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A  composition  and  analysis  technique  was  developed  for  investigation
of  infinite  Petri  nets  with  regular  structure,  introduced  for  modeling
networks,  clusters  and  computing  grids,  that  also  concerns  cellular
automata  and  biological  systems.  A  case  study  of  a  square  grid
structure  composition  and  analysis  is  presented.  Parametric  description
of Petri nets, parametric representation of infinite systems for the calcu-
lation  of  place/transition  invariants,  and  solving  them  in  parametric
form  allowed  the  invariance  proof  for  infinite  Petri  net  models.  Com-
plex deadlocks were disclosed and a possibility of network blocking via
ill-intentioned traffic revealed. 

Introduction1.

Grid  computations  [1,  2]  allow  considerable  extending  of  the  tasks
that are solvable in a reasonable time; that in some cases is the crucial
point for new technology development. The cost of supercomputing is
extremely  high,  which  makes  the  cost  of  errors  high  as  well,  both  in
protocols  and  in  their  hardware  and  software  implementations.  Real-
life  grid  computing  is  closely  connected  with  numerical  methods  of
solving  systems  of  differential  and  integral  equations  in  sophisticated
application areas such as weather forecasting and nuclear physics.

A  Petri  net  is  a  bipartite  directed  graph  with  a  dynamic  process
defined on it [3]. One part of the vertices is named places and drawn
as circles; another part of the vertices is named transitions and drawn
as  bars  (rectangles).  Arcs  could  be  multiple,  and  their  multiplicity  is
represented  by  integer  numbers.  Dynamic  elements  are  named  tokens
and  drawn  as  dots;  they  are  situated  inside  places  and  move  within
the net. 
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Petri nets [3, 4], which were successfully applied for verification of
telecommunication  protocols  [5–8],  are  a  prospective  formalism  for
grid  analysis.  Petri  nets  and  their  extensions  [9,  10]  find  wide  appli-
cation  in  manifold  other  domains  [11–15].  As  far  as  the  results  are
appreciated in the form applicable for grids of any size, for their verifi-
cation  infinite  Petri  nets  with  regular  structure  were  introduced  for
the first time by the authors of the present paper. The progress is indi-
cated by the dimension and form of the studied structures: linear, tree-
like, square and hypercube [16–18]. In the mentioned works, the only
edge  condition  studied,  except  open  edges,  was  the  attachment  of
plug devices, which could be considered as a primitive model of some
terminal device (computer). As real-life grid computing is closely con-
nected  with  numerical  methods,  on  some  surface  for  flat  grids,  vari-
ous  realistic  edge  conditions  were  investigated  as  well  [8];  for
instance, closing the edges of a rectangle gives a torus surface. 

The present paper is focused on the analysis of square grid models
via  the  technique  of  proving  p-invariance,  because  p-invariant  Petri
nets are structurally conservative and bounded, which are the proper-
ties of ideal systems models. Moreover, other forms of grids on planes
and  in  space  are  considered.  The  most  significant  result  is  obtained
for  a  hypercube  structure  of  arbitrary  size  with  an  arbitrary  number
of dimensions. 

The presented results are supplied with software generators of Petri
net  models  of  grid  structures,  and  models  of  grids  of  a  given  size  are
constructed in an automated way to acknowledge the obtained results
and  gain  a  series  of  results  for  inductive  conclusions  on  grid  proper-
ties.  However,  at  the  present  stage  of  research  it  is  rather  difficult  to
obtain  a  generalized  technique  of  composition  for  infinite  Petri  nets
with regular structure [19] similar to [20]. 

Recently, infinite Petri nets have found wide application for model-
ing  cellular  automata  [21]  and  representing  a  canvas  of  cell  connec-
tions in a generalized neighborhood [22] that spans the range between
von  Neumann’s  and  Moore’s  neighborhoods;  software  generators  of
the canvas are available on github.com/dazeorgacm/hmn.

All  the  models  presented  in  the  paper  were  constructed  and  ana-
lyzed  in  the  system  TINA  [23],  supplied  with  plug-ins  Deborah  and
Adrian [16], and are available for free download on the website of the
first author, member.acm.org/~daze. 

Basic Notions and Definitions2.

A  Petri  net  is  a  bipartite  directed  graph  on  which  a  discrete  dynamic
process  is  defined.  The  first  part  of  the  vertices,  named  places,  is
depicted by circles; the second part of the vertices, named transitions,
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is depicted by bars (rectangles); dynamic elements, named tokens, are
depicted by dots situated inside places. Tokens are consumed and pro-
duced by transitions as result of their firing. A transition is fireable if
each  input  place  contains  at  least  a  token.  The  behavior  of  a  net  is  a
step-by-step  process;  on  each  step,  an  arbitrary  fireable  transition
fires.  When  firing,  a  transition  consumes  a  token  from  each  input
place  and  puts  a  token  into  each  output  place.  In  Figure  1,  an  exam-
ple  of  the  transition  firing  is  shown,  along  with  a  graph  of  reachable
markings  (GRM)  of  a  Petri  net,  which  is  a  complete  formal  descrip-
tion  of  its  behavior.  In  the  general  case,  GRM  is  infinite,  which
requires developing special methods of Petri net analysis.

(a) (b)

(c)

Figure 1. Behavior  of  a  Petri  net:  (a)  initial  marking;  (b)  next  marking;
(c)�GRM.

A  Petri  net  occupies  a  unique  position  within  the  hierarchy  of  dis-
crete  systems:  it  is  more  powerful  than  a  finite  automaton  and  less
powerful than a Turing machine. Thus, it provides instruments of the
system’s  behavior  specification  inaccessible  in  the  formalism  of  finite
automata.  In  addition,  a  series  of  the  system’s  properties  analysis
tasks are decidable problems, in contrast to Turing machines. 

As  basic  Petri  net  properties,  boundedness,  conservativeness  and
liveness are considered. A bounded Petri net has a finite GRM; conser-
vativeness  consists  in  preserving  a  weighted  sum  of  tokens;  in  a  live
Petri  net,  each  transition  can  fire  in  a  trace  starting  from  any  reach-
able marking. 

There  are  two  basic  approaches  to  analysis  of  finite  Petri  nets:  the
first based on state-space analysis using graphs of reachable and cover-
able markings; the second based on the state equation and invariants.
Moreover,  there  are  two  basic  auxiliary  techniques:  reduction—
decreasing Petri net size while preserving its properties, and decompo-
sition—dividing the Petri net into parts of certain forms. 
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Matrix  methods  of  Petri  net  analysis  are  based  on  application  of
the Petri net state equation (Murata equation) Δμ  C ·σ, where Δμ is
a difference of the initial and final markings, C is the incidence matrix
of a Petri net and σ is a vector that counts firings of transitions. Inte-
ger  non-negative  solutions  x  (y)  of  homogeneous  system  x ·C  0
(C · y  0)  are  named  invariants  of  places  or  p-invariants  (of  transi-
tions or t-invariants). An invariant Petri net, having an invariant with
all  natural  components,  is  a  bounded  and  conservative  net  under  any
initial marking; moreover, a transition’s firing sequence could be con-
structed so that it leads to the initial marking. 

Composition of Clans3.

Components,  used  for  composition  of  infinite  structures,  are  func-
tional subnets (clans) of Petri nets [16], which have been well studied
when  investigating  the  usual  (finite)  models,  for  instance,  in  the  pro-
cess of protocol TCP verification. Input places of a clan have only out-
going arcs and output places only incoming arcs. The composition of
a protocol TCP model from its clans is represented in Figure 2.

(a)
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(b)

Figure 2. Composition  of  protocol  TCP  model:  (a)  clans  of  protocol  TCP
model; (b) model of protocol TCP.

Compositional  analysis  [16]  allowed  speedup  of  the  verification
processes  of  complex  networking  protocols  because  of  solving  a
sequence  of  linear  systems  built  on  the  net  topology,  with  lesser
dimension, which is essential when finding solutions in the non-nega-
tive domain (monoid) for Diophantine systems (ring). 

Linear Infinite Structure 4.

Marsan’s  model  [24]  of  a  workstation  for  the  Ehernet  network  with
common  bus  architecture  (Figure  3(a))  requires  composition  of  an  a
priori  indefinite  number  of  devices  for  complete  verification  of  tech-
nology,  but  not  a  definite  given  net.  An  example  of  a  bus  with  four
devices is represented in Figure 3(b).

In  [16],  the  task  of  computing  linear  invariants  for  the  Marsan
model  was  solved  via  calculation  of  the  clans’  invariants  and  their
composition  in  parametric  form  for  obtaining  a  parametric  solution.
As a parameter of the linear structure, the number of workstations on
a bus was used. As far as the final solution possesses definite proper-
ties  for  any  natural  value  of  the  parameter,  it  is  convenient  to  name
the  general  approach  an  investigation  of  infinite  Petri  nets  with  regu-
lar structure. 
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(a)

(b)

Figure 3. Models  of  the  Ethernet  network  with  common  bus  architecture:
(a) workstation; (b) network with four workstations.

Regularity of structure consists in the fact that a single component
(clan) was used and the rules of composition of the model from a lin-
ear  sequence  of  components  were  defined  based  on  the  operation  of
fusion (union) of contact places of neighboring clans. 

Afterward,  methods  were  developed  for  components  that  are  sub-
nets  with  contact  places  of  general  form  (without  subdivision  into
input and output), as well as providing usage of a few different com-
ponents.  The  structure  of  the  component’s  connections  is  given  by  a
graph, either directed for clans or undirected in the general case when
abstracting from the directions of arcs. 

A Generalized Model of a Communication Device5.

