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A  classification  for  Turing  machines  is  described.  Quantitative  descrip-
tors for Turing machine behavior are used for measuring repetitiveness,
periodicity, complexity and entropy. These descriptors allowed identify-
ing  several  kinds  of  behavior  for  Turing  machines,  using  an  approach
based on machine learning. The classification was tested and generality
was probed over different configurations of Turing machines.

Introduction1.

Some decades ago, Stephen Wolfram developed a classification for cel-
lular automata where a particular cellular automaton is classified into
one  of  four  classes  according  to  some  characteristics  of  its  evolution
[1]. We achieved a classification for Turing machines (TMs) in several
classes according to the complexity of their evolution.

Alan  Turing  proposed  TMs  in  the  first  half  of  the  twentieth  cen-
tury [2]. Turing machines are an essential element in the development
of  computer  science  because  they  are  simpler  theoretical  computers.
Turing  machines  consist  of  a  set  of  states  for  a  mobile  head,  a  set  of
colors that can be written by the head, and a tape where the head can
write  a  color  from  the  set  of  colors.  In  this  paper,  we  use  Wolfram
Mathematica’s implementation of TMs. From a starting initial config-
uration,  the  head  follows  a  set  of  rules  that  decides  changes  to  be
made  on  the  tape.  An  evolution  of  a  TM  is  performed  for  several
steps,  and  on  the  record  of  this  evolution,  we  can  analyze  patterns
and complexity of behavior. 

Some  previous  work  has  analyzed  behavior,  not  specifically  in
TMs,  but  in  cellular  automata.  Cellular  automata  share  similarities
with  TMs,  because  they  follow  rules  that  evolve  in  time  in  a  similar
way.  In  [3],  Zenil  reviewed  and  proposed  some  mechanisms  to  com-
press the behavior of cellular automata and Turing machines, and dis-
cussed  the  inherent  capability  of  measuring  the  complexity  of  their
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behavior,  also  establishing  a  link  to  the  notion  of  computational  uni-
versality  extrapolated  from  the  analysis.  In  the  same  way,  that
approach was elaborated to a point where it was related to Wolfram’s
classification  of  cellular  automata  [4].  We  can  find  a  complementary
approach  in  [5],  which  was  focused  on  some  concepts  drawn  from
information  theory  and  the  specific  application  of  Shannon’s  entropy
and  Kolmogorov’s  complexity  to  the  analysis  of  behavior  for  cellular
automata  and  their  capabilities  to  characterize  complexity  of  behav-
ior.  In  the  same  way  as  in  previous  work,  we  were  able  to  establish
the  relationship  between  their  analysis  and  Wolfram’s  classification
for cellular behavior. 

The  motivation  behind  this  paper  is  to  offer  a  way  to  analyze  TM
behavior through a machine learning approach.

Materials and Methods2.

In  this  section,  we  describe  each  step  of  our  methodology  and  assess
classification results.

Features Description 2.1

Our set of features was defined to measure variability and complexity
in TM evolution. 

First  moment.  Quantification  of  state  variability  between  each  pair  of
consecutive states.

Second moment. Quantification of variability for sequences of states.

Compression ratio. Ratio for the difference of a compressed representa-
tion  for  a  TM  evolution  and  a  compressed  representation  for  nonzero
sequences in TM evolution.

Entropy. Measures entropy for blocks in the TM evolution.

Nonperiodicity.  Measures  periodicity,  low  values  for  highly  repetitive
sequences.

The described set of features is adapted from [6], where an attempt
was made to identify 4-state, 4-color TMs with interesting behavior.

Clustering Evaluation 2.2

To  assess  clustering  quality,  we  used  Silhouettes  [7].  Silhouettes  is  a
powerful  tool  that  allowed  us  to  envisage  graphically  and  quantita-
tively how well classified the TMs are for a dataset. For each TM in a

cluster, a value in the range -1, 1 is computed. A positive Silhouette

value  means  that  TMs  in  that  cluster  are  consistently  grouped  with
regard to the whole dataset. The greater the Silhouette, the higher the
quality of the clustering.
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Dataset Description 2.3

All data generated in this section was computed in Mathematica, tak-
ing advantage of its built-in support for TM simulation.

