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Starting  now,  in  celebration  of  its  15th  anniversary,  A  New  Kind  of
Science  will  be  freely  available  in  its  entirety,  with  high-resolution
images, on the web or for download. 

It’s now 15 years since I published my book A New Kind of Science—
more  than  25  since  I  started  writing  it,  and  more  than  35  since  I
started working towards it. But with every passing year I feel I under-
stand more about what the book is really about—and why it’s impor-
tant.  I  wrote  the  book,  as  its  title  suggests,  to  contribute  to  the
progress  of  science.  But  as  the  years  have  gone  by,  I’ve  realized  that
the core of what’s in the book actually goes far beyond science—into
many  areas  that  will  be  increasingly  important  in  defining  our  whole
future.

So,  viewed  from  a  distance  of  15  years,  what  is  the  book  really
about?  At  its  core,  it’s  about  something  profoundly  abstract:  the  the-
ory  of  all  possible  theories,  or  the  universe  of  all  possible  universes.
But for me one of the achievements of the book is the realization that
one can explore such fundamental things concretely—by doing actual
experiments in the computational universe of possible programs. And
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in the end the book is full of what might at first seem like quite alien
pictures made just by running very simple such programs.

Back  in  1980,  when  I  made  my  living  as  a  theoretical  physicist,  if
you’d asked me what I thought simple programs would do, I expect I
would have said “not much”. I had been very interested in the kind of
complexity one sees in nature, but I thought—like a typical reduction-
istic scientist—that the key to understanding it must lie in figuring out
detailed features of the underlying component parts.

In retrospect I consider it incredibly lucky that all those years ago I
happened to have the right interests and the right skills to actually try
what is in a sense the most basic experiment in the computational uni-
verse:  to  systematically  take  a  sequence  of  the  simplest  possible  pro-
grams, and run them.

I  could  tell  as  soon  as  I  did  this  that  there  were  interesting  things
going  on,  but  it  took  a  couple  more  years  before  I  began  to  really
appreciate  the  force  of  what  I’d  seen.  For  me  it  all  started  with  one
picture: 

Or, in modern form:
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I  call  it  rule  30.  It’s  my  all-time  favorite  discovery,  and  today  I
carry it around everywhere on my business cards. What is it? It’s one
of  the  simplest  programs  one  can  imagine.  It  operates  on  rows  of
black  and  white  cells,  starting  from  a  single  black  cell,  and  then
repeatedly  applies  the  rules  at  the  bottom.  And  the  crucial  point  is
that even though those rules are by any measure extremely simple, the
pattern that emerges is not.

It’s  a  crucial—and  utterly  unexpected—feature  of  the  computa-
tional universe: that even among the very simplest programs, it’s easy
to  get  immensely  complex  behavior.  It  took  me  a  solid  decade  to
understand just how broad this phenomenon is. It doesn’t just happen
in  programs  (“cellular  automata”)  like  rule  30.  It  basically  shows  up
whenever  you  start  enumerating  possible  rules  or  possible  programs
whose behavior isn’t obviously trivial.

Similar  phenomena  had  actually  been  seen  for  centuries  in  things
like the digits of pi and the distribution of primes—but they were basi-
cally  just  viewed  as  curiosities,  and  not  as  signs  of  something  pro-
foundly  important.  It’s  been  nearly  35  years  since  I  first  saw  what
happens in rule 30, and with every passing year I feel I come to under-
stand more clearly and deeply what its significance is.

Four centuries ago it was the discovery of the moons of Jupiter and
their  regularities  that  sowed  the  seeds  for  modern  exact  science,  and
for  the  modern  scientific  approach  to  thinking.  Could  my  little  rule
30  now  be  the  seed  for  another  such  intellectual  revolution,  and  a
new way of thinking about everything?

In  some  ways  I  might  personally  prefer  not  to  take  responsibility
for shepherding such ideas (“paradigm shifts” are hard and thankless
work).  And  certainly  for  years  I  have  just  quietly  used  such  ideas  to
develop technology and my own thinking. But as computation and AI
become  increasingly  central  to  our  world,  I  think  it’s  important  that
the  implications  of  what’s  out  there  in  the  computational  universe  be
more widely understood. 

Implications of the Computational Universe

Here’s the way I see it today. From observing the moons of Jupiter we
came  away  with  the  idea  that—if  looked  at  right—the  universe  is  an
ordered  and  regular  place,  that  we  can  ultimately  understand.  But
now, in exploring the computational universe, we quickly come upon
things  like  rule  30  where  even  the  simplest  rules  seem  to  lead  to  irre-
ducibly complex behavior. 

One  of  the  big  ideas  of  A  New  Kind  of  Science  is  what  I  call  the
Principle  of  Computational  Equivalence.  The  first  step  is  to  think  of
every  process—whether  it’s  happening  with  black  and  white  squares,
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or  in  physics,  or  inside  our  brains—as  a  computation  that  somehow
transforms  input  to  output.  What  the  Principle  of  Computational
Equivalence  says  is  that  above  an  extremely  low  threshold,  all  pro-
cesses correspond to computations of equivalent sophistication.

It might not be true. It might be that something like rule 30 corre-
sponds to a fundamentally simpler computation than the fluid dynam-
ics  of  a  hurricane,  or  the  processes  in  my  brain  as  I  write  this.  But
what  the  Principle  of  Computational  Equivalence  says  is  that  in  fact
all these things are computationally equivalent.

It’s  a  very  important  statement,  with  many  deep  implications.  For
one thing, it implies what I call computational irreducibility. If some-
thing  like  rule  30  is  doing  a  computation  just  as  sophisticated  as  our
brains  or  our  mathematics,  then  there’s  no  way  we  can  “outrun”  it:
to figure out what it will do, we have to do an irreducible amount of
computation, effectively tracing each of its steps.

The  mathematical  tradition  in  exact  science  has  emphasized  the
idea of predicting the behavior of systems by doing things like solving
mathematical  equations.  But  what  computational  irreducibility
implies  is  that  out  in  the  computational  universe  that  often  won’t
work, and instead the only way forward is just to explicitly run a com-
putation to simulate the behavior of the system.

A Shift in Looking at the World

One  of  the  things  I  did  in  A  New  Kind  of  Science  was  to  show  how
simple  programs  can  serve  as  models  for  the  essential  features  of  all
sorts  of  physical,  biological  and  other  systems.  Back  when  the  book
appeared,  some  people  were  skeptical  about  this.  And  indeed  at  that
time  there  was  a  300-year  unbroken  tradition  that  serious  models  in
science should be based on mathematical equations. 

But  in  the  past  15  years  something  remarkable  has  happened.  For
now,  when  new  models  are  created—whether  of  animal  patterns  or
web  browsing  behavior—they  are  overwhelmingly  more  often  based
on programs than on mathematical equations.

Year  by  year,  it’s  been  a  slow,  almost  silent,  process.  But  by  this
point, it’s a dramatic shift. Three centuries ago pure philosophical rea-
soning  was  supplanted  by  mathematical  equations.  Now  in  these  few
short years, equations have been largely supplanted by programs. For
now,  it’s  mostly  been  something  practical  and  pragmatic:  the  models
work better, and are more useful.

But  when  it  comes  to  understanding  the  foundations  of  what’s
going on, one’s led not to things like mathematical theorems and cal-
culus, but instead to ideas like the Principle of Computational Equiva-
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lence.  Traditional  mathematics-based  ways  of  thinking  have  made
concepts  like  force  and  momentum  ubiquitous  in  the  way  we  talk
about  the  world.  But  now  as  we  think  in  fundamentally  computa-
tional terms we have to start talking in terms of concepts like undecid-
ability and computational irreducibility.

Will  some  type  of  tumor  always  stop  growing  in  some  particular
model?  It  might  be  undecidable.  Is  there  a  way  to  work  out  how  a
weather system will develop? It might be computationally irreducible.

These  concepts  are  pretty  important  when  it  comes  to  understand-
ing not only what can and cannot be modeled, but also what can and
cannot be controlled in the world. Computational irreducibility in eco-
nomics  is  going  to  limit  what  can  be  globally  controlled.  Computa-
tional irreducibility in biology is going to limit how generally effective
therapies  can  be—and  make  highly  personalized  medicine  a  funda-
mental necessity.

