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The  so-called  Two’s  Company,  Three’s  a  Crowd  game  is  a  tiny arti-
ficial  world  populated  by  individuals,  each  with  their  own  behavior,
which is expressed by the way they move around the world; when they
move,  individuals  meet  others  and  establish  social  links  with  some  of
them.  This  model  allows  carrying  out  experiments  in  silico;  its  goal  is
not truly to model the real world but rather to suggest that a system of
individuals, moving through an artificial world and reacting together, is
adequate  to  account  for  the  formation  of  some  patterns  comparable  to
those  resulting  from  animal  and  human  behavior.  First,  according  to
the  density  of  individuals  and  the  distribution  of  mobility  behaviors,
we study  the  properties  of  the  resulting  relational  network.  Then,
assuming that in turn, proximity links may influence the behaviors, we
study  the  impact  of  the  feedback  loop  on  both  spatial  distribution  and
social  patterns.  Such  dynamics  lead  to  various  kinds  of  homophilous
groups  where  links  between  separate  groups  are  weak,  while  links
within  a  group  are  strong.  Although  the  emergent  social  networks
could  be  seen  as  the  result  of  individual  strategies  striving  for  unifor-
mity, seclusion, gregarious instinct or the need to live as a couple or in
a narrow group, it is suggested that the explanation does not require a
reductionist theory. 

Introduction1.

The  general  context  of  this  paper  was  formulated  by  Schelling  [1],  in
these  words:  “The  […]  subject  that  occupied  me  in  the  seventies  was
the  ways  that  individual  behavioral  choices  could  aggregate  into
social phenomena that were unintended or unexpected.” Here we con-
sider  a  tiny  artificial  world  composed  of  individuals  who  have  their
own  behavior  and  who  can  establish  some  links  with  other  individu-
als.  Although  simple  rules  of  interaction  are  considered,  the  aim  is  to
show  that  the  emergence  of  some  meaningful  and  recognizable  struc-
tures  akin  to  those  encountered  in  animal  or  human  social  organiza-
tion  can  be  observed.  Nevertheless,  we  know  from  the  arguments  of
Gilbert  and  Troitzsch  [2]  that  social  reality  is  not  that  reductionist:
microscopic interactions take place within a larger, emergent and self-
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organizing  pattern.  That  is  why  we  assume  there  are  reciprocal  influ-
ences  from  local  behaviors  onto  macroscopic  regularities  and  also
from  the  top  downward  onto  the  microscopic  interactions.  However,
our  approach  is  not  to  conduct  a  social  simulation  about  a  specific
social  problematic  and  therefore  it  is  not  intended  to  be  linked  to
empirical data. The present work takes inspiration from the contribu-
tions  of  Luhmann,  Silverman  and  Bryde  on  systems  sociology  [3,  4]:
“By viewing society from its earliest beginnings, prior to the existence
of  any  societally-defined  modes  of  interaction  and  communication,
the  systems  sociology  approach  hopes  to  develop  a  theoretical  under-
standing  of  the  fundamental  behavioral  characteristics  which  lead  to
the  formation  of  social  order.”  In  this  way,  our  approach  is  reminis-
cent  of  the  Alife  approach  to  modeling  “life-as-it-could-be”;  the  so-
called  Two’s  Company,  Three’s  a  Crowd  model  perspective  leads  us
to examine socialization-process-as-it-could-be.

We propose a minimalist model in which both individual behaviors
and  social  patterns  mutually  interact  and  influence  each  other.
Granovetter claims that “linkage of micro and macro levels is no lux-
ury  but  of  central  importance  to  the  development  of  sociological  the-
ory”; furthermore, he outlines that taking mobility into consideration
is  of  “special  importance  in  developing  micro-macro  linkage  with  the
help of the network analysis” [5]. All other things remaining equal, in
the  same  vein  as  the  Game  of  Life  by  Conway  [6],  this  model  can  be
seen from the angle of a psychosocial game; so, the Two’s Company,
Three’s a Crowd game is a tiny model where (i) individual behavior is
the  way  to  move  around  the  world;  (ii)  social  links  are  induced  by
proximity  contacts;  and  (iii)  a  self-evident  psychological  rule  affects
the  behaviors  between  neighbors  in  the  relational  network.  (Of
course,  neither  the  Game  of  Life  nor  the  Two’s  Company,  Three’s  a
Crowd game are games in the ordinary sense, as the outcome is deter-
mined  as  soon  as  an  initial  configuration  is  chosen  [7].)  The  game
needs both a model of mobility and a model of influence. The former
is  based  on  the  observation  that  in  real  life  each  person  periodically
comes  back  to  a  given  place;  although  the  way  we  implement  this
assumption is as simple as possible, it is much more realistic than the
very common “random wanders.” The model of influence implements
the Two’s Company, Three’s a Crowd rule of individual behavior; the
key  idea  is  that  people  are  more  likely  to  have  intimate  feelings  in
company  with  only  one  other  person  [8];  more  precisely,  at  a  given
time,  an  individual  is  influenced  if  there  is  one  and  only  one  other
individual in their vicinity at that moment; in such a circumstance, the
individual  changes  their  own  mobility  behavior  by  imitating  that  of
their unique neighbor. 

This work is composed of three main parts. In Section 2, the model
of mobility is presented and we introduce the proximity network built
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by  contact  relationships  between  individuals.  Section  3  defines  the
Two’s Company, Three’s a Crowd game, in which mobility behaviors
and social patterns mutually interact and influence each other. In Sec-
tion  4,  considering  an  artificial  society  composed  of  agents,  we  con-
duct  computer  simulations  and  study  the  impacts  of  interactions
between the micro level of individual behaviors and the macro level of
the structural population. Finally, we discuss results and offer our con-
clusions and hints for future research. 

Mobility versus Proximity Network2.

The  main  component  parts  of  the  Two’s  Company,  Three’s  a  Crowd
game  (hereinafter  TC  game)  are  a  model  of  mobility  and  a  model  of
influence. While the first determines how individuals behave and how
the  proximity  network  is  built,  the  second  explains  how  individual
behaviors  can  be  affected  over  time  by  neighbors  in  the  network.
According to our main objective, what will guide our choices of these
models  concerns  both  their  simplicity  and  their  connection  with  the
day-to-day  reality.  In  this  section  we  present  the  model  of  mobility
and the consequential proximity network.

Mobility Model2.1

As  an  individual’s  behavior  is  only  expressed  by  the  way  they  move
around  the  world,  it  is  crucial  to  define  what  we  mean  by  mobility.
This is all the more necessary because the term can be ambiguous; for
instance, there is a kind of mobility in the Game of Life where a persis-
tent pattern of cells seems to move (e.g., the glider translating oscilla-
tor).  In  the  TC  game,  each  agent  really  changes  its  position  at  each
time  step.  First  we  will  characterize  the  elementary  moves;  then  we
will be able to deduce the shape and the length of a trajectory; finally,
we will specify what happens when individuals cross each other.

Many  models  of  mobility  were  proposed  in  the  literature,  and  the
interested  reader  will  usefully  consult  [9–11]  on  this  topic.  Beyond
realism,  what  will  guide  us  is  to  choose  a  model  that  is  as  simple  as
possible; this means that we would like: (i) to tune mobility with a sin-
gle  parameter;  and  (ii)  to  build  trajectories  one  step  at  a  time  by
means  of  deterministic  calculations.  Therefore,  we  exclude  models
based  on  random  motion  [12,  13],  even  if  they  are  among  the  most
used. As there are few direct studies on human mobility, it is useful to
look  at  research  on  related  subjects  to  obtain  additional  insight  into
the way people move. Research on time diaries provides indirect indi-
cations  on  mobility  and  shows  that  periodicity  at  different  timescales
is  a  major  phenomenon  [14].  Time  geography  integrates  space  and
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time in geographical phenomena [15]; this paradigm explicitly models
the concept of space and formulates basic rules: such as, for instance,
people can only be in one place at a time, activities take time, space is
limited, mobility in space takes time, and so forth [16, 17]. As human
mobility  has  structural  patterns  due  to  geographic  and  social  con-
straints, spatial social networks can provide pointers to model mobil-
ity  [18];  for  example,  using  cell  phone  location  data  and  data  from
online  location-based  social  networks,  Cho  et  al.  [19]  find  that
humans  experience  a  combination  of  periodic  movement  and  seem-
ingly  random  jumps;  the  authors  show  that  social  relationships  can
explain  about  10%  to  30%  of  all  human  movement,  while  periodic
behavior explains 50% to 70%. 

