0.6

10 20 30 40

-0.4

-0.2

0.2

0.4

50 100 150 200 250 300

-0.6

-0.4

-0.2

0.2

0.4

Figure 3. (continues)

Patterns in Combinator Evolution 127

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

10 20 30 40 50 60 70

-1.0

-0.5

0.5

50 100 150 200 250 300-0.02

0.02

0.04

0.06

10 20 30 40

-0.5

0.5

5 10 15 20 25 30 35

-1.0

-0.5

0.5

5 10 15 20 25 30 35
-0.2

0.2

0.4

0.6

50 100 150 200 250 300

-1.0

-0.5

0.5

10 20 30 40 50

-2.0

-1.5

-1.0

-0.5

0.5

10 20 30 40 50 60

-0.6

-0.4

-0.2

0.2

0.4

0.6

10 20 30

-0.6

-0.4

-0.2

0.2

0.4

0.6

5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

10 20 30

-0.8
-0.6
-0.4
-0.2

0.2

0.4

0.6

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

10 20 30 40

-0.8
-0.6
-0.4
-0.2

0.2

0.4

0.6

10 20 30 40

-0.8
-0.6
-0.4
-0.2

0.2
0.4
0.6

5 10 15 20 25 30 35

-1.0

-0.5

0.5

5 10 15 20 25 30

-0.6

-0.4

-0.2

0.2

0.4

0.6

10 20 30

-0.4

-0.2

0.2

0.4

10 20 30 40

-0.4

-0.2

0.2

0.4

5 10 15 20 25

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40

-0.4

-0.2

0.2

0.4

10 20 30 40

-0.6

-0.4

-0.2

0.2

0.4

0.6

5 10 15 20 25 30 35

-0.6

-0.4

-0.2

0.2

0.4

0.6

5 10 15 20 25 30 35

-0.6
-0.4
-0.2

0.2
0.4
0.6

5 10 15 20 25 30 35

-0.4

-0.2

0.2

0.4

0.6

50 100 150 200 250 300

-0.8
-0.6
-0.4
-0.2

0.2
0.4

10 20 30 40 50 60 70

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40

-0.2
-0.1

0.1

0.2

0.3

0.4

0.5

20 40 60 80

-0.5

0.5

50 100 150 200 250 300

-1.0

-0.5

0.5

10 20 30 40 50 60 70

-0.4

-0.2

0.2

0.4

10 20 30

-0.6

-0.4

-0.2

0.2

0.4

5 10 15 20 25 30

-0.6

-0.4

-0.2

0.2

0.4

0.6

10 20 30

-0.4

-0.2

0.2

0.4

0.6

10 20 30 40

-0.8

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40 50 60 70
-0.2

0.2

0.4

0.6

10 20 30 40

-0.4

-0.2

0.2

0.4

0.6

10 20 30 40 50 60

-0.5

0.5

10 20 30 40

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40

-1.0

-0.5

0.5

50 100 150 200 250 300

-1.0
-0.8
-0.6
-0.4
-0.2

0.2
0.4

Figure 3. (continues)

128 E. J. Parfitt

Complex Systems, 26 © 2017

10 20 30 40

-0.6
-0.4
-0.2

0.2

0.4

0.6

10 20 30 40 50

-0.5

0.5

10 20 30 40 50

-0.6

-0.4

-0.2

0.2

0.4

10 20 30 40 50 60-0.1

0.1

0.2

0.3

0.4

20 40 60 80 100

-1.0

-0.5

0.5

50 100 150 200 250 300

-1.5

-1.0

-0.5

0.5

Figure 3. Logarithmic differences of randomly selected non-terminating combi-
nator growth. This shows the growth of randomly selected combinators that
do not terminate after many steps. The y axis shows the logarithms of the dif-
ferences between combinator lengths from step to step.