And through ideas like the Principle of Computational Equivalence
we  can  start  to  discuss  just  what  it  is  that  allows  nature—seemingly
so  effortlessly—to  generate  so  much  that  seems  so  complex  to  us.  Or
how  even  deterministic  underlying  rules  can  lead  to  computationally
irreducible  behavior  that  for  all  practical  purposes  can  seem  to  show
“free will”.

Mining the Computational Universe

A  central  lesson  of  A  New  Kind  of  Science  is  that  there’s  a  lot  of
incredible  richness  out  there  in  the  computational  universe.  And  one
reason that’s important is that it means that there’s a lot of incredible
stuff out there for us to “mine” and harness for our purposes.

Want  to  automatically  make  an  interesting  custom  piece  of  art?
Just  start  looking  at  simple  programs  and  automatically  pick  out  one
you  like—as  in  our  WolframTones  music  site  from  a  decade  ago.
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Want to find an optimal algorithm for something? Just search enough
programs out there, and you’ll find one. 

We’ve  normally  been  used  to  creating  things  by  building  them  up,
step  by  step,  with  human  effort—progressively  creating  architectural
plans,  or  engineering  drawings,  or  lines  of  code.  But  the  discovery
that there’s so much richness so easily accessible in the computational
universe  suggests  a  different  approach:  don’t  try  building  anything;
just define what you want, and then search for it in the computational
universe.

Sometimes it’s really easy to find. Like let’s say you want to gener-
ate apparent randomness. Well, then just enumerate cellular automata
(as  I  did  in  1984),  and  very  quickly  you  come  upon  rule  30—which
turns out to be one of the very best known generators of apparent ran-
domness  (look  down  the  center  column  of  cell  values,  for  examples).
In other situations you might have to search 100 000 cases (as I did in
finding  the  simplest  axiom  system  for  logic,  or  the  simplest  universal
Turing  machine),  or  you  might  have  to  search  millions  or  even  tril-
lions of cases. But in the past 25 years, we’ve had incredible success in
just  discovering  algorithms  out  there  in  the  computational  universe—
and we rely on many of them in implementing the Wolfram Language.

At some level it’s quite sobering. One finds some tiny program out
in  the  computational  universe.  One  can  tell  it  does  what  one  wants.
But when one looks at what it’s doing, one doesn’t have any real idea
how  it  works.  Maybe  one  can  analyze  some  part—and  be  struck  by
how “clever” it is. But there just isn’t a way for us to understand the
whole  thing;  it’s  not  something  familiar  from  our  usual  patterns  of
thinking.

Of  course,  we’ve  often  had  similar  experiences  before—when  we
use things from nature. We may notice that some particular substance
is a useful drug or a great chemical catalyst, but we may have no idea
why.  But  in  doing  engineering  and  in  most  of  our  modern  efforts  to
build technology, the great emphasis has instead been on constructing
things whose design and operation we can readily understand.

In the past we might have thought that was enough. But what our
explorations of the computational universe show is that it’s not: select-
ing  only  things  whose  operation  we  can  readily  understand  misses
most  of  the  immense  power  and  richness  that’s  out  there  in  the  com-
putational universe.

A World of Discovered Technology 

What  will  the  world  look  like  when  more  of  what  we  have  is  mined
from  the  computational  universe?  Today  the  environment  we  build
for  ourselves  is  dominated  by  things  like  simple  shapes  and  repetitive

202 S. Wolfram

Complex Systems, 26 © 2017

http://blog.stephenwolfram.com/2011/06/music-mathematica-and-the-computational-universe/
http://blog.stephenwolfram.com/2011/06/music-mathematica-and-the-computational-universe/
http://tones.wolfram.com
http://www.stephenwolfram.com/publications/academic/random-sequence-generation-cellular-automata.pdf
http://www.stephenwolfram.com/publications/academic/random-sequence-generation-cellular-automata.pdf
http://www.wolframscience.com/nks/p808--implications-for-mathematics-and-its-foundations/
http://www.wolframscience.com/prizes/tm23/
http://www.wolframscience.com/prizes/tm23/
https://www.wolfram.com/language/


processes. But the more we use what’s out there in the computational
universe, the less regular things will look. Sometimes they may look a
bit  “organic”,  or  like  what  we  see  in  nature  (since  after  all,  nature
follows  similar  kinds  of  rules).  But  sometimes  they  may  look  quite
random,  until  perhaps  suddenly  and  incomprehensibly  they  achieve
something we recognize.

For  several  millennia  we  as  a  civilization  have  been  on  a  path  to
understand  more  about  what  happens  in  our  world—whether  by
using  science  to  decode  nature,  or  by  creating  our  own  environment
through  technology.  But  to  use  more  of  the  richness  of  the  computa-
tional universe we must at least to some extent forsake this path.

In  the  past,  we  somehow  counted  on  the  idea  that  between  our
brains and the tools we could create we would always have fundamen-
tally  greater  computational  power  than  the  things  around  us—and  as
a result we would always be able to “understand” them. But what the
Principle of Computational Equivalence says is that this isn’t true: out
in the computational universe there are lots of things just as powerful
as  our  brains  or  the  tools  we  build.  And  as  soon  as  we  start  using
those things, we lose the “edge” we thought we had.

Today  we  still  imagine  we  can  identify  discrete  “bugs”  in  pro-
grams.  But  most  of  what’s  powerful  out  there  in  the  computational
universe  is  rife  with  computational  irreducibility—so  the  only  real
way to see what it does is just to run it and watch what happens. 

We ourselves, as biological systems, are a great example of compu-
tation happening at a molecular scale—and we are no doubt rife with
computational  irreducibility  (which  is,  at  some  fundamental  level,
why  medicine  is  hard).  I  suppose  it’s  a  tradeoff:  we  could  limit  our
technology  to  consist  only  of  things  whose  operation  we  understand.
But then we would miss all that richness that’s out there in the compu-
tational universe. And we wouldn’t even be able to match the achieve-
ments of our own biology in the technology we create.

Machine Learning and the Neural Net Renaissance

There’s  a  common  pattern  I’ve  noticed  with  intellectual  fields.  They
go  for  decades  and  perhaps  centuries  with  only  incremental  growth,
and  then  suddenly,  usually  as  a  result  of  a  methodological  advance,
there’s  a  burst  of  “hypergrowth”  for  perhaps  five  years,  in  which
important new results arrive almost every week.

I  was  fortunate  enough  that  my  own  very  first  field—particle
physics—was  in  its  period  of  hypergrowth  right  when  I  was  involved
in  the  late  1970s.  And  for  myself,  the  1990s  felt  like  a  kind  of  per-
sonal  period  of  hypergrowth  for  what  became  A  New  Kind  of  Sci-
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ence—and  indeed  that’s  why  I  couldn’t  pull  myself  away  from  it  for
more than a decade.

But  today,  the  obvious  field  in  hypergrowth  is  machine  learning,
or, more specifically, neural nets. It’s funny for me to see this. I actu-
ally  worked  on  neural  nets  back  in  1981,  before  I  started  on  cellular
automata,  and  several  years  before  I  found  rule  30.  But  I  never  man-
aged to get neural nets to do anything very interesting—and actually I
found them too messy and complicated for the fundamental questions
I was concerned with.

And  so  I  “simplified  them”—and  wound  up  with  cellular
automata. (I was also inspired by things like the Ising model in statisti-
cal  physics,  etc.)  At  the  outset,  I  thought  I  might  have  simplified  too
far,  and  that  my  little  cellular  automata  would  never  do  anything
interesting.  But  then  I  found  things  like  rule  30.  And  I’ve  been  trying
to understand its implications ever since.

In  building  Mathematica  and  the  Wolfram  Language,  I’d  always
kept  track  of  neural  nets,  and  occasionally  we’d  use  them  in  some
small  way  for  some  algorithm  or  another.  But  about  five  years  ago  I
suddenly  started  hearing  amazing  things:  that  somehow  the  idea  of
training  neural  nets  to  do  sophisticated  things  was  actually  working.
At first I wasn’t sure. But then we started building neural net capabili-
ties  in  the  Wolfram  Language,  and  finally  two  years  ago  we  released
our  ImageIdentify.com  website—and  now  we’ve  got  our  whole  sym-
bolic  neural  net  system.  And,  yes,  I’m  impressed.  There  are  lots  of
tasks  that  had  traditionally  been  viewed  as  the  unique  domain  of
humans, but which now we can routinely do by computer.