Motivations2.1.1

While  the  concept  of  mobility  has  multiple  meanings,  we  consider
here  mobility  as  the  motion  of  living  animal  or  human  entities.  To
combine  simplicity  and  realism,  we  start  from  the  observations  that
every form of life is highly constrained by the cycles of nature, like cir-
cadian rhythms and seasons, or by the basic need to survive; for exam-
ple,  opposition  between  diurnal  and  nocturnal  animals  or  migratory
birds  exhibiting  some  large-scale  seasonal  movements.  Obviously,
rhythms  also  concern  human  life  in  all  its  individual,  social  and  cul-
tural  dimensions.  It  is  the  reality  of  everyday  life  that  many  people
commute on a daily basis between the place of residence, the place of
work  (school,  office,  etc.)  and  some  local  services  (city  hall,  post
office,  pharmacy,  medical  clinic,  general  hospital,  grocery  store,  etc.)
[20,  21];  some  only  walk  around  their  city  block,  others  do  not  go
outside their neighborhood, while others walk throughout the city.

Piecewise Polygonal Trajectory2.1.2

We assume that time is discretized  and at each time step t, each indi-
vidual  is  characterized  by  position  Pt  in  the  two-dimensional  space

and  heading  ht.  The  heading  indicates  the  direction  the  individual  is

facing; this is a number greater than or equal to 0 and less than 2π; 0

is east, north π  2, and so on.

An elementary move is a combination of only two basic actions: go
forward and turn. More precisely, each individual moves one step for-
ward  according  to  their  heading  and  then  rotates  through  an  angle  θ

that  is  a  fraction  of  the  full  turn  length  that  would  be  needed  to

repeatedly  come  back  to  their  initial  position:  θ  2π  fTL  radians;

we  will  say  that  fTL  is  the  move  parameter.  Let  us  note  that  in  such
circumstances  the  moving  speed  is  constant.  More  formally,  an  ele-
mentary move of parameter fTL is defined as follows. 
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Definition 1.  Let  Pt  xt + i.yt  be  the  position  of  the  individual  in  the

complex  plane  and  ht  their  heading  at  time  t;  then  we  define  an  ele-

mentary move by:

Pt  Pt-1 + cosht-1 + i . sinht-1

ht  ht-1 +
2 π

f T L
, with fTL ∈ ℕ\0, 1.

(1)

As  the  fTL  value  may  change  over  time,  we  have  to  consider  fTL
as a function of t. 

Proposition 1.  Let  Pt  be  the  position  of  the  individual  in  the  complex

plane after t time steps, and P0 its starting point; then 

Pt  P0 + 
n1

t

cos h0 + 
k1

n

θk + i . 
n1

t

sin h0 + 
k1

n

θk , (2)

where θk  2π  fTLk.

Proof. It results from Definition 1 that 

Pt  Pt-1 + cos h0 + 
k1

t

θk + i . sin h0 + 
k1

t-1

θk , (3)

where θk  2π  fTLk. □

Definition 2.  A  trajectory  is  the  sequence  of  points  (P0, … , Pt, …)

where P0 is the starting point and Pt the point reached at time step t. 

As  a  consequence,  a  trajectory  is  a  succession  of  pieces  of  a
polygon. 

Definition 3.  A  trajectory  (P0, … , Pt, …)  is  p-periodic  if  and  only  if

there exists p ∈ ℕ such that Pn+p  Pn for all values of n. 

A trajectory is eventually periodic if and only if it can be made peri-
odic by dropping some finite number of terms from the beginning. 

Polygonal Trajectory2.1.3

If the move parameter fTL is time invariant, each trajectory is a peri-
odic  regular  polygon  with  one  vertex  at  each  time  step.  This  corre-
sponds  to  the  eternal-return  (ER)  model  of  mobility  first  proposed  in
[8]; it implements the idea that each individual comes back to a given
place. Walking all the way around on their own polygon, one individ-
ual  makes  one  full  turn;  fTL  is  the  length  of  the  path—full  turn
length—an individual has to follow to come back to a given position.
So  the  fTL  period  is  both  the  number  of  time  steps  needed  to  make
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one  full  turn  and  the  number  of  sides  of  the  polygon  (note  that  as
soon as the fTL is large enough, a trajectory looks like a circle). 

Proposition 2.  Let  Pt  xt + i . yt  be  the  position  in  the  complex  plane

of the individual after t time steps; then 

Pt  P0 + 
n1

t

cosh0 + nθ + i . 
n1

t

sinh0 + nθ, (4)

where θ  2π  fTL.

Proof.  Assuming  that  θ  is  time  invariant,  this  results  directly  from

Proposition 1. □

Proposition 3. In the ER mobility model, PfTL  P0. 

Proof. With no loss of generality, we can assume that the initial head-
ing h0 is null. 

As 


n1

t

cos(nθ)  sin
t - 1θ

2
.
cos

tθ

2

sin
θ

2

- 1 (5)

and

∑n1
t sin(nθ)  sin

tθ

2
. sin

(t-1)θ

2

sin
θ

2

(6)

and

t = fTL i.e., t  2
π

θ
, (7)

then

sin
t - 1θ

2
 sin

θ

2

cos
tθ

2
 1

sin
tθ

2
 0,

(8)

so PfTL  P0.

Let us remark that as fTL > 2, sinθ  2 ≠ 0. □

Let us note that if two individuals meet at one time, then they will
meet periodically. More precisely, if individuals ai  and aj  meet for the
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first  time  at  time t,  then  they  meet  again  at t + lcmfTLi, fTLj⨯k,

where  lcm(n, m)  is  the  least  common  multiple  between  the  integers  n
and m. 

We  will  say  that  individuals  with  low  fTL  are  sedentary  individu-
als  while  those  with  high  fTL  are  travelers.  Although  the  model  is
freely  inspired  and  very  restrictive,  it  is  sufficient  to  express  the  facts
that  individuals  commute  and  some  individuals  go  across  large
spaces, while others are confined in small areas. 

Periodic Piecewise Polygonal Trajectory2.1.4

There are trajectories built from elementary moves (Definition 1) that
are  periodic  even  though  they  are  not  polygonal;  to  obtain  those,  it
will  be  necessary  to  assume  that  the  fTL  parameter  changes  periodi-
cally  over  time.  For  instance,  a  simple  case  is  the  12-periodic  trajec-

tory  A, B, A, B, C, B, C, B, A, B, A, B, …  with  A,  B  and  C  the

vertex  of  a  regular  triangle  where,  during  a  period,  the  fTL  adopts

the  values  π, π, 2π  3, π, π, 2π  3, π, π, 2π  3, π, π.  In  the  follow-

ing,  we  will  see  more  examples  with  a  p-period  of  8,  9,  32  and  555,
respectively (Figure 5).

From Mobility to Proximity Network2.2

As individuals move, at any time, each can meet some others and take
the  opportunity  to  establish  some  links  with  them:  for  example,  this
may be the case with a hand-to-hand contact or word-of-mouth rela-
tion  between  two  people.  Taken  together,  these  contacts  constitute
the  so-called  proximity  network.  To  formalize  the  dynamics  growth
of this network, we have to define the notion of proximity bubble and
describe the process to build it.

Definition 4. For each individual a, the proximity bubble is defined by 

proxiBubble(a)  x ∈ A - {a} d(a, x) ≤ pr, (9)

where A is the set of individuals, d is the Euclidean distance and pr is
the proximity radius.

A  network  is  an  ordered  pair  A, E  comprising  a  set  A  of  nodes

together  with  a  set  E  of  edges,  which  are  two-element  subsets  of
A [22]. 

Definition 5. The proximity network is the network where: (i) nodes are
individuals; and (ii) two individuals a and b are connected by an edge
if there is at least one time with b ∈ proxiBubble(a). 

Let  us  note  that  such  a  network  is  dynamic,  as  new  contacts  may
potentially  occur  at  any  time  during  the  moves;  in  addition,  if  mobil-
ity is defined by the ER model, each individual polygonal trajectory is
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deterministic and periodic, and so the relational network will reach a
fixed  point  in  a  finite  amount  of  time;  it  therefore  makes  sense  to
study its characteristics. 