Communication  devices  of  the  packet-switching  networks,  such  as
switches  and  routers,  consist  of  a  finite  number  of  ports  and  imple-
ment the forwarding of the arrived (from a port) packet to the destina-
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tion  port.  Packet  header  information  and  a  switch/router  address
table are used for the calculation of the destination port number. The
device  implements  either  the  compulsory  buffering  of  packets  into  its
internal  buffer  or  cut-through  possibilities.  Even  cut-through  devices
employ buffering when the destination port is busy. Ports work in full-
duplex mode, providing two channels for receiving and sending pack-
ets; moreover, ports have their own buffers for each channel with the
capacity  available  for  the  storing  of,  usually,  one  packet.  In  the  pre-
sent  paper,  we  abstract  from  packet  headers  and  address  tables  and
consider  devices  with  compulsory  buffering  only.  All  the  capacities
are measured in the number of packets.

Computer  networks  are  built  via  connection  of  communication
and  terminal  devices;  as  communication  devices,  either  active  or  pas-
sive equipment is used; switches and routers are the basic active equip-
ment.  The  generalized  model  of  a  communication  device  takes  into
consideration  such  peculiarities  of  the  packet-switching  network’s
functioning  as  the  full-duplex  mode  of  work,  forwarding  packets
among ports and buffering with limited capacity of buffers. An exam-
ple  of  a  communication  device  model  with  four  ports,  which  is  used
later  for  composition  of  the  rectangular  grid,  is  represented  in  Figure
4.  Because  the  model  was  constructed  in  the  TINA  system,  which
does  not  provide  subscript  symbols,  an  index  is  written  as  a  suffix
after the underscore character “_” in TeX-like notation. For instance,
ti1,3 looks like {ti_1,3}. 

An  internal  buffer  of  a  device  is  represented  by  the  five  following
central  places:  pbl,  limitation  of  the  buffer  capacity;  pb1,  pb2,  pb3,

pb4, sections of the buffer for storing packets redirected to ports 1, 2,

3,  4,  respectively.  Models  of  each  port  are  the  same  and  represented
by  four  places  and  four  transitions.  For  instance,  places  pi1,  pil1  of

the  first  port  model  the  input  buffer  of  the  port  and  limitation  of  its
capacity, respectively; places po1, pol1  model the output buffer of the

port and limitation of its capacity, respectively. The port output chan-
nel is modeled by transition to1, which extracts a packet from the sec-

tion of the internal buffer pb1 and inserts a packet into the port buffer

po1;  in  addition  to  that,  the  available  space  of  the  internal  buffer  pbl

is incremented by unit and the available space of the port buffer pol1
is  decremented  by  unit.  The  port  input  channel  is  modeled  by  three
alternative  transitions  ti1,2,  ti1,3,  ti1,4,  which  define  the  possible  vari-

ants of the packet switching; from the input port buffer pi1 a packet is

forwarded  into  one  of  the  internal  buffer  sections,  pb2,  pb3  or  pb4.

The  buffer  sizes  are  measured  in  the  number  of  packets;  the  port
buffer  sizes  are  chosen  equal  to  unit,  which  is  in  accord  with  the
majority of real-life devices. 
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Figure 4. Model of a communication device with four ports.

In the subsequent composition of models, both in this paper and in
Part  2,  forthcoming,  the  number  of  the  device’s  ports  varies;  that  is
why it is reasonable to represent the model in the following paramet-
ric  form  with  a  parameter  np  equal  to  the  number  of  ports.  A  Petri
net  specification  via  enumerating  its  transitions  is  convenient;  note
that  for  a  connected  Petri  net,  it  provides  the  enumeration  of  all  its
places as well: 

tou : pbu, polu → pou, pbl

tiu,v : piu, pbl → pbv, pilu, v  1, np, v ≠ u
, u  1, np . (1)

A  row  of  a  transition  description  has  the  form
t : pi1

, … , pix
→ pj1

, … , pjy
,  where  the  transition  name  is  written

before  a  semicolon  symbol:  on  the  left  of  the  symbol  “→”,  its  input
places  are  listed,  and  on  the  right,  its  output  places.  The  loop-like

notation u  1, np means using integer values sequentially in the spec-
ified  range  from  1  to  np.  Application  of  indexing  and  aggregation  of
rows  allow  the  description  of  sets  of  transitions.  So  for  instance,  the
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first row of the expression in equation (1) describes np transitions and

the  second  row  describes np · np - 1  transitions.  The  parametric

description  allows  the  representation  of  infinite  systems  of  equations
for  calculating  Petri  net  invariants.  Besides,  it  is  possible  to  construct
a  dual  parametric  description  that  enumerates  the  places  of  a  Petri
net; such a parametric description is convenient for calculation of the
transition’s invariants. 

A Rectangular Infinite Structure6.

Let  us  consider  the  composition  of  an  open  rectangular  communica-
tion grid. Devices’ models with this form, shown in Figure 5, are situ-
ated  in  the  cells  of  a  rectangular  matrix  and  are  indexed  using  two
upper indices; a square matrix of size k > 0 was chosen. Neighboring
devices  are  connected  via  fusion  (union)  of  contact  places;  places  are
situated  in  the  order,  shown  in  Figure  4,  that  provides  connection  of
the  output  port  channel  of  a  device  with  the  input  port  channel  of  a

neighboring  device  and  vice  versa.  Thus,  a  device  Ri, j,  0 < i < k,

0 < j < k  is  connected  to  the  following  neighbors:  Ri, j-1
 to  the  left,

Ri, j+1
 to the right, Ri-1, j

 to the top and Ri+1, j
 to the bottom, in such

Figure 5. Composition of an open rectangular grid.
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a  way  that  port  1  is  connected  to  port  3  of  the  upper  device  and
port�4 is connected to port 2 of the left device. As a result of this com-
position, fusion places have duplicate notation with respect to each of

the �neighbor  devices.  For  instance,  places  po1
i, j,  pol1

i, j,  pi1
i, j,  pil1

i, j
 of

the  device  Ri, j
 coincide  with  places  pi3

i-1, j,  pil3
i-1, j,  po3

i-1, j,  pol3
i-1, j

of  the  device  Ri-1, j,  respectively.  For  unambiguous  notation  of  con-
tact places, the indices of the left port 4 and upper port 1 are used; as
a  result,  the  pending  contact  places  of  the  right  and  bottom  edges  of
the grid contain index k + 1 of nonexistent neighbor devices. An exam-
ple of a grid of size 2⨯2 is represented in Figure 6.

Figure 6. Composition of the open square grid model of size 2⨯2.  

The  parametric  description  of  the  obtained  grid  has  the  following
form. Each port is described with two rows; the first row corresponds
to the port output channel and describes a single transition of the cur-
rent device; the second row corresponds to the port input channel and
describes  three  transitions  of  the  current  device  indexed  via  internal
parameter v:
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to1
i, j : pol1

i, j, pb1
i, j → po1

i,j, pbli, j,

ti1, v
i,j : pi1

i, j, pbli, j → pil1
i, j, pbv

i, j,

v  2, 3, 4,

to3
i, j : pil1

i+1, j, pb3
i, j → pi1

i+1, j, pbli, j,

ti3, v
i,j : po1

i+1, j, pbli, j → pol1
i+1, j, pbv

i, j,

v  1, 2, 4,

to4
i, j : pol4

i, j, pb4
i, j → po4

i, j, pbli, j,

ti4, v
i, j : pi4

i, j, pbli, j → pil4
i, j, pbv

i, j,

v  1, 2, 3,

to2
i, j : pil4

i, j+1, pb2
i, j → pi4

i, j+1, pbli, j,

ti2, v
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pbv

i, j,

v  1, 3, 4

, i  1, k, j  1, k . (2)

In the rows 1, 2 and 5, 6, corresponding to ports 1 and 4, the con-

tact places of the current device Ri, j
 are written. In the rows 3, 4 and

7, 8, corresponding to ports 2 and 3, the contact places of a neighbor-
ing  device  are  written:  for  port  2  to  port  4  of  the  neighboring  to  the

right device, Ri, j+1; for port 3 to port 1 of the neighboring to the bot-

tom device, Ri+1, j. Moreover, the port channel is altered to the oppo-
site: the input i to the output o and the output o to the input i, which
corresponds  to  the  grid  composition  rules.  The  parameter  of  the
description in equation (2) is the size of the square grid k; to represent
a  rectangular  grid,  two  parameters  could  be  considered  as  well.  The
open square grid structure of size k is denoted as Sk. 

In Figure 3 and others showing the models obtained via the system
TINA  and  software  generators,  the  notation  of  the  net  element’s
names  avoids  subscript  and  superscript  symbols;  the  grid  node  index
is  written  as  a  suffix  in  TeX-like  notation:  the  lower  index  after  the
underscore  character  “_”  and  the  upper  index  after  the  hat  character

“^”. For instance, ti1, 3
5, 7

 looks like {ti_1,3^5,7}. 

Edge Conditions   7.

The  built  grid  model  could  be  employed  for  the  design  of  commuta-
tion  matrices  of  networking  devices,  investigation  of  computer  grids
and  supercomputers  devised  for  solving  boundary  value  problems  of
big size and other application domains.  

The  model  of  an  open  grid  in  Figure  6  is  a  base  for  constructing
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definite  closed  models.  The  following  varieties  of  the  edge  conditions
of the grid’s models were studied:

◼ terminal (customer) device, Figure 7

◼ truncated communication device, Figure 8

◼ connection of (opposite) edges, Figure 9

A Grid with Terminal Device on Edges  7.1

The communication devices may be attached to each other, constitut-
ing  a  communication  structure,  but  they  are  created  only  for  packet
transmission among the terminal devices: workstations and servers. In
this  paper,  the  client-server  technique  of  interconnection  is  not  stud-
ied, so the types of terminal devices are not distinguished. An abstract
terminal device provides at least two basic functions: send packet and
receive packet. These basic functions are provided by the models rep-
resented  in  Figure  7.  To  stress  the  difference  between  terminal  and
communication  devices’  elements,  different  symbols  are  used  to
denote places and transitions of the terminal device models: symbol q
for places and symbol s for transitions.  

