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A  filamentous  actin  molecule  is  represented  as  a  graph  of  finite-state
machines  (F-actin  automata).  Each  node  in  the  graph  takes  three
states—resting,  excited  and  refractory.  All  nodes  update  their  states
simultaneously  and  by  the  same  rule.  Two  rules  are  considered:  the
threshold rule—a resting node excites if it has at least one excited neigh-
bor, and the narrow excitation interval rule—a resting node excites if it
has exactly one excited neighbor. The distributions of transient periods
and  lengths  of  limit  cycles  in  F-actin  automata  are  analyzed.  Mecha-
nisms  of  limit  cycle  emergence  are  proposed  and  we  speculate  on  how
these can be used to store information in a single actin unit. It is demon-
strated  that  OR,  AND-NOT  and  XOR  gates  can  be  implemented  by
excitation dynamics in F-actin automata. 

Introduction1.

Actin is a protein present in all eukaryotic cells in the form of globu-
lar actin (G-actin) and filamentous actin (F-actin) [1–3]. G-actin poly-
merizes  in  the  double  helix  of  filamentous  actin  (Figure  1(a));  during
polymerization,  G-actin  units  slightly  change  their  shapes  and  thus
become F-actin units [4]. The actin filaments form a skeleton of single
cells,  where  they  play  key  roles  in  motility  and  shape  changing—
together  with  myosin,  and  signal  transduction—together  with  tubulin
microtubules [5]. Actin filament networks are key components of neu-
ral synapses [6]. The actin network is a substrate of cell-level learning
[7–15] and information processing [6, 16–18]. Actin filaments process
information in synapses and cells; they compute in a hardwired sense,
as specialized processors. If we did manage to uncover the exact mech-
anisms  of  information  transmission  and  processing  in  the  actin  fila-
ments  and  establish  an  interface  with  actin  filaments,  we  would  be
able  to  make  large-scale  massive-parallel  nano-computing  devices.  In
[19]  we  proposed  a  model  of  actin  filaments  as  two  chains  of  one-
dimensional  binary-state  semi-totalistic  automaton  arrays.  We
discovered  automaton  state  transition  rules  that  support  traveling
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Figure 1. Actin structure. (a) Schematic drawing of an actin helix. Spheres are
colored for visual guidance only. Each sphere is an F-actin unit, whose molec-
ular structures are shown in (b). (b) F-actin molecule, CPK coloring.

localizations,  compact  clusters  of  nonresting  states.  These  traveling
localizations are analogous to ionic waves proposed in actin filaments
[20].  We  speculated  that  a  computation  in  actin  filaments  could  be
implemented  when  localizations  (defects,  conformational  changes,
ionic  clouds,  solitons),  which  represent  data,  collide  with  each  other
and change their velocity vectors or states. Parameters of the localiza-
tions  before  a  collision  are  interpreted  as  values  of  input  variables.
Parameters  of  the  localization  after  the  collision  are  values  of  output
variables.  We  implemented  a  range  of  computing  schemes  in  several
families  of  actin  filament  models,  from  quantum  automata  to  lattices
with  Morse  potential  [21–25].  These  models  considered  a  unit
(F-actin)  of  the  filament  as  a  single,  discrete  entity  that  can  take  just
two  or  three  states,  and  carriers  of  information  occupied  one  to  two
actin  units.  These  were  models  of  rather  coarse-grained  computation
[21–25].  To  take  the  paradigm  of  computation  via  interaction  with
traveling  localizations  at  the  submolecular  level,  we  must  understand
how  information,  presented  by  a  perturbation  of  some  part  of  an
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F-actin  unit  from  its  resting  state,  propagates  in  the  F-actin  unit,  and
explore if and how computing devices can be implemented in a single
F-actin molecule.

