
Infinite Petri Nets: Part 2, Modeling

Triangular, Hexagonal, Hypercube and

Hypertorus Structures

Dmitry A. Zaitsev

Vistula University
Warsaw, Poland

Ivan D. Zaitsev

Ershov Institute of Informatics Systems
Novosibirsk, Russia

Tatiana R. Shmeleva

National Academy of Telecommunications
Odessa, Ukraine

A composition and analysis technique was developed for investigation
of infinite Petri nets with regular structure introduced for modeling net-
works, clusters and computing grids that also concerns cellular
automata and biological systems. A case study of a hypercube structure
composition and analysis is presented; particularities of modeling other
structures are discussed: triangular and hexagonal structures on a plane
and a hypertorus in a multidimensional space. Parametric description
of Petri nets, parametric representation of infinite systems for the calcu-
lation of place/transition invariants and solving them in parametric
form allow the invariance proof for infinite Petri net models. Complex
deadlocks are disclosed and a possibility of the network blocking via ill-
intentioned traffic revealed. Prospective directions for future research of
infinite Petri nets are formulated and hypotheses advanced.

Introduction 1.

Petri nets find wide application in automated manufacture [1, 2], busi-
ness [3], telecommunications [4], computing [5], cellular automata
[6,�7] and systems biology [8]. Classical Petri net theory was devel-
oped for finite Petri nets. The first book on the subject was published
by Peterson [9], then a series of books appeared on various aspects of
Petri net theory and application. A review of them with the summary
of the current state of Petri net theory was published by Murata [10].
Recent developments include particular extensions of Petri nets, such
as colored Petri nets [11] and their application for business process
management [3]. Moreover, specializations of process-resource Petri
nets were developed and applied for finding deadlocks in manufactur-
ing systems [1, 2].

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

The verification of telecommunication protocols involving an
unlimited number of devices is a significant scientific problem. The
majority of known works study communication processes in pairs of
communicating devices [12, 13]. But anomalies may occur that
involve an arbitrary number of communicating devices, as shown in
the present paper.

The first paper where infinite Petri nets were introduced and
applied to solving practical tasks appeared in 2006, as cited in [14]; it
solved the problem of Marsan [15] of verification of an Ethernet net-
work with the common bus architecture. Then, as the result of accom-
plishing a project on a NATO grant, a series of papers was published.
Shmeleva applied infinite Petri nets with a tree-like structure to ana-
lyze a switched Ethernet network. Then the approach was applied for
analysis of square computing grids [16]. Finally, a hypercube struc-
ture was analyzed [17]. It was proven that there exists a possibility of
blocking a grid or network by ill-intentioned traffic. Recent develop-
ments include studying of various edge conditions of grids [18], a
dual parametric description of a grid [19] and software generators of
grids’ models [20] with a given size.

The majority of Petri net examples studied in the literature are
rather simplified models of real-life systems and processes. A certain
gap is formed between large-scale nets, employed in real-life projects,
and illustrative examples, found in articles and monographs. More-
over, various simulating systems, which are counted in dozens and
hundreds, have been tested and presented on simplified examples of
nets. Thus, there is a definite deficiency of both realistic models and
simulating systems that are able to analyze large-scale nets in admissi-
ble time. In many cases, detailed models, close to enterprise-class
specifications, are a trade secret, and simulating systems, which are
able to analyze them, are only available commercially. So certain dif-
ficulties arise when developing formal methods of Petri net analysis
and the corresponding software, induced by the lack of actual nets.
In �many cases, the application of random Petri nets does not give the
appreciated result, since artificial (industrial-level) systems possess a
series of particularities—for instance, they are decomposed into a
few functional subnets [14], while random nets are close to
indecomposable.

A demand exists for a library of large-scale Petri nets that are
either models or specifications of real-life systems, as well as for facili-
ties for automated construction (synthesis) of specific Petri nets with
given characteristics: number of vertices, density and localization of
arcs, connectivity and so on. Owing to the lack of appropriate actual
nets, it is difficult to formulate a set of characteristics and their ranges
for various standard models: a parallel program; a computing, produc-
tion, transport or other system. While there is no objective precondi-

342 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

tion for solving general tasks of Petri net synthesis, it is possible to
construct special generators of Petri nets [20] for separate application
domains [19].

Thus, a basis of infinite Petri nets theory was developed that is
described in the present paper, as well as the directions for future
work to accomplish the development of infinite Petri nets theory.
Moreover, a case study of Petri net software generator construction
for modeling computing grids is presented for the first time in
English. The described technique could be employed in a wide range
of Petri net application domains, including automated manufacture,
business processes and programming.

The first problem that researchers encountered when verifying net-
working protocols via Petri nets was the problem of exponential com-
putation complexity of the majority of known analysis methods. To
solve this problem, the compositional analysis of Petri nets [14] was
offered based on the decomposition of a net into the set of its func-
tional subnets (clans), solving tasks for each clan and then, either
simultaneous or sequential composition of functional subnets. Solving
a few systems with considerably lesser dimension (size) under the con-
dition of exponential complexity allowed an exponential speedup of
computations and verification of known protocols, such as ECMA,
BGP, TCP and IOTP, in a reasonable time [14].

The second problem arose when investigating protocols of the Eth-
ernet network with common bus architecture [15]. It was rather sim-
ple to construct a model of a single device. The majority of protocols
stipulate interaction of two systems, for example, as protocol TCP.
Electronic commerce protocol IOTP [21] considers a few interacting
systems, but their number is constant: Customer, Merchant, Payment
Handler, Delivery Handler and Merchant Customer Care Provider.
An Ethernet segment with common bus architecture could contain a
priori an unknown number of computers, which is reasonable to not
limit in research in spite of definite physical limitations stated in
standards.