But  what’s  actually  going  on  in  a  neural  net?  It’s  not  really  to  do
with  the  brain;  that  was  just  the  inspiration  (though  in  reality  the
brain  probably  works  more  or  less  the  same  way).  A  neural  net  is
really a sequence of functions that operate on arrays of numbers, with
each  function  typically  taking  quite  a  few  inputs  from  around  the
array. It’s not so different from a cellular automaton. Except that in a
cellular automaton, one’s usually dealing with, say, just 0s and 1s, not
arbitrary  numbers  like  0.735.  And  instead  of  taking  inputs  from  all
over  the  place,  in  a  cellular  automaton  each  step  takes  inputs  only
from a very well-defined local region. 

Now, to be fair, it’s pretty common to study “convolutional neural
nets”,  in  which  the  patterns  of  inputs  are  very  regular,  just  like  in  a
cellular  automaton.  And  it’s  becoming  clear  that  having  precise  (say
32-bit)  numbers  isn’t  critical  to  the  operation  of  neural  nets;  one  can
probably make do with just a few bits.

But a big feature of neural nets is that we know how to make them
“learn”.  In  particular,  they  have  enough  features  from  traditional
mathematics  (like  involving  continuous  numbers)  that  techniques  like
calculus  can  be  applied  to  provide  strategies  to  make  them  incremen-
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tally change their parameters to “fit their behavior” to whatever train-
ing examples they’re given.

It’s  far  from  obvious  how  much  computational  effort,  or  how
many  training  examples,  will  be  needed.  But  the  breakthrough  of
about five years ago was the discovery that for many important practi-
cal  problems,  what’s  available  with  modern  GPUs  and  modern  web-
collected training sets can be enough.

Pretty much nobody ends up explicitly setting or “engineering” the
parameters  in  a  neural  net.  Instead,  what  happens  is  that  they’re
found  automatically.  But  unlike  with  simple  programs  like  cellular
automata,  where  one’s  typically  enumerating  all  possibilities,  in  cur-
rent  neural  nets  there’s  an  incremental  process,  essentially  based  on
calculus,  that  manages  to  progressively  improve  the  net—a  little  like
the  way  biological  evolution  progressively  improves  the  “fitness”  of
an organism. 

It’s plenty remarkable what comes out from training a neural net in
this  way,  and  it’s  plenty  difficult  to  understand  how  the  neural  net
does what it does. But in some sense the neural net isn’t venturing too
far  across  the  computational  universe:  it’s  always  basically  keeping
the  same  basic  computational  structure,  and  just  changing  its  behav-
ior by changing parameters.

But  to  me  the  success  of  today’s  neural  nets  is  a  spectacular
endorsement of the power of the computational universe, and another
validation  of  the  ideas  of  A  New  Kind  of  Science.  Because  it  shows
that  out  in  the  computational  universe,  away  from  the  constraints  of
explicitly  building  systems  whose  detailed  behavior  one  can  foresee,
there are immediately all sorts of rich and useful things to be found.

NKS Meets Modern Machine Learning

Is there a way to bring the full power of the computational universe—
and  the  ideas  of  A  New  Kind  of  Science—to  the  kinds  of  things  one
does with neural nets? I suspect so. And in fact, as the details become
clear, I wouldn’t be surprised if exploration of the computational uni-
verse  saw  its  own  period  of  hypergrowth:  a  “mining  boom”  of  per-
haps unprecedented proportions.

In current work on neural nets, there’s a definite tradeoff one sees.
The  more  what’s  going  on  inside  the  neural  net  is  like  a  simple
mathematical function with essentially arithmetic parameters, the eas-
ier it is to use ideas from calculus to train the network. But the more
what’s  going  on  is  like  a  discrete  program,  or  like  a  computation
whose whole structure can change, the more difficult it is to train the
network. 
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It’s  worth  remembering,  though,  that  the  networks  we’re  routinely
training  now  would  have  looked  utterly  impractical  to  train  only  a
few years ago. It’s effectively just all those quadrillions of GPU opera-
tions  that  we  can  throw  at  the  problem  that  makes  training  feasible.
And  I  won’t  be  surprised  if  even  quite  pedestrian  (say,  local  exhaus-
tive  search)  techniques  will  fairly  soon  let  one  do  significant  training
even  in  cases  where  no  incremental  numerical  approach  is  possible.
And perhaps even it will be possible to invent some major generaliza-
tion of things like calculus that will operate in the full computational
universe.  (I  have  some  suspicions,  based  on  thinking  about  generaliz-
ing  basic  notions  of  geometry  to  cover  things  like  cellular  automaton
rule spaces.)

What would this let one do? Likely it would let one find consider-
ably  simpler  systems  that  could  achieve  particular  computational
goals.  And  maybe  that  would  bring  within  reach  some  qualitatively
new level of operations, perhaps beyond what we’re used to being pos-
sible with things like brains.

There’s a funny thing that’s going on with modeling these days. As
neural  nets  become  more  successful,  one  begins  to  wonder:  why
bother to simulate what’s going on inside a system when one can just
make a black-box model of its output using a neural net? Well, if we
manage  to  get  machine  learning  to  reach  deeper  into  the  computa-
tional  universe,  we  won’t  have  as  much  of  this  tradeoff  any  more—
because we’ll be able to learn models of the mechanism as well as the
output.

I’m  pretty  sure  that  bringing  the  full  computational  universe  into
the  purview  of  machine  learning  will  have  spectacular  consequences.
But it’s worth realizing that computational universality—and the Prin-
ciple  of  Computational  Equivalence—make  it  less  a  matter  of  princi-
ple.  Because  they  imply  that  even  neural  nets  of  the  kinds  we  have
now  are  universal,  and  are  capable  of  emulating  anything  any  other
system  can  do.  (In  fact,  this  universality  result  was  essentially  what
launched the whole modern idea of neural nets, back in 1943.)

And  as  a  practical  matter,  the  fact  that  current  neural  net  primi-
tives are being built into hardware and so on will make them a desir-
able foundation for actual technology systems, though, even if they’re
far  from  optimal.  But  my  guess  is  that  there  are  tasks  where  for  the
foreseeable  future  access  to  the  full  computational  universe  will  be
necessary to make them even vaguely practical.

Finding AI

What will it take to make AI? As a kid, I was very interested in figur-
ing out how to make a computer know things, and be able to answer
questions from what it knew. And when I studied neural nets in 1981,
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it was partly in the context of trying to understand how to build such
a system. As it happens, I had just developed SMP, which was a fore-
runner of Mathematica (and ultimately the Wolfram Language)—and
which  was  very  much  based  on  symbolic  pattern  matching  (“if  you
see  this,  transform  it  to  that”).  At  the  time,  though,  I  imagined  that
AI was somehow a “higher level of computation”, and I didn’t know
how to achieve it.

I  returned  to  the  problem  every  so  often,  and  kept  putting  it  off.
But then when I was working on A New Kind of Science it struck me:
if  I’m  to  take  the  Principle  of  Computational  Equivalence  seriously,
then  there  can’t  be  any  fundamentally  “higher  level  of  computa-
tion”—so AI must be achievable just with the standard ideas of com-
putation that I already know.

And it was this realization that got me started building Wolfram|Al-
pha.  And,  yes,  what  I  found  is  that  lots  of  those  very  “AI-oriented
things”, like natural language understanding, could be done just with
“ordinary computation”, without any magic new AI invention. Now,
to  be  fair,  part  of  what  was  happening  was  that  we  were  using  ideas
and  methods  from  A  New  Kind  of  Science:  we  weren’t  just  engineer-
ing  everything;  we  were  often  searching  the  computational  universe
for rules and algorithms to use.

So  what  about  “general  AI”?  Well,  I  think  at  this  point  that  with
the tools and understanding we have, we’re in a good position to auto-
mate essentially anything we can define. But definition is a more diffi-
cult and central issue than we might imagine.

The  way  I  see  things  at  this  point  is  that  there’s  a  lot  of  computa-
tion even near at hand in the computational universe. And it’s power-
ful computation. As powerful as anything that happens in our brains.
But we don’t recognize it as “intelligence” unless it’s aligned with our
human goals and purposes.