The  paper  is  structured  as  follows.  We  define  a  model  of  F-actin
automata in Section 2. In Section 3 we study the excitation dynamics
of  automata  with  a  threshold  excitation  rule,  and  in  Section  4  we
look at a rule of narrow excitation interval. Stability of the excitation
dynamics  is  analyzed  in  Section  5.  Implementation  of  memory  in
F-actin automata is analyzed in Section 6. Section 7 presents results of
our  search  for  logical  gates  in  F-actin  automata.  Implications  of  our
findings  for  designs  of  novel  computing  devices  are  discussed  in
Section 8. 

Model2.

We  used  a  structure  of  an  F-actin  molecule  produced  using  X-ray
fiber  diffraction  intensities  obtained  from  well-oriented  sols  of  rabbit

skeletal  muscles  [4].  The  structure  was  calculated  with  resolution

3.3Å in the radial direction and 5.6Å along the axis (Figure 1(b)). The
molecular  structure  was  converted  to  a  nondirected  graph  ,  where
every  node  represents  an  atom  and  an  edge  corresponds  to  a  bond
between  the  atoms.  The  graph    has  2961  nodes  and  3025  edges.
The  minimum  degree  is  1,  the  maximum  is  4,  the  average  is  2.044
(with  standard  deviation  0.8)  and  the  median  degree  is  2.  There  are
883 nodes with degree 1, 1009 nodes with degree 2, 1066 nodes with
degree  3  and  two  nodes  with  degree  4.  The  graph    has  a  diameter
(longest shortest path) of 1130 nodes, a mean distance (mean shortest
path between any two nodes) of 376 and a median distance of 338.

We study the dynamics of excitation in the actin graph  using the
following  models.  Each  node  s  of    takes  three  states:  resting  (◦),
excited  (⊕)  and  refractory  (⊖).  Each  node  s  has  a  neighborhood  u(s)
that is a set of nodes connected to the node s by edges in . A resting
node st  ◦ excites depending on a number σs

t
 of its excited neighbors

in neighborhood u(s): σs
t  ∑w∈u(s) w

t  ⊕. We consider two excita-

tion  rules.  In  rule  0,  a  resting  node  excites  if  it  has  at  least  one

excited  neighbor:  σs
t > 0.  In  rule  1,  a  resting  node  excites  if  it  has

exactly one excited neighbor: σs
t  1 (we do not consider rules where

σs
t > 1  because  excitation  there  becomes  extinct  quickly).  Transitions

from excited state to refractory state and from refractory state to rest-
ing  state  are  unconditional;  that  is,  these  transitions  take  place  inde-
pendently  of  the  neighborhood  state.  The  rules  can  be  written  as
follows: 
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0 1

st+1 

⊕, ifσs
t > 0

⊖, ifst  ⊕

◦, otherwise

, st+1 

⊕, ifσs
t  1 

⊖, ifst  ⊕ 

◦, otherwise.

At  the  beginning  of  each  computational  experiment,  the  F-actin
automaton    is  in  a  resting  state;  every  node  is  assigned  state  ◦.  An
excitation  dynamic  is  initiated  by  assigning  a  portion  of  randomly
selected  nodes  nonresting  states:  ⊕  or  ⊖.  Three  stimulation  scenarios
are considered: 

◼ Single  node  stimulation:  a  single  node  is  selected  at  random  and  this
node is assigned excited state ⊕. 

◼ (+)-stimulation: a specified ratio of nodes is selected at random and the
selected nodes are assigned excited state ⊕. 

◼ (+-)-stimulation: a specified ratio of nodes is selected at random and the
selected  nodes  are  assigned  either  excited  state  ⊕  or  refractory  state  ⊖

at random.

The  automaton    is  deterministic;  therefore,  from  any  initial  con-
figuration  the  automaton  evolves  into  a  limit  cycle  in  its  state  space
(where  its  configuration  is  repeated  after  a  finite  number  of  steps)  or
an  absorbing  state  (this  is  limit  cycle  length  one).  For  the  rules
selected, there is only one absorbing state—all nodes are in the resting
state. A limit cycle is comprised of configurations where compact pat-
terns  of  excitation  travel  along  closed  paths.  A  transient  period  is  an
interval of automaton evolution from initial configuration to entering
a limit cycle or an absorbing state. 