To solve this problem, infinite Petri nets with regular structure
were introduced for the first time as a linear composition of the work-
station models [14]. The further progress of research was indicated by
the number of dimensions and the structure of devices’ connections:
tree-like structures for analysis of switched Ethernet; triangular, rect-
angular, and hexangular grids for analysis of distributed computa-
tions, radio and television broadcasting, and cellular communications
[19], as well as various edge conditions [18], which define a connec-
tion of a model with its environment. In the most general form,
results were obtained for a hypercube with an arbitrary size and an
arbitrary number of dimensions [17].

Infinite Petri Nets: Part 2 343

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

The practical value of the obtained result on deadlocks disclosure
within the mentioned structures and their classification consists in
revealing possibilities of network blocking via ill-intentioned traffic of
special form [16, 17, 22].

The present paper generalizes models studied in [23] of multidimen-
sional spaces and structures of various shapes: triangular, hexagonal;
it also specifies a technique of software generators [20] for models
with regular structure.

Plain Grids of Different Shapes and Trees 2.

The communication device model [23] (represented with equa-
tion�(1)), under various values of the parameter np, could be involved
in composition of models of triangular and hexangular grids, trees
and networks of an arbitrary structure. From the models of devices in
the forms of a triangle and hexagon (Figure 1), models of triangular
and hexangular grids are composed (Figure 2).

(a) (b)

Figure 1. Forms of devices’ models: (a) triangle; (b) hexagon.

Triangular grids correspond with the forms of the coverage area in
modern systems of radio and television broadcasting. Hexangular
grids find their wide application when modeling cellular communica-
tion systems and networks.

Application of infinite models, constructed on the base of the
device model of form [23] (equation (1)), historically started from
tree-like structures, which are the model of modern switched net-
works of the technology Ethernet. In Figure 3, a binary tree is repre-
sented, which is convenient for theoretical research; modern Ethernet
switches contain, as a rule, 8, 16, 24 and more ports.

344 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

(a) (b)

Figure 2. Composition of grids: (a) triangular; (b) hexangular.

Figure 3. Composition of tree-like structures.

In the conducted research, a single basic fragment was employed
for composition of either trees or grids. A prospective direction is
working with a few basic fragments (a finite set) and arbitrary
schemes of their connection.

Infinite Petri Nets: Part 2 345

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

Cubic Grid 3.

All early studied models were constructed on a plane. However, for
solving boundary value problems in space, structures of cubes as a pat-
tern of processor (computers) connection is widely applied.

To construct the corresponding model, each device is represented
by a cube of unit size with ports situated on its facets (Figure 4(a)).
For generalization on an arbitrary number of dimensions, when con-
structing the cube model, a new system of the ports’ enumeration was
chosen. Recall that within the rectangular grid model, the ports were
enumerated clockwise starting from the upper side.

Within a cube, the device ports (facets) have two indices: the first is
the number of the dimension, and the second is the number of the
direction. The number of the dimension corresponds to the coordi-
nate axis along which (perpendicular to which) opposite facets are
situated; the direction to the beginning of coordinates is designated as
1 and the direction to infinity is designated as 2. In Figure 4(b), a
graphical representation of the parametric description of the device
model in equation (1) from [23] is shown, taking into consideration
the system of the ports’ notation.

(a) (b)

Figure 4. Model of a cube device.

A scheme of the cubic grid model composition is represented in Fig-
ure 5. Neighboring devices, the same as for plane grids, are connected
via fusion (union) of the ports’ contact places.

346 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

Figure 5. Composition of a cube.

Hypercube Grid Structure 4.

The model of a device in the form of a cube (Figure 4(b)) does not
possess a distinction of obviousness. That is why, in the further con-
structions, a preference is given to the parametric description. The pre-
vious constructions were implemented with the increment of the
number of dimensions: 1–line, 2–plane, 3–space; let us generalize the
results on an arbitrary number of dimensions.

Parametric Model of Hypercube Communication Device 4.1

Let us consider a d-dimensional space, where d  1, 2, …. Each com-
munication device is represented by a hypercube of size 1 in d-dimen-
sional space. The communication structure composed by connected
communication devices constitutes a hypercube of size k, where

k  1, 2, …. So the total number of devices is Ndev  kd. Each device

Ri1,i2,… ,id
 has its index (i1, i2, … , id), where iu  1, k, u  1, d. The

model of the hypercube communication structure is denoted as Hd, k.

Next we describe the Petri net model of a device and then the compo-
sition of a communication structure model via connections of a device
with its neighbors.

The model of a hypercube device is denoted as Hd, 1 (number of

dimensions equals d, size of the structure equals 1). On each facet of a

hypercube device Ri1, i2,… ,id
 in d-dimensional space a port is situated.

So each device has Nport  2 · d ports; two ports for each dimension

are situated at the opposite facets of the hypercube. To denote

Infinite Petri Nets: Part 2 347

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

opposite facets for a dimension j (j  1, d), the number of the direc-
tion is used. The direction is denoted by the variable n; the value
n  1 is used for the direction to zero in the corresponding dimension
and the value n  2 is used for the opposite direction to infinity. So

the ports may be denoted with the following indices: portj, n
i1, i2,… ,id ,

where iu  1, k, u  1, d, j  1, d, n  1, 2. Each port is represented

by the two channels (input, output); each channel is represented by a
pair of places: one place for the packets buffer, the other for the

buffer capacity. So each port of the device Ri1, i2,… ,id
 is represented by

the four following contact places:

pij, n
i1, i2,…id input buffer of packets;

pilj, n
i1, i2,…id capacity of input buffer equals 1;

poj, n
i1, i2,…id output buffer of packets;

polj, n
i1, i2,…id capacity of output buffer equals 1.

The inside of the device contains Nport + 1 following places. The

packets redirected to the port portj′, n′
i1, i2,… ,id

 are stored in the corre-

sponding place pbj′, n′
i1, i2,…id , and one place pbli1, i2,…id

 contains the

capacity of the internal buffer, where j′  1, d, n′  1, 2. Notice that

the internal buffer is represented by the set of places pbj′, n′
i1, i2,…id

 (one

place for each port) to distinguish the number of the destination port
given by indices j′, n′.