Data Building2.3.1

We  focused  our  data  generation  on  TMs  with  three  colors  and  three
states,  which  gave  us  around  two  billion  TMs.  Within  this  space,  we
had the option to sample randomly several datasets, which enabled us
to  proceed  with  an  iterative  process  toward  a  classification  of  TM
behavior with high quality. Each dataset was built in the same condi-
tions:  features  were  computed  over  100  evolution  steps,  starting  at
the  same  initial  condition  (i.e.,  head  at  state  1  on  a  tape  filled  with
zeros).

Data Exploration2.3.2

At  first,  we  did  not  know  anything  about  distribution  or  characteris-
tics of the data. With the aim of exploring data distribution, we gener-
ated  a  random  set  of  4200  TMs  and  applied  k-means  clustering  with
four  clusters.  Cluster  distribution  was  biased  to  a  big  cluster  with
98% of the TMs in it and the rest in the other three clusters. A biased
dataset  makes  it  hard  to  train  any  machine  learning  algorithm.  To
overcome  this  issue,  we  used  the  initial  clustering  to  classify  a  new
dataset of 100 000 TMs and from it took all TMs in the small clusters
(3240  TMs),  and  a  subsample  of  2760  TMs  of  the  biggest  cluster.
This second dataset was less biased and allowed us to train classifica-
tion algorithms with more confidence. The impact of imbalanced data
in clustering is an issue that has been previously described in [8]. 

With dataset number two, we trained a new classifier (using Mathe-
matica’s  ClusterClassify).  Cluster  distribution  was  improved,  resulting
in three big clusters with densities of 65%, 23% and 9%, and a small
cluster with a density of 3%. This classification was worth analyzing. 

In Figure 1, we can see clusters with high quality (Silhouette scores
above 0.85). The Silhouettes plot in Figure 1 shows that most TMs in
all clusters have a high degree of membership, especially for clusters 1
and 4. The weighted Silhouette for this clustering is 0.927.

With  the  steps  as  described,  we  learned  that  TM  sampling  has  to
be  made  in  a  stratified  way  to  avoid  bias  for  oversampling  of  the
biggest class.

Classification Building2.4

Knowing some characteristics of our data, we proceeded to build our
classification for TMs. At this point, we knew that four classes is not
the  best  partitioning.  Therefore,  we  had  to  find  an  optimum  for  the
number  of  clusters  and  associate  to  it  the  optimal  classification.  Our
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case  is  a  typical  situation  for  unsupervised  learning,  because  we  were
trying  to  learn  the  classes  that  are  implicitly  represented  by  our  fea-
tures in the TM set.

Figure 1. Clusters distribution and quality in data exploration.

Our  third  dataset  was  larger  than  the  previous  ones;  we  were
sampling  one  million  TMs.  This  dataset  was  used  for  training  and
validation. We used subsamples of 100000 TMs for training and vali-
dation, with cluster sizes ranging from 4 to 10 clusters. For each clus-
tering,  we  followed  the  same  procedure:  (1)  sample  100000  TMs  for
training;  (2)  sample  100000  TMs  for  validation;  (3)  build  classifica-
tion  with  Mathematica’s  ClusterClassify;  and  (4)  evaluate  clustering
quality by means of Silhouettes analysis.

Optimal Clustering2.4.1

The best TM classification was achieved with eight, nine and 10 clus-
ters.  Figure  2  shows  the  quality  for  classification  with  the  number  of

clusters  in  the  range  3, 12.  Classification  quality  improves  as  the

number of clusters increases, with a peak at nine clusters. In Figure 3,
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we  show  the  Silhouette  plot  for  an  optimal  clustering  with  nine  clus-
ters. For every cluster, TMs show higher membership with positive Sil-
houette coefficient values and just a few negative values.
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Figure 2.Number of clusters versus weighted Silhouette.

Figure 3. Silhouettes classification with nine clusters on an unbiased dataset.