For  modeling,  visualization  and  analyses  we  used  Processing
(www.processing.org),  R  (www.r-project.org),  iGraph  (igraph.org)
and Chimera (www.cgl.ucsf.edu/chimera).

Dynamics of 03.

Single-Node Stimulation3.1

The  excitation  propagates  as  a  localized  pattern  (Figure  2(a–f)).  The
number  of  nodes  excited  at  every  single  step  of  time  varies  between
one and five (Figure 3(a)). Sometimes an excitation pattern splits into
two  localizations  that  travel  along  their  independent  pathways.  The
automaton  0  always  evolves  into  the  absorbing  state  where  all

nodes  are  resting.  This  is  because  traveling  localizations  either  cancel
each other when they collide or reach cul-de-sacs of their pathways. A
distribution  of  transition  periods  is  shown  in  Figure  3(b).  The  mean
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(a) t + 1 (b) t + 2 (c) t + 3

(d) t + 4 (e) t + 5 (f) t + 6

(g) t + 7 (h) t + 8 (i) t + 9

(j) t + 10 (k) t + 11 (l) t + 12

Figure 2. Exemplar  excitation  dynamics  of  0  in  a  scenario  of  single-node

stimulation. In the initial configuration, all nodes are resting, but one node is
excited.  (a–f)  Snapshots  of  the  simulation.  Excited  nodes  are  red;  refractory
nodes are blue; resting nodes are light gray.
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(a)

(b)

Figure 3. Integral  dynamics  of  rule  0  automata  in  scenarios  of  single-node

stimulation.  (a)  Number  of  excited  nodes  at  each  step  of  simulation  in  a  sin-
gle experiment. (b) Distribution of transient periods.

transition period is 840 time steps, the median is 847, the minimum is
2 and the maximum is 1131. Only 29 nodes, when stimulated, lead to
excitation  development  with  a  transition  period  between  2  and  15
steps.  Stimulation  of  all  2932  others  triggers  excitation  dynamics  for
at least 568 steps. The longest transition period is observed when the
localized  excitation  runs  along  a  longest  shortest  path  where  the  ini-
tially stimulated node is a source. The path of the longest excitation is
visualized in Figure 4(a). The path matches the backbone of the actin
unit (Figure 4(b)).

(+)-Stimulation3.2

When  we  stimulate  more  than  one  node,  the  automaton  0  exhibits

several  “epicenters”  of  excitation:  the  patterns  of  excitation  propa-
gate  away  from  their  origins  (Figure  5)  and  populate  the  graph.  This
stage  is  manifested  in  an  increasing  number  of  excited  states  at  each
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(a) (b)

Figure 4. (a)  Longest  path  of  excitation  propagation  in  0  displayed  by

bonds.  (b)  Actin  graph  plotted  in  Kamada–Kawai  layout  [26]  with  nodes  of
degree 1 removed.

step of the evolution (Figure 6(a)). Eventually, depending on distances
between sources of excitation, the graph becomes overpopulated with
waves and localizations; for example, in Figure 6(a) a peak is reached
in seven to eight steps. Then patterns of excitation start colliding with
each  other  and  annihilate  in  the  results  of  the  collisions.  The  number
of  excited  nodes  decreases  over  time  (Figure  6(a)),  and  the  graph
returns  to  the  totally  resting  state.  The  larger  the  portion  of  initially
excited  nodes,  the  more  quickly  evolution  halts  in  the  resting  state
(Figure  6(b)).  The  “more  quickly”  can  be  quantified  by  a  polynomial

function  p  4.7 · ρ-0.6,  where  p  is  the  length  of  a  transient  period
and ρ is the ratio of initially excited nodes.
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(a) t + 1 (b) t + 2 (c) t + 3