The transitions of the device Ri1, i2,… ,id
 provide the redirection of

the input packets from an input port buffer place pij, n
i1, i2,…id

 into one

of the internal buffer places pbj′, n′
i1, i2,…id , j′ ≠ j, n′ ≠ n and then the

transmission of the packets from the internal buffer place pbj′, n′
i1, i2,…id

to the output buffer of the target port poj′, n′
i1, i2,…id . Moreover, the limita-

tions of the buffers’ capacities should be taken into consideration:
check and decrease the buffer size at putting the packet into the
buffer; increase the buffer size at getting the packet from the buffer.

So each port portj, n
i1, i2,… ,id

 of the device Ri1, i2,… ,id
 is supplied by

Nport  Nport - 1 + 1 following transitions:

one transition for the output channel toj, n
i1, i2,…id

 with the input arcs from

places pbj, n
i1, i2,…id , polj, n

i1, i2,…id
 and the output arcs to places poj, n

i1, i2,…id ,
pbli1, i2,…id

1.

348 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

Nport - 1 transitions tij, n, j′, n′
i1, i2,…id , j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n for the

input channel with the input arcs from places pij, n
i1,i2,…id , pbli1, i2,…id

 and

the output arcs to places pbj′, n′
i1, i2,…id , pilj, n

i1, i2,…id

2.

The formal parametric description of the net Hd, 1 is the following:

tij, n, j′, n′ : pij, n, pbl → pbj′, n′ , pilj, n;

j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n;

toj, n : pbj, n, polj, n → poj, n, pbl

, j  1, d, n  1, 2 . (1)

If the net Hd, 1 is considered as a model of the device Ri1, i2,… ,id
 in

the hypercube structure, the upper indices of its hypercube cell should
be added:

tij, n,j′, n′
i1, i2,…id : pij, n

i1, i2,…id , pbli1, i2,…id →

pbj′, n′
i1, i2,…id , pilj, n

i1,i2,…id ,

j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n;

toj, n
i1, i2,…id : pbj, n

i1, i2,…id , polj, n
i1, i2,…id →

poj, n
i1, i2,…id , pbli1, i2,…id 

, j  1, d, n  1, 2 .

The net represented by equation (1) is called a parametric Petri net
because its description has the parameter d for the calculation of the
elements’ indices. The size of the net Hd, 1 is unlimited and repre-

sented by the parameter d. The parametric model Hd, 1 is illustrated

by the example for the concrete number of dimensions d  3 shown
in Figure 4. It is rather difficult to visualize models for larger numbers
of dimensions.

P-Invariants of Hypercube Communication Device Model 4.2

Using the parametric description in equation (1) of the communica-
tion device model Hd, 1 given in the previous section, the following

system was constructed for the calculation of p-invariants:

toj, n : xpbj, n + xpolj, n  xpoj, n + xpbl,

tij, n, j′, n′ : xpij, n + xpbl  xpbj′, n′ + xpilj, n,

j  1, d, n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

(2)

Notice that the system of equation (2) has a parametric form; its
parameter is the number of dimensions d. The system was constructed
directly on the description of equation (1), using the usual rule that

Infinite Petri Nets: Part 2 349

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

each equation corresponds to transition and contains sums for its
input and output arcs, which are equal. Sums should be calculated
using the multiplicities of arcs, but all the arcs of equation (1) have
the multiplicity equaling to unit. The total number of the system in

equation (2) equations is Nd, 1
t  4 · d2. The total number of system

variables in equation (2) is Nd, 1
p  10 · d + 1.

To study p-invariants of the model for any number of dimensions,
the system of equation (2) should be solved in the parametric form.
The obtained parametric solution of the system in equation (2) has
the following form:

pij, n, pilj, n, j  1, d, n  1, 2;

poj, n, polj, n, j  1, d, n  1, 2;

pbl, pbj, n, j  1, d, n  1, 2

pbj, n, pij, n, poj, n, j  1, d, n  1, 2

pbl, pilj, n, polj, n, j  1, d, n  1, 2

. (3)

The way solutions are described here is common enough for sparse
vectors and especially for the Petri net theory. Only nonzero compo-
nents are mentioned by the names of the corresponding places. The
nonzero multiplier 1 is omitted; in case it is not the unit, the notation
p * x is used, where x is the value of the invariant for place p. Such
notation is adopted in the Tina software [24], which was used for
obtaining the Petri net figures in this paper. A line of the matrix in
equation (3) gives us a set of lines according to the used indices i, j, n,
except the last two lines, which contain a variable number of compo-
nents given by indices.

A heuristic algorithm was employed for the construction of the
matrix in equation (3), but with Lemma 1 the proof is presented that
equation (3) is a solution of equation (2). The fact that equation (3) is
the basis solution is not required for the conclusion about the p-invari-
ance of Hd, 1. The total number of solutions in the matrix in equa-

tion�(3) is Nd, 1
pinv  4d + 3.

Lemma 1. Each line of the matrix in equation (3) is a solution of the
system in equation (2).

Proof. Let us substitute each parametric line of equation (3) into each
parametric equation of the system in equation (2). It gives us the cor-
rect statement. At the substitution, the different names of indices are

350 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

chosen. For instance, let us substitute the fourth line of equation (3)

pbl,m, pil,m, pol,m, l  1, d, m  1, 2

into the second equation of (2)

xpij, n + xpbl  xpbj′, n′ + xpilj, n, j  1, d,

n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

For each concrete equation given by valid tuple (j, n, j′, n′), the
solution contains pij, n at l  j, m  n and pbj′, n′ at l  j′, m  n′;

moreover, the other variables of the equation xpbl, xpilj′, n′ are not

mentioned in the solution. So we obtain 1 + 0  1 + 0, reducing fur-
ther to 1 = 1 for each equation.