In real life, if a contact is established, a persistent social link is or is
not created. Let us note that persistence is most often a necessary pre-
condition  for  a  link  to  become  a  social  link.  In  the  ER  mobility
model,  provided  that  one  contact  is  established,  it  will  be  established
from  time  to  time  and  so  it  becomes  persistent  (Proposition  2).
Despite  that,  the  proximity  network  does  not  show  particular  social
structures and, as a consequence, we cannot see it as a social network. 

The Two’s Company, Three’s a Crowd Game3.

In  Section  2,  we  showed  how  mobility  can  induce  a  proximity  net-
work;  now  in  addition  we  consider  the  conditions  under  which  this
network  can  impact  an  individual’s  behavior.  As  each  individual’s
behavior is characterized only by how they move, the act made under
the influence of the proximity network needs to affect mobility; conse-
quently,  each  individual  trajectory  may  change  over  time,  depending
on the encounters.

A Model of Influence3.1

To give thought to how the proximity network can impact an individ-
ual’s behaviors, we have to consider the questions: (i) under what con-
ditions  can  an  individual  be  under  the  influence  of  someone  other
than  themself?;  and  (ii)  what  is  the  nature  of  the  influence?  Let  us
remember  what  will  guide  us  are  simplicity  and  connection  with  the
day-to-day reality.

“When and with Whom”3.1.1

Considering  the  first  point,  our  proposition  is  guided  by  the  work  of
the  sociologist  Simmel  [23,  24].  He  provides  an  illustration  of  the
emergence  of  qualitative  changes  when  he  elaborates  on  the  distinc-
tion  between  two  individuals  and  three.  It  is  a  fact  of  life  that  a  pair
of  living  beings  make  something  different  than  three  individuals
together.  The  expression  “two’s  company,  three’s  a  crowd”  sums  up
well this kind of behavior. We have all seen evidence of the following
scenario, which exemplifies this rule: if you meet an unknown person
along  a  mountain  path  you  say  hello,  whereas  you  might  ignore  that
person on a crowded sidewalk. In the research domain on group com-
munication  and  collaboration,  it  is  established  that  two  people  will
cooperate intuitively but groups of people need more. For instance, in
[25] Colman et al. say: “Married couples or pairs of business partners
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may be able to rely on this type of intuitive cooperation, to an extent,
but larger groups need explicit communication and planning. Mecha-
nisms  need  to  be  put  in  place  to  facilitate  it.  Intuitive  cooperation  is
really  a  case  of  two’s  company,  but  three’s  a  crowd.”  In  social  ecol-
ogy,  Chase  et  al.  performed  experiments  for  testing  whether  several
basic aspects of dominance were the same in isolated pairs as in pairs
within  a  social  group  of  three  or  four;  they  found  that  the  social
context,  whether  a  pair  was  isolated  or  within  a  group,  strongly
affected  the  basic  properties  of  dominance  relationships  [26].  In
molecular  biology,  Khan  and  Molloy  in  a  recent  paper  entitled  “Self-
Organization:  Two’s  Company,  Three’s  a  Crowd”  provided  insight
into  the  physical  rules  governing  self-organization  in  complex  living
systems [27].

“Do As I Do”3.1.2

The most straightforward way for an individual to be under the influ-
ence  of  another  person  is  by  imitation.  Imitation  is  recognized  as
being a basic behavior in both the animal and human world [28]. For
example:  (i)  Akins  and  Zentall  [29]  show  that  birds  imitate  foraging
behaviors; (ii) Hayes and Hayes [30] used the “do-as-I-do” procedure
to demonstrate the imitative abilities of their trained chimpanzee; and
(iii)  data  collected  by  Metzoff  [31]  suggests  that  infants  are  prewired
to imitate the behavior of conspecifics. 

The Two’s Company, Three’s a Crowd Rule3.1.3

All  these  things  lead  us  to  define  the  Two’s  Company,  Three’s  a
Crowd  rule  (hereinafter  TC  rule)  as  an  implementation  of  the  model
of influence.

Definition 6.  At  a  given  time,  an  individual  is  influenced  if  and  only  if
there  is  one  and  only  one  other  individual  in  their  vicinity  at  that
moment;  in  such  a  circumstance,  the  individual  changes  their  own
mobility  behavior  by  imitating  (i.e.,  adopting)  that  of  a  unique
neighbor. 

From Physical Distance to Social Distance and Vice Versa3.2

All  that  we  have  introduced  earlier  leads  us  to  define  the  so-called
Two’s Company, Three’s a Crowd game as the result of the feedback
loop between individual mobilities and the proximity network.

Definition 7. The TC game is a combination of both the mobility model
based  on  piecewise  polygonal  trajectories  and  the  feedback  loop
defined by the TC rule. 

During the game, at each time step, each individual runs in parallel
the  TC  rule  (Definition  6)  and  then  conducts  an  elementary  move
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according  to  its  fTL  (Definition  1).  Let  us  note  that:  (i)  imitation
concerns  only  the  way  to  move;  (ii)  as  neither  the  heading  nor  the
direction changes during the imitation process, the two trajectories do
not  become  identical;  and  (iii)  the  imitation  process  is  not  symmetri-
cal because one individual may have only one neighbor in their prox-
imity  bubble,  while  at  the  same  time  that  neighbor  may  have  many
other neighbors. 

The  resulting  gap  between  micro  and  macro  levels  is  due  to
dynamic  neighborhoods:  an  individual  that  moves  according  to  their
own behavior can affect not only the neighborhood they leave and the
one  they  arrive  in,  but  also,  in  the  long  run,  everyone.  Over  time,
movements  change  the  behaviors  through  a  chain  reaction  until  an
equilibrium  may  be  reached.  The  dynamics  start  with  a  transitional
phase  then  end  possibly  on  a  fixed  point;  what  we  mean  by  fixed
point  is  a  spatial  configuration  in  which  no  individual  changes  their
own  trajectory  over  time.  Let  us  note  that  during  the  transitional
phase  we  leave  the  ER  model  of  mobility  because  individual  trajecto-
ries  are  no  longer  polygonal.  The  questions  arise,  therefore,  whether:
(i) there are stable social groups under this dynamics; (ii) such groups
can  result  from  the  dynamics;  and  (iii)  as  soon  as  a  fixed  point  is
reached,  trajectories  are  polygonal  again.  The  first  question  is
examined  in  the  following,  and  we  will  address  the  remaining  issues
in Section 4. 

Cellular Automaton and the Two’s Company, Three’s a Crowd 

Game
3.3

A  cellular  automaton  (hereinafter  CA)  is  a  regular  lattice  of  cells
where each cell has its own state with a finite number of values and is
updated in discrete time steps according to a rule that depends on the
state  values  in  some  neighborhood  around  it  [32].  As  the  Game  of
Life is a typical example of a two-dimensional CA (2D-CA), it may be
tempting to draw a parallel with the TC game; however, according to
Definition 7, the TC model is not a true 2D-CA, mainly because indi-
viduals really move. A way to make the link between the two models
would  be  to  consider  one  individual  as  a  cell  with  its  mobility  state
(fTL) but with a neighborhood that changes over time, depending on
the  position  in  the  2D  space.  Nonetheless,  such  a  delineated  view
appears  not  to  provide  a  helpful  approach,  and  we  focus  rather  on
methodology as presented in the seminal book A New Kind of Science
[33], where Wolfram argues that simple programs are enough to pro-
duce  complex  behavior  like  what  we  see  in  nature,  and  that  simple
computer experiments may reveal a vast world of diverse and surpris-
ing phenomena. Keeping this in mind, we can also highlight such com-
mon  notions  as  survivability/robustness  or  networks  generated  from
competing agents [33, p. 280].
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How to Preserve Mobility Behavior?3.4

The  simpler  condition  for  a  trajectory  to  become  periodic  is  when  all
the individual mobilities are time invariant; so, assuming that, we will
examine  various  ways  for  an  individual  to  preserve  their  own
mobility  behavior.  The  following  propositions  can  be  seen  either  as
potential  fixed-point  configurations  for  the  dynamics  or  strategies  to
preserve mobility; thus, stable configurations are presented here with-
out  presuming  anything  about  their  true  occurrence  at  the  end  of  a
simulation.