Of the 66 combinators, 53 appear to have been selected by going
above length 2000 before they reached step 200. One of them got
above size 2000 but below 200 000 (it reached a maximum size of
3861), but reached a fixed point anyway before step 300. Four of
them got to step 300 by beginning to loop through the same few val-
ues repeatedly. Six of them began to grow in what appears to be a
repetitive pattern.

Figure 4 shows the two combinators that appeared to be showing
complex behavior without growing exponentially, this time with a cut-
off of 2000 steps. They both appeared to show complicated behavior
without becoming repetitive or growing exponentially, although the
behavior may be nested.

500 1000 1500 2000

200

400

600

800

1000

500 1000 1500 2000

20000

40000

60000

80000

100000

Figure 4. Two large combinators that appear to show complicated behavior
without becoming repetitive or growing exponentially.

It should be noted, however, that the combinators that appeared to
be growing at an exponential rate or that seemed to be exhibiting
complex behavior even after many steps or reaching a large size could
still potentially reach a fixed point if run for more steps or to larger
sizes. However, with the limited computational resources given, this
was not observed in most of the large combinators.

Patterns in Combinator Evolution 129

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

Random Terminating Combinators5.

Figure 5 shows 62 combinators selected from 200 randomly chosen
size 1000 combinators that did terminate. All of the ones that reached
a fixed point did so within 100 steps (one ran for exactly 100 steps).
The largest size any of them reached at any time during its evaluation
was 154 820 (it ran for a total of 44 steps).

0 2 4 6 8 10 12 14

200

400

600

800

1000

0 5 10 15 20 25 30

500

1000

1500

0 5 10 15 20

200

400

600

800

1000

0 5 10 15 20 25 30

200

400

600

800

1000

0 2 4 6 8 10

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

200

400

600

800

1000

1200

0 5 10 15 20 25

200

400

600

800

1000

0 2 4 6 8 10 12

200

400

600

800

1000

0 5 10 15 20

200

400

600

800

1000

0 5 10 15 20

200

400

600

800

1000

0 5 10 15 20

200

400

600

800

1000

1200

0 10 20 30 40 50 60

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

200

400

600

800

1000

1200

0 5 10 15

2000
4000
6000
8000

10000
12000
14000

0 2 4 6 8 10

20

40

60

80

100

120

0 2 4 6 8 10

200

400

600

800

1000

0 2 4 6 8 10

200

400

600

800

1000

0 5 10 15 20 25 30

200

400

600

800

1000

0 5 10 15 20 25

2000

4000

6000

8000

0 10 20 30 40

200

400

600

800

1000

1200

0 10 20 30 40

20000

40000

60000

80000

0 10 20 30 40 50 60 70

500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12 14

200

400

600

800

1000

0 2 4 6 8

200

400

600

800

1000

0 5 10 15 20

500

1000

1500

0 5 10 15 20 25

200

400

600

800

1000

0 5 10 15

500

1000

1500

0 5 10 15 20

500

1000

1500

2000

2500

3000

0 5 10 15

200

400

600

800

1000

0 5 10 15 20 25 30

500

1000

1500

Figure 5. (continues)