The first two solutions of equation (3) are slightly different: they
represent a series of lines given by their indices. Let us substitute the
first parametric line of equation (3)

pil,m, pill,m, l  1, d, m  1, 2;

into the second parametric equation of equation (2)

xpij, n + xpbl  xpbj′, n′ + xpilj, n, j  1, d,

n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

We obtain:

when l ≠ j or m ≠ n: 0 + 0  0 + 0, reducing further to 0  0;

when l  j and m  n: 1 + 0  0 + 1, reducing further to 1  1.

In the same way, all the 5⨯2 combinations are checked. □

Theorem 1. The net Hd, 1 is a p-invariant Petri net for an arbitrary natu-

ral number d.

Proof. Let us consider the sum of the fourth and the fifth lines of the
matrix in equation (3), which represents the solutions of the system in
equation (2) according to Lemma 5:

pbj, n, pij, n, poj, n, j  1, d, n  1, 2

plus

pbl, pilj, n, polj, n, j  1, d, n  1, 2

equals

pbl, pilj, n, polj, n, pbj, n, pij, n, poj, n,

j  1, d, n  1, 2.
(4)

Infinite Petri Nets: Part 2 351

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

As all the Nd, 1
p  10 · d + 1 places are mentioned in this invariant,

the net Hd, 1 is a p-invariant Petri net for an arbitrary natural number

d. Moreover, as each component of equation (4) is equal to 1, the net
Hd, 1 is a safe and bounded Petri net for an arbitrary natural num-

ber�d. □

Composition of Hypercube Model 4.3

The connections of communication devices in the hypercube are pro-
vided by the fusion (union) of the corresponding contact places of
neighbor devices.

Let us consider an internal communication device Ri1,…ij,… ,id ,

iu  2, k - 1, u  1, d, j  1, d:

Places of portj, 1
i1,… ,ij,… ,id

 are fused with the corresponding places of

portj, 2
i1,… ,ij-1,… ,id , device Ri1,…ij-1,… ,id

 in such a way that place

poj, 1
i1,… ,ij,…id

 is fused with pij, 2
i1,… ,ij-1,…id , place polj, 1

i1,… ,ij,…id—with

pilj, 2
i1,… ,ij-1,…id , place pij, 1

i1,… ,ij,…id—with poj, 2
i1,… ,ij-1,…id , place pilj, 1

i1,… ,ij,…id—

with polj, 2
i1,… ,ij-1,…id .

1.

Places of portj, 2
i1,… ,ij,… ,id

 are fused with the corresponding places of

portj, 1
i1,… ,ij+1,… ,id , device Ri1,…ij+1,… ,id

 in such a way that place

poj, 2
i1,… ,ij,…id

 is fused with pij, 1
i1,… ,ij+1,…id , place polj, 2

i1,… ,ij,…id—with

pilj, 1
i1,… ,ij+1,…id , place pij, 2

i1,… ,ij,…id—with poj, 1
i1,… ,ij+1,…id , place pilj, 2

i1,… ,ij,…id—

with polj, 1
i1,… ,ij+1,…id .

2.

To avoid duplication, the names of the places for the zero direction
ports n  1 will be considered with respect to the current device, and
for the infinity direction ports n  2 with respect to the neighbor
devices and their zero direction ports n  1. So the names of the
fusion places have only the indices of the zero direction ports n  1.
Moreover, to simplify further notations, the places with the indices of
the infinity direction ports n  2 on the facets (borders) of the com-
munication hypercube are named with respect to nonexistent devices
with the indices equal to k + 1. So the names of ports with the indices
of the infinity direction n  2 do not appear in the hypercube. The
communication hypercube structure described is denoted as Hd, k. An

example of Hd, k for d  3, k  4 is represented in Figure 5.

The formal description of Hd, k composition is given with the

following:

352 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

pij, 1
i1,… ,ij+1,…id : 

poj, 2
i1,… ,ij,…id ⋃ pij, 1

i1,… ,ij+1,…id

pilj, 1
i1,… ,ij+1,…id : 

polj, 2
i1,… ,ij,…id ⋃ pilj, 1

i1,… ,ij+1,…id

poj, 1
i1,… ,ij+1,…id : 

pij, 2
i1,… ,ij,…id ⋃ poj, 1

i1,… ,ij+1,…id

polj, 1
i1,… ,ij+1,…id : 

pilj, 2
i1,… ,ij,…id ⋃ polj, 1

i1,… ,ij+1,…id

, iu  1, k - 1, u  1, d, j  1, d ,

pij, 1
i1,… ,ij+1,…id :  poj, 2

i1,… ,ij,…id

pilj, 1
i1,… ,ij+1,…id :  polj, 2

i1,… ,ij,…id

poj, 1
i1,… ,ij+1,…id :  pij, 2

i1,… ,ij,…id

polj, 1
i1,… ,ij+1,…id :  pilj, 2

i1,… ,ij,…id

,
iu  1, k - 1, u  1, d,

j  1, d, u ≠ j, ij  k
.

The union sign ⋃ denotes the fusion of places; the left column gives
new names of places.

P-Invariants of Hypercube Model 4.4

Using the abstract description of the communication hypercube model
Hd, k given in the previous section, the following system is constructed

for the calculation of p-invariants:

toj, 1
i1,… ,id : xpbj, 1

i1,… ,id + xpolj, 1
i1,… ,id  xpoj, 1

i1,… ,id + xpbli1,… ,id ,

tij, 1, j′,n′
i1,… ,id : xpij, 1

i1,… ,id + xpbli1,… ,id  xpbj′, n′
i1,…id + xpilj, 1

i1,… ,id ,

toj, 2
i1,… ,ij,… ,id : xpbj, 2

i1,… ,ij,… ,id + xpilj, 1
i1,… ,ij+1,… ,id 

xpij, 1
i1,… ,ij+1,… ,id + xpbli1,… ,ij,… ,id ,

tij, 2, j′, n′
i1,… ,ij,… ,id : xpoj, 1

i1,… ,ij+1,… ,id + xpbli1,… ,ij,… ,id 

xpbj′, n′
i1,… ,ij,… ,id + xpolj, 1

i1,… ,ij+1,… ,id ,

j  1, d, j′  1, d, n′  1,

2, j′ ≠ j, n′ ≠ n, iu  1, k, u  1, d.