(a) (b)

Figure 7. Models  of  a  terminal  device:  (a)  simple  reflection  of  packets;
(b) with the packet’s buffering.  

Figure  7(a)  gives  the  simplest  model  that  only  reflects  the  arrived
packets  from  the  input  to  the  output  via  transition  s;  names  of  the
places are given with respect to the places of a communication device
port. So the model of a terminal device may be attached by the fusion
of the places with the same names. The model in Figure 7(b) contains
an  internal  buffer  of  the  packets  qb;  transition  si  models  the  input  of
the packets, while transition so models the output. To distinguish ter-
minal  devices  attached  to  the  upper,  right,  bottom  and  left  edges,  the
lower index with the numbers 1, 2, 3 and 4 of the corresponding port

is used; for instance, s1
2
 means transition of the terminal device of the

upper  edge  (port  1)  attached  to  the  device  R1, 2.  An  example  of  the
communication matrix with attached terminal devices (type a) is repre-
sented in Figure 8(a). 
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(a)

(b)

Figure 8. An  example  of  the  rectangular  grid  with  specific  edge  conditions:
(a) with attached terminal devices on the edges; (b) with truncated devices on
edges. 
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Simple models of terminal devices (Figure 7) could be developed in
more detail when investigating the computational aspects of grid func-
tioning, and supplied by subnets modeling the processes of solving the
task.

The obtained parametric description of the square grid with termi-
nal device of type Figure 7(a) has the following form: 

to1
i, j : pol1

i, j, pb1
i, j → po1

i, j, pbli, j,

ti1, v
i, j : pi1

i, j, pbli, j → pil1
i, j, pbv

i, j,

v  1, 4, v ≠ 1,

to3
i, j : pil1

i+1, j, pb3
i, j → pi1

i+1, j, pbli, j,

ti3, v
i, j : po1

i+1, j, pbli, j → pol1
i+1, j, pbv

i, j,

v  1, 4, v ≠ 3,

to4
i, j : pol4

i, j, pb4
i, j → po4

i, j, pbli, j,

ti4, v
i, j : pi4

i, j, pbli, j → pil4
i, j, pbv

i, j,

v  1, 4, v ≠ 4,

to2
i, j : pil4

i, j+1, pb2
i, j → pi4

i, j+1, pbli, j,

ti2, v
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pbv

i, j,

v  1, 4, v ≠ 2,

s1
j : po1

1, j, pil1
1, j → pi1

1, j, pol1
1, j,

s3
j : pi1

k+1, j, pol1
k+1, j → po1

k+1, j, pil1
k+1, j,

s4
i : po4

i, 1, pil4
i, 1 → pi4

i, 1, pol4
i, 1,

s2
i : pi4

i, k+1, pol4
i, k+1 → po4

i, k+1, pil4
i, k+1

, i  1, k, j  1, k . (3)

Comparing  the  parametric  description  of  the  open  grid  in  equa-
tion�(2), four rows were appended to the end, describing transitions of

attached  terminal  devices  in  the  following  order:  s1
j

 (upper-edge

devices), s3
j
 (bottom-edge devices), s4

i
 (left-edge devices) and s2

i
 (right-

edge  devices).  Upper  and  left  terminal  devices  use  contact  places  of
the  neighbor  communication  device,  while  bottom  and  right  terminal
devices  use  their  own  contact  places  according  to  the  composition
agreements. 

The square grid structure of size k with attached terminal devices is
denoted as STk. 
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Grid with Truncated Communication Devices on Edges  7.2

Truncated  devices  on  edges  (Figure  8(b))  is  the  most  realistic  variety
of  model  for  the  grid  nodes  combining  packet  switching  with  packet
processing. Edge ports are truncated together with other Petri net ver-
tices  that  suppose  usage  of  absent  ports.  Thus,  eight  types  of  bound-
ary devices appear, which are shown in Figure 8(b) on the grid exam-
ple of size 3⨯3.  

The  concept  of  the  truncated  device  consists  in  removing  all  the
pendent ports on the edges of the grid, including their contact places,
incidental  transitions  and  the  corresponding  partitions  of  the  internal
buffer.  Thus,  while  removing  port  u  of  the  current  device,  all  the
places  and  transitions  with  index  u  are  removed.  An  example  for  a
square  grid  of  size  3  is  shown  in  Figure  8(b),  where  only  the  central
device  coincides  with  Figure  4  and  edge  devices  are  truncated:  two
ports  are  removed  for  corner  devices  and  one  port  for  the  rest  of  the
edge devices. 

There  are  eight  types  of  truncated  devices  Ri, j
 depending  on  their

location:  left  (j  1,  i ≠ 1,  i ≠ k)—without  port  4;  left-upper  (i  1,
j  1)—without  ports  4,  1;  upper  (i  1,  j ≠ 1,  j ≠ k)—without  port
1;  right-upper  (i  1,  j  k)—without  ports  1,  2;  right  (j  k,  i ≠ 1,
i ≠ k)—without  port  2;  right-bottom  (i  k,  j  k)—without  ports  2,
3;  bottom  (i  k,  j ≠ 1,  j ≠ k)—without  port  3;  left-bottom  (i  k,
j  1)—without ports 3, 4. 

For  the  composition  of  the  square  grid  in  the  following,  the  same
parametric description of the device in equation (1) at np  4 is used;
the  Petri  net  model  is  named  SUk.  The  edge  ports  are  truncated,

including all their places and transitions via additional limitations for
indices  of  definite  ports:  i ≠ 1  for  port  1,  i ≠ k  for  port  3,  j ≠ 1  for

port  4,  j ≠ k  for  port  2.  Moreover,  some  input  transitions  tiu, v
i, j

 are

truncated  for  v,  equaling  absent  ports;  corresponding  transitions  are
present  at:  i > 1  for v  1,  j < k  for  v  2,  i < k  for  v  3,  j > 1  for
v  4: 
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to1
i, j : pol1

i, j, pb1
i, j → po1

i, j, pbli, j,

i ≠ 1,

ti1, 2
i, j : pi1

i, j, pbli, j → pil1
i, j, pb2

i, j,

i ≠ 1, j < k,

ti1, 3
i, j : pi1

i, j, pbli, j → pil1
i, j, pb3

i, j,

i ≠ 1, i < k,

ti1, 4
i, j : pi1

i, j, pbli, j → pil1
i, j, pb4

i, j,

i ≠ 1, j > 1,

to3
i, j : pil1

i+1, j, pb3
i, j → pi1

i+1, j, pbli, j,

i ≠ k,

ti3, 1
i, j : po1

i+1, j, pbli, j → pol1
i+1, j, pb1

i, j,

i ≠ k, i > 1,

ti3, 2
i, j : po1

i+1, j, pbli, j → pol1
i+1, j, pb2

i, j,

i ≠ k, j < k,

ti3, 4
i, j : po1

i+1, j, pbli, j → pol1
i+1, j, pb4

i, j,

i ≠ k, j > 1,

to4
i, j : pol4

i, j, pb4
i, j → po4

i, j, pbli, j,

j ≠ 1,

ti4, 1
i, j : pi4

i, j, pbli, j → pil4
i, j, pb1

i, j,

j ≠ 1, i > 1,

ti4, 2
i, j : pi4

i, j, pbli, j → pil4
i, j, pb2

i, j,

j ≠ 1, j < k,

ti4, 3
i, j : pi4

i, j, pbli, j → pil4
i, j, pb3

i, j,

j ≠ 1, i < k,

to2
i, j : pil4

i, j+1, pb2
i, j → pi4

i, j+1, pbli, j,

j ≠ k,

ti2, 1
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pb1

i, j,

j ≠ k, i > 1,

ti2, 3
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pb3

i, j,

j ≠ k, i < k,

ti2, 4
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pb4

i, j,

j ≠ k, j > 1

, i  1, k, j  1, k . (4)
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The grid composition uses the names of the left and upper ports (4
and 1) only; that is why contact places with port numbers 2 and 3 do
not  appear  in  equation  (4).  For  instance,  the  transitions  of  the  third
port are described as  

to3
i, j : pil1

i+1, j, pb3
i, j → pi1

i+1, j, pbli, j

instead of the obvious 

to3
i, j : pol3

i, j, pb3
i, j → po3

i, j, pbli, j.

The  square  grid  structure  of  size k  with  truncated  communication
devices is denoted as SUk. 

A Grid with Connected Opposite Edges (Torus)  7.3

Connection of the grid edges allows us to obtain various surfaces, fre-
quently  used  for  solving  practical  tasks.  For  instance,  the  opposite
edges  connection  of  the  open  rectangular  grid  (Figure  9)  leads  to
obtaining a torus widely applied in nuclear physics.  

(a) (b) (c)

Figure 9. Connection of opposite edges: (a) open grid; (b) connection of edges
1, 3; (c) connection of edges 2, 4.  