130 E. J. Parfitt

Complex Systems, 26 © 2017

0 10 20 30

500

1000

1500

2000

2500

0 2 4 6 8 10 12

200

400

600

800

1000

0 2 4 6 8
0

5

10

15

20

0 5 10 15 20 25

200
400
600
800

1000
1200
1400

0 5 10 15 20

100

200

300

400

0 5 10 15

200

400

600

800

1000

0 5 10 15

200

400

600

800

1000

1200

1400

0 1 2 3 4 5

50

100

150

200

0 5 10 15

500

1000

1500

2000

0 5 10 15 20 25 30 35

500

1000

1500

0 10 20 30 40

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

1000

2000

3000

4000

0 2 4 6 8 10 12

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

200

400

600

800

1000

1200

0 5 10 15 20 25 30

500

1000

1500

2000

0 20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

200

400

600

800

1000

1200

0 2 4 6 8 10 12

200

400

600

800

1000

0 5 10 15 20 25

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

200

400

600

800

1000

1200

0 5 10 15 20 25

500

1000

1500

2000

0 5 10 15 20 25 30

100

200

300

400

0 10 20 30 40 50 60

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12

500

1000

1500

2000

0 10 20 30 40 50 60

200

400

600

800

1000

0 5 10 15 20 25 30 35

200

400

600

800

1000

0 10 20 30 40 50

100

200

300

400

500

0 5 10 15

200

400

600

800

1000

1200

0 10 20 30 40 50 60

200

400

600

800

1000

0 2 4 6 8 10

200

400

600

800

1000

1200

Figure 5.Randomly selected terminating combinator growth. This shows the
growth of randomly selected combinators that terminate before a given large
number of steps.

Frequency of Optimization Rule Usages6.

This shows what fraction of the time an extra optimization rule
(besides the usual S and K rules) was used during the attempt at opti-
mized evolution. The combinators are sorted by how often the rules
were used. Each letter corresponds to a different size 1000
combinator.

Patterns in Combinator Evolution 131

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

{A → 0.0257056, B → 0.024629, C → 0.0246223, D → 0.024045, E → 0.0235916,
F → 0.0225295, G → 0.0222673, H → 0.021963, I → 0.0212766, J → 0.0210058,
K → 0.0209823, L → 0.0209536, M → 0.0209166, N → 0.0208107, O → 0.0206622,
P → 0.0205735, Q → 0.0205672, R → 0.0204877, S → 0.0204736, T → 0.0204562,
U → 0.0202132, V → 0.0200748, W → 0.0200241, X → 0.0199806, Y → 0.0196201,
Z → 0.0193757, A1 → 0.0192907, B1 → 0.0192356, C1 → 0.0191463,
D1 → 0.0190822, E1 → 0.0189619, F1 → 0.0188708, G1 → 0.0188185,
H1 → 0.0185733, I1 → 0.0185015, J1 → 0.0184146, K1 → 0.0183781,
L1 → 0.0183239, M1 → 0.0182556, N1 → 0.018183, O1 → 0.0181257,
P1 → 0.0180765, Q1 → 0.0179722, R1 → 0.0178833, S1 → 0.0173198,
T1 → 0.0171956, U1 → 0.0161381, V1 → 0.0160847, W1 → 0.0159823,
X1 → 0.015799, Y1 → 0.0156495, Z1 → 0.0155909, A2 → 0.0155469, B2 → 0.015438,
C2 → 0.0148621, D2 → 0.0146095, E2 → 0.0141228, F2 → 0.0138126,
G2 → 0.0107118, H2 → 0.00715231, I2 → 0.00564804, J2 → 0.0050268}

Figure 6 labels the combinator optimization rules. Figure 7 breaks
down how often each of these labeled rules is used individually in eval-
uation out of 100 000 and also shows the number of times out of
100 000 when a part of the combinator evolution does not match any
rule.

a → S[S][x1_][K][x2_] ⧴ x2
b → S[S[K]][x1_][x2_] ⧴ x1[x2]
c → S[S][K][x1_][x2_] ⧴ x1[x2][x1]
d → K[K][x1_][x2_][x3_] ⧴ x2
e → K[K[x1_]][x2_][x3_] ⧴ x1
f → K[K[x1_][x2_]][x3_] ⧴ x1
g → S[x1_][K[x2_]][x3_] ⧴ x1[x3][x2]
h → S[K[x1_]][x2_][x3_] ⧴ x1[x2[x3]]
i → S[S][x1_][x2_][x3_] ⧴ x2[x3][x1[x2][x3]]
j → S[S[x1_]][x2_][x3_] ⧴ x1[x2[x3]][x3[x2[x3]]]
k → S[K][x1_][x2_] ⧴ x2
l → K[x_][y_] ⧴ x
m → S[x_][y_][z_] ⧴ x[z][y[z]]
n → x_ ⧴ x