Ever since I was writing A New Kind of Science, I’ve been fond of
quoting the aphorism “the weather has a mind of its own”. It sounds
so  animistic  and  pre-scientific.  But  what  the  Principle  of  Computa-
tional Equivalence says is that actually, according to the most modern
science,  it’s  true:  the  fluid  dynamics  of  the  weather  is  the  same  in  its
computational  sophistication  as  the  electrical  processes  that  go  on  in
our brains. 

But  is  it  “intelligent”?  When  I  talk  to  people  about  A  New  Kind
of  Science,  and  about  AI,  I’ll  often  get  asked  when  I  think  we’ll
achieve  “consciousness”  in  a  machine.  Life,  intelligence,  conscious-
ness: they are all concepts that we have a specific example of, here on
Earth. But what are they in general? All life on Earth shares RNA and
the  structure  of  cell  membranes.  But  surely  that’s  just  because  all  life
we know is part of one connected thread of history; it’s not that such
details are fundamental to the very concept of life. 
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And so it is with intelligence. We have only one example we’re sure
of: us humans. (We’re not even sure about animals.) But human intel-
ligence  as  we  experience  it  is  deeply  entangled  with  human  civiliza-
tion,  human  culture  and  ultimately  also  human  physiology—even
though  none  of  these  details  are  presumably  relevant  in  the  abstract
definition of intelligence. 

We  might  think  about  extraterrestrial  intelligence.  But  what  the
Principle of Computational Equivalence implies is that actually there’s
“alien  intelligence”  all  around  us.  But  somehow  it’s  just  not  quite
aligned with human intelligence. We might look at rule 30, for exam-
ple,  and  be  able  to  see  that  it’s  doing  sophisticated  computation,  just
like our brains. But somehow it just doesn’t seem to have any “point”
to what it’s doing.

We  imagine  that  in  doing  the  things  we  humans  do,  we  operate
with certain goals or purposes. But rule 30, for example, just seems to
be  doing  what  it’s  doing—just  following  some  definite  rule.  In  the
end,  though,  one  realizes  we’re  not  so  very  different.  After  all,  there
are definite laws of nature that govern our brains. So anything we do
is at some level just playing out those laws.

Any process can actually be described either in terms of mechanism
(“the  stone  is  moving  according  to  Newton’s  laws”),  or  in  terms  of
goals (“the stone is moving so as to minimize potential energy”). The
description  in  terms  of  mechanism  is  usually  what’s  most  useful  in
connecting  with  science.  But  the  description  in  terms  of  goals  is  usu-
ally what’s most useful in connecting with human intelligence.

And  this  is  crucial  in  thinking  about  AI.  We  know  we  can  have
computational  systems  whose  operations  are  as  sophisticated  as  any-
thing.  But  can  we  get  them  to  do  things  that  are  aligned  with  human
goals and purposes?

In a sense this is what I now view as the key problem of AI: it’s not
about  achieving  underlying  computational  sophistication,  but  instead
it’s about communicating what we want from this computation.

The Importance of Language

I’ve  spent  much  of  my  life  as  a  computer  language  designer—most
importantly  creating  what  is  now  the  Wolfram  Language.  I’d  always
seen my role as a language designer being to imagine the possible com-
putations  people  might  want  to  do,  then—like  a  reductionist  scien-
tist—trying  to  “drill  down”  to  find  good  primitives  from  which  all
these  computations  could  be  built  up.  But  somehow  from  A  New
Kind  of  Science,  and  from  thinking  about  AI,  I’ve  come  to  think
about it a little differently.
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Now  what  I  more  see  myself  as  doing  is  making  a  bridge  between
our patterns of human thinking, and what the computational universe
is capable of. There are all sorts of amazing things that can in princi-
ple be done by computation. But what the language does is to provide
a  way  for  us  humans  to  express  what  we  want  done,  or  want  to
achieve—and  then  to  get  this  actually  executed,  as  automatically  as
possible.

Language design has to start from what we know and are familiar
with. In the Wolfram Language, we name the built-in primitives with
English  words,  leveraging  the  meanings  that  those  words  have
acquired. But the Wolfram Language is not like natural language. It’s
something  more  structured,  and  more  powerful.  It’s  based  on  the
words  and  concepts  that  we’re  familiar  with  through  the  shared  cor-
pus of human knowledge. But it gives us a way to build up arbitrarily
sophisticated programs that in effect express arbitrarily complex goals.

Yes,  the  computational  universe  is  capable  of  remarkable  things.
But  they’re  not  necessarily  things  that  we  humans  can  describe  or
relate to. But in building the Wolfram Language my goal is to do the
best  I  can  in  capturing  everything  we  humans  want—and  being  able
to express it in executable computational terms.

When  we  look  at  the  computational  universe,  it’s  hard  not  to  be
struck  by  the  limitations  of  what  we  know  how  to  describe  or  think
about.  Modern  neural  nets  provide  an  interesting  example.  For  the
ImageIdentify  function  of  the  Wolfram  Language  we’ve  trained  a
neural  net  to  identify  thousands  of  kinds  of  things  in  the  world.  And
to  cater  to  our  human  purposes,  what  the  network  ultimately  does  is
to  describe  what  it  sees  in  terms  of  concepts  that  we  can  name  with
words—tables, chairs, elephants, etc.

But  internally  what  the  network  is  doing  is  to  identify  a  series  of
features of any object in the world. Is it green? Is it round? And so on.
And what happens as the neural network is trained is that it identifies
features  it  finds  useful  for  distinguishing  different  kinds  of  things  in
the world. But the point is that almost none of these features are ones
to which we happen to have assigned words in human language.

Out in the computational universe it’s possible to find what may be
incredibly  useful  ways  to  describe  things.  But  they’re  alien  to  us
humans.  They’re  not  something  we  know  how  to  express,  based  on
the corpus of knowledge our civilization has developed.

Now  of  course  new  concepts  are  being  added  to  the  corpus  of
human knowledge all the time. Back a century ago, if someone saw a
nested  pattern  they  wouldn’t  have  any  way  to  describe  it.  But  now
we’d just say “it’s a fractal”. But the problem is that in the computa-
tional universe there’s an infinite collection of “potentially useful con-
cepts”—with which we can never hope to ultimately keep up.
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The Analogy in Mathematics

When  I  wrote  A  New  Kind  of  Science  I  viewed  it  in  no  small  part  as
an  effort  to  break  away  from  the  use  of  mathematics—at  least  as  a
foundation  for  science.  But  one  of  the  things  I  realized  is  that  the
ideas in the book also have a lot of implications for pure mathematics
itself.

What is mathematics? Well, it’s a study of certain abstract kinds of
systems,  based  on  things  like  numbers  and  geometry.  In  a  sense  it’s
exploring a small corner of the computational universe of all possible
abstract  systems.  But  still,  plenty  has  been  done  in  mathematics:
indeed, the three million or so published theorems of mathematics rep-
resent  perhaps  the  largest  single  coherent  intellectual  structure  that
our species has built.

Ever  since  Euclid,  people  have  at  least  notionally  imagined  that
mathematics  starts  from  certain  axioms  (say,  a + b = b + a,  a + 0 = a,
etc.), then builds up derivations of theorems. Why is math hard? The
answer is fundamentally rooted in the phenomenon of computational
irreducibility—which  here  is  manifest  in  the  fact  that  there’s  no  gen-
eral way to shortcut the series of steps needed to derive a theorem. In
other words, it can be arbitrarily hard to get a result in mathematics.
But  worse  than  that—as  Gödel’s  Theorem  showed—there  can  be
mathematical  statements  where  there  just  aren’t  any  finite  ways  to
prove or disprove them from the axioms. And in such cases, the state-
ments just have to be considered “undecidable”.

And  in  a  sense  what’s  remarkable  about  math  is  that  one  can  use-
fully  do  it  at  all.  Because  it  could  be  that  most  mathematical  results
one cares about would be undecidable. So why doesn’t that happen?

Well,  if  one  considers  arbitrary  abstract  systems  it  happens  a  lot.
Take  a  typical  cellular  automaton—or  a  Turing  machine—and  ask
whether it’s true that the system, say, always settles down to periodic
behavior  regardless  of  its  initial  state.  Even  something  as  simple  as
that will often be undecidable.