The parametric description of the grid is represented by the follow-
ing and named SCk: 
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to1
i, j : pol1

i, j, pb1
i, j → po1

i, j, pbli, j,

ti1, v
i, j : pi1

i, j, pbli, j → pil1
i, j, pbv

i, j,

v  1, 4, v ≠ 1,

to3
i, j : pil1

i+1, j, pb3
i, j → pi1

i+1, j, pbli, j,

i ≠ k,

ti3, v
i, j : po1

i+1, j, pbli, j → pol1
i+1, j, pbv

i, j,

i ≠ k, v  1, 4, v ≠ 3,

to4
i, j : pol4

i, j, pb4
i, j → po4

i, j, pbli, j,

ti4, v
i, j : pi4

i, j, pbli, j → pil4
i, j, pbv

i, j,

v  1, 4, v ≠ 4,

to2
i, j : pil4

i, j+1, pb2
i, j → pi4

i, j+1, pbli, j,

j ≠ k,

ti2, v
i, j : po4

i, j+1, pbli, j → pol4
i, j+1, pbv

i, j,

j ≠ k, v  1, 4, v ≠ 2,

to3
k, j : pil1

1, j, pb3
k, j - > pi1

1, j, pblk, j,

ti3, v
k, j : po1

1, j, pblk, j → pol1
1, j, pbv

k, j,

v  1, 4, v ≠ 3,

to2
i, k : pil4

i, 1, pb2
i, k → pi4

i, 1, pbli, k,

ti2, v
i, k : po4

i, 1, pbli, k → pol4
i, 1, pbv

i, k,

v  1, 4, v ≠ 2

, i  1, k, j  1, k . (5)

Comparing  to  equation  (2),  descriptions  for  ports  of  the  right  and
bottom  edges  (i  k,  j  k)  are  separated  at  the  foot  of  equation  (4),
and  corresponding  transitions  use  contact  places  of  the  opposite  edge
(i  1, j  1). For instance, on the right edge instead of 

to2
i, j : pil4

i, j+1, pb2
i, j → pi4

i, j+1, pbli, j

the description  

to2
i, k : pil4

i, 1, pb2
i, k → pi4

i, 1, pbli, k

is used. Note that, comparing to equation (3), all the input transitions

tiu, v
i, j

 of the same port u are grouped in a single line (because separate

truncating  conditions  are  not  required)  and  the  parameter  v  1, 4  is
added.  
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The square grid structure of size k with connected opposite edges is
denoted as SCk. 

An Infinite System of Equations and Dual Parametric Description  8.

The matrix form x ·C  0 of the system representation for the places
invariants calculation is inconvenient for the infinite systems construc-
tion.  Sometimes  in  the  literature,  the  structure  of  matrix  C  is  consid-
ered  and  simple  rules  of  the  system  equation’s  composition  are
formulated:  an  equation  is  constructed  for  each  transition  and  repre-
sents  an  equality  of  sums  for  input  and  output  places  of  a  transition.
Applying this rule to the parametric description of the grid Sk in equa-

tion (2), we obtain this infinite system equation:  

to1
i, j : -xpol1

i, j - xpb1
i, j + xpo1

i, j + xpbli, j  0,

ti1, v
i, j : -xpi1

i, j - xpbli, j + xpil1
i, j + xpbv

i, j  0, v  2, 3, 4,

to3
i, j : -xpil1

i+1, j - xpb3
i, j + xpi1

i+1, j + xpbli, j  0,

ti3, v
i, j : -xpo1

i+1, j - xpbli, j + xpol1
i+1, j + xpbv

i, j  0,

v  1, 2, 4,

to4
i, j : -xpol4

i, j - xpb4
i, j + xpo4

i, j + xpbli, j  0,

ti4, v
i, j : -xpi4

i, j - xpbli, j + xpil4
i, j + xpbv

i, j  0, v  1, 2, 3,

to2
i, j : -xpil4

i, j+1 - xpb2
i, j + xpi4

i, j+1 + pbli, j  0,

ti2, v
i, j : -xpo4

i, j+1 - xpbli, j + xpol4
i, j+1 + xpbv

i, j  0,

v  1, 3, 4 ; i  1, k, j  1, k.

(6)

It is required to find a solution for an arbitrary natural value of the
parameter k that allows calling the system infinite. It is supposed that
a  finite  parametric  specification  of  the  solution  will  be  obtained  that
contains the parameter k. The system is a Diophantine one; that is, it
contains integer values of coefficients; moreover, it is required to find
its  solutions  in  the  monoid  of  non-negative  integer  numbers.  For  the
present time, universal methods of solving such systems are unknown. 

A  system  of  equations  (6)  for  calculation  of  the  place  invariants  is
composed directly on the parametric description of the grid. Construc-
tion  of  analogous  systems  for  the  transition  invariants  requires  appli-
cation  of  a  dual  parametric  description  of  the  grid,  because  an
equation  is  constructed  for  each  place  and  represents  an  equality  of
sums for input and output transitions of a place. 

The  (direct)  parametric  description  of  infinite  Petri  nets  with  regu-
lar  structure  developed  and  successfully  applied  in  Sections  4–6  con-
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sists of lines with the following form:

ti : pinjk
* apinjk

, … → poutjl
* apoutjl

, …; indices_range,

where ti is the described transition, pinjk
 its input places, poutjl

 its out-

put  places  and  apinjk
, apoutjl

 denotes  the  multiplicity  of  correspond-

ing  arcs;  multiplicity  equal  to  unit  is  omitted.  Thus,  for  the  ordinary
Petri net, the following notation is used:

ti : pinjk
, … → poutjl

, … ; indices_range.

The  direct  parametric  description  is  very  useful  for  composition  of
infinite  systems  of  linear  algebraic  equations  of  the  form  of  equa-
tion�(6)  for  calculating  p-invariants  of  infinite  Petri  nets  with  regular
structure. The equation of the system constructed on it has the form 

-xpinjk
· apinjk

-⋯ + xpoutjl
· apoutjl

+⋯  0; indices_range,

where  xpinjk
, xpoutjl

 are  unknowns  corresponding  to  Petri  net

places.  
But  the  direct  parametric  description  does  not  help  much  at  calcu-

lating  t-invariants  of  infinite  Petri  nets  with  regular  structure  because
in  the  system  for  calculating  t-invariants,  equations  correspond  to
places  and  unknowns  correspond  to  transitions.  And  constructing
such a system on the direct parametric description is not a trivial task.
That  is  why  other  methods  were  applied  for  calculating  t-invariants
that  are  based  on  explicitly  constructing  cyclic  transitions  firing
sequences.

Let  us  introduce  the  dual  parametric  description  of  infinite  Petri
nets  with  regular  structure  that  consists  of  lines  with  the  following
form:

pj : tinik
* atinik

, … → toutil
* atoutil

, …; indices_range,

where  pj  is  the  described  place,  tinik
 its  input  transitions,  toutil

 its

output transitions, and atinik
, atoutil

 denotes the multiplicity of corre-

sponding arcs; multiplicity equal to unit is omitted. Thus, for the ordi-
nary Petri net, the following notation is used:  

pj : tinik
, … → toutil

, …; indices_range.

To  calculate  t-invariants,  closed  grids  should  be  studied,  since  the
open  models  are  not  consistent.  The  simplest  closed  model  ST1  is

obtained  via  attaching  terminal  devices  shown  in  Figure  7(a)  to  the
sides  of  the  internal  device  shown  in  Figure  4.  Attached  edge  transi-
tions  are  named  su,  where  index  u  equals  the  number  of  the  internal

device port. The dual parametric description of a closed node ST1  has

the following form: 
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(pou : tou → su),

polu : su → tou,

piu : su → tiu, v, v  1, 4, v ≠ u,

pilu : tiu, v, v  1, 4, v ≠ u → su,

pbu : tiu, v, v  1, 4, v ≠ u → tou

, u  1, 4

pbl : tou, u  1, 4 → tiu, v
i, j , v  1, 4, v ≠ u, u  1, 4

. (7)

A  problem  arises  regarding  the  duplicate  naming  of  contact  places
that  are  merged  in  the  process  of  grid  composition.  In  Section  4,  the
problem  was  solved  using  the  names  of  upper  and  left  ports  only
(number  1  and  4,  respectively).  The  same  solution  is  used  here.  For

instance,  instead  of  using  pi3
i, j,  the  place  name  po1

i-1, j
 is  written,  and

instead  of  using  pi2
i, j,  the  place  name  po4

i, j-1
 is  written;  it  is  the  case

for  internal  devices  of  grid  only  with  the  indices  i > 1,  j > 1.  So  the
edge  devices  should  be  described  separately.  Note  that  devices  on  the
bottom  and  right  borders  of  the  grid  use  indices  of  nonexistent
devices with the value k + 1, since only the names of ports 4 and 1 are
considered.  The  dual  parametric  description  of  the  closed  square  grid
in  equation  (3)  has  the  form  represented  further  part-by-part  for
clearness. 

The open grid nodes without the upper row and left column: 1.

po1
i, j : to1

i, j → ti3, v
i-1, j, v  1, 4, v ≠ 3,

pol1
i, j : ti3, v

i-1, j, v  1, 4, v ≠ 3 → to1
i,j,

pi1
i, j : to3

i-1, j → ti1, v
i, j , v  1, 4, v ≠ 1,

pil1
i, j : ti1, v

i, j , v  1, 4, v ≠ 1 → to3
i-1, j,

po4
i, j : to4

i, j → ti2, v
i, j-1, v  1, 4, v ≠ 2,

pol4
i, j : ti2, v

i, j-1, v  1, 4, v ≠ 2 → to4
i, j,

pi4
i, j : to2

i, j-1 → ti4, v
i, j , v  1, 4, v ≠ 4,

pil4
i, j : ti4, v

i, j , v  1, 4, v ≠ 4 → to2
i, j-1,

pbu
i, j : tiu, v

i, j , v  1, 4, v ≠ u → tou
i, j,

u  1, 4,

pbli, j : tou
i, j, u  1, 4 →

tiu, v
i, j , v  1, 4, v ≠ u, u  1, 4

, i  2, k, j  2, k . (8)
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The  sequel  of  expressions  is  constructed  on  equation  (8)  having  some
peculiarities:  with  different  values  of  indices  i, j;  with  different  transi-
tions  of  neighboring  node  on  one  or  two  ports;  without  internal  part
contained in some other expression.   