At  the  conclusion  of  this  analysis,  we  selected  nine  clusters  as  the
optimal  number  of  classes,  because  the  Silhouettes  analysis  gives  bet-
ter performance, both numerically and graphically.
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Improved Classification2.4.2

We  built  a  fourth  dataset,  aiming  to  improve  the  classification  with
nine  clusters  by  using  an  unbiased  dataset.  This  dataset  has  40%  of
the TMs for cluster 1, 25% of the TMs for cluster 2 and 35% of the
TMs for other clusters. We trained a new classifier whose quality anal-
ysis is depicted in Figure 3. This new classifier had better performance
in each cluster; in clusters 1 and 2, TM Silhouettes are improved and
the  proportion  of  misclassified  TMs  is  reduced.  The  weighted  Silhou-
ette  for  this  classification  is  0.7312;  for  the  previous  one  it  was
0.6314.

As  a  result  of  the  methods  described  in  this  section,  we  achieved  a
classification  of  TMs  based  on  behavior.  Quality  assessment  in  Fig-
ure�3 allows us to consider this classifier as one that is able to differen-
tiate  with  confidence  between  classes  of  behavior  in  the  evolution  of
TMs.

Results and Discussion3.

Analysis of Classes 3.1

In Section 2, we described the method that allowed us to obtain a clas-
sification for TM behavior. In this section, we analyze the nine classes
and the behavior associated to them.

Cluster Medoids3.1.1

Our  set  of  cluster  medoids  is  comprised  of  TMs  that  are  representa-
tive for each group. We compared these TMs in a graphical way using
a  dendrogram.  The  dendrogram  depicted  in  Figure  4  was  built  from
plots for the nine medoids of the clustering described in Section 2.4.2.
In  Figure  4,  we  can  distinguish  three  major  classes:  class  I,  simpler
behavior,  low  entropy,  clusters  1,  2,  4,  8,  7  and  6;  class  II,  complex
behavior, high entropy, clusters 7, 3 and 5; class III, repetitive but not
simple  behavior,  medium  entropy;  class  IV,  complex  behavior,
medium to high entropy, medium periodicity. Class I contains 96% of
3-state, 3-color TMs. This classification is not an arbitrary one, but a
result  extracted  from  the  dendrogram  in  Figure  4.  We  decided  to  cut
the dendrogram at level three, because this way the very differentiated
clusters 3, 6 and 9 form independent groups and the more related set
of  clusters  is  left  in  one  big  class.  This  classification  has  similarities
with the known Wolfram’s classification for cellular automata behav-
ior described in [4]. 
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Figure 4.Dendrogram for medoids of the optimal clustering with nine clusters.

Class I3.1.2

Turing machines in class I show a highly homogeneous behavior char-
acterized  by  medoids  with  the  lowest  values  for  entropy,  high  com-
pressibility,  and  low  variability  to  the  left  or  the  right  of  the  tape.
However,  every  cluster  in  class  I  has  some  particularities.  For  exam-
ple,  clusters  1  and  8  have  the  biggest  entropies,  which  indicates  that
there is some complexity in their behavior, even when in the end they
become  uniform.  Turing  machines  in  cluster  1  have  the  lowest  com-
pression  ratio;  even  so,  it  is  highly  periodic.  Turing  machines  in  clus-
ter�8 are less periodic, but the compression ratio is larger than that of
the TMs in cluster 1. In Figure 5(a), we show a compressed version of
a  TM  in  class  I.  The  compressed  behavior  keeps  changes  of  state  to
the left or the right in the tape. 
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(a) (b)

(c) (d)

Figure 5. Examples  of  behavior  in  a  compressed  representation  of  the  evolution  for  TMs  in

each  of  the  proposed  classes.  (a)  Class  I:  3-state,  3-color  TM  number  177 514146 690.

(b)��Class  II:  3-state,  3-color  TM  number  160 668677 918.  (c)  Class  III:  3-state,  3-color

TM number 51 748890 591. (d) Class IV: 3-state, 3-color TM number 100 715835 730.

Class II: Periodicity and Stability3.1.3

In class II, we group TMs that show a behavior slightly more complex
than  in  those  in  class  I.  The  behavior  of  the  compressed  evolution
shows  some  repetitive  patterns  that  remain  over  the  evolution  of  the
TMs (Figure 5(b)). The TM evolution has some variability toward the
right or left side in a less monotonous way than for TMs in class I. 