Striving for Uniformity3.4.1

Uniformity is the most trivial situation, where all the individuals have
the  same  mobility;  of  course,  in  such  a  case  mobility  never  changes,
because if one individual meets other individuals, mobility values may
be exchanged, but in the end, mobility does not vary. A uniform popu-
lation can result either from a centralized decision—thus far from our
approach—or  from  a  dynamic  where  one  group  sharing  the  same
mobility becomes a hegemonic group; in this case the loss of diversity,
due  to  a  kind  of  preferential  attachment,  leads  to  a  strong  pressure
toward uniformity.

Seclusion3.4.2

Seclusion  is  the  act  of  keeping  apart  from  others;  it  can  concern  an
individual, a couple or a larger group. Seclusion can be chosen (e.g., a
hermit) or imposed by the social environment (e.g., a homeless person
[34,  35]).  In  the  TC  game,  seclusion  is  an  extreme  and  trivial  case
also:  if  one  individual  never  meets  another,  they  will  never  be  influ-
enced,  and  then  their  behavior  will  never  change.  Let  us  note  that
such a circumstance depends on the trajectories of the other individu-
als: the greater the density and the mobility, the less likely is seclusion.

Gregarious Behavior3.4.3

Gregarious  individuals  tend  to  move  in  or  form  a  group  with  others
of the same kind. There are many answers to the origin of such behav-
ior, ranging from individual gregarious instinct [36] to more complex
social  interaction  between  individual  and  collective  levels  [37].  In  the
TC  game,  gregarious  behavior  is  a  combination  of  both  uniformity
and seclusion. While seclusion is applied to a single individual, gregari-
ous  instinct  concerns  a  group  that  shares  the  same  mobility.  This
allows  such  a  group  to  concentrate  in  a  confined  area.  Let  us  note
that this kind of configuration can be broken if the containment area
is crossed by one individual with another mobility.
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Hand-in-Hand Group3.4.4

While  all  the  previous  strategies  are  context  dependent,  there  is  one
particular  strategy  that  allows  mobility  to  be  preserved  whatever  the
crowd  does.  For one  individual,  this  is  done by  establishing  a  perma-
nent  link  with  at  least  one  other  individual  with  the  same  mobility
and  by  moving  forward  hand  in  hand;  this  is  possible  if  over  time
each member of the group remains in the proximity bubble of at least
one other member of the group. We will call groups with such a clus-
ter  hand-in-hand.  A  hand-in-hand  group  appears  as  an  inseparable
unit  able  to  travel  all  around  the  world  without  any  outside  distur-
bance.  The  likelihood  of  spontaneous  emergence  of  such  a  group
decreases  as  both  the  mobility  and  the  size  of  the  group  increase  and
as the proximity radius decreases. As the smallest hand-in-hand group
is  a  pair,  we  can  really  ask  the  question  whether  a  dyad,  triad  or
larger group commonly results from simulations.

Homophilous Group3.5

As all the individuals within a group share the same behavior, accord-
ing  to  the  size  of  the  group,  each  of  the  four  previous  situations  dis-
plays  some  degree  of  homophily  [38]:  one  individual  for  seclusion
(extreme  case);  dyad  or  triad  for  hand-in-hand  group;  larger  group
for  gregarious  instinct  and  the  whole  population  for  uniformity.  Let
us  remember  that  such  spatial  structures,  homogeneous  in  terms  of
mobility  behavior,  should  result  from  the  process  induced  by  both
mobility  and  the  TC  rule.  Because  a  large  proportion  of  links  are
deleted  during  this  process,  and  because  the  process  plays  out  over
multiple  “generations,”  we  can  speculate  that  relatively  small  spatial
homophilous clusters will tend to be amplified over time via a cumula-
tive advantage-like process [39], thereby producing striking patterns—
analogous  to  so-called  tipping  models  of  residential  segregation  [40].
As  the  TC  rule  is  a  psychosocial  rule  and  the  resulting  network  may
show  particular  social-like  structures,  from  now  on  we  will  consider
the relational network as a social network.

Simulation and Results4.

An  agent-based  model  (hereinafter  ABM)  allows  us  to  model  a  social
system  based  on  individual-level  interaction.  The  aim  of  ABMs  is  to
produce  interesting  features  from  physical,  social  or  biological  struc-
ture.  Therefore,  emphasis  is  not  on  the  social  structure,  nor  on  iso-
lated  individuals,  but  rather  on  their  interaction  [41].  In  the  context
of this paper, one central point is the claim by Axelrod in his seminal
work The Complexity of Cooperation: “As such, these models do not
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necessarily … aim to provide an accurate representation of a particu-
lar empirical application. Instead, the goal of agent-based modelling is
to  enrich  our  understanding  of  fundamental  processes  that  may
appear  in  a  variety  of  applications  ..  making  these  models  more
realistic  might  add  complexity  that  could  undermine  their  usefulness
as  tools  for  theoretical  research”  [42].  Following  the  Alife  vein,  we
use  ABMs  to  perform  experiments  that  explore  plausible  processes
that may underlie observed social patterns. 

Agent-based  simulations  are  conducted  with  the  NetLogo  [43]
multi-agent programmable modeling environment—the source code is
available  [44]—and  we  use  the  Gephi  [45]  tool  to  analyze  networks.
Assuming  that  trajectories  are  polygonal  and  mobility  is  time  invari-
ant,  the  relational  network  converges  toward  a  fixed  point  in  a  finite
amount  of  time.  If  mobility  changes  over  time  under  the  TC  rule,
there  is  a  primary  time  phase  that  may  or  may  not  end  in  a  fixed-
point  configuration.  For  the  purpose  of  the  simulation,  the  world  is
put on an L⨯L grid where L is set to 100 (unless otherwise specified).
The  grid  is  a  toroid  where  the  top  and  bottom  edges,  as  well  the  left
and  right  edges,  are  connected  to  each  other.  Each  agent  is  initially
located  on  the  grid  (i.e.,  initial  coordinates  are  random  integers),  but
as soon as agents move, positions are floating points. The density δ is
the  proportion  of  agents  regarding  the  number  of  nodes  on  the  grid;

that  is  #agents  δ⨯L2.  In  this  section,  we  simulate  the  TC  game,
first  without  feedback  from  the  proximity  network  to  the  individual
behaviors, then we will consider the full game. 

Time-Invariant Mobility4.1

Here,  mobilities  do  not  change  over  time  and  all  trajectories  are
polygonal.  According  to  the  mobility  distribution  over  the  popula-
tion, we are going to consider two extreme situations.

The Same Mobility for All Agents4.1.1

Assuming that mobility is the same for all agents, the issues are about
correlation  between  the  mobility  value  and  the  number  of  compo-
nents  in  the  network  and  the  percolation  threshold.  These  points  are
of interest as soon as we look at information flow from agent to agent
when  transmission  requires  proximity  contact  [46].  In  the  following,
we  look  at  the  influence  of  density  and  mobility  (i.e.,  fTL)  once  the
networks have ended up converging.

For  instance,  considering  that  there  are  1000  agents  and  the  prox-
imity  radius  is  one,  Figure  1  shows  the  proximity  network  according
to two values for mobility; as expected, we can see that the number of
components decreases as mobility increases. 
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(a) (b)

Figure 1. Proximity  network  for  two  mobility  values  (node  size  reflects  its

degree):  δ  0.1,  pr  1.  (a)  fTL ∈ 3,  #components  670.  (b)  fTL ∈ 24,

#components  18.

The percolation threshold is a particular value for density such that
below  this  value  a  giant  connected  component  does  not  exist,  while
above it, there exists a giant component of the order of system size. In
[8]  it  was  established  that  the  percolation  threshold  follows  an
approximate power-law decrease according to mobility. 

Uniform Random Mobilities4.1.2

Assuming a uniform random mobility in the range 3; 300, the popu-

lation  is  composed  of  agents  from  sedentary  to  travelers.  The  degree
of  an  agent  node  in  the  proximity  network  is  the  number  of  connec-
tions  the  node  has.  We  look  at  the  total  number  of  links  and  the
degree  distribution  when  the  network  has  converged.  The  following
results from some representative runs.

Figure  2(a)  is the  time  evolution  of the  number  of  links during  the
transition period leading to the formation of the ultimate network; as
expected, this shows that the number of links increases monotonically
toward a limit value (approximately 71 000). 