(5)

The total number of system equations in equation (5) is

Nd, k
t  4 · d2 · kd. The total number of system variables in equa-

Infinite Petri Nets: Part 2 353

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

tion�(5) is Nd, k
p  6 · d + 1 · kd + 4 · d · kd-1. The obtained parametric

solution has the following form:

pij,1
i1,… ,ij,… ,id , pilj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  1, k + 1;

poj,1
i1,… ,ij,… ,id , polj,1

i1,...ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  1, k + 1;

pbli1,… ,id , pbj,n
i1,… ,id , j  1, d, n  1, 2,

iu  1, k, u  1, d;

pbj,n
i1,… ,id , n  1, 2, j  1, d, iu  1, k, u  1, d,

pij,1
i1,… ,id , poj,1

i1,… ,id , j  1, d, iu  1, k, u  1, d,

pij,1
i1,… ,ij,… ,id , poj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  k + 1

pbli1,… ,id , pilj,1
i1,… ,id , polj,1

i1,… ,id , j  1, d,

iu  1, k, u  1, d,

pilj,1
i1,… ,ij,… ,id , polj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  k + 1

. (6)

The total number of solutions is

Nd, k  1 + 2 · d · kd + 2 · d · kd-1 + 2.

Lemma 2. Each line of the matrix in equation (6) is a solution of the
system in equation (5).

Theorem 2. The net Hd, k is a p-invariant Petri net for arbitrary natural

numbers d, k.
The proofs of Lemma 2 and Theorem 2 were done in the same way

as for the net Hd, 1.

Adding Models of Terminal Devices 4.5

The communication devices are attached to each other, constituting a
communication structure, but they are created only for packet trans-
mission among the terminal devices: workstations and servers. In this
paper, the client-server technique of interaction is not studied, so the
types of terminal devices are not distinguished. An abstract terminal

354 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

device provides at least two basic functions: send packet and receive
packet. These basic functions are implemented in the model repre-
sented in Figure 7 of [23].

The model contains an internal buffer of the packets qb; transition
si models the receiving of the packets, while transition so models the
sending. The model keeps the balance of input and output packets;
the limitation of buffer qbl size is not considered.

The terminal devices shown in Figure 7 of [23] are attached to the
border ports of the hypercube structure; the corresponding model is
denoted as HTd, k. The terminal device in hypercube structure is

denoted as Ai1, …ij, … , id, where iu  1, k, u  1, d, j  1, d, u ≠ j,

ij ∈ 1, k, and attached to the communication device Ri1,…ij,… ,id . The

formal description of HTd, k composition using HTd, k,

Ai1, …ij, … , id is given with the following:

pij, 1
i1,… ,ij,…id :=

qoi1, … , ij, …id ⋃ pij, 1
i1,… ,ij,…id

pilj, 1
i1,… ,ij,…id :=

qoli1, … , ij, …id ⋃ pilj, 1
i1,… ,ij,…id

poj, 1
i1,… ,ij,…id :=

qii1, … , ij, …id ⋃ poj, 1
i1,… ,ij,…id

polj, 1
i1,… ,ij,…id :=

qili1, … , ij, …id ⋃ polj, 1
i1,… ,ij,…id

,
iu  1, k, u  1, d,

j  1, d, u ≠ j, ij  1
,

pij, 1
i1,… ,ij+1,…id :=

qii1, … , ij, …id ⋃ pij, 1
i1,… ,ij+1,…id

pilj, 1
i1,… ,ij+1,…id :=

qili1, … , ij, …id ⋃ pilj, 1
i1,… ,ij+1,…id

poj, 1
i1,… ,ij+1,…id :=

qoi1, … , ij, …id ⋃ poj, 1
i1,… ,ij+1,…id

polj, 1
i1,… ,ij+1,…id :=

qoli1, … , ij, …id ⋃ polj, 1
i1,… ,ij+1,…id

,
iu  1, k, u  1, d,

j  1, d, u ≠ j, ij  k
.

Infinite Petri Nets: Part 2 355

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

In the same way as in [23], it was proven that HTd, k is a p-invari-

ant Petri net for any given natural numbers d and k.

T-Invariants and Deadlocks of Hypercube 4.6

The same approach is applied for calculating the t-invariants. The
only difference is that for t-invariants, each equation corresponds to
place and variables correspond to transitions. It is an advantage that
the Petri net Hd, k is not t-invariant, but it is quite trivial because the

modeled system is open, since the terminal devices are not attached. It
was proven that the model of closed system with attached terminal
devices HTd, k is a t-invariant Petri net for arbitrary natural numbers

d, k. But the consistency of the model does not imply its liveness.
Each pair of neighbor communication devices can fall into a local

deadlock, for instance, when the device Ri1,… ,ij,… ,id
 gets l packets

directed to the device Ri1,… ,ij+1,… ,id
 and the device Ri1,… ,ij+1,… ,id

 gets

l packets directed to the device Ri1,… ,ij,… ,id
 and, moreover, the input

and output buffers of their common port are occupied with the pack-
ets, where l is the limitation of the internal buffer size (marking of

places pbli1,… ,ij,… ,id , pbli1,… ,ij+1,… ,id). Such a situation constitutes the
t-dead marking for the transitions of both devices, while other transi-
tions of the net HTd,k are potentially live.

But the structure of all the possible deadlocks is more sophis-
ticated. We show that deadlocks occur either in cycles (chains) of
blockings involving a few communicating devices (where the pair is a
particular case) or because of isolation with surrounding deadlocks.

For the description of complex deadlocks of the net HTd, k, the

graph GHd, k of connections is constructed. In the graph GHd, k, each

node corresponds to a communication device and has arcs directed to
its neighbors. An example of internal node connections for GH3, k is

shown in Figure 6. An arc with two arrows denotes two arcs of oppo-
site directions.