Figure 6. Labeling optimization rules for the table in Figure 7.

a b c d e f g h i j k l m n

A 45 93 405 546 45 11 270 138 546 186 286 1823 808 94798

B 213 225 6 599 33 18 198 189 362 295 325 2484 888 94165

C 51 87 29 298 414 15 327 247 283 189 523 1816 1148 94574

D 12 257 17 82 29 48 149 596 125 580 510 1485 1489 94621

E 76 76 84 353 260 126 294 134 269 118 571 2359 1192 94089

F 24 48 83 238 191 83 274 215 215 453 429 2134 1359 94254

G 78 78 90 90 66 84 394 149 310 173 716 2298 1128 94347

H 30 76 45 197 121 76 288 257 151 273 682 2196 1621 93987

I 89 113 122 215 85 122 300 178 349 150 405 2610 1325 93937

J 21 106 38 458 168 14 322 147 192 144 493 1796 1020 95084

K 5 21 72 257 370 26 257 77 216 108 689 2294 1353 94256

L 64 64 86 278 107 21 257 150 214 214 641 2651 1219 94035

M 7 145 51 232 174 138 254 240 203 196 450 2142 1118 94647

N 22 185 115 393 153 70 118 80 221 211 511 2986 1132 93802

O 85 109 193 169 97 133 169 230 290 205 387 2127 1112 94696

Figure 7. (continues)