(d) t + 4 (e) t + 5 (f) t + 6

(g) t + 7 (h) t + 8 (i) t + 9

Figure 5. Exemplar dynamics of 1. In the initially resting configuration, 1%

of  nodes  are  excited.  Snapshots  of  the  simulation.  Edges  of    are  shown  by
gray color, excited nodes are red and refractory nodes are blue; resting nodes
are not shown.
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(a)

(b)

Figure 6. Integral  dynamics  of  0  in  scenarios  when  a  portion  of  nodes  are

excited initially. (a) The number of excited nodes versus time: initially, 1% of
nodes  are  assigned  excited  states.  (b)  Ratio  of  initially  excited  nodes  versus
average transient period. Standard deviation is shown as error bars.

(+-)-Stimulation3.3

In  a  “classical”  two-dimensional  discrete  excitable  medium,  stimula-
tion  of  the  medium  with  an  excited  node  neighboring  with  a  refrac-
tory  node  leads  to  formation  of  a  spiral  wave.  Due  to  the  spiral
waves,  excitation  can  persist  in  a  modeled  medium  indefinitely.
F-actin  automata  follow  this  principle.  When  we  stimulate  nodes  of
0 such that some of the nodes get excited states and some get refrac-

tory  states,  we  unleash  the  excitation  patterns.  The  average  level  of
excitation  over  trials  is  proportional  to  the  number  of  nodes  stimu-
lated  (see  row  e  in  Table  1(a)).  The  automaton  enters  a  limit  cycle
(Figure 7). The limit cycle’s length varies from 5 to 14 time steps (see
row c in Table 1(a)). Apparently, the automaton falls into the longest
limit  cycles  when  nearly  half  of  the  nodes  are  stimulated;  however,
due  to  high  deviation  of  the  results  (see  row  σ(c)  in  Table  1(a)),  we
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would  not  state  this  as  a  fact.  Lengths  of  transient  periods,  from
stimulation to entering the limit cycle, are over half of the number of
nodes in .

Figure 7. Integral dynamics of 0  in scenarios when 1% of nodes are assigned

excited or refractory states initially.

ρ p c e σ(p) σ(c) σ(e) 
10 1613 6 535 1820 1 55 

20 1432 5 562 988 0 52 

30 1984 7 626 1275 8 108 

40 2536 14 598 3064 15 15 

50 1583 13 786 610 8 206 

60 2614 14 719 3322 14 191 

70 2052 9 805 2236 4 207 

80 1311 5 705 521 1 180 

(a) 0, (+-)-start.

ρ p c e σ(p) σ(c) σ(e) 
0.1 1154 13 570 1251 12 39 

0.2 1388 13 553 961 12 50 

0.3 893 11 575 362 10 8 

0.4 920 24 590 487 11 51 

0.5 996 16 575 832 13 11 

0.6 746 16 594 238 12 24 

0.7 891 16 625 455 11 77 

0.8 1354 16 639 408 12 109 

0.9 1729 15 577 1368 13 13 

(b) 1, (+)-start.
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ρ p c e σ(p) σ(c) σ(e) 
0.1 893 118 496 934 355 172 

0.2 2328 5 583 1525 0 6 

0.3 1953 13 599 1791 12 16 

0.4 1957 8 591 2400 8 5 

0.5 1785 14 636 2567 12 130 

0.6 976 6 706 345 3 179 

0.7 1342 11 709 464 13 175 

0.8 1170 13 625 620 14 109 

0.9 2599 5 593 2452 1 14 

(c) 1, (+-)-start.

0 1

(+)-start (+-)-start (+)-start (+-)-start 
p 840 1997 1118 1667 

c 1 10 15 21 

e 0 665 588 615 

(d) Characteristics averaged.