Class III: Nonperiodic3.1.4

Turing machines in class III show more variability in evolution, alter-
nating  patterns  between  states  and  growing  in  size  as  evolution  pro-
gresses. Figure 5(c) shows a TM that displays this kind of behavior.

Class IV: Complex Patterns3.1.5

This class represents TMs that have both complex and periodic behav-
ior. Entropy in class IV is just above the entropy for TMs in class III,
but  the  patterns  exhibit  interesting  complexity.  Compressed  TM
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behavior  presented  in  Figure  5(d)  is  very  interesting  because  state  2
(orange  color)  appears  in  successions  that  resemble  Mersenne  num-
bers  [9].  In  Figure  5(d),  with  50 000  simulation  steps  we  obtain  the
sequence 3, 7, 15, 31, 63 and 127 (if you count orange states in each
oblique  line).  This  behavior  resembles  some  kind  of  computation
done  by  this  TM;  it  will  be  interesting  to  focus  on  this  TM  in  future
work.

Classification Generality3.2

We  assessed  generality  for  our  proposed  classification,  using  12
datasets  drawn  from  a  set  of  TM  configurations.  We  used  configura-

tions in the range 2, 6 for both states and colors. Figure 6 shows the

weighted  Silhouette  for  each  configuration.  The  lower  Silhouette  in
Figure  6  is  for  6-state,  6-color  TMs,  though  a  Silhouette  greater  than
0.55 is good. For each dataset in this test, we obtained a high Silhou-
ette value, which shows that our classification is extensible to TMs in
configurations other than three states and three colors. From Figure�6,
we can note a downward trend in the Silhouette value as we increase
the number of states.
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Figure 6.Weighted Silhouette for TMs on a small set of configurations. Labels
identify n states with m colors (e.g., three states with two colors: 3s2c). 

Analysis of 2-State, 3-Color Turing Machines3.2.1

Turing  machines  with  two  states  and  three  colors  were  analyzed  in
Chapter  11  of  [4].  Wolfram  concluded  that  there  are  just  a  few  TMs
with  complex  behavior.  We  classified  the  whole  TM  set  (about  three
million) and found out that most TMs have simpler behavior (class I). 

In order to get a better understanding of our results in the light of
Wolfram’s  claims,  we  followed  an  approach  based  on  TM  596440,
which has been proved as universal [10]. We selected TMs in cluster 6
(class  IV),  then  we  performed  a  subclustering  at  two  levels  with  six
and three clusters, respectively. The cluster that contains TM 596440
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has  a  size  of  137,  but  just  17  different  behaviors.  Figure  7  shows  an
example  of  each  kind  of  behavior.  We  can  observe  symmetries  and
growing  patterns  in  the  evolution  for  every  TM.  Although  we  could
not reduce our list to the 14 referred to by Wolfram, we can say that
our set is worth consideration.

99566 367611 475706 517192 596440

639064 641580 725392 741794 886604

888969 971887 1196043 1239020 1400955

2112215 2772645

Figure 7. Sample of 2-state, 3-color TMs in the same class as the universal Tur-
ing machine 596 440. 

Concluding Remarks4.

We  followed  a  machine  learning–based  approach  that  successfully
allowed  us  to  build  a  classification  for  Turing  machines  (TMs).
Because  our  problem  was  an  unsupervised  machine  learning  task,  we
had to rely on the Silhouette Validity Index as an assessment measure.
We found that optimal clustering is achieved with nine clusters, which
achieved the higher Silhouette Validity Index on all tests. 

Mathematica’s  ClusterClassify  function  was  the  core  tool  for  our
approach.  By  providing  a  high-level  interface  for  classifier  building,
ClusterClassify uses clustering to find a classification. In our case, clas-
sification was done over a set of features that describes TM evolution.
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Using  a  dendrogram  to  capture  relationships  between  clusters,  we
were  able  to  analyze  relationships  between  clusters.  The  dendrogram
for the optimal clustering led us to propose a qualitative classification
of four classes for TM behavior.

Although  we  focused  our  classifier  building  on  3-state,  3-color
TMs,  we  demonstrated  that  our  classification  is  extensible  to  other
TM configurations, keeping an acceptable quality.
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