So  why  doesn’t  this  happen  in  mathematics?  Maybe  there’s  some-
thing  special  about  the  particular  axioms  used  in  mathematics.  And
certainly  if  one  thinks  they’re  the  ones  that  uniquely  describe  science
and the world there might be a reason for that. But one of the whole
points of the book is that actually there’s a whole computational uni-
verse of possible rules that can be useful for doing science and describ-
ing the world. 

And  in  fact  I  don’t  think  there’s  anything  abstractly  special  about
the  particular  axioms  that  have  traditionally  been  used  in  mathemat-
ics: I think they’re just accidents of history.

What  about  the  theorems  that  people  investigate  in  mathematics?
Again, I think there’s a strong historical character to them. For all but
the most trivial areas of mathematics, there’s a whole sea of undecid-
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ability  out  there.  But  somehow  mathematics  picks  the  islands  where
theorems  can  actually  be  proved—often  particularly  priding  itself  on
places  close  to  the  sea  of  undecidability  where  the  proof  can  only  be
done with great effort.

I’ve been interested in the whole network of published theorems in
mathematics  (it’s  a  thing  to  curate,  like  wars  in  history,  or  properties
of  chemicals).  And  one  of  the  things  I’m  curious  about  is  whether
something  there’s  an  inexorable  sequence  to  the  mathematics  that’s
done, or whether, in a sense, random parts are being picked.

And  here,  I  think,  there’s  a  considerable  analogy  to  the  kind  of
thing we were discussing before with language. What is a proof? Basi-
cally  it’s  a  way  of  explaining  to  someone  why  something  is  true.  I’ve
made  all  sorts  of  automated  proofs  in  which  there  are  hundreds  of
steps, each perfectly verifiable by computer. But—like the innards of a
neural net—what’s going on looks alien and not understandable by a
human.

For  a  human  to  understand,  there  have  to  be  familiar  “conceptual
waypoints”.  It’s  pretty  much  like  with  words  in  languages.  If  some
particular part of a proof has a name (“Smith’s Theorem”), and has a
known meaning, then it’s useful to us. But if it’s just a lump of undif-
ferentiated computation, it won’t be meaningful to us.

In pretty much any axiom system, there’s an infinite set of possible
theorems.  But  which  ones  are  “interesting”?  That’s  really  a  human
question. And basically it’s going to end up being ones with “stories”.
In  the  book  I  show  that  for  the  simple  case  of  basic  logic,  the  theo-
rems  that  have  historically  been  considered  interesting  enough  to  be
given  names  happen  to  be  precisely  the  ones  that  are  in  some  sense
minimal. 

But my guess is that for richer axiom systems pretty much anything
that’s  going  to  be  considered  “interesting”  is  going  to  have  to  be
reached  from  things  that  are  already  considered  interesting.  It’s  like
building  up  words  or  concepts:  you  don’t  get  to  introduce  new  ones
unless you can directly relate them to existing ones.

In  recent  years  I’ve  wondered  quite  a  bit  about  how  inexorable  or
not  progress  is  in  a  field  like  mathematics.  Is  there  just  one  historical
path  that  can  be  taken,  say  from  arithmetic  to  algebra  to  the  higher
reaches  of  modern  mathematics?  Or  are  there  an  infinite  diversity  of
possible paths, with completely different histories for mathematics? 

The  answer  is  going  to  depend  on—in  a  sense—the  “structure  of
metamathematical  space”:  just  what  is  the  network  of  true  theorems
that avoid the sea of undecidability? Maybe it’ll be different for differ-
ent  fields  of  mathematics,  and  some  will  be  more  “inexorable”  (so  it
feels like the math is being “discovered”) than others (where it seems
more like the math is arbitrary, and “invented”).
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But  to  me  one  of  the  most  interesting  things  is  how  close—when
viewed in these kinds of terms—questions about the nature and char-
acter  of  mathematics  end  up  being  to  questions  about  the  nature  and
character  of  intelligence  and  AI.  And  it’s  this  kind  of  commonality
that  makes  me  realize  just  how  powerful  and  general  the  ideas  in
A New Kind of Science actually are.

When Is There a Science?

There  are  some  areas  of  science—like  physics  and  astronomy—where
the  traditional  mathematical  approach  has  done  quite  well.  But  there
are others—like biology, social science and linguistics—where it’s had
a lot less to say. And one of the things I’ve long believed is that what’s
needed  to  make  progress  in  these  areas  is  to  generalize  the  kinds  of
models one’s using, to consider a broader range of what’s out there in
the computational universe.

And  indeed  in  the  past  15  or  so  years  there’s  been  increasing  suc-
cess in doing this. And there are lots of biological and social systems,
for  example,  where  models  have  now  been  constructed  using  simple
programs. 

But  unlike  with  mathematical  models  which  can  potentially  be
“solved”,  these  computational  models  often  show  computational
irreducibility,  and  are  typically  used  by  doing  explicit  simulations.
This  can  be  perfectly  successful  for  making  particular  predictions,  or
for  applying  the  models  in  technology.  But  a  bit  like  for  the  auto-
mated  proofs  of  mathematical  theorems  one  might  still  ask,  “is  this
really science?”. 

Yes,  one  can  simulate  what  a  system  does,  but  does  one
“understand”  it?  Well,  the  problem  is  that  computational  irreducibil-
ity  implies  that  in  some  fundamental  sense  one  can’t  always
“understand”  things.  There  might  be  no  useful  “story”  that  can  be
told;  there  may  be  no  “conceptual  waypoints”—only  lots  of  detailed
computation.

Imagine that one’s trying to make a science of how the brain under-
stands  language—one  of  the  big  goals  of  linguistics.  Well,  perhaps
we’ll  get  an  adequate  model  of  the  precise  rules  which  determine  the
firing  of  neurons  or  some  other  low-level  representation  of  the  brain.
And  then  we  look  at  the  patterns  generated  in  understanding  some
whole collection of sentences.

Well,  what if  those  patterns look  like  the behavior  of  rule 30?  Or,
closer at hand, the innards of some recurrent neural network? Can we
“tell  a  story”  about  what’s  happening?  To  do  so  would  basically
require  that  we  create  some  kind  of  higher-level  symbolic  representa-
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tion: something where we effectively have words for core elements of
what’s going on.

But  computational  irreducibility  implies  that  there  may  ultimately
be  no  way  to  create  such  a  thing.  Yes,  it  will  always  be  possible  to
find  patches  of  computational  reducibility,  where  some  things  can  be
said.  But  there  won’t  be  a  complete  story  that  can  be  told.  And  one
might say there won’t be a useful reductionistic piece of science to be
done.  But  that’s  just  one  of  the  things  that  happens  when  one’s  deal-
ing with (as the title says) a new kind of science.

Controlling the AIs

People have gotten very worried about AI in recent years. They won-
der  what’s  going  to  happen  when  AIs  “get  much  smarter”  than  us
humans.  Well,  the  Principle  of  Computational  Equivalence  has  one
piece  of  good  news:  at  some  fundamental  level,  AIs  will  never  be
“smarter”—they’ll just be able to do computations that are ultimately
equivalent to what our brains do, or, for that matter, what all sorts of
simple programs do.

As  a  practical  matter,  of  course,  AIs  will  be  able  to  process  larger
amounts of data more quickly than actual brains. And no doubt we’ll
choose to have them run many aspects of the world for us—from med-
ical  devices,  to  central  banks  to  transportation  systems,  and  much
more.

So then it’s important to figure how we’ll tell them what to do. As
soon as we’re making serious use of what’s out there in the computa-
tional  universe,  we’re  not  going  to  be  able  to  give  a  line-by-line
description  of  what  the  AIs  are  going  to  do.  Rather,  we’re  going  to
have to define goals for the AIs, then let them figure out how best to
achieve those goals.

In a sense we’ve already been doing something like this for years in
the  Wolfram  Language.  There’s  some  high-level  function  that
describes  something  you  want  to  do  (“lay  out  a  graph”,  “classify
data”,  etc.).  Then  it’s  up  to  the  language  to  automatically  figure  out
the best way to do it.

And in the end the real challenge is to find a way to describe goals.
Yes,  you  want  to  search  for  cellular  automata  that  will  make  a  “nice
carpet pattern”, or a “good edge detector”. But what exactly do those
things  mean?  What  you  need  is  a  language  that  a  human  can  use  to
say as precisely as possible what they mean.