Table 1. Characterization of excitation dynamics in actin automata . Depen-
dence  of  the  dynamic  on  ratios  of  stimulated  nodes.  (a)  0,  initially  excited

ratio ρ of nodes. (b) 1, initially excited ratio ρ of nodes. (c) 1, initial ratio ρ

of nodes assigned excited and refractory states at random. Data is collected in
10  experiments  for  each  value  of  ρ.  For  10  ratios  ρ  of  initially  stimulated
nodes,  ρ  0.1, 0.2, … , 0.9,  we  calculated  lengths  of  transient  period  p,
lengths  of  cycles  c,  numbers  e  of  excited  nodes  in  a  cycle  and  their  standard
deviations  σ(p),  σ(c),  σ(e).  Values  are  rounded  to  integer.  (d)  Characteristics
averaged over all stimulation ratios for each rule and stimulation scenario.

Dynamics of 14.

Single-Node Stimulation4.1

When  a  single  node  is  excited  initially,  the  automaton  1  always

evolves to a globally resting state. In sampling 70 trials, we found that
the  average  length  of  the  transient  period  is  862  time  steps  (standard
deviation  230)  and  the  average  length  of  the  media  transition  period
is  869.  The  average  transient  period  to  the  resting  state  is  22  steps
longer than the one in the automaton 0.

(+)-Stimulation4.2

In  contrast  to  automaton  0,  automaton  1  does  not  show  a  pro-

nounced  sensitivity  to  a  ratio  ρ  of  initially  excited  nodes.  Transition
periods for all values of ρ are grouped around 1112 (Table 1(b)). The
automata  always  evolve  to  limit  cycles.  Cycle  lengths  are  around  15
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time  steps,  with  an  excitation  level  (number  of  excited  nodes)  of  just
below  600  nodes.  The  system  shows  a  high  degree  of  variability  in
lengths  of  transition  periods  and  cycles,  as  manifested  in  large  values
of  standard  deviations  σ(p)  and  σ(c).  Level  of  excitation  typically
remains preserved.

(+-)-Stimulation4.3

1 behaves similarly to the scenario of (+)-start: there are many travel-

ing  localizations,  which  collide  and,  mostly,  annihilate  each  other.  A
few localizations survive by finding a cyclic path to travel: if no other
localization  enters  their  path,  the  remaining  localizations  can  cycle
“forever.”  The  surviving  localizations  are  responsible  for  1  falling

into  the  limit  cycle.  An  automaton  starting  with  a  mix  of  randomly
excited and refractory states usually travels one-and-half times longer
to  its  limit  cycle  than  the  same  automaton  starting  only  with  ran-
domly excited states (compare Table 1(b) and Table 1(c)).

Stability of the Dynamics5.

How  does  repeated  stimulation  affect  the  excitation  dynamics  of  0

and 1? (+)-stimulation of 0  at any stage of its evolution raises the

level  of  excitation  by  an  amount  equivalent  to  that  of  a  stimulated
resting  automaton  (Figure  8).  Thus  repeated  stimulation  prolongs
return  of  the  automaton  to  its  resting  state.  In  the  scenario  of
(+-)-stimulation, 0  evolves to a limit cycle. Repeated (+-)-stimulation

of the automaton while it is in the limit cycle causes the automaton to
change  its  trajectory  in  a  state  space.  This  change  is  characterized  by
an  initially  reduced  level  of  excitation.  Typically,  the  excitation  level
drops by 100 to 150 nodes at the moment of stimulation. The level of
excitation  returns  to  its  “pre-stimulation”  value  in  400  to  500  time
steps. 

Implementation of Memory6.

F-actin automata entering limit cycles could act as models of informa-
tion  storage  in  actin  filaments.  The  minimal  length  of  a  limit  cycle
detected  is  five  time  steps.  Thus  aromatic  rings  could  be  a  substrate
responsible  for  some  patterns  of  cycling  excitation  dynamics.  Let  an
aromatic  ring  automaton  be  stimulated  such  that  a  node  is  assigned
an excited state and one of its neighbors is assigned a refractory state.
The  wave  of  excitation  (comprised  of  one  excited  and  one  refractory
state)  propagates  into  the  direction  of  its  excited  head  (Figure  10(a)).
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The  excitation  running  along  the  aromatic  ring  cannot  be  extin-
guished  by  stimulation  of  one  resting  node  (Figure  10(b–e))  or  two
resting  nodes  (Figure  10(f–h)).  This  is  because  an  excited  node
surrounded  by  two  resting  neighbors  excites  both  resting  neighbors.
Thus  excitation  waves  propagate  along  the  ring  in  both  directions.
Therefore, even if the original excitation wave is canceled by external
stimulation,  then  a  similar  running  wave  will  emerge.  To  extinguish
the  excitation  in  the  aromatic  ring,  we  must  externally  excite  all  four
resting nodes or force them into a refractory state.