The upper border nodes and terminal devices: 2.

po1
i, j : to1

i, j → s1
j ,

pol1
i, j : s1

j → to1
i, j,

pi1
i, j : s1

j → ti1, v
i, j , v  1, 4, v ≠ 1,

pil1
i, j : ti1, v

i, j , v  1, 4, v ≠ 1 → s1
j ,

po4
i, j : to4

i, j → ti2, v
i, j-1, v  1, 4, v ≠ 2,

pol4
i, j : ti2, v

i, j-1, v  1, 4, v ≠ 2 → to4
i, j,

pi4
i, j : to2

i, j-1 → ti4, v
i, j , v  1, 4, v ≠ 4,

pil4
i, j : ti4, v

i, j , v  1, 4, v ≠ 4 → to2
i, j-1,

pbu
i, j : tiu, v

i, j , v  1, 4, v ≠ u → tou
i, j,

u  1, 4,

pbli, j : tou
i, j, u  1, 4 →

tiu, v
i, j , v  1, 4, v ≠ u, u  1, 4

, i  1, j  2, k . (9)

The left border nodes and terminal devices: 3.

po1
i, j : to1

i, j → ti3, v
i-1, j, v  1, 4, v ≠ 3,

pol1
i, j : ti3, v

i-1, j, v  1, 4, v ≠ 3 → to1
i, j,

pi1
i, j : to3

i-1, j → ti1, v
i, j , v  1, 4, v ≠ 1,

pil1
i, j : ti1, v

i, j , v  1, 4, v ≠ 1 → to3
i-1, j,

po4
i, j : to4

i, j → s4
i ,

pol4
i, j : s4

i → to4
i, j,

pi4
i, j : s4

i → ti4, v
i, j , v  1, 4, v ≠ 4,

pil4
i, j : ti4, v

i, j , v  1, 4, v ≠ 4 → s4
i ,

pbu
i, j : tiu, v

i, j , v  1, 4, v ≠ u → tou
i, j,

u  1, 4,

pbli, j : tou
i, j, u  1, 4 →

tiu, v
i, j , v  1, 4, v ≠ u, u  1, 4

, i  2, k, j  1 . (10)
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The upper-left corner node and terminal devices: 4.

po1
i, j : to1

i, j → s1
j ,

pol1
i, j : s1

j → to1
i, j,

pi1
i, j : s1

j → ti1, v
i, j , v  1, 4, v ≠ 1,

pil1
i, j : ti1, v

i, j , v  1, 4, v ≠ 1 → s1
j ,

po4
i, j : to4

i, j → s4
i ,

pol4
i, j : s4

i → to4
i, j,

pi4
i, j : s4

i → ti4, v
i, j , v  1, 4, v ≠ 4,

pil4
i, j : ti4, v

i, j , v  1, 4, v ≠ 4 → s4
i ,

pbu
i, j : tiu, v

i, j , v  1, 4, v ≠ u → tou
i, j,

u  1, 4,

pbli, j : tou
i, j, u  1, 4 →

tiu, v
i, j , v  1, 4, v ≠ u, u  1, 4

, i  1, j  1 . (11)

The bottom border terminal devices: 5.

po1
i, j : s3

j → ti3, v
i-1, j, v  1, 4, v ≠ 3,

pol1
i, j : ti3, v

i-1, j, v  1, 4, v ≠ 3 → s3
j ,

pi1
i, j : to3

i-1, j → s3
j ,

pil1
i, j : s3

j → to3
i-1, j,

, i  k + 1, j  1, k . (12)

The right border terminal devices: 6.

po4
i, j : s2

i → ti2, v
i, j-1, v  1, 4, v ≠ 2,

pol4
i, j : ti2, v

i, j-1, v  1, 4, v ≠ 2 → s2
i ,

pi4
i, j : to2

i, j-1 → s2
i ,

pil4
i, j : s2

i → to2
i, j-1,

, i  1, k, j  k + 1 . (13)

Parametric  description  equations  (8)–(13)  could  be  aggregated
in  the  united  one-piece  description  and  even  condensed  using  addi-
tional internal parameters, but it makes the representation form more
sophisticated. 

Parametric  systems  for  calculating  t-invariants  of  Petri  nets  are
composed easily on their dual parametric description. As an equation
corresponds  to  a  place  and  states  the  balance  of  arcs  connecting  it
with its input and output transitions, the equation constructed on (2)
has the form 

-ytinik
· atinik

-⋯ + ytoutil
· atoutil

+⋯  0; indices_range.
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The  unknowns  are  traditionally  named  y,  with  the  suffix  corre-
sponding  to  the  name  of  a  transition.  The  system  composed  on  the
dual  parametric  description  equation  (7)  of  ST1  has  the  following

form: 

-ytou + ysu  0

-ysu + ytou  0

-ysu + 

v1,4,v≠u

ytiu, v  0

- 

v1,4,v≠u

ytiu, v + ysu  0

- 

v1,4,v≠u

ytiu, v + ytou  0

. , u  1, 4

- 

u1,4

ytou + 

u1,4,v1,4,v≠u

ytiu, v  0

. (14)

This system contains a finite number of equations. But when com-
posing  a  system  on  the  parametric  descriptions,  a  system  is  obtained
with  the  number  of  equations  depending  on  the  value  of  the  parame-
ter k. 

Analysis of Infinite Nets  9.

For  the  present  time,  three  groups  of  research  methods  were  devel-
oped for investigating infinite Petri nets with regular structure:  

◼ via solving infinite systems of linear Diophantine equations in non-nega-
tive integer numbers for calculation of Petri net invariants

◼ via explicit construction of cyclic transitions firing sequences

◼ via  auxiliary  graphs  of  packets  transmission  and  possible  blockings  of
devices

Solving Infinite Systems of Equations  9.1

For  finding  Petri  net  invariants,  infinite  homogeneous  systems  of  lin-
ear  Diophantine  equations  (6)  are  applied,  which  should  be  solved  in
non-negative integer numbers. A heuristic ad hoc technique was devel-
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oped  to  compose  the  parametric  solutions.  Then,  it  is  strictly  proven
that  the  parametric  specification  describes  solutions  of  equation  (6).
Composition  of  solutions  and  proofs  is  done  individually  for  each
variety of grid.  

Open Grid  9.1.1

The  universal  methods  for  solving  the  infinite  systems  of  the  linear
equations  under  the  rings  (integer  numbers),  especially  into  semi-
groups  (non-negative  integer  numbers),  are  unknown.  We  applied  a
heuristic  method  of  a  general  solution  construction  in  the  parametric
form.  The  general  solution  of  equation  (6)  for  grid  Sk  may  be  repre-

sented as:  

pi1
i, j, pil1

i, j, i  1, k + 1, j  1, k;

po1
i, j, pol1

i, j, i  1, k + 1, j  1, k;

pi4
i, j, pil4

i, j, i  1, k, j  1, k + 1;

po4
i, j, pol4

i, j, i  1, k, j  1, k + 1;

pb1
i, j, pb2

i, j, pb3
i, j, pb4

i, j, pbli, j, i  1, k, j  1, k;

pil1
i, j, pol1

i, j, pil4
i, j, pol4

i, j, pbli, j, i  1, k, j  1, k;,

pil4
i, k+1, pol4

i.k+1, i  1, k, pil1
k+1, j, pol1

k+1.j, j  1, k

pi1
i, j, po1

i, j, pi4
i, j, po4

i, j, pbu
i, j, u  1, 4;,

i  1, k, j  1, k;,

pi4
i, k+1, po4

i.k+1, i  1, k, pi1
k+1, j, po1

k+1.j, j  1, k

. (15)

The  way  the  solutions  are  described  is  common  enough  for  sparse
vectors  and  especially  for  the  Petri  net  theory.  Only  nonzero  compo-
nents  are  mentioned  by  the  name  of  a  corresponding  place.  The
nonzero multiplier 1 is omitted; in case it is not the unit, the notation
p * x  is  used,  where  x  is  the  value  of  the  invariant  for  place  p.  Such
notation  is  adopted  in  the  TINA  software,  which  was  used  for
obtaining  the  Petri  net  figures  in  this  paper.  A  line  of  the  matrix  in
equation�(15)  gives  us  a  set  of  lines  according  to  the  indices  i  and  j,
except the last two lines, which contain a variable number of compo-
nents  given  by  indices.  The  total  number  of  solutions  is

Nk
pinv  5 · k2 + 4 · k + 2. 

We  did  not  manage  to  prove  that  equation  (15)  is  the  basis  of
nonzero solutions of equation (6), but it is possible to prove that each
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line of equation (15) is a solution of equation (6). And this fact allows
the proof of p-invariance for the net Sk. 

Lemma 1. Each line of the matrix in equation (15) is a solution of equa-
tion (6).   

Proof.  Let  us  substitute  each  parametric  line  of  equation  (15)  into
each  parametric  equality  of  equation  (6).  This  gives  us  the  correct
statement. For instance, let us substitute the first line of equation (15) 

pi1
i′, j′ , pil1

i′, j′ , i′  1, k, j′  1, k + 1

into the second equality of equation (6)  

xpi1
i, j + xpbli, j  xpil1

i, j + xpb2
i, j, i  1, k, j  1, k.

We obtain: 

◼ When i′ ≠ i or j′ ≠ j: 0 + 0  0 + 0 and further 0  0.

◼ When i′  i and j′  j: 1 + 0  1 + 0 and further 1  1. 

In the same way, all the 16⨯7 combinations may be checked. □

Theorem 1. The net Sk is a p-invariant Petri net for an arbitrary natural

number k.   