It’s  really  the  same  problem  as  I’ve  been  talking  about  a  lot  here.
One  has  to  have  a  way  for  humans  to  be  able  to  talk  about  things
they care about. There’s infinite detail out there in the computational
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universe.  But  through  our  civilization  and  our  shared  cultural  history
we’ve come to identify certain concepts that are important to us. And
when we describe our goals, it’s in terms of these concepts.

Three hundred years ago people like Leibniz were interested in find-
ing  a  precise  symbolic  way  to  represent  the  content  of  human
thoughts and human discourse. He was far too early. But now I think
we’re  finally  in  a  position  to  actually  make  this  work.  In  fact,  we’ve
already  gotten  a  long  way  with  the  Wolfram  Language  in  being  able
to describe real things in the world. And I’m hoping it’ll be possible to
construct a fairly complete “symbolic discourse language” that lets us
talk about the things we care about.

Right now we write legal contracts in “legalese” as a way to make
them slightly more precise than ordinary natural language. But with a
symbolic  discourse  language  we’ll  be  able  to  write  true  “smart  con-
tracts”  that  describe  in  high-level  terms  what  we  want  to  have
happen—and  then  machines  will  automatically  be  able  to  verify  or
execute the contract.

But what about the AIs? Well, we need to tell them what we gener-
ally  want  them  to  do.  We  need  to  have  a  contract  with  them.  Or
maybe we need to have a constitution for them. And it’ll be written in
some  kind  of  symbolic  discourse  language,  that  both  allows  us
humans to express what we want, and is executable by the AIs. 

There’s  lots  to  say  about  what  should  be  in  an  AI  Constitution,
and how the construction of such things might map onto the political
and cultural landscape of the world. But one of the obvious questions
is: can the constitution be simple, like Asimov’s Laws of Robotics?

And  here  what  we  know  from  A  New  Kind  of  Science  tells  us  the
answer: it can’t be. In a sense the constitution is an attempt to sculpt
what can happen in the world and what can’t. But computational irre-
ducibility  says  that  there  will  be  an  unbounded  collection  of  cases  to
consider. 

For  me  it’s  interesting  to  see  how  theoretical  ideas  like  computa-
tional  irreducibility  end  up  impinging  on  these  very  practical—and
central—societal issues. Yes, it all started with questions about things
like  the  theory  of  all  possible  theories.  But  in  the  end  it  turns  into
issues  that  everyone  in  society  is  going  to  end  up  being  concerned
about.

There’s an Endless Frontier

Will  we  reach  the  end  of  science?  Will  we—or  our  AIs—eventually
invent everything there is to be invented? 

For  mathematics,  it’s  easy  to  see  that  there’s  an  infinite  number  of
possible  theorems  one  can  construct.  For  science,  there’s  an  infinite
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number of possible detailed questions to ask. And there’s also an infi-
nite array of possible inventions one can construct.

But the real question is: will there always be interesting new things
out there? 

Well,  computational  irreducibility  says  there  will  always  be  new
things  that  need  an  irreducible  amount  of  computational  work  to
reach  from  what’s  already  there.  So  in  a  sense  there’ll  always  be
“surprises”, that aren’t immediately evident from what’s come before.

But  will  it  just  be  like  an  endless  array  of  different  weirdly  shaped
rocks?  Or  will  there  be  fundamental  new  features  that  appear,  that
we humans consider interesting?

It’s  back  to  the  very  same  issue  we’ve  encountered  several  times
before:  for  us  humans  to  find  things  “interesting”  we  have  to  have  a
conceptual  framework  that  we  can  use  to  think  about  them.  Yes,  we
can  identify  a  “persistent  structure”  in  a  cellular  automaton.  Then
maybe we can start talking about “collisions between structures”. But
when  we  just  see  a  whole  mess  of  stuff  going  on,  it’s  not  going  to  be
“interesting” to us unless we have some higher-level symbolic way to
talk about it.

In a sense, then, the rate of “interesting discovery” isn’t going to be
limited  by  our  ability  to  go  out  into  the  computational  universe  and
find  things.  Instead,  it’s  going  to  be  limited  by  our  ability  as  humans
to build a conceptual framework for what we’re finding.

It’s  a  bit  like  what  happened  in  the  whole  development  of  what
became  A  New  Kind  of  Science.  People  had  seen  related  phenomena
for centuries if not millennia (distribution of primes, digits of pi, etc.).
But  without  a  conceptual  framework  they  just  didn’t  seem
“interesting”,  and  nothing  was  built  around  them.  And  indeed  as  I
understand  more  about  what’s  out  there  in  the  computational  uni-
verse—and even about things I saw long ago there—I gradually build
up a conceptual framework that lets me go further.

By the way, it’s worth realizing that inventions work a little differ-
ently from discoveries. One can see something new happen in the com-
putational universe, and that might be a discovery. But an invention is
about  figuring  out  how  something  can  be  achieved  in  the  computa-
tional universe.

And—like in patent law—it isn’t really an invention if you just say
“look,  this  does  that”.  You  have  to  somehow  understand  a  purpose
that it’s achieving. 

In  the  past,  the  focus  of  the  process  of  invention  has  tended  to  be
on  actually  getting  something  to  work  (“find  the  lightbulb  filament
that works”, etc.). But in the computational universe, the focus shifts
to  the  question  of  what  you  want  the  invention  to  do.  Because  once
you’ve  described  the  goal,  finding  a  way  to  achieve  it  is  something
that can be automated.
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That’s not to say that it will always be easy. In fact, computational
irreducibility  implies  that  it  can  be  arbitrarily  difficult.  Let’s  say  you
know  the  precise  rules  by  which  some  chemicals  can  interact.  Can
you  find  a  chemical  synthesis  pathway  that  will  let  you  get  to  some
particular  chemical  structure?  There  may  be  a  way,  but  computa-
tional irreducibility implies that there may be no way to find out how
long  the  pathway  may  be.  And  if  you  haven’t  found  a  pathway  you
may  never  be  sure  if  it’s  because  there  isn’t  one,  or  just  because  you
didn’t reach it yet.

The Fundamental Theory of Physics

If one thinks about reaching the edge of science, one cannot help but
wonder  about  the  fundamental  theory  of  physics.  Given  everything
we’ve  seen  in  the  computational  universe,  is  it  conceivable  that  our
physical universe could just correspond to one of those programs out
there in the computational universe?

Of  course,  we  won’t  really  know  until  or  unless  we  find  it.  But  in
the  years  since  A  New  Kind  of  Science  appeared,  I’ve  become  ever
more optimistic about the possibilities.

Needless to say, it would be a big change for physics. Today there
are  basically  two  major  frameworks  for  thinking  about  fundamental
physics: general relativity and quantum field theory. General relativity
is a bit more than 100 years old; quantum field theory maybe 90. And
both  have  achieved  spectacular  things.  But  neither  has  succeeded  in
delivering  us  a  complete  fundamental  theory  of  physics.  And  if  noth-
ing else, I think after all this time, it’s worth trying something new.

But  there’s  another  thing:  from  actually  exploring  the  computa-
tional universe, we have a huge amount of new intuition about what’s
possible, even in very simple models. We might have thought that the
kind  of  richness  we  know  exists  in  physics  would  require  some  very
elaborate underlying model. But what’s become clear is that that kind
of richness can perfectly well emerge even from a very simple underly-
ing model.

What might the underlying model be like? I’m not going to discuss
this  in  great  detail  here,  but  suffice  it  to  say  that  I  think  the  most
important thing about the model is that it should have as little as pos-
sible built in. We shouldn’t have the hubris to think we know how the
universe  is  constructed;  we  should  just  take  a  general  type  of  model
that’s as unstructured as possible, and do what we typically do in the
computational  universe:  just  search  for  a  program  that  does  what  we
want.

My favorite formulation for a model that’s as unstructured as possi-
ble  is  a  network:  just  a  collection  of  nodes  with  connections  between
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them. It’s perfectly possible to formulate such a model as an algebraic-
like  structure,  and  probably  many  other  kinds  of  things.  But  we  can
think  of  it  as  a  network.  And  in  the  way  I’ve  imagined  setting  it  up,
it’s  a  network  that’s  somehow  “underneath”  space  and  time:  every
aspect  of  space  and  time  as  we  know  it  must  emerge  from  the  actual
behavior of the network.