In  Figure  3(a)  we  can  see  that  the  degree  distribution  for  the  net-
work  exhibits  a  peak  for  very  high  degree;  this  means  that  strongly
connected  agents  are  in  large  numbers,  while  for  other  degrees  there
are  fewer  agents.  The  issue  now  will  be  correlation  for  an  agent
between  mobility  and  degree.  The  scatter  plot  of  mobility  versus
degree (Figure�3(b)) shows a strong correlation: low degree values cor-
respond to low mobility values, and high degree values correspond to
high  mobility  values.  As  expected,  this  reveals  that  sedentary  agents
tend  to  have  few  proximity  contacts,  while  travelers  have  the  highest
number  of  links.  Let  us  note  that  the  scatter  plot  shows  a  saturation
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effect  when  mobility  is  above  a  certain  value  (say  fTL > 200).  All
these results will be used as the baseline for comparison in the follow-
ing investigations with the feedback loop. 

(a) (b)

Figure 2. Time  evolution  of  the  number  of  links:  δ  0.05,  pr  2,  initial

fTL ∈ 3; 300. (a) Time-invariant mobility. (b) Dynamic mobility.

(a) (b)

Figure 3. Time-invariant mobility: proximity network δ  0.10, pr  2, initial

fTL ∈ 3; 300  at  t  10 000.  (a)  Degree  distribution.  (b)  Mobility  versus
degree (normalized).

Dynamic Mobility4.2

Here  we  simulate  the  TC  game  in  its  entirety.  We  assume  that  for
each agent: (i) the initial mobility is chosen at random; (ii) trajectories
are  piecewise  polygonal;  and  (iii)  mobility  may  change  over  time
according to the TC rule. We will see that many runs end on a fixed-
point  network,  despite  there  being  no  theoretical  guarantee  that  such
configurations emerge.

Considering  the  TC  game  with  many  agents  and  many  mobilities,
the  process  of  social  construction  is  far  too  cumbersome  to  analyze;
this  is  why  we  first  analyze  two  particular  cases  with  two  values  for
the fTL only. 
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What Happens with Only Two Agents?4.2.1

First  we  consider  the  case  with  only  two  agents  (hereinafter  agent1
and  agent2).  The  aim  is  to  show  that  although  it  is  the  very  simplest

situation,  the  dynamics  of  motion  can  be  complicated,  even  unex-
pected. Let us remember that the overall process is deterministic and,
in  this  particular  case,  as  soon  as  there  is  a  contact  between  the
agents,  the  TC  rule  applies;  so  during  a  run,  the  fTL  of  each  agent
can  change  depending  on  their  reciprocal  contacts.  We  ask  the  fol-
lowing  questions:  (i)  does  the  system  always  reach  a  fixed-point
configuration  (i.e.,  a  configuration  for  which  trajectories  are  time
independent)?;  and  (ii)  does  a  time-independent  trajectory  necessarily
correspond to a polygonal trajectory?

For  these  experiments,  the  world  is  put  on  a  20⨯20  grid.  The
agents are initially positioned at the center and directions are set to 1.
For agent1, initially the fTL is 6 and the heading is 0. For agent2, the

initial  fTL  is  3  and  we  conduct  a  set  of  experiments  where  its  initial
heading  (hereinafter  h2)  will  vary  between  1  and  360◦.  Figure  4  is  a

scatter plot where for each value of h2 in abscissa the set of points vis-

ited  by  agent2  between  time  steps  5000  and  7000  is  plotted;  more

exactly,  h2  being  fixed,  each  point  (x, y)  on  the  trajectory  of  agent2
corresponds to a dot with abscissa h2  and ordinate (x + y)  2. We can

observe  that  according  to  the  initial  heading,  some  trajectories
become periodic, while others tend to occupy the entire space. 

Figure 4. All  the  spatial  positions  of  one  agent  versus  its  initial  heading.  Two

agents, pr  2, fTL ∈ 3, 6.

Periodic patterns. Figure 5 shows the trajectories of the two agents
at  convergence  for  four  particular  h2  values;  we  can  observe  periodic

trajectories with or without contact. The key point here is that trajec-
tories  are  no  longer  regular  polygons:  this  shows  that  the  dynamic
may lead to the emergence of a fixed-point configuration even though
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individuals  periodically  (ex)change  their  own  mobility.  However,  in
all  the  simulations  performed  with  a  significant  density  of  agents,
such  a  pattern  (if  any)  is  destroyed  as  soon  as  its  components  come
into  contact  with  other  agents,  and  then  trajectories  become  regular
polygons again. 

(a) (b)

(c) (d)

Figure 5. Examples of periodic trajectories between time 5000 and time 7000.
Two  agents,  pr  2,  initially  fTL1  6,  h1  0,  fTL2  3.  (a)  h2  240,

Period    8.  (b)  h2  291,  Period    9  (no  contact).  (c)  h2  147,  Period  

132. (d) h2  170, Period  555.

Chaotic  dynamics.  Figure  6(a)  presents  chaotic  dynamics  where
one  trajectory  tends  to  occupy  the  entire  space,  with  unpredictable
outcomes.  This  provides  a  counterexample  to  the  affirmation  that  all
systems  reach  a  fixed-point  configuration.  However,  we  might  ask
whether  such  a  case  really  exists  in  a  more  general  situation.  For
instance, we can raise the question of knowing the potential influence
of  a  hand-in-hand  dyad  on  the  preceding  dynamics.  To  do  so,  we
initially  add  (by  hand)  a  dyad  revolving  around  the  two  previous
agents.  Let  us  remember  that  a  dyad  is  a  hand-in-hand  group  able  to
travel  the  world  without  any  outside  disturbance.  Compared  to  Fig-
ure 6(a), Figure 6(b) corresponds to the same initial configuration but
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with the two agents initially inside the dyad’s zone. As soon as one of
the two agents meets one component of the dyad, its mobility changes
and, in doing so, step by step, the agents build new polygonal trajecto-
ries.  This  simple  scenario  shows  that  a  hand-in-hand  dyad  allows
chaotic  dynamics  to  be  avoided  and  incidentally  favors  the  explo-
ration of the space. 

(a) (b)

Figure 6. Influence  of  a  hand-in-hand  dyad  on  chaotic  dynamics:  trajectories.
Two  agents,  pr  2,  initially  fTL1  6,  h1  0,  fTL2  3,  h2  186.

(a)  Two  agents  only  (t  100 000).  (b)  Two  agents  +  one  dyad
(100 000 < t < 102 000).

Many Agents with Two Mobility Values Only4.2.2

Given  that  there  are  only  two  types  of  agents:  sedentary  agents  and
travelers,  the  aim  is  to  answer  the  following  basic  questions:  (i)  what
would  be  the  long-term  outcome  of  sedentary  agents?;  (ii)  what
would  be  the  long-term  outcome  of  travelers?;  (iii)  if  any,  how  do
large  communities  emerge?;  and  (iv)  if  any,  how  do  hand-in-hand
groups emerge?

There  are  150  sedentary  agents  (respectively  150  travelers)  with
fTL  set  to  10  (respectively  90),  and  we  look  at  the  time  evolution  of
the  two  populations.  Figure  7(a)  shows  that  the  number  of  travelers
drastically  decreases  to  finally  occupy  only  4%  of  the  population.  At
the end of the process, when there are no changes in trajectory, travel-
ers  go  hand  in  hand,  most  often  by  dyad  or  triad,  and  sedentary
agents are in large groups (Figure 7(b)). 

Vulnerability  versus  robustness.  To  explain  this  phenomenon,  we
need to think in terms of vulnerability/robustness regarding the capac-
ity  of  an  agent  to  preserve  their  own  mobility  behavior.  At  the  early
stage of the process, all the agents, whatever their mobility is, are vul-
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nerable in the sense that they can easily change their mobility by close
contact: a traveler becoming a sedentary agent and vice versa. 

◼ A  traveler2sedentary  transition  can  occur  when  one  traveler  is  in  the
vicinity  of  one  sedentary  agent,  hence  the  traveler  becomes  sedentary;
we  get  two  sedentary  agents  with  a  high  probability  to  stay  in  close
proximity  and  thus,  according  to  the  TC  rule,  protecting  each  other
from future potential changes. 