Proof. Let us consider the sum of the sixth and seventh lines of equa-
tion  (15),  which  represents  the  solutions  of  equation  (6)  according  to
Lemma 1: 

pi1
i, j, po1

i, j, pi4
i, j, po4

i, j, pb1
i, j, pb2

i, j, pb3
i, j, pb4

i, j, i  1, k, j  1, k,

pi4
i, k+1, po4

i, k+1, i  1, k, pi1
k+1, j, po1

k+1, j, j  1, k

plus  

pil1
i, j, pol1

i, j, pil4
i, j, pol4

i, j, pbli, j, i  1, k, j  1, k,

pil4
i, k+1, pol4

i, k+1, i  1, k, pil1
k+1, j, pol1

k+1, j, j  1, k

equals

pi1
i, j, pil1

i, j, po1
i, j, pol1

i, j, pi4
i, j, pil4

i, j, po4
i, j, pol4

i, j, pb1
i, j,

pb2
i, j, pb3

i, j, pb4
i, j, pbli, j, i  1, k, j  1, k,

pi4
i, k+1, pil4

i, k+1, po4
i, k+1, pol4

i, k+1, i  1, k,

pi1
k+1, j, pil1

k+1, j, po1
k+1, j, pol1

k+1, j, j  1, k.

(16)
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As  all  the  Nk
p  13 · k2 + 8 · k  places  are  mentioned  in  this  invari-

ant, the Petri net Sk  is a p-invariant net for an arbitrary natural num-

ber k. Moreover, as each component of equation (16) equals the unit,
the net Sk is a conservative and bounded Petri net for an arbitrary nat-

ural number k. □

As the p-invariance was proven for an arbitrary natural number k,
we say that the invariants of infinite Petri nets with the regular struc-
ture were studied. 

The  proof that equation  (15) is  a  basis of  equation (6)  solutions is
appreciated.  But  this  fact  was  only  substantiated  by  the  calculation
experiments  for  the  sequence  k  1, … , 10.  Solutions  given  by  equa-
tion (15) were compared with the basis obtained via the Adriana soft-
ware  [16]  for  the  matrix  structure  with  definite  k.  The  results  are
illustrated with invariants of the 2⨯2 grid (Figure 6) generated by the
software described in Part 2. 

Grid with Terminal Device on Edges  9.1.2

Place  invariants  of  the  closed  grid  STk  defined  by  equation  (3)  with

attached  terminal  devices,  shown  in  Figure  7(a),  have  the  same  form
of  equation  (15)  as  for  the  open  grid  Sk.  The  results  could  be  repre-

sented formally in the following way.  

Lemma 2.  Each  line  of  equation  (15)  is  a  p-invariant  of  the  grid  STk
defined by equation (3).   

Theorem 2. The net STk  is a p-invariant Petri net for an arbitrary natu-

ral number k.   

The  proofs  could  be  composed  in  the  same  way  as  the  proofs  of
Lemma  1  and  Theorem  1,  respectively.  Additionally,  the  last  four
equations  of  the  system  constructed  on  equation  (3)  should  be  taken
into consideration. 

Grid with Truncated Communication Devices on Edges  9.1.3

The obtained parametric solution for the grid with truncated commu-
nication devices on edges SUk  defined by equation (4) has the follow-

ing form:  
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pi1
i, j, pil1

i, j, i  2, k, j  1, k;

po1
i, j, pol1

i, j, i  2, k, j  1, k;

pi4
i, j, pil4

i, j, i  1, k, j  2, k;

po4
i, j, pol4

i, j, i  1, k, j  2, k;

pb2
1, 1, pb3

1, 1, pbl1,1

pb3
1, k, pb4

1, k, pbl1, k

pb1
k, 1, pb2

k, 1, pblk, 1

pb1
k, k, pb4

k, k, pblk, k

pb1
i, 1, pb2

i, 1, pb3
i, 1, pbli, 1, i  2, k - 1;

pb1
i, k, pb3

i, k, pb4
i, k, pbli, k, i  2, k - 1;

pb2
1, j, pb3

1, j, pb4
1, j, pbl1, j, j  2, k - 1;

pb1
k, j, pb2

k, j, pb4
k, j, pblk, j, j  2, k - 1;

pb1
i, j, pb2

i, j, pb3
i, j, pb4

i, j, pbli, j, i  2, k - 1, j  2, k - 1;

pil1
i, j, pol1

i, j, i  2, k, j  1, k;

pil4
i, j, pol4

i, j, i  1, k, j  2, k;

pbli, j, i  1, k, j  1, k;

pi1
i, j, po1

i, j, i  2, k, j  1, k;

pi4
i, j, po4

i, j, i  1, k; j  2, k;

pb1
i, j, i  2, k, j  1, k; pb2

i, j, i  1, k, j  1, k - 1;

pb3
i, j, i  1, k - 1, j  1, k; pb4

i, j, i  1, k, j  2, k;

. (17)

Note  that  equation  (17)  contains  15  solutions  and  11  of  them  are
parametric.  Solutions  4–8  contain  definite  indices  of  the  grid  corners
and have no parameters. Solutions 9–12 list places of edge devices for
upper, right, left and bottom edges (except corners), respectively. Solu-
tion  13  lists  places  of  internal  devices.  In  contrast  to  solutions  1–13,
which  define  series  of  rows  with  a  fixed  number  of  nonzero  (unit)
components,  each  of  solutions  14,  15  defines  a  single  row  with  a
series of nonzero (unit) components. 

Lemma 3.  The  parametric  matrix  equation  (17)  specifies  p-invariants
of net SUk defined by equation (4).   

Proof.  Substitute  each  parametric  solution  of  equation  (17)  into  each
parametric equation for p-invariants of net equation (4) and obtain a
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true  equality.  For  instance,  let  us  substitute  the  first  solution  from
equation (17) into each equality taken from equation (4). 

The  vector  denoted  as  pi1
i, j, pil1

i, j  contains  units  in  components

pi1
i, j, pil1

i, j
 and zeros in other components. 

Variables pi1
i, j, pil1

i, j
 appear only in equations 2, 3, 4, 5: 

pi1
i, j + pbli, j  pil1

i, j + pb2
i, j,

pi1
i, j + pbli, j  pil1

i, j + pb3
i, j,

pi1
i, j + pbli, j  pil1

i, j + pb4
i, j,

pil1
i+1, j + pb3

i, j  pi1
i+1, j + pbli, j.

For them we obtain 1 + 0  1 + 0 and further 1  1. For the rest of
the  equations  constructed  on  equation  (4),  we  obtain  0  0  because

pi1
i, j,  pil1

i, j
 do  not  enter  these  equations  and  the  rest  of  the  variables

are  equal  to  zero.  In  the  same  way,  all  the  15⨯16  combinations  are

verified. □

Theorem 3. Petri net SUk is a p-invariant net at any natural k. 

Proof.  A  p-invariant  net  is  named  a  net  having  an  invariant  with  all
components greater than zero. There is a p-invariant with all the natu-
ral components, for instance, the sum of solutions 14 and 15: 

pi1
i, j, pil1

i, j, po1
i, j, pol1

i, j, i  2, k, j  1, k;

pi4
i, j, pil4

i, j, po4
i, j, pol4

i, j, i  1, k, j  2, k;

pbli, j, i  1, k, j  1, k;

pb1
i, j, i  2, k, j  1, k; pb2

i,j, i  1, k, j  1, k - 1;

pb3
i, j, i  1, k - 1, j  1, k; pb4

i, j, i  1, k, j  2, k;

which lists all the places of the model. Note that incomplete enumera-
tion  from  2  and  to  k - 1  corresponds  to  the  truncated  (absent)  ports
on edges.  

Moreover, as the components of the invariant are equal to unit, the

net is strictly conservative and preserves the total sum of tokens. □

Grid with Connected Opposite Edges (Torus)  9.1.4

The obtained parametric solution for p-invariants of the grid with con-
nected  opposite  edges  SCk  defined  by  equation  (5)  has  the  following

form.  The  sparse  matrix  contains  seven  parametric  solutions,  which
are  specified  via  enumeration  of  nonzero  values  (in  the  considered
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example, all nonzero values are equal to unit):  

pi1
i, j, pil1

i, j, i  1, k, j  1, k;

po1
i, j, pol1

i, j, i  1, k, j  1, k;

pi4
i, j, pil4

i, j, i  1, k, j  1, k;

po4
i, j, pol4

i, j, i  1, k, j  1, k;

pb1
i, j, pb2

i, j, pb3
i, j, pb4

i, j, pbli, j, i  1, k, j  1, k;

pil1
i, j, pol1

i, j, pil4
i, j, pol4

i, j, pbli, j, i  1, k, j  1, k;

pi1
i, j, po1

i, j, pi4
i, j, po4

i, j, pbu
i, j, u  1, 4;,

i  1, k, j  1, k;

. (18)

To  explain  the  parametric  form  of  the  solution’s  representation,
definite  values  of  place  invariants  of  the  grid  with  size  3⨯3  are  writ-
ten  in  Table  1  on  the  matrix  of  parametric  solutions  equation  (18).
The  first  five  solutions  define  sets  of  rows  with  a  certain  number  of
nonzero (unit) elements; each of the last two solutions defines a single
row with a variable number of nonzero (unit) elements. 

Lemma 4.  Parametric  matrix  in  equation  (18)  specifies  p-invariants  of
net SCk defined by equation (5).   

Theorem 4. Petri net SCk is a p-invariant net for any natural k.   

The  proofs  of  Lemma  4  and  Theorem  4  are  similar  to  Lemma  3
and Theorem 3, respectively.

Explicit Construction of Cyclic Transitions Firing Sequences  9.2

The construction of a system for calculating the t-invariant is more dif-
ficult  because  the  parametric  description  equation  (2)  lists  transitions
with  their  incidental  places.  An  alternative  dual  parametric  descrip-
tion of the grid, considered in Section 8, is required, which lists places
with their incidental transitions.  