Over the past decade or so there’s been increasing interest in things
like loop quantum gravity and spin networks. They’re related to what
I’ve been doing in the same way that they also involve networks. And
maybe  there’s  some  deeper  relationship.  But  in  their  usual  formula-
tion, they’re much more mathematically elaborate.

From  the  point  of  view  of  the  traditional  methods  of  physics,  this
might  seem  like  a  good  idea.  But  with  the  intuition  we  have  from
studying  the  computational  universe—and  using  it  for  science  and
technology—it seems completely unnecessary. Yes, we don’t yet know
the  fundamental  theory  of  physics.  But  it  seems  sensible  to  start  with
the  simplest  hypothesis.  And  that’s  definitely  something  like  a  simple
network of the kind I’ve studied.

At  the  outset,  it’ll  look  pretty  alien  to  people  (including  myself)
trained  in  traditional  theoretical  physics.  But  some  of  what  emerges
isn’t so alien. A big result I found nearly 20 years ago (that still hasn’t
been widely understood) is that when you look at a large enough net-
work  of  the  kind  I  studied  you  can  show  that  its  averaged  behavior
follows  Einstein’s  equations  for  gravity.  In  other  words,  without
putting any fancy physics into the underlying model, it ends up auto-
matically emerging. I think it’s pretty exciting.

People  ask  a  lot  about  quantum  mechanics.  Yes,  my  underlying
model doesn’t build in quantum mechanics (just as it doesn’t build in
general relativity). Now, it’s a little difficult to pin down exactly what
the  essence  of  “being  quantum  mechanical”  actually  is.  But  there  are
some  very  suggestive  signs  that  my  simple  networks  actually  end  up
showing what amounts to quantum behavior—just like in the physics
we know.

OK, so how should one set about actually finding the fundamental
theory of physics if it’s out there in the computational universe of pos-
sible  programs?  Well,  the  obvious  thing  is  to  just  start  searching  for
it, starting with the simplest programs.

I’ve been doing this—more sporadically than I would like—for the
past 15 years or so. And my main discovery so far is that it’s actually
quite  easy  to  find  programs  that  aren’t  obviously  not  our  universe.
There are plenty of programs where space or time are obviously com-
pletely  different  from  the  way  they  are  in  our  universe,  or  there’s
some other pathology. But it turns out it’s not so difficult to find can-
didate universes that aren’t obviously not our universe.
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But  we’re  immediately  bitten  by  computational  irreducibility.  We
can simulate the candidate universe for billions of steps. But we don’t
know what it’s going to do—and whether it’s going to grow up to be
like our universe, or completely different.

It’s pretty unlikely that in looking at that tiny fragment of the very
beginning  of  a  universe  we’re  going  to  ever  be  able  to  see  anything
familiar, like a photon. And it’s not at all obvious that we’ll be able to
construct any kind of descriptive theory, or effective physics. But in a
sense the problem is bizarrely similar to the one we have even in sys-
tems  like  neural  networks:  there’s  computation  going  on  there,  but
can we identify “conceptual waypoints” from which we can build up
a theory that we might understand?

It’s  not  at  all  clear  our  universe  has  to  be  understandable  at  that
level,  and  it’s  quite  possible  that  for  a  very  long  time  we’ll  be  left  in
the strange situation of thinking we might have “found our universe”
out in the computational universe, but not being sure. 

Of  course,  we  might  be  lucky,  and  it  might  be  possible  to  deduce
an  effective  physics,  and  see  that  some  little  program  that  we  found
ends  up  reproducing  our  whole  universe.  It  would  be  a  remarkable
moment  for  science.  But  it  would  immediately  raise  a  host  of  new
questions—like why this universe, and not another? 

Box of a Trillion Souls

Right now us humans exist as biological systems. But in the future it’s
certainly going to be technologically possible to reproduce all the pro-
cesses in our brains in some purely digital—computational—form. So
insofar as those processes represent “us”, we’re going to be able to be
“virtualized”  on  pretty  much  any  computational  substrate.  And  in
this  case  we  might  imagine  that  the  whole  future  of  a  civilization
could wind up in effect as a “box of a trillion souls”.

Inside that box there would be all kinds of computations going on,
representing  the  thoughts  and  experiences  of  all  those  disembodied
souls.  Those  computations  would  reflect  the  rich  history  of  our  civi-
lization, and all the things that have happened to us. But at some level
they wouldn’t be anything special. 

It’s perhaps a bit disappointing, but the Principle of Computational
Equivalence  tells  us  that  ultimately  these  computations  will  be  no
more  sophisticated  than  the  ones  that  go  on  in  all  sorts  of  other  sys-
tems—even  ones  with  simple  rules,  and  no  elaborate  history  of  civi-
lization.  Yes,  the  details  will  reflect  all  that  history.  But  in  a  sense
without  knowing  what  to  look  for—or  what  to  care  about—one
won’t be able to tell that there’s anything special about it.
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OK,  but  what  about  for  the  “souls”  themselves?  Will  one  be  able
to  understand  their  behavior  by  seeing  that  they  achieve  certain  pur-
poses?  Well,  in  our  current  biological  existence,  we  have  all  sorts  of
constraints and features that give us goals and purposes. But in a vir-
tualized “uploaded” form, most of these just go away.

I’ve thought quite a bit about how “human” purposes might evolve
in  such  a  situation,  recognizing,  of  course,  that  in  virtualized  form
there’s  little  difference  between  human  and  AI.  The  disappointing
vision  is  that  perhaps  the  future  of  our  civilization  consists  in  disem-
bodied souls in effect “playing videogames” for the rest of eternity.

But what I’ve slowly realized is that it’s actually quite unrealistic to
project  our  view  of  goals  and  purposes  from  our  experience  today
into  that  future  situation.  Imagine  talking  to  someone  from  a  thou-
sand  years  ago  and  trying  to  explain  that  people  in  the  future  would
be  walking  on  treadmills  every  day,  or  continually  sending  pho-
tographs  to  their  friends.  The  point  is  that  such  activities  don’t  make
sense until the cultural framework around them has developed.

It’s  the  same  story  yet  again  as  with  trying  to  characterize  what’s
interesting  or  what’s  explainable.  It  relies  on  the  development  of  a
whole network of conceptual waypoints. 

Can we imagine what the mathematics of 100 years from now will
be like? It depends on concepts we don’t yet know. So similarly if we
try  to  imagine  human  motivation  in  the  future,  it’s  going  to  rely  on
concepts we don’t know. Our best description from today’s viewpoint
might be that those disembodied souls are just “playing videogames”.
But  to  them  there  might  be  a  whole  subtle  motivation  structure  that
they  could  only  explain  by  rewinding  all  sorts  of  steps  in  history  and
cultural development.

By  the  way,  if  we know  the  fundamental  theory  of physics  then  in
a sense we can make the virtualization complete, at least in principle:
we  can  just  run  a  simulation  of  the  universe  for  those  disembodied
souls. Of course, if that’s what’s happening, then there’s no particular
reason it has to be a simulation of our particular universe. It could as
well be any universe from out in the computational universe.

Now,  as  I’ve  mentioned,  even  in  any  given  universe  one  will  never
in a sense run out of things to do, or discover. But I suppose I myself
at least find it amusing to imagine that at some point those disembod-
ied souls might get bored with just being in a simulated version of our
physical  universe—and  might  decide  it’s  more  fun  (whatever  that
means to them) to go out and explore the broader computational uni-
verse.  Which  would  mean  that  in  a  sense  the  future  of  humanity
would be an infinite voyage of discovery in the context of none other
than A New Kind of Science!
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The Economics of the Computational Universe

Long  before  we  have  to  think  about  disembodied  human  souls,  we’ll
have to confront the issue of what humans should be doing in a world
where  more  and  more  can  be  done  automatically  by  AIs.  Now  in  a
sense  this  issue  is  nothing  new:  it’s  just  an  extension  of  the  long-
running  story  of  technology  and  automation.  But  somehow  this  time
it feels different.