Figure 8. Dynamics  of  0  automaton  under  repeated  stimulation.  In  each

trial,  5%  of  nodes  were  initially  excited.  (a)  No  more  stimulation  applied.
(b–d) Automaton was stimulated by exciting 5% of nodes at the fifth step (b),
tenth step (c) and twentieth step. (d) Steps of evolution.

Figure 9. Dynamics  of  0  automaton  under  repeated  stimulation.  Initially,

10%  of  nodes  were  assigned  an  excited  or  refractory  state  at  random.  When
the automaton reached the limit cycle, the stimulation was repeated.
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Figure 10. Excitation  dynamics  of  aromatic  ring  automaton  governed  by  0.

(a) Propagation of excitation wave on undisturbed ring automaton. (b–i) Stim-
ulation of ring automaton.

Figure 11. Configuration  of  resting  0  at  the  moment  of  external  stimulation

of  histidine’s  aromatic  ring.  Resting  nodes  are  light  gray;  excited  nodes  are
red; refractory nodes are blue.

The excited aromatic rings act as generators of excitation in F-actin
automata. Let us consider an example. In Figure 11, we see histidine’s
aromatic ring stimulated: one node is assigned an excited state and its
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neighbor  a  refractory  state.  The  wave  of  excitation  travels  along  the
ring  clockwise  (Figure  12(a–c)).  When  excitation  reaches  a  node
linked  to  the  rest  of  the  graph,  the  excitation  propagates  along  the
“bridge” (Figure 12(d)). The excitation then propagates further inside
the  graph  (Figure  12(e–f)),  splitting  into  two  compact  excitation
patterns  at  the  junctions  (Figure  12(g–h)).  The  overall  pattern  of
excitation  in  0  recorded  at  the  ninetieth  step  of  evolution  is  shown

in Figure 13. 

(a) t  1 (b) t  2 (c) t  3 (d) t  4 (e) t  5

(f) t  6 (g) t  7

(h) t  10

Figure 12. Excitation dynamics of 0 triggered by excitation of histidine’s aro-

matic  ring.  The  first  10  steps  of  the  automaton  evolution  are  shown.  Only
part  of  the  graph  adjacent  to  excitation  is  displayed.  Resting  nodes  are  light
gray; excited nodes are red; refractory nodes are blue.
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Figure 13. Pattern of excitation of 0 triggered by excitation of histidine’s aro-

matic ring as shown in Figure 12. The pattern is recorded at the ninetieth step
of  evolution.  Resting  nodes  are  light  gray;  excited  nodes  are  red;  refractory
nodes are blue.

Logical Gates7.

We  search  for  the  Boolean  logical  gates  by  selecting  a  pair  of  nodes,
exciting  these  nodes  by  representing  all  possible  combinations  of
inputs,  and  checking  the  states  of  all  other  nodes  in  the  automaton.
Let two nodes i and j be selected as inputs and one node p as an out-
put.  Boolean  logical  variables  are  x  and  y  (inputs)  and  z  (output).
Automaton    is  in  a  resting  state.  Logical  values  of  inputs  are  con-
verted  to  initial  states  of  input  nodes  as  follows.  If  x  TRUE  then

si
0  ⊕; if y  TRUE then sj

0  ⊕. We allow the automaton to evolve

until a limit cycle or an absorbing state is reached. During the automa-
ton’s evolution, we monitor the state of the output node p. If at some
time step t we have sp

t  ⊕, we assign z  TRUE.