The  transition  invariant  represents  a  count  vector  of  the  transition
firing  sequences  leading  to  the  initial  marking—stationary  repetitive.
To find the transition invariants, a method of explicit constructing of
cyclic  transitions  firing  sequences  was  offered.  The  method  is  based
on the application of an auxiliary graph of packets transmission, rep-
resented  in  Figure  10(a),  that  defines  possible  directions  of  packets
transmission  among  the  ports  of  neighboring  devices;  each  arc  of  the
graph corresponds to a few transitions of the Petri net. Finding loops
of the packet transmission graph allows us to obtain stationary repeti-
tive transitions firing sequences. 
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1 2 3 4 5

pi1
1, 1, pil1

1, 1


pi1
1, 2, pil1

1, 2


pi1
1, 3, pil1

1, 3


pi1
2, 1, pil1

2, 1


pi1
2, 2, pil1

2, 2


pi1
2, 3, pil1

2, 3


pi1
3, 1, pil1

3, 1


pi1
3, 2, pil1

3, 2


pi1
3, 3, pil1

3, 3


po1
1, 1, pol1

1, 1


po1
1, 2, pol1

1, 2


po1
1, 3, pol1

1, 3


po1
2, 1, pol1

2, 1


po1
2, 2, pol1

2, 2


po1
2, 3, pol1

2, 3


po1
3, 1, pol1

3, 1


po1
3, 2, pol1

3, 2


po1
3, 3, pol1

3, 3


pi4
1, 1, pil4

1, 1


pi4
1, 2, pil4

1, 2


pi4
1, 3, pil4

1, 3


pi4
2, 1, pil4

2, 1


pi4
2, 2, pil4

2, 2


pi4
2, 3, pil4

2, 3


pi4
3, 1, pil4

3, 1


pi4
3, 2, pil4

3, 2


pi4
3, 3, pil4

3, 3


po4
1, 1, pol4

1, 1


po4
1, 2, pol4

1, 2


po4
1, 3, pol4

1, 3


po4
2, 1, pol4

2, 1


po4
2, 2, pol4

2, 2


po4
2, 3, pol4

2, 3


po4
3, 1, pol4

3, 1


po4
3, 2, pol4

3, 2


po4
3, 3, pol4

3, 3


pb1
1, 1, pb2

1, 1, pb3
1, 1, pb4

1, 1, pbl1, 1

pb1
1, 2, pb2

1, 2, pb3
1, 2, pb4

1, 2, pbl1, 2

pb1
1, 3, pb2

1, 3, pb3
1, 3, pb4

1, 3, pbl1, 3

pb1
2, 1, pb2

2, 1, pb3
2, 1, pb4

2, 1, pbl2, 1

pb1
2, 2, pb2

2, 2, pb3
2, 2, pb4

2, 2, pbl2, 2

pb1
2, 3, pb2

2, 3, pb3
2, 3, pb4

2, 3, pbl2, 3

pb1
3, 1, pb2

3, 1, pb3
3, 1, pb4

3, 1, pbl3, 1

pb1
3, 2, pb2

3, 2, pb3
3, 2, pb4

3, 2, pbl3, 2

pb1
3, 3, pb2

3, 3, pb3
3, 3, pb4

3, 3, pbl3, 3

6

pil1
1, 1, pol1

1, 1, pil4
1, 1, pol4

1, 1, pbl1, 1, pil1
1, 2, pol1

1, 2, pil4
1, 2, pol4

1, 2, pbl1, 2, pil1
1, 3, pol1

1, 3,

pil4
1, 3, pol4

1, 3, pbl1, 3, pil1
2, 1, pol1

2, 1, pil4
2, 1, pol4

2, 1, pbl2, 1, pil1
2, 2, pol1

2, 2, pil4
2, 2,

pol4
2, 2, pbl2, 2, pil1

2, 3, pol1
2, 3, pil4

2, 3, pol4
2, 3, pbl2, 3, pil1

3, 1, pol1
3, 1, pil4

3, 1, pol4
3, 1,

pbl3, 1, pil1
3, 2, pol1

3, 2, pil4
3, 2, pol4

3, 2, pbl3, 2, pil1
3, 3, pol1

3, 3, pil4
3, 3, pol4

3, 3, pbl3, 3

7

pi1
1, 1, po1

1, 1, pi4
1, 1, po4

1, 1, pb1
1, 1, pb2

1, 1, pb3
1, 1, pb4

1, 1, pi1
1, 2, po1

1, 2, pi4
1, 2, po4

1, 2,

pb1
1, 2, pb2

1, 2, pb3
1, 2, pb4

1, 2, pi1
1, 3, po1

1, 3, pi4
1, 3, po4

1, 3, pb1
1, 3, pb2

1, 3, pb3
1, 3, pb4

1, 3,

pi1
2, 1, po1

2, 1, pi4
2, 1, po4

2, 1, pb1
2, 1, pb2

2, 1, pb3
2, 1, pb4

2, 1, pi1
2, 2, po1

2, 2, pi4
2, 2, po4

2, 2,

pb1
2, 2, pb2

2, 2, pb3
2, 2, pb4

2, 2, pi1
2, 3, po1

2, 3, pi4
2, 3, po4

2, 3, pb1
2, 3, pb2

2, 3, pb3
2, 3, pb4

2, 3,

pi1
3, 1, po1

3, 1, pi4
3, 1, po4

3, 1, pb1
3, 1, pb2

3, 1, pb3
3, 1, pb4

3, 1, pi1
3, 2, po1

3, 2, pi4
3, 2, po4

3, 2,

pb1
3, 2, pb2

3, 2, pb3
3, 2, pb4

3, 2, pi1
3, 3, po1

3, 3, pi4
3, 3, po4

3, 3, pb1
3, 3, pb2

3, 3, pb3
3, 3, pb4

3, 3


Table 1. Solutions of equation (18) for k  3.    

(a) (b)

Figure 10. The transmission graph of a communication device: (a) without ter-
minal devices (S1); (b) with attached terminal devices (ST1).  
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For  the  calculation  of  t-invariants,  the  same  approach  may  be
applied. It yields that the Petri net Sk  is not t-invariant, but this is not

a surprise because the modeled system is open, as the terminal devices
are not attached. The simplest way to prove it is the consideration of
the  border  places  without  the  input  arcs  (places  without  the  output
arcs  as  well).  So  let  us  consider  the  net  STk,  which  is  obtained  from

the  net  Sk  by  attaching  the  terminal  devices  represented  in  Fig-

ure�10(b). 
But  due  to  the  explosion  of  the  basis  even  for  a  small  enough

k  3,  the  general  parametric  solution  was  not  constructed.  This  fact
may  be  easily  substantiated  by  the  consideration  of  all  the  consistent
firing  sequences  of  transitions.  At  first  we  prove  that  the  net  STk  is

t-invariant.  For  this  purpose,  the  consistent  firing  sequence  that  con-
tains all the transitions is constructed. We create a transmission graph
of the communication matrix. The graph is composed of the cells cor-
responding  to  the  devices.  The  cells  have  the  form  shown  in  Fig-
ure�10. 

Each arc of the graph corresponds to firing a pair of transitions sup-
plying  the  movement  of  a  packet  to  the  corresponding  port.  For
instance,  the  arc  (pi1, po4)  represents  the  sequence  ti1, 4,  to4,  and  so

on.  For  the  graph  shown  in  Figure  10(b),  the  following  loop  may  be
constructed, which contains all the arcs: 

pi1, po2, pi2, po4, pi4, po3, pi3, po1, pi1, po4, pi4, po2,

pi2, po3, pi3, po4, pi4, po1, pi1, po3, pi3, po2, pi2, po1.

This loop corresponds to the following firing sequence of transitions:  

ti1, 2, to2, si2, so2, ti2, 4, to4, si4, so4, ti4,3, to3, si3, so3,

ti1, 3, to1, si1, so1, ti1,4, to4, si4, so4, ti4,2, to2, si2, so2,

ti2, 3, to3, si3, so3, ti3, 4, to4, si4, so4, ti4, 1, to1, si1, so1,

ti1, 3, to3, si3, so3, ti3, 2, to2, si2, so2, ti2, 1, to1, si1, so1,

which  contains  each  transition  at  least  once.  So  the  net  ST1  is  a

t-invariant and moreover, consistent Petri net.  
The  cells  are  gathered  into  the  matrix  and  supplied  with  the  arcs

that correspond to the actions of terminal devices for the net STk. An

example of the graph for k  2 is represented in Figure 11(a). 

Theorem 5. The net STk  is a t-invariant Petri net for an arbitrary natu-

ral number k.   