132 E. J. Parfitt

Complex Systems, 26 © 2017

a b c d e f g h i j k l m n

P 16 43 155 187 224 32 197 155 352 165 533 2473 911 94558

Q 27 127 63 136 399 136 263 109 181 190 426 2600 870 94473

R 31 13 82 308 195 258 145 176 201 44 597 2709 1276 93967

S 25 99 49 345 173 74 247 222 123 271 419 2935 1184 93833

T 26 22 26 232 318 45 310 90 303 131 542 1421 1144 95389

U 61 104 141 202 37 37 147 202 392 233 466 3001 1133 93844

V 25 157 96 298 253 40 243 162 233 172 329 2559 895 94539

W 28 51 79 222 88 97 357 121 334 167 459 2647 973 94377

X 6 11 91 194 194 11 360 337 280 6 508 2546 1222 94234

Y 37 31 112 187 156 93 187 212 336 137 473 1682 1046 95310

Z 20 20 173 81 243 66 173 234 228 141 557 1071 1135 95856

A1 12 47 39 304 126 20 201 158 205 233 584 1333 1325 95412

B1 25 25 50 225 250 75 200 200 250 125 500 2698 999 94379

C1 10 105 33 119 95 43 282 234 115 363 516 1289 1289 95507

D1 47 102 37 168 140 84 279 112 205 307 428 2523 1378 94192

E1 28 42 83 249 194 69 180 125 277 138 512 2920 955 94228

F1 5 118 15 159 67 62 257 293 129 221 560 1568 1203 95341

G1 39 165 24 194 204 53 179 58 189 247 529 2454 1174 94490

H1 0 6 0 296 661 3 340 29 7 498 17 606 890 96647

I1 85 23 85 128 124 43 113 346 283 274 345 2323 1444 94382

J1 46 63 11 193 151 7 319 260 200 119 474 2483 1105 94570

K1 5 49 16 65 139 84 272 383 92 117 614 1283 1188 95691

L1 43 36 25 140 36 36 428 122 263 324 378 1120 1688 95360

M1 16 54 13 432 115 51 192 67 192 144 550 2513 1148 94514

N1 86 33 7 178 119 26 198 224 250 79 619 1779 1252 95151

O1 45 58 58 135 103 122 231 180 212 96 572 2410 1202 94575

P1 7 31 50 474 67 22 87 50 87 132 800 1250 1382 95560

Q1 54 34 41 183 332 27 176 122 264 109 454 2197 943 95063

R1 9 48 18 254 169 16 229 338 64 105 537 1301 1249 95662

S1 127 80 27 107 67 160 74 134 201 154 602 2213 1237 94817

T1 6 18 54 223 235 127 97 157 133 121 549 2552 887 94841

U1 7 22 31 109 64 22 107 97 191 164 800 814 1113 96459

V1 75 0 19 115 71 14 105 104 441 113 551 1398 909 96084

W1 15 29 18 147 50 24 144 162 197 303 509 2028 1266 95108

X1 5 25 5 231 85 125 231 181 201 85 406 2112 828 95481

Y1 41 36 51 87 31 5 273 264 351 62 364 1716 869 95851

Z1 4 31 13 297 66 17 301 201 231 109 288 2328 926 95187

A2 20 55 25 325 115 90 170 195 115 200 245 2050 915 95481

B2 6 9 209 91 49 4 82 147 220 483 242 743 911 96802

C2 63 33 37 187 53 57 240 224 180 83 327 1383 698 96433

D2 24 77 19 89 228 56 100 81 212 121 453 1664 873 96002

E2 5 103 18 166 27 10 161 203 206 127 388 910 1153 96524

F2 15 15 10 175 113 87 277 252 67 62 308 1951 703 95964

G2 1 56 33 151 82 68 173 79 70 91 268 935 653 97341

H2 11 21 35 80 17 2 106 125 95 37 186 544 403 98338

I2 1 23 4 14 9 4 32 38 15 38 387 291 674 98470

J2 20 18 14 28 18 1 25 72 59 57 191 374 606 98518

Figure 7. Shows the number of times a rule was used during the evolution of
different large combinators. Rules are column labels and combinators are row
labels. They are ordered by how many times total a rule (besides the S and K
rules) matched, from most to least. S and K rules are third and fourth from
the right, and the rightmost column shows the number of subpatterns of com-
binators that did not match any combinator rule.

Patterns in Combinator Evolution 133

https://doi.org/10.25088/ComplexSystems.26.2.119

https://doi.org/10.25088/ComplexSystems.26.2.119

These are the rounded number of times a rule was used on average
out of 100000.

{a → 34, b → 65, c → 60, d → 215, e → 146, f → 58, g → 215,
h → 178, i → 216, j → 181, k → 467, l → 1918, m → 1083, n → 95163}

Conclusion7.

Out of the numerous possible rules up to size five that could be made
to skip combinator evolution, only 11 were not redundant in some
way. This made it easier to look through different possible ways to
use them for speeding up combinator evolution. In the end, adding
too many extra rules also generally slows down evolution, as each
rule needs to be compared with all parts and subparts of a combina-
tor expression.

Optimization rules are generally most helpful for combinators that
terminate. As for non-terminating combinators, we would most likely
want to look at the evolution step by step, and optimization rules
would skip steps in a generally hard-to-predict fashion. The majority
of large combinators, say of size 100, appear to not terminate. Most
begin to grow exponentially rather quickly, and some start exhibiting
repetitive behavior. A couple of interesting cases were found where
there was no exponential growth, but there also seemed to be less
repetitive behavior, and it is unclear whether these will in fact termi-
nate at some point.

Acknowledgments

The author would like to thank Todd Rowland for his help and
advice in collecting the data presented in this paper.

References

[1] A. Church, The Calculi of Lambda Conversion, Princeton, NJ: Prince-
ton University Press, 1985.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002 pp. 1122–1123.

[3] F. Obermeyer, “Automated Equational Reasoning in Nondeterministic
λ-Calcluli Modulo Theories H*,” thesis, Department of Mathematics,
Carnegie Mellon University, Pittsburgh, PA, 2009. (Apr 4, 2017)
fritzo.org/thesis.pdf.

134 E. J. Parfitt

Complex Systems, 26 © 2017

http://fritzo.org/thesis.pdf