We sampled 100 pairs of input nodes, selected at random. For each
pair, we tested outputs on each of 2961 nodes (in many cases, several
nodes can act as outputs for the same input pair). Statistics are shown
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in  Table  2.  Almost  every  pair  of  nodes  tested  can  act  as  input  of  one
of  the  logical  gates.  Both  automata  0  and  1  implement  gates  OR

(x + y) and AND-NOT (xy and xy) with similar frequencies. Automa-
ton 1  also implements gate XOR (xy + xy), albeit there are only two

potential  outputs  for  each  input  pair  on  average.  Exemplar  locations
of  input  and  output  nodes  in  an  XOR  gate  are  shown  in  Figure  14.
Frequencies of potential output nodes vary between the gates. Almost
every node can be an output for an XOR gate. Only 36–39 nodes are
found  to  be  outputs  for  an  AND-NOT  gate,  and  just  two  nodes  can
be outputs for an XOR gate (Table 2). 

xy xy x + y xy + xy
0

n 97 97 97 0
m (σ(m)) 38 (10) 39 (10) 2854 (12) 0
1 

n 95 95 97 50 

m (σ(m)) 36 (7) 39 (8) 2802 (111) 2 (1)

Table 2. Data  on  gates  discovered  in  F-actin  automata  0  and  1.  n  is  the

number of input node pairs discovered in 100 trials, m is the number of out-
put nodes (that show the same outputs) for each discovered gate, and σ(m) is
its standard deviation.

Figure 14. XOR  gate  architecture.  Input  nodes  i  and  j  are  blue;  output  nodes
(each one of the nodes reports x ⊕ y) are red.
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Discussion8.

A  concept  of  molecular  automata  is  neither  novel  nor  rigorously
defined.  Work  has  been  done  on  automaton  genotype-phenotype
state-transition  functions  [27],  cellular  automaton  models  of  molec-
ular  arrays  [28,  29],  enzymatic  networks  [30,  31],  quantum-dot
cellular automata applied to molecular topologies [32, 33], molecular-
sized  switches  [31,  34]  and  self-assembling  molecular  automata  [35].
Most  of  the  results  implement  automata  at  the  super-molecular  level.
Soliton automata [36, 37] are the finest and oldest example of the sub-
molecular  automata:  they  employ  flip-flop  operations  of  switching
between  single  and  double  bonds;  this  is  somewhat  reminiscent  of
structurally dynamic cellular automata [38]. We presented submolecu-
lar automata, where every atom is a finite-state machine (automaton)
and chemical bonds are links between the automata.

An  automaton  model  of  an  F-actin  unit  is  a  fast  prototyping  tool
for studying the dynamics of excitation, voltage solitons and traveling
localizations  in  actin  filaments,  allowing  for  controlling  propagation
of localizations at the atomic level. Two rules of excitation were ana-
lyzed.  The  first  rule  states  that  a  resting  node  excites  if  it  has  at  least
one excited neighbor (0): this is a classical threshold excitation rule.

The second rule states that a resting node excites if it has exactly one
excited neighbor (1): this may be seen as a rule of nonlinear excita-

tion,  because  only  a  narrow  band  of  local  excitation  triggers  excita-
tion  in  the  node.  We  did  not  consider  other  ranges  of  thresholds  or
excitation  intervals,  because  they  always  lead  to  extinction  of  excita-
tion at the very beginning of the evolution. Both rules support propa-
gating  excitations.  Automata  0  show  longer  transition  periods,

smaller  limit  cycles  and  larger  average  levels  of  excitation  than
automata  1  (Table  1(d)).  When  a  resting  automaton  0  is  stimu-

lated  by  external  excitation  of  some  nodes,  the  excitation  patterns
spread all over the automaton graph but then decline and extinguish.
Stimulation  of  actin  automata  with  a  mix  of  excited  and  refractory
states  leads  to  excitation  dynamics  with  longer  transient  periods  and
formation  of  repeated  patterns  of  excitation,  analogous  to  oscillatory
structures.  The  limit  cycles  are  stable:  an  automaton  subjected  to
repeated  stimulation  always  slides  back  to  its  pre-stimulation  activity
level. 