Proof.  We  prove  the  theorem  in  a  constructive  way  using  the  struc-
ture of the transmission graph for the net STk. We construct the con-

sistent  firing  sequence  that  contains  all  the  transitions  of  the  net  on
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the  base  of  the  loop  of  the  transmission  graph  that  contains  all  its
arcs.  Let  us  construct  the  main  loop  as  the  composition  of  loops  on
the following directions: horizontal, vertical, primary diagonal, collat-
eral diagonal: 

horizontal loops: 1.

pi4
i, j → pi4

i, j+1, j  1, k, pi4
i,k+1 → po4

i, k+1,

po4
i, j+1 → po4

i, j, j  k, 1, po4
i, 1 → pi4

i, 1, i  1, k;

vertical loops: 2.

pi1
i, j → pi1

i+1, j, i  1, k, pi1
k+1, j → po1

k+1, j,

po1
i+1, j → po1

i, j, i  k, 1, po1
1, j → pi1

1, j, j  1, k;

primary diagonal loops: left-bottom triangle: 3.

pi4
v+u-1, u → pi1

v+u, u, pi1
v+u, u → pi4

v+u, u+1, u  1, k - v,

pi4
k, k-v+1 → pi1

k+1, k-v+1,

pi1
k+1, k-v+1 → po1

k+1, k-v+1, po1
k+1, k-v+1 → po4

k, k-v+1,

po4
v+u, u+1 → po1

v+u, u, po1
v+u, u → po4

v+u-1, u, u  k - v, 1,

po4
v, 1 → pi4

v, 1, v  1, k;

right-upper triangle: 

pi1
u, v+u-1 → pi4

u, v+u, pi4
u, v+u → pi1

u+1, v+u, u  1, k - v,

pi1
k-v+1, k → pi4

k-v+1, k+1,

pi4
k-v+1, k+1 → po4

k-v+1, k+1, po4
k-v+1, k+1 → po1

k-v+1, k,

po1
u+1, v+u → po4

u, v+u, po4
u, v+u → po1

u, v+u-1, u  k - v, 1,

po1
1, v → pi1

1, v, v  1, k;

collateral diagonal loops: left-upper triangle: 4.

pi4
v-u+1, u → pi1

v-u+1, u, pi1
v-u+1, u → pi4

v-u, u+1, u  1, v - 1,

pi4
1, v → po1

1, v,

po1
1, v → pi1

1, v, pi1
1, v → po4

1, v,

po4
v-u, u+1 → po1

v-u+1, u, po1
v-u+1, u → po4

v-u+1, u, u  v - 1, 1,

po4
v, 1 → pi4

v, 1, v  1, k;
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right-bottom triangle: 

po1
k-u+2, v+u-1 → pi4

k-u+1, v+u,

pi4
k-u+1, v+u → po1

k-u+1, v+u, u  1, k - v,

po1
v+1, k → pi4

v, k+1,

pi4
v, k+1 → po4

v, k+1, po4
v, k+1 → pi1

v+1, k,

pi1
k-u+1, v+u → po4

k-u+1, v+u, po4
k-u+1, v+u → pi1

k-u+2, v+u-1,

u  k - v, 1, pi1
k+1, v → po1

k+1, v, v  1, k.

On  the  described  loops,  firing  sequences  of  transitions  may  be
unambiguously  constructed.  For  instance,  the  loops  for  the  right-
bottom triangle have the following form: 

ti3, 2
k-u+1, v+u-1, to2

k-u+1, v+u-1, ti4, 1
k-u, v+u, to1

k-u, v+u,

u  1, k - v,

ti3, 2
v, k , to2

v, k, si2
v , so2

v , ti2, 3
v,k , to3

v, k,

ti1, 4
k-u, v+u, to4

k-u, v+u, ti2, 3
k-u+1, v+u-1, to3

k-u+1, v+u-1,

u  k - v, 1, si3
v , so3

v, u  1, k

.

It  is  easy  to  check  that  the  sum  of  all  the  firing  sequences  corre-
sponding  to  the  described  loops  contains  each  transition  of  the  net

STk  at least once and preserves the initial marking. So the net STk  is a

t-invariant and moreover, consistent Petri net for an arbitrary natural

number k.  □

Auxiliary Graphs of Packet Transmission and Possible Blocking 

of Devices  

9.3

In  spite  of  the  fact  that  the  Petri  net  STk  is  t-invariant  and  provides

the transmission of packets among each pair of terminal devices with
redundancy,  it  contains  deadlocks.  Deadlocks  may  occur  in  the  pairs
of  communication  devices,  but  we  are  more  interested  in  complex
deadlocks involving an arbitrary number of communication devices.  

Each pair of neighbor communication devices may fall into a local

deadlock,  for  instance,  when  the  device  Ri, j
 got  l  packets  directed  to

the  device  Ri, j+1
 and  the  device  Ri, j+1

 got  l  packets  directed  to  the

device  Ri, j
 and  moreover,  the  input  and  output  buffers  of  their  com-

mon  port  are  occupied  with  the  packets;  remember  that  l  is  the
buffer’s capacity. Such a situation constitutes a t-dead marking for the
transitions  of  both  devices,  while  other  transitions  of  the  net  STk  are

potentially live. 
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In Figure 12, the full deadlock for the net STk  is shown. It involves

all  four  communication  devices  of  the  matrix.  For  the  description  of
the deadlock structures of the net STk, the graph of possible blockings

shown in Figure 11(b) is constructed. 

(a) (b)

Figure 11. Auxiliary  graphs  (examples  for  the  net  STk):  (a)  the  transmission

graph; (b) the graph of possible blockings.  

The  directed  loops  of  the  graph  (Figure  11(b))  correspond  to  the
deadlocks  of  the  communication  matrix  STk.  Each  arc  connecting  a

pair of neighbor devices Ri, j, Ri′, j′ , i - i′  1 ⋁ j - j′  1 means that

Ri, j
 may block itself if and only if it got l packets directed to Ri′, j′ , its

output buffer of the port connecting Ri, j
 with Ri′, j′

 contains a packet,

and the device Ri′, j′
 is also blocked. We may construct a simple chain

of  arcs,  and  the  real  deadlock  occurs  when  it  is  closed  in  a  loop.  So
deadlocks of the communication matrix may be described as loops of
the  graph  of  possible  deadlocks.  A  full  deadlock  involving  all  the
devices (and all the transitions) occurs when the loop contains all the

devices  in  the  matrix.  Let  us  notice  that  it  requires  at  least  l + 1 · k2

packets,  which  should  be  provided  by  the  terminal  devices.  Such  a
deadlock  may  be  easily  constructed  for  an  even  k  using,  for  instance,
the detours of the graph shown in Figure 12(a). 

For an odd k, the loop may contain only k2 - 1 devices, but in this
case  we  can  make  one  device  isolated  by  the  loop  that  yields  to  the
full  deadlock.  So  the  structure  of  the  deadlocks  is  more  complicated
because, besides the deadlock caused by a cycle of blockings, isolated
communication  devices  may  occur  with  all  four  neighbors  belonging
to the cycle. This case is rather simple for k  3 and illustrated with a
full deadlock instance for k  7, shown in Figure 12(b). 
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(a) (b)

Figure 12. The  detours  of  the  graphs  of  possible  blockings:  (a)  for  an  even  k;
(b) for odd k  7.  

Thus, the three following kinds of complex deadlocks are revealed:
loop of blockings, isolation of a vertex and a chain of blockings with
its  end  at  an  early  blocked  chain.  The  occurrence  of  deadlocks  leads
to  considerable  decrease  of  the  communication  grid  performance
(bandwidth). 

In spite of the fact that rather sophisticated square communication
matrices were studied, the described deadlocks in the cycles of block-
ings and isolations are hard-nosed for real-life communication graphs
where  devices  with  compulsory  buffering  are  used.  We  believe  that
these  deadlocks  may  be  purposely  inflicted  by  the  specially  situated
generators of the peculiar traffic. In real-life networks, blocking of the
devices is overcome with time-out mechanisms causing the cleaning of
the buffers, but it leads to a considerable fall of network performance
as  soon  as  the  situation  is  repeated  by  the  special  generators  of  per-
ilous traffic. Recently the results have been acknowledged using timed
colored Petri nets [25]. 

Conclusion10.

Thus, in the present paper, the technique of the linear invariants calcu-
lation  for  parametric  Petri  nets  with  regular  structure  was  presented.
The  technique  was  studied  on  series  of  computing  grids,  the  most
abstract  of  which  is  a  communication  hypercube  of  an  arbitrary  size
with an arbitrary number of dimensions.  

The  application  of  the  technique  allowed  the  analysis  of  transmis-
sions,  involving  an  arbitrary  number  of  communicating  devices.  The
modeled  telecommunication  device  constitutes  a  generalized
router/switch with the compulsory buffering of packets. Such positive
properties  of  the  communication  structure  as  conservativeness  and
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consistency  were  obtained  using  the  linear  invariants  of  infinite  Petri
nets.

It  was  proven  that  the  compulsory  buffering  of  the  packets
inevitably  leads  to  the  possible  blockings  of  communicating  devices.
The  structure  of  the  complex  deadlocks  involving  an  arbitrary  num-
ber  of  communicating  devices  caused  by  both  the  chain  (cycle)  of
blockings and isolation was studied. 

Though  in  real-life  networks  the  deadlocks  are  overcome  by  the
cleaning  of  the  buffers  via  the  time-out  mechanism,  it  leads  to  a  con-
siderable  decrease  of  network  performance  and  moreover,  might  be
inflicted by ill-intentioned traffic. 

Such  specific  edge  conditions  as  truncated  devices  and  connection
of edges were studied on the Petri net models of square grids. Though
p-invariants  of  grids  with  various  edge  conditions  differ,  the  proper-
ties are the same: the model is a p-invariant Petri net for a grid of any
size. Thus, the net is conservative and bounded, which are the proper-
ties of ideal systems models. The technique was refined that allows its
easy  application  for  analysis  of  any  infinite  Petri  net  with  regular
structure given by its parametric description. 

The  dual  parametric  description  of  infinite  Petri  nets  with  regular
structure  was  introduced  and  applied  to  compose  infinite  linear  sys-
tems  for  calculating  t-invariants  on  an  example  of  a  closed  square
computing grid model. The technique is applicable for any given infi-
nite Petri net with regular structure. 

The  technique  of  constructing  software  generators  of  Petri  nets
with regular structure on the basis of their parametric description was
presented.  The  technique  was  applied  successfully  to  testing  modules
Deborah and Adriana for compositional analysis of Petri nets, verifica-
tion  of  Ethernet  protocols  and  analysis  of  flat  computing  grids  and
computing structures of hypercubes. The application of the technique
allowed  us  to  draw  conclusions  regarding  the  properties  of  infinite
Petri  nets  whose  necessity  of  use  is  demanded  by  the  development  of
computer  and  communication  technology  considering  the  interaction
of an unlimited number of devices. The technique could be employed
as  well  in  a  wide  range  of  Petri  net  application  domains,  including
automated  manufacture,  business  processes,  programming  and  sys-
tems biology. 
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