And  I  think  the  reason  is  in  a  sense  just  that  there’s  so  much  out
there  in  the  computational  universe,  that’s  so  easy  to  get  to.  Yes,  we
can  build  a  machine  that  automates  some  particular  task.  We  can
even have a general-purpose computer that can be programmed to do
a full range of different tasks. But even though these kinds of automa-
tion  extend  what  we  can  do,  it  still  feels  like  there’s  effort  that  we
have to put into them.

But  the  picture  now  is  different—because  in  effect  what  we’re  say-
ing  is  that  if  we  can  just  define  the  goal  we  want  to  achieve,  then
everything  else  will  be  automatic.  All  sorts  of  computation,  and,  yes,
“thinking”, may have to be done, but the idea is that it’s just going to
happen, without human effort.

At  first,  something  seems  wrong.  How  could  we  get  all  that  bene-
fit,  without  putting  in  more  effort?  It’s  a  bit  like  asking  how  nature
could manage to make all the complexity it does—even though when
we  build  artifacts,  even  with  great  effort,  they  end  up  far  less  com-
plex.  The  answer,  I  think,  is  it’s  mining  the  computational  universe.
And  it’s  exactly  the  same  thing  for  us:  by  mining  the  computational
universe,  we  can  achieve  essentially  an  unbounded  level  of
automation.

If  we  look  at  the  important  resources  in  today’s  world,  many  of
them still depend on actual materials. And often these materials are lit-
erally mined from the Earth. Of course, there are accidents of geogra-
phy and geology that determine by whom and where that mining can
be  done.  And  in  the  end  there’s  a  limit  (if  often  very  large)  to  the
amount of material that’ll ever be available.

But when it comes to the computational universe, there’s in a sense
an  inexhaustible  supply  of  material—and  it’s  accessible  to  anyone.
Yes,  there  are  technical  issues  about  how  to  “do  the  mining”,  and
there’s a whole stack of technology associated with doing it well. But
the  ultimate  resource  of  the  computational  universe  is  a  global  and
infinite  one.  There’s  no  scarcity  and  no  reason  to  be  “expensive”.
One just has to understand that it’s there, and take advantage of it.
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The Path to Computational Thinking

Probably the greatest intellectual shift of the past century has been the
one  towards  the  computational  way  of  thinking  about  things.  I’ve
often said that if one picks almost any field “X”, from archaeology to
zoology,  then  by  now  there  either  is,  or  soon  will  be,  a  field  called
“computational X”—and it’s going to be the future of the field. 

I myself have been deeply involved in trying to enable such compu-
tational  fields,  in  particular  through  the  development  of  the  Wolfram
Language. But I’ve also been interested in what is essentially the meta
problem:  how  should  one  teach  abstract  computational  thinking,  for
example  to  kids?  The  Wolfram  Language  is  certainly  important  as  a
practical tool. But what about the conceptual, theoretical foundations?

Well, that’s where A New Kind of Science comes in. Because at its
core  it’s  discussing  the  pure  abstract  phenomenon  of  computation,
independent  of  its  applications  to  particular  fields  or  tasks.  It’s  a  bit
like with elementary mathematics: there are things to teach and under-
stand  just  to  introduce  the  ideas  of  mathematical  thinking,  indepen-
dent  of  their  specific  applications.  And  so  it  is  too  with  the  core  of
A New Kind of Science. There are things to learn about the computa-
tional universe that give intuition and introduce patterns of computa-
tional thinking—quite independent of detailed applications.

One  can  think  of  it  as  a  kind  of  “pre  computer  science”  ,  or  “pre
computational X”. Before one gets into discussing the specifics of par-
ticular  computational  processes,  one  can  just  study  the  simple  but
pure things one finds in the computational universe. 

And, yes, even before kids learn to do arithmetic, it’s perfectly pos-
sible for them to fill out something like a cellular automaton coloring
book—or  to  execute  for  themselves  or  on  a  computer  a  whole  range
of  different  simple  programs.  What  does  it  teach?  Well,  it  certainly
teaches  the  idea  that  there  can  be  definite  rules  or  algorithms  for
things—and  that  if  one  follows  them  one  can  create  useful  and  inter-
esting  results.  And,  yes,  it  helps  that  systems  like  cellular  automata
make  obvious  visual  patterns,  that  for  example  one  can  even  find  in
nature (say on mollusc shells).

As  the  world  becomes  more  computational—and  more  things  are
done by AIs and by mining the computational universe—there’s going
to  an  extremely  high  value  not  only  in  understanding  computational
thinking,  but  also  in  having  the  kind  of  intuition  that  develops  from
exploring the computational universe and that is, in a sense, the foun-
dation for A New Kind of Science.
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What’s Left to Figure Out?

My  goal  over  the  decade  that  I  spent  writing  A  New  Kind  of  Science
was,  as  much  as  possible,  to  answer  all  the  first  round  of  “obvious
questions”  about  the  computational  universe.  And  looking  back  15
years later I think that worked out pretty well. Indeed, today, when I
wonder  about  something  to  do  with  the  computational  universe,  I
find it’s incredibly likely that somewhere in the main text or notes of
the book I already said something about it.

But one of the biggest things that’s changed over the past 15 years
is that I’ve gradually begun to understand more of the implications of
what the book describes. There are lots of specific ideas and discover-
ies in the book. But in the longer term I think what’s most significant
is how they serve as foundations, both practical and conceptual, for a
whole range of new things that one can now understand and explore.

But  even  in  terms  of  the  basic  science  of  the  computational
universe,  there  are  certainly  specific  results  one  would  still  like  to
get.  For  example,  it  would  be  great  to  get  more  evidence  for  or
against  the  Principle  of  Computational  Equivalence,  and  its  domain
of applicability. 

Like  most  general  principles  in  science,  the  whole  epistemological
status  of  the  Principles  of  Computational  Equivalence  is  somewhat
complicated. Is it like a mathematical theorem that can be proved? Is
it like a law of nature that might (or might not) be true about the uni-
verse?  Or  is  it  like  a  definition,  say  of  the  very  concept  of  computa-
tion?  Well,  much  like,  say,  the  Second  Law  of  Thermodynamics  or
Evolution by Natural Selection, it’s a combination of these.

But  one  thing  that’s  significant  is  that  it’s  possible  to  get  concrete
evidence  for  (or  against)  the  Principle  of  Computational  Equivalence.
The principle says that even systems with very simple rules should be
capable  of  arbitrarily  sophisticated  computation—so  that  in  particu-
lar they should be able to act as universal computers. 

And indeed one of the results of the book is that this is true for one
of  the  simplest  possible  cellular  automata  (rule  110).  Five  years  after
the book was published I decided to put up a prize for evidence about
another case: the simplest conceivably universal Turing machine. And
I  was  very  pleased  that  in  just  a  few  months  the  prize  was  won,  the
Turing machine was proved universal, and there was another piece of
evidence for the Principle of Computational Equivalence.

There’s  a  lot  to  do  in  developing  the  applications  of  A  New  Kind
of  Science.  There  are  models  to  be  made  of  all  sorts  of  systems.
There’s  technology  to  be  found.  Art  to  be  created.  There’s  also  a  lot
to do in understanding the implications.

But it’s important not to forget the pure investigation of the compu-
tational  universe.  In  the  analogy  of  mathematics,  there  are  applica-
tions  to  be  pursued.  But  there’s  also  a  “pure  mathematics”  that’s
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worth  pursuing  in  its  own  right.  And  so  it  is  with  the  computational
universe:  there’s  a  huge  amount  to  explore  just  at  an  abstract  level.
And  indeed  (as  the  title  of  the  book  implies)  there’s  enough  to  define
a whole new kind of science: a pure science of the computational uni-
verse. And it’s the opening of that new kind of science that I think is
the  core  achievement  of  A  New  Kind  of  Science—and  the  one  of
which I am most proud.

For  the  10th  anniversary  of  A  New  Kind  of  Science,  I  wrote  three
posts:

◼ It’s Been 10 Years: What’s Happened with A New Kind of Science?

◼ Living  a  Paradigm  Shift:  Looking  Back  on  Reactions  to  A  New  Kind
of Science

◼ Looking to the Future of A New Kind of Science

The complete high-resolution A New Kind of Science is now avail-
able  on  the  web.  There  are  also  a  limited  number  of  print  copies  of
the book still available (all individually coded!).
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