Due  to  substantial  noise  tolerance  of  excitation  waves  propagating
in  aromatic  rings,  the  rings  could  be  seen  as  memory  devices  in  a
hypothetical  actin  computer.  Assume  an  excited  aromatic  ring  repre-
sents  one  bit.  To  write  a  bit,  we  excite  one  node  and  inhibit  (force
into  refractory  state)  one  of  its  neighbors.  To  erase  a  bit,  we  must
excite  or  inhibit  all  resting  nodes.  An  F-actin  unit  contains  40  rings
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(eight of histidine, 12 of phenylalanine, four of tryptophane and 16 of
tyrosine);  see  configuration  of  the  aromatic  rings  in  Figure  15.  Thus
an  F-actin  unit  can  store  40  bits.  The  maximum  diameter  of  an  actin
filament  is  8  nm  [39,  40].  An  actin  filament  is  composed  of  overlap-
ping units of F-actin (Figure 1(a)). Thus, the diameter of a single unit
is about 4 nm. This gives us an estimate for a density of bits stored in

ensembles  of  F-actin  units:  64  petabits  per  square  inch  (6.452 · 1016

per square inch). Such memory density substantially exceeds not only
the  areal  density  2.2  gigabits  of  a  compact  disc  but  even  the  latest
areal density of 2.77 terabits per square inch revealed by Micron [41].
Density of gates AND-NOT, measured by a number of potential out-
put  nodes,  is  almost  the  same  as  density  of  bit-storage  units;  density
of XOR gates is 20 times less. 

Figure 15. F-actin molecule with aromatic rings highlighted in red.

The  XOR  gate  is  a  rare  species  not  only  in  automaton  models  of
the F-actin molecule but in many other natural systems. The frequen-
cies of a gate’s occurrences in a material might act as a measure of the
gate’s  complexity.  Let  gates  g1  and  g2  be  discovered  with  frequencies

f(g1) and f(g2); we say gate g1  is easier to develop or evolve than gate

g2: g1g2  if f(g1) > f(g2). The hierarchies of gates obtained using evolu-

tionary  techniques  in  liquid  crystals  [42],  light-sensitive  modification
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of  the  Belousov–Zhabotinsky  system  [43],  morphological  complexity
of  one-dimensional  cellular  automata  governed  by  the  gate  [44]  and
gates  generated  in  slime  mold  Physarum  polycephalum  [45]  are  com-
pared with the hierarchies of gates found in F-actin automata 0  and

1 below: 

◼ Gates in F-actin automaton 0: OR ⊳ AND-NOT. 

◼ Gates in F-actin automaton 1: OR ⊳ AND-NOT ⊳ XOR. 

◼ Gates  in  liquid  crystals  [42]:  {OR,  NOR}  ⊳  AND  ⊳  NOT  ⊳  NAND  ⊳

XOR. 

◼ Gates in Belousov–Zhabotinsy medium [43]: AND ⊳ NAND ⊳ XOR. 

◼ Gates in cellular automata [44]: OR ⊳ NOR ⊳ AND ⊳ NAND ⊳ XOR. 

◼ Gates  in  Physarum  [45]:  AND  ⊳  OR  ⊳  NAND  ⊳  NOR  ⊳  XOR  ⊳

XNOR. 

F-actin  follows  a  general  trend:  gate  AND  is  easier  to  find  than
gate  OR,  and  gate  OR  is  easier  to  find  than  gate  XOR.  The  gate
XNOR  is  the  rarest  gate,  and  it  could  not  be  found  in  principle  in
F-actin  automata  because  there  is  no  self-excitation:  two  resting
inputs cannot make an excited output. 
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