◼ A  sedentary2traveler  transition  can  occur  when  one  sedentary  agent  is
in the vicinity of one traveler, hence the sedentary agent becomes a trav-
eler,  but  with  a  very  low  probability  to  go  hand  in  hand  with  its  trav-
eler contact and, thus, a high probability to remain vulnerable. 

(a) (b)

Figure 7. Two  fTL  values  only:  δ  0.03,  pr  1.5,  fTL ∈ 10, 90.  (a)  Time

evolution  of  agents  with  the  same  fTL.  (b)  Fixed-point  configuration
(tick  2500).

Along  the  way  this  causes  a  rapid  decrease  in  the  number  of  trav-
elers  and  thus,  in  the  longer  term,  a  decrease  in  the  number  of
traveler2sedentary  transitions.  All  this  explains  why  the  system  con-
verges  toward  a  configuration  with  many  sedentary  agents  and  some
hand-in-hand dyads or triads of travelers. It can therefore be assumed
that  the  less  we  move,  the  more  we  will  be  robust  and  inversely,  the
more we move, the more we will be vulnerable. However, there is one
exception  related  to  hand-in-hand  travelers  for  which  high  mobility
results  in  strong  robustness;  in  fact,  this  does  not  invalidate  the
hypothesis  because  the  latter  is  related  to  individual  behaviors,  while
the  exception  considers  the  case  of  a  particular  social  structure.  To
reinforce  this  hypothesis,  we  conduct  a  complementary  experiment
with  300  agents  and  five  values,  from  10  to  90,  for  the  initial  fTL.
We choose the same initial proportion for the five subpopulations and
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we look at their evolution over time. Figure 8(a) shows that globally,
populations grow for sedentary agents and decline for travelers. 

(a) (b)

Figure 8. Five  fTL  values  only:  δ  0.03,  pr  1.5,  fTL ∈ 10, 20, 40,

70, 90. (a) Time evolution of agents with the same fTL. (b) Fixed-point con-

figuration (t  3000).

As  the  previous  results  suggest  that  the  fTL  distribution  evolves
from  a  uniform  to  a  decreasing  distribution,  a  question  can  be  asked
about  the  nature  of  the  decrease;  for  example,  exponential  or  power
law?  As,  in  addition,  it  seems  intuitive  that  a  node’s  degree  in  the
social  network  is  low  for  sedentary  agents  and  high  for  travelers;  it
may  be  assumed  that  there  is  a  positive  correlation  between  mobility
and degree. Both these points will need to be addressed in the general
case with many agents and many mobility behaviors. 

General Case4.2.3

Now  we  can  consider  the  general  case  for  the  TC  game  with  a  lot  of
agents  and  many  values  for  mobility.  Paying  close  attention  to  the
social  network,  we  are  more  specifically  interested  in  the  number  of
links, the number of components and the degree distribution.

Number  of  links.  Figure  2(b)  is  a  significant  example  of  the  time
evolution  of  the  number  of  links  during  the  transition  period  leading
to the formation of the ultimate social network. The first observation
is that the growth is not continued: while the number of links globally
increases  it  may,  from  time  to  time,  slightly  decrease.  Then  we  can
observe  two  phases:  first  a  rapid  growth,  then  a  relative  stagnation;
furthermore, the entire phenomenon is much faster than in the case of
time-invariant  mobility  (Figure  2(a)).  As  the  number  of  existing  links
(approx. 2000) is finally far from saturating the total number of possi-
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ble  links,  the  network  is  characterized  by  the  sparsity  of  links
(compared to 71 000 for time-invariant mobility). 

Number  of  components.  Figure  9  represents  two  significant  exam-
ples  of  the  time  evolution  of  the  number  of  components  during  the
transition  period.  In  both  cases,  static  and  dynamic  mobility,  the
network  evolves  toward  one  giant  component.  With  dynamic  mobil-
ity,  the  decrease  is  not  continued  (Figure  9(b)):  while  the  number  of
components  globally  decreases,  it  may,  from  time  to  time,  slightly
increase;  this  can  be  explained  by  the  fact  that  when  a  new  link  is
created,  some  other  links  are  broken.  In  the  case  of  time-invariant
mobility, there is a very rapid monotonous decrease of the number of
components (Figure 9(a)) while, for dynamic mobility, the overall loss
is very slow. 

(a) (b)

Figure 9. Time  evolution  of  the  number  of  components  in  the  relational  net-

work.  δ  0.10,  pr  2,  initial  fTL ∈ 3; 300.  (a)  Time-invariant  mobility:
t  15. (b) Dynamic mobility: t  1300.

Mobility and degree distribution. As mobility changes according to
the  TC  rule,  the  mobility  distribution  also  evolves.  The  question  is,
what  can  we  know  about  mobility  and  degree  when  many  clusters
and hand-in-hand groups emerge? In the following we consider a typi-
cal  fixed-point  configuration  obtained  from  a  population  of  1000
agents  with  a  uniform  initial  distribution  of  mobility  from  3  to  300
for the fTL. 

Mobility  distribution.  The  mobility  distribution  (Figure  10(a))
exhibits  a  tail  indicating  the  presence  of  a  few  agents  with  a  much
higher  mobility  than  others.  The  corresponding  log-log  plot
(Figure�10(b)) shows a reasonably consistent linear cloud; this enables
us  to  assume  that  the  distribution  follows  approximately  a  power
law;  that  is,  the  number  of  agents  having  a  certain  mobility  is  found
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to decrease as a power of mobility; it would look similar to an expo-
nential  decay,  but  the  tail  does  not  decay  as  quickly,  leaving  large
mobility  still  possible:  there  are  large  numbers  of  sedentary  agents
and nevertheless some travelers sufficiently numerous to make it possi-
ble to communicate between large groups of sedentary agents. We are
aware that the proper fitting of power-law distributions is made diffi-
cult by the fluctuations that occur in the tail [47]; however, a prerequi-
site  for  using  a  statistical  method,  like  the  one  proposed  by  Clauset
et�al. [48], would be to have a larger sample population. 

(a) (b)

Figure 10. Mobility  distribution:  δ  0.10,  pr  2,  initial  fTL ∈ 3; 300,
t  5000. (a) Linear scale. (b) Log-log scale.

The  mobility  distribution  also  reveals  that  the  dynamic  process
leads  to  a  loss  of  the  initial  behavioral  diversity.  Such  organization
has turned out to be fairly robust to random death although very vul-
nerable  to  targeted  attacks  [49];  the  key  point  to  be  emphasized  is
that following the random disappearance of one agent (most likely to
be  a  sedentary  agent),  the  system  is  able  to  reconfigure  itself  in  order
to reach a fixed-point configuration again. 

Degree distribution. As expected, the scatter plot of mobility versus
degree  (Figure  11(a))  always  shows  a  strong  positive  correlation:
sedentary  agents  tend  to  have  few  proximity  contacts,  while  travelers
have the highest number of links. Nevertheless, the respective distribu-
tions are quite different; indeed, the degree distribution (Figure 11(b))
shows  a  peak  for  low  degrees  (around  a  value  of  10).  This  reveals
that: (i)�agents with very low degree are scarce; (ii) relatively low-con-
nected  agents  are  in  large  numbers;  and  (iii)  for  high  degree
(approximately  from  25  to  133)  there  are  few  agents.  The  first  case
corresponds to isolated sedentary agents or very small groups of such
agents,  the  second  case  to  large  groups  of  sedentary  agents,  and  the
last  case  to  hand-in-hand  groups  of  travelers.  Let  us  note  that  com-
pared to static mobility (Figure 3(a)), this is a reversal situation. 
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(a) (b)

Figure 11. Social  network:  δ  0.10,  pr  2,  initial  fTL ∈ 3; 300,  t  5000.
(a) Mobility versus degree (normalized). (b) Degree distribution.

Stages  of  group  formation.  We  have  previously  observed  that  the
“demographic” changes over time according to mobility behavior: the
number  of  sedentary  agents  increases  while  the  number  of  travelers
decreases.  But  that  does  not  provide  any  evidence  about  the  different
stages  of  group  formation.  For  instance,  taking  a  closer  look  at  the
dates  the  fTL  are  finally  set  would  allow  us  to  know  if  some  agents
fix  their  behavior  at  the  beginning  or  at  the  end  of  the  process.  For
each  agent,  we  define  longevity  as  the  elapsed  time  since  the  last
change in its fTL. 