A directed simple cycle in the graph GHd, k represents a deadlock

of the communication hypercube HTd, k. In a deadlock cycle, each arc

connecting a pair of neighbor devices Ri1,… ,iu,… ,id , Ri1,… ,iu
′ ,… ,id ,

iu - iu
′   1 means that Ri1,… ,iu,… ,id

 blocks itself if and only if it got l

packets directed to Ri1,… ,iu
′ ,… ,id , its output buffer of the port connect-

ing Ri1,… ,iu,… ,id
 with Ri1,… ,iu

′ ,… ,id
 contains a packet, and the device

Ri1,… ,iu
′ ,… ,id

 is blocked also. When the cycle ends, the last device
blocks itself because the first device is blocked and cannot receive
packets.

356 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

Figure 6. Node connections of the graph GH3, k.

Let us prove that all the transitions of a blocked device Ri1,… ,iu,… ,id

are dead. For distinctness we denote

r 
1, iu - iu

′  -1,

2, iu - iu
′  1.

All the transitions tij, n, j′, n′
i1,… ,id

 are dead because marking of their input

place pbli1,… ,id
 equals zero, so the device cannot receive packets. All

the transitions toj, n
i1,… ,id , n ≠ r are dead because each of their input

places pbj, n
i1,… ,id

 has zero marking. The transition tou, r
i1,… ,id

 is dead

because marking of its input place polu, r
i1,… ,id

 is zero. So the device can-

not send packets. Notice that marking of polu, r
i1,… ,id

 cannot be changed

because Ri1,… ,iu
′ ,… ,id

 is blocked.
Nonsimple cycles of GHd, k represent deadlocks also. For instance,

if device Ri1,… ,…,iu,… ,iv,… ,id
 belongs to two simple cycles and it got

two output arcs directed to Ri1,… ,…,iu
′ ,… ,iv,… ,id

 and

Ri1,… ,…,iu,… ,iv
′ ,… ,id , it means that Ri1,… ,…,iu,… ,iv,… ,id

 blocks itself and

Ri1,… ,…,iu
′ ,… ,iv,… ,id , Ri1,… ,…,iu,… ,iv

′ ,… ,id
 are blocked also. In this case,

Ri1,… ,…,iu,… ,iv,… ,id
 blocks itself, having au packets directed to

Ri1,… ,…,iu
′ ,… ,iv,… ,id

 and av packets directed to Ri1,… ,…,iu,… ,iv
′ ,… ,id ,

where au + av  l, and moreover, each corresponding output port

buffer of Ri1,… ,…,iu,… ,iv,… ,id
 contains a packet when au > 0 (av > 0).

Inductive reasoning gives the proof for d simple cycles.
The other kind of deadlock is induced by the isolation of a device

by deadlocks containing all its neighbor devices. It can be done with
one simple cycle as well. For instance, in GH3, k, the following cycle

Ri1-1, i2, i3 , Ri1-1, i2+1, i3 , Ri1, i2+1, i3 , Ri1, i2+1, i3+1, Ri1, i2, i3+1,

Infinite Petri Nets: Part 2 357

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

Ri1+1, i2, i3+1, Ri1+1, i2, i3 , Ri1+1, i2-1, i3 , Ri1, i2-1, i3 , Ri1, i2-1, i3-1,

Ri1, i2, i3-1, Ri1-1, i2, i3-1, Ri1-1, i2, i3
 contains all the neighbors of

Ri1, i2, i3
 (Ri1-1, i2, i3 , Ri1, i2+1, i3 , Ri1, i2, i3+1, Ri1+1, i2, i3 , Ri1, i2-1, i3 ,

Ri1, i2, i3-1), so the device Ri1, i2, i3
 is blocked because of isolation. The

isolation of a node can be generalized on the blocking of a simple
chain by the isolation of its last node.

So a deadlock is a chain of blockings where the last node is
blocked because:

It coincides with the first node.1.

It belongs to another deadlock.2.

It is isolated by another deadlock.3.

It is very significant that deadlocks that have occurred create more
possibilities for new deadlocks occurring. So the process has
avalanche-like character. A full deadlock involving all the devices
(and all the transitions) occurs when cycles (chains) contain all the

devices in the hypercube. It requires at least l + 1 · kd packets pro-

vided by the terminal devices. But if isolations of devices occur, a
small number of packets is required.

In spite of the fact that rather sophisticated hypercube communica-
tion structures were studied, the described deadlocks in the chains
(cycles) of blockings and isolations are rather common for real-life
communication graphs, where devices with the compulsory buffering
are used. We believe that these deadlocks may be purposely inflicted
by the specially situated generators of the particular traffic. In real-life
networks, the blocking of the devices is overcome by the timeout
mechanisms causing the cleaning of the buffers, but this leads to a con-
siderable decrease in network performance as soon as the situation is
repeated by the special generators of ill-intentioned traffic.

A hypertorus structure, common for (thermo) nuclear physics appli-
cations, is composed in a similar way by connecting opposite sides of
a hypercube structure [18]. The software generators of hypertorus
models are available at http://github.com/dazeorgacm/htgen.

Software Generators of Grid Models 5.

During development of plugins for the known simulating system
Tina, named Deborah and Adriana [14] and destined for Petri nets
decomposition into clans and compositional calculation of invariants,
respectively, software generators of Petri nets [20] were applied. They
produced large-scale Petri nets that were thereafter used as tests.
These nets had the structure of a simple chain, a simple loop and a

358 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

http://github.com/dazeorgacm/htgen

sequence of connected basic fragments. Thus, the possibility of testing
program modules on nets with many thousands of vertices was pro-
vided. Analogous generators were used for verification of Ethernet
protocols and analysis of computing grids [25, 26], with the aim of
creating an inductive base for generalizing obtained results on struc-
tures of an arbitrary size.

This section represents, in essence, a case study of software genera-
tors of grid model construction, and the described technique could be
employed in a wide range of Petri net application domains, including
automated manufacture, business processes and programming.

Formats of Files 5.1

The simulating system Tina accepts two formats of files describing a
Petri net: logical (.net) and graphical (.ndr). For constructing genera-
tors (Figure 7), either of the formats could be used. Since for big Petri
nets their visual representation becomes inessential, in the present
paper, a logical format is employed substantially. When required,
visualization of a Petri net is done by embedded facilities of Tina that
provide automatic construction of files with a graphical format
(drawing net).

Figure 7. General scheme of a Petri net generator operation.

A file with a logical format (.net) contains an abstract description
of a Petri net without information regarding its visual representation.
A Petri net graph is described as a list of transitions and their input
and output arcs; the initial marking is described as a list of places
with values of their marking. In addition, Tina employs information
such as auxiliary labels of vertices, types of arcs, transitions’ priorities
and times of transitions’ firing. Such additional information is not
used in the present paper for generating a classical Petri net, namely
its graph required for structural analysis via calculation of places’ and
transitions’ invariants. In the simplified form, the file format is
described as follows:

tr <t-name> <p-name>[*<weight>],... -> <p-name>$[*<weight>],...
...
pl <p-name> (<marking>)
...
net <net-name>

Infinite Petri Nets: Part 2 359

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

The transition description begins with the reserved word “tr”, then
the list of the transition’s incoming arcs follows, and after a delimiter
“->” the list of outgoing arcs follows. An arc is described by a place
name and the arc’s multiplicity (weight) is indicated after a delimiter
“*”; multiplicity equal to unit is omitted. Compound names of ver-
tices are parenthesized in curly brackets. An example of a file is
shown in Listing�2.

Software Implementation of a Generator 5.2

The parametric description of grids via the form [23] (represented
with equation (3)) is source data for software implementation of Petri
net generators. The generator of the open square grid models in pro-
gramming language C is shown in Listing 1. The value of parameter k
of the square grid size is inputted from the command line as argv[1].
Then, on each of the variables i, j used in [23] (equation (3)), the cor-
responding loop is organized; because of the small range of variable v,
as an alternative to additional loops, the direct enumeration of all vari-
ants is employed.

/* generate open square grid on plane */
#include <stdio.h>

main(int argc, char * argv[])
{
 int k,i,j;
 if(argc < 2)
 {
 printf("*** USAGE: g2o k\n");
 return 2;

 }
 else k = atoi(argv[1]);

 for(i=1; i<=k; i++)
 for(j=1; j<=k; j++)
 {
 printf("tr {to_1^%d,%d} {pol_1^%d,%d} {pb_1^%d,%d} ->

{po_1^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {ti_1,2^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->

{pil_1^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {ti_1,3^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->

{pil_1^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {ti_1,4^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->

{pil_1^%d,%d} {pb_4^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {to_4^%d,%d} {pol_4^%d,%d} {pb_4^%d,%d} ->

{po_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {ti_4,1^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->

{pil_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);
 printf("tr {ti_4,2^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->

{pil_4^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);

360 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

 printf("tr {ti_4,3^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->
{pil_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j);

 printf("tr {to_2^%d,%d} {pil_4^%d,%d} {pb_2^%d,%d} ->
{pi_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j);

 printf("tr {ti_2,1^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j);

 printf("tr {ti_2,3^%d.%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j);

 printf("tr {ti_2,4^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_4^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j);

 printf("tr {to_3^%d,%d} {pil_1^%d,%d} {pb_3^%d,%d} ->
{pi_1^%d,%d} {pbl^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j);

 printf("tr {ti_3,1^%d,%d} {po_1^%d^%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_1^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j);

 printf("tr {ti_3,2^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_2^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j);

 printf("tr {ti_3,4^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_4^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j);

 }
 printf("net n2o%d\n", k);
}

Listing 1. Generator of the open square grid model.

In Listing 2, a Petri net generated by the program, shown in List-
ing�1, at the parameter value k  2, is represented; the net completely
corresponds to the graphical representation of the grid model shown
in [23, Figure 6].

tr {to_1^1,1} {pol_1^1,1} {pb_1^1,1} -> {po_1^1,1} {pbl^1,1}
tr {ti_1,2^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_2^1,1}
tr {ti_1,3^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_3^1,1}
tr {ti_1,4^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_4^1,1}
tr {to_4^1,1} {pol_4^1,1} {pb_4^1,1} -> {po_4^1,1} {pbl^1,1}
tr {ti_4,1^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_1^1,1}
tr {ti_4,2^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_2^1,1}
tr {ti_4,3^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_3^1,1}
tr {to_2^1,1} {pil_4^1,2} {pb_2^1,1} -> {pi_4^1,2} {pbl^1,1}
tr {ti_2,1^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_1^1,1}
tr {ti_2,3^1.1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_3^1,1}
tr {ti_2,4^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_4^1,1}
tr {to_3^1,1} {pil_1^2,1} {pb_3^1,1} -> {pi_1^2,1} {pbl^1,1}
tr {ti_3,1^1,1} {po_1^2^1} {pbl^1,1} -> {pol_1^2,1} {pb_1^1,1}
tr {ti_3,2^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_2^1,1}
tr {ti_3,4^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_4^1,1}
tr {to_1^1,2} {pol_1^1,2} {pb_1^1,2} -> {po_1^1,2} {pbl^1,2}
tr {ti_1,2^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_2^1,2}
tr {ti_1,3^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_3^1,2}
tr {ti_1,4^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_4^1,2}
tr {to_4^1,2} {pol_4^1,2} {pb_4^1,2} -> {po_4^1,2} {pbl^1,2}
tr {ti_4,1^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_1^1,2}