Figure 12(a) is a scatter plot corresponding to a fixed-point spatial
configuration  where,  for  each  agent  plot,  the  abscissa  is  its  fTL  and
the  ordinate  is  its  longevity.  First,  this  confirms  that  in  the  end  there
are  many  sedentary  agents  and  very  few  travelers,  but  much  more,
this  shows  that  traveler  behaviors  are  fixed  in  the  early  stages  of  the
process,  while  new  sedentary  behaviors  emerge  throughout  the
process. 

As sedentary agents are grouped together into large groups, we can
raise  the  question  of  knowing  if  there  is  a  correlation  between
longevity and spatial position within a group. Figure 12(b) is a scatter
plot  corresponding  to  a  fixed-point  spatial  configuration  where,  for
each  sedentary  agent,  the  abscissa  is  the  number  of  link  neighbors
with  the  same  fTL  and  the  ordinate  is  the  longevity.  It  can  be
observed that the more surrounded an agent is, the earlier the behav-
ior  is  set.  This  indicates  that  a  group  of  sedentary  agents  grows  by
aggregation  of  new  elements  on  its  periphery.  Thus,  there  are  agents
near the border that actually change their own behavior: some leaving
the group, while some others are absorbed by the group. Incidentally,
this also shows that agents on the frontier provide protection to those
who are on the inside. 
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(a) (b)

Figure 12. Longevity  correlation:  δ  0.10,  pr  2,  initial  fTL ∈ 3; 300,
t  3000.  (a)  Longevity  versus  mobility.  (b)  Longevity  versus  number  of  link
neighbors (sedentary agents only).

Emergence of Self-Organizing Patterns4.2.4

Spatial and social patterns are closely tied because of the mutual inter-
action  between  these  two  dimensions;  a  structured  pattern  is  no
longer a given macro state but is coming from complex dynamics.

Let us note that for a given set of global parameter values (i.e., den-
sity  and  proximity  radius),  as  the  initial  state  of  each  agent  (i.e.,
spatial  position,  heading,  mobility  and  direction)  is  random,  the  out-
come  of  the  dynamics  may  be  qualitatively  completely  different  from
one run to another. So, given a set of parameters, it makes no sense to
compute averaged results; as a consequence, we do not sweep through
the  parameter  space  and  we  look  rather  for  typical  runs  to  show  the
various structural forms achievable by the dynamics. 

Uniformity.  To  illustrate  uniformity  from  simulations,  we  choose
an initial population of 100 travelers (δ  0.01) with uniform random

mobility in the range 250; 300 and proximity radius set to 1. Then,

after  2000  time  steps  the  system  reaches  a  fixed  point  where  all  the
agents have the same mobility (fTL  174) (Figure 13). 

Seclusion and gregarious instinct. We address seclusion and gregari-
ous instinct together because they often happen together. To illustrate
these  phenomena,  we  choose  an  initial  population  of  90  sedentary

agents  with  random  uniform  mobility  in  the  range  3; 20  and  the

proximity  radius  is  set  to  3.  Then,  after  1000  steps,  the  system
reaches  a  fixed-point  configuration  with  many  groups,  each  concen-
trated  in  a  confined  area  (Figure  14(a)),  and  where  all  the  agents
“living” in a group have the same mobility. Figure 14(b) is a view on
the corresponding relational network: individuals with the same color
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have been influenced by the same mobility behavior, and groups with
only one agent (see center) correspond to seclusion. 

(a) (b)

Figure 13. Evolution of the trajectories toward uniformity during one particu-
lar  run.  δ  0.01,  pr  1.  (a)  t  40,  fTL ∈ 250; 300.  (b)  t  2000,

fTL ∈ 174.

(a) (b)

Figure 14. Fixed-point  configuration:  seclusion  and  gregarious  instinct.

δ  0.009,  pr  3,  initial  fTL ∈ 3; 20,  t  1000.  (a)  Trajectories  and  social
links. (b) Social network (node size reflects the degree).

Pairwise matching. The pairwise matching strategy leads to a form
of  organization  quite  different  because:  (i)  it  concerns  the  travelers;
(ii)  it  does  not  lead  to  a  partition  of  the  space  in  isolated  areas;  and
(iii)  for  a  pair  of  travelers,  the  way  to  move  forward  hand  in  hand  is
context  independent.  This  last  point  means  that  a  dyad  can  cross  a
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cluster of linked agents without interfering with its members and with-
out losing its own mobility. To establish a pairwise matching, the two
agents  need  to  have  the  same  mobility  and  furthermore,  in  order  to
remain  always  in  the  same  proximity  bubble,  the  two  trajectories
need to be very close to each other. As soon as two agents go hand in
hand,  whenever  they  met,  they  form  an  indestructible  pair.  Such  a
pair presents inner “solidarity” coupled with exclusiveness toward the
outside.  Although  such  matching  appears  unlikely,  the  phenomenon
happens  frequently  during  simulations.  Figure  15(a)  shows  a  fixed-
point  configuration  with  150  agents  where  we  can  see  four  secluded
clusters  of  sedentary  agents  and  two  pairs  of  travelers  can  cross  any
cluster without a hitch. Looking at the network (Figure 15(b)), we see
that  a  pair  of  travelers  can  connect  clusters  of  sedentary  agents  far
apart  from  each  other;  in  a  way,  a  pair  seems  to  be  invoked  as  a  go-
between between agents (and groups) over distance. A dyad looks like
a local bridge connecting two communities, to the extent that it is the
only  alternative  to  communicate  between  each  community.  So,  as  a
dyad  tends  to  reduce  the  number  of  components  in  the  network,  the
pairwise  matching  phenomenon  is  of  importance  as  soon  as  we  look
at  information  flow  when  transmission  requires  a  direct  contact
between individuals. 

(a) (b)

Figure 15. Fixed-point  configuration:  gregarious  instinct  and  pairwise  match-

ing.  δ  0.015,  pr  3,  initial  fTL ∈ 3; 300,  t  5000.  (a)  Trajectories.
(b) Social network (node size reflects the degree).

Hand-in-hand group. The previous case with only two agents is the
minimal  case  for  a  hand-in-hand  group.  To  establish  such  a  group,
several  agents  (say  a  dyad,  a  triad  or  a  quaternion)  need  to  have  the
same mobility and their trajectories need to remain very close to each
other. Figure 16 represents a more complex fixed-point configuration
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obtained  after  15 000  time  steps  with  1000  agents.  In  order  to  better
distinguish between big clusters and hand-in-hand groups, trajectories
of  sedentary  agents  and  travelers  are  shown  in  two  separate  figures
(Figure 16(a) and 16(b)). 

(a) (b)

Figure 16. Fixed-point  configuration:  (a)  gregarious  instinct  and  (b)  hand-in-

hand  groups.  δ  0.10,  pr  2,  initial  fTL ∈ 3; 300,  t  15 000.  (a)  Trajec-
tories  of  sedentary  agents  only  (fTL < 20).  (b)  Trajectories  of  travelers  only
(fTL > 60).

Now  it  is  worth  posing  the  question,  is  the  TC  rule  really  neces-
sary?  To  look  at  this  issue,  we  conducted  experiments—not  reported
in  this  paper  due  to  space—with  a  variety  of  alternatives  for  the  TC
rule  (Definition  6)  by  relaxing  the  uniqueness  constraint.  It  is  a  fact
that  in  no  cases  did  we  observe  the  emergence  of  agents  in  a  pair  (or
more) able to cross a cluster. This lends support to the hypothesis that
the  TC  rule  is  at  the  heart  of  the  pairwise  matching  process,  but,  of
course, does not prove it. 

The Strength of Weak Ties4.2.5

The TC game can be interpreted in the light of Granovetter’s strength
of  weak  ties  (hereinafter  SWT)  [50].  The  author  proposed  a  model
“for  linkage  of  small-scale  levels  with  one  another  and  with  larger,
more  amorphous  ones;  where  emphasis  has  been  placed  more  on
weak  ties  than  on  strong.  Weak  ties  are  more  likely  to  link  members
of different small groups than are strong ones, which tend to be con-
centrated  within  particular  groups.”  For  Granovetter,  a  given  tie  is
strong, weak or absent; he defines the strength of a tie as “a combina-
tion of the amount of time, the emotional intensity, the intimacy, and
the  reciprocal  services  which  characterize  the  tie”;  he  deliberately
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ignores  other  aspects,  such  as  the  “relation  between  strength  and
degree of specialization of ties, or between strength and the hierarchi-
cal structure.” 

In the TC game, we define the strength as the amount of time, that

is,  a  real  number  in  the  range  0; 1  representing  the  (normalized)

amount  of  time  that  one  end  spends  with  the  other  end.  In  the
TC�game,  no  contact  between  two  individuals  corresponds  to  an
“absent tie.” 

Definition 8.  The  strength  of  a  link  connecting  two  agents  is  the  mean
frequency of proximity contacts between them. 

Proposition 4.  The  strength  of  a  link  connecting  the  two  members  of  a
hand-in-hand dyad is equal to one. 

Proof.  For  a  link,  the  strength  is  equal  to  one  if  and  only  if  the  two

ends are in continuous contact. □

Figure  17(b)  represents  for  each  link  its  strength  versus  the  differ-
ence of mobility between its two ends; the scatter plot shows that: (i)
a  strong  link  connects  two  individuals  with  the  same  mobility;  and
(ii)�two agents with different mobilities are connected by a weak link.
For instance, the strength of the link between two agents linked inside
a  hand-in-hand  group  is  very  strong  because  they  stay  in  permanent
touch  with  one  another;  at  the  opposite  extreme,  the  link  between  a
traveler inside a hand-in-hand group and a sedentary agent in a com-
munity  is  weak  because  a  contact  between  such  agents  is  rare.  Let  us
note that if mobility is time invariant (Section 4.1.2), the same type of
scatter  plot  shows  that  the  proximity  network  is  made  with  weak
links only (Figure 17(a)). 

(a) (b)

Figure 17. Link’s  strength  versus  the  difference  of  mobility  between  the  ends

of  a  link:  δ  0.050,  pr  2,  initial  fTL ∈ 3; 300.  (a)  Time-invariant  mobil-
ity, t  25 000. (b) Dynamic mobility, t  2500.
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Considering any two arbitrarily selected agents and the set S of all
agents with ties to either or both of them, Granovetter formulates the
hypothesis  that  the  stronger  the  tie  between  the  agents,  the  larger  the
proportion  pboth  of  individuals  in  S  to  whom  they  will  both  be  tied.

Figure  18  confirms  this  property  for  the  TC  game:  each  dot  shows
one  link’s  strength  versus  its  pboth  proportion,  that  is,  the  degree  of

overlap of two individuals’ friendship networks versus the strength of
their  link  to  one  another.  The  scatter  plot  indicates  that  the  stronger
the  strength,  the  larger  the  proportion;  the  continuous  line  gives  the
mean  proportion  for  adjacent  values  of  the  strength  by  increments
of�0.10. 

Figure 18. Link’s strength versus the pboth  proportion: δ  0.10, pr  2, initial

fTL ∈ 3; 300, t  1000.

The  SWT  principle  helps  us  understand  how  information  flows
through  a  social  network.  In  the  study  of  diffusion,  bridges  play  an
important  role  because  a  “bridge  is  a  line  in  a  network  which  pro-
vides  the  only  path  between  two  points”  [51].  Granovetter  asserts
that all bridges in a relational network are weak ties, and so more peo-
ple  can  be  reached  through  weak  ties.  In  a  similar  way,  in  the  TC
game the scale-free distribution is very efficient for a communications
network  and  favors  the  spreading  of  information  through  weak  links
provided by the hand-in-hand groups. 

Conclusion5.

In  this  paper  we  have  proposed  a  scale  game  of  psychosocial  interac-
tions  between  individual  behaviors  and  social  structures.  We  have
translated  the  Simmel  hypothesis  about  the  role  of  the  number  of
people in the neighborhood in human relations into a computer simu-
lation  and  explored  the  consequences  of  this  hypothesis  on  the  emer-
gence of homophilous groups. Obviously, animal or human behaviors
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are  far  more  complicated  than  this  artificial  game;  however,  despite
its  intrinsic  simplicity,  it  shows  that  a  feedback  loop  between  micro
and macro levels allows some patterns to emerge as the ones resulting
in  individual  strategies  such  as  striving  for  uniformity,  seclusion,  gre-
garious instinct or living with a partner. 

Starting  from  a  uniform  distribution  of  mobilities,  the  system  con-
verges  to  a  fixed  spatial  configuration  with  many  homophilous
groups  of  various  sizes  that  coexist  despite  the  movement  of  agents.
In  particular,  there  are  many  sedentary  agents,  with  few  proximity
contacts,  gathered  in  confined  areas  and  some  travelers,  with  many
contacts, moving in hand-in-hand groups. The decrease in the number
of  travelers  and  the  correlative  increase  of  sedentary  agents  can  be
explained by the vulnerability of the former and the robustness of the
latter regarding their capacity to preserve their behavior. These obser-
vations  allow  us  to  formulate  the  general  hypothesis:  the  less  we
move,  the  more  we  will  be  robust  and,  inversely,  the  more  we  move,
the more we will be vulnerable, with, however, one notable exception
related  to  hand-in-hand  travelers  for  which  high  mobility  results  in
strong  robustness.  That  said,  we  are  aware  that  such  a  claim  needs
strengthening by a more measurable, or quantitative, approach [52]. 

Considering the strength of a relational link as the amount of time
that one end spends with the other end allows us to compare the emer-
gent  network  with  real  social  networks  such  as  those  highlighted  by
Granovetter with his principle about the strength of weak ties (SWT);
as a consequence, the degree of overlap of two individuals varies with
the  strength  of  their  link  to  one  another.  Strong  links  ensure  the
robustness of the system and weak links ensure the ability to commu-
nicate  between  the  components.  A  weak  link,  for  instance  between  a
traveler and a sedentary agent, allows effective communication on the
condition  that  the  information  that  flows  through  the  agents  has  a
long  lifetime;  this  would  favor  the  forwarding  of  perennial  informa-
tion rather than labile information such as a virus. 

We have established that the behaviors of travelers are fixed in the
early stages of the process, while sedentary behaviors emerge through-
out  the  process.  Furthermore,  a  sedentary  group  grows  by  aggrega-
tion  of  new  elements  on  its  periphery;  thus,  there  are  agents  near  the
boarder  that  actually  change  their  behavior,  and  agents  on  the  fron-
tier provide protection to those who are on the inside. 

The Two’s Company, Three’s a Crowd game (TC game) dynamics
are  characterized  by:  (i)  no  creation  of  new  behaviors:  the  repertoire
of behaviors is available since the beginning; (ii) no reward or no pun-
ishment  for  some  local  behaviors;  (iii)  no  positive  selection  based  on
fitness  criteria:  no  individual  is  better  (or  fitter)  than  anyone  else;
(iv)�negative  selection:  mobility  of  individuals  under  influence  is
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deleted; and (v) reproduction by imitation of the behavior for individ-
uals  influencing  others.  All  this  shows  that  while  this  process  can
“succeed”  (i.e.,  converge)  by  trial-and-error,  it  is  far  from  the  evolu-
tionist  loop  where  mutation  creates  new  solutions  and  selection  is
based on the “fittest.” 

In  the  future,  we  intend  to  further  the  present  work  in  the  follow-
ing ways: (i) study different models of mobility: variants of the piece-
wise polygonal model or random walk models or even a mix between
the  two  approaches;  (ii)  study  the  influence  of  global  parameters  on
such  emergent  structures  as  the  population  density  or  the  proximity
radius; (iii) further investigate the study of fixed trajectories with only
a few agents; (iv) further investigate the internal structure of hand-in-
hand  groups;  (v)  relax  the  “Two’s  Company,  Three’s  a  Crowd”  rule
and  the  strict  imitation  process  to  know  whether,  or  to  what  extent,
adjustments  in  local  behavior  influence  the  emergence  of  social-like
structures;  (vi)  exploit  fully  the  concept  of  tipping  point—for
instance, study the “life expectancy” of a group according to its char-
acteristics:  mobility,  size,  location,  shape,  …  ;  (vii)  strengthen  our
claim  about  correlation  between  mobility  and  robustness  by  a  more
measurable  approach;  and  (viii)  establish  whether  or  not  there  is  a
connection  between  the  exploitation/exploration  concepts  and  the
sedentary/traveler dichotomy. 
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