Infinite Petri Nets: Part 2 361

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

tr {ti_4,2^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_2^1,2}
tr {ti_4,3^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_3^1,2}
tr {to_2^1,2} {pil_4^1,3} {pb_2^1,2} -> {pi_4^1,3} {pbl^1,2}
tr {ti_2,1^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_1^1,2}
tr {ti_2,3^1.2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_3^1,2}
tr {ti_2,4^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_4^1,2}
tr {to_3^1,2} {pil_1^2,2} {pb_3^1,2} -> {pi_1^2,2} {pbl^1,2}
tr {ti_3,1^1,2} {po_1^2^2} {pbl^1,2} -> {pol_1^2,2} {pb_1^1,2}
tr {ti_3,2^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_2^1,2}
tr {ti_3,4^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_4^1,2}
tr {to_1^2,1} {pol_1^2,1} {pb_1^2,1} -> {po_1^2,1} {pbl^2,1}
tr {ti_1,2^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_2^2,1}
tr {ti_1,3^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_3^2,1}
tr {ti_1,4^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_4^2,1}
tr {to_4^2,1} {pol_4^2,1} {pb_4^2,1} -> {po_4^2,1} {pbl^2,1}
tr {ti_4,1^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_1^2,1}
tr {ti_4,2^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_2^2,1}
tr {ti_4,3^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_3^2,1}
tr {to_2^2,1} {pil_4^2,2} {pb_2^2,1} -> {pi_4^2,2} {pbl^2,1}
tr {ti_2,1^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_1^2,1}
tr {ti_2,3^2.1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_3^2,1}
tr {ti_2,4^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_4^2,1}
tr {to_3^2,1} {pil_1^3,1} {pb_3^2,1} -> {pi_1^3,1} {pbl^2,1}
tr {ti_3,1^2,1} {po_1^3^1} {pbl^2,1} -> {pol_1^3,1} {pb_1^2,1}
tr {ti_3,2^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_2^2,1}
tr {ti_3,4^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_4^2,1}
tr {to_1^2,2} {pol_1^2,2} {pb_1^2,2} -> {po_1^2,2} {pbl^2,2}
tr {ti_1,2^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_2^2,2}
tr {ti_1,3^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_3^2,2}
tr {ti_1,4^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_4^2,2}
tr {to_4^2,2} {pol_4^2,2} {pb_4^2,2} -> {po_4^2,2} {pbl^2,2}
tr {ti_4,1^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_1^2,2}
tr {ti_4,2^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_2^2,2}
tr {ti_4,3^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_3^2,2}
tr {to_2^2,2} {pil_4^2,3} {pb_2^2,2} -> {pi_4^2,3} {pbl^2,2}
tr {ti_2,1^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_1^2,2}
tr {ti_2,3^2.2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_3^2,2}
tr {ti_2,4^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_4^2,2}
tr {to_3^2,2} {pil_1^3,2} {pb_3^2,2} -> {pi_1^3,2} {pbl^2,2}
tr {ti_3,1^2,2} {po_1^3^2} {pbl^2,2} -> {pol_1^3,2} {pb_1^2,2}
tr {ti_3,2^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_2^2,2}
tr {ti_3,4^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_4^2,2}
net n2o2

Listing 2. Generated model of the open square grid of size 2 (.net format).

Application of Generated Nets 5.3

The main application area of specific grid models, obtained as the
result of running generators, is the formation of a database of actual
nets for further inductive conclusions regarding the properties of infi-
nite Petri nets with regular structure.

362 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

On the basis of calculation and analysis of place invariants for a
sequence of grid models with definite sizes, the general parametric
description of invariants was obtained and the p-invariance of a Petri
net for an arbitrary value of parameter k was proven [23]. Analogous
results were obtained in Section 4 for hypercube structures of an
arbitrary size with an arbitrary number of dimensions. For instance,
the parametric description of place invariants of the grid (represented
here with equation (2)) has the form shown in [23, equation�(15)].

Parametric representation [23, equation (15)] of the basis invari-
ants matrix is rather sophisticated because it is valid for any given
magnitude of parameter k. Only nonzero elements are listed, and in
the example of a square grid, all of them are equal to unit. There are
two types of parametric rows: each of rows 1 through 5 describes a
set of rows with a few nonzero elements (two for rows 1 through 4
and five for row 5); each of rows 6 and 7 describes a single row
containing a set of nonzero elements. To distinguish the difference,
brackets are used.

Invariants calculated by the system Tina for definite values of
parameter k coincide with invariants generated from [23, equa-
tion�(15)]. Thus, the described technique could be used for generating
net invariants on their parametric description. For instance, the place
invariants of the net, shown in Figure 6 of [23], are represented in
Listing 3 in an explicit form.

In some cases, the automatic visualization of generated nets is use-
ful for evaluating general patterns of layout and doing an additional
check of composition rules. In Figure 8, a model of a grid of size 4 is
represented in graphical form, which is created automatically by simu-
lating the system in Tina.

Moreover, generated Petri net models could be applied as tests in
Petri net simulating and analysis systems development, especially
when the properties of studied nets are known a priori. For instance,
the considered models of grids are safe according to the composition
rules because each transition has exactly two input and two output
places. It allows debugging software on large dimension nets.

Generating Petri Nets in Graphical Form 5.4

Automatic visualization of grid models is not distinguished by clear-
ness and allows visual evaluation of the general pattern only. Some
applications require working with graphical formats, for instance, for
watching a token game and studying transition firing sequences. A
model could be generated in graphical format as well.

Infinite Petri Nets: Part 2 363

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

({pi_ 1^1, 1}, {pil_ 1^1, 1})
({pi_ 1^1, 2}, {pil_ 1^1, 2})
({pi_ 1^2, 1}, {pil_ 1^2, 1})
({pi_ 1^2, 2}, {pil_ 1^2, 2})
({pi_ 1^3, 1}, {pil_ 1^3, 1})
({pi_ 1^3, 2}, {pil_ 1^3, 2})

({po_ 1^1, 1}, {pol_ 1^1, 1})
({po_ 1^1, 2}, {pol_ 1^1, 2})
({po_ 1^2, 1}, {pol_ 1^2, 1})
({po_ 1^2, 2}, {pol_ 1^2, 2})
({po_ 1^3, 1}, {pol_ 1^3, 1})
({po_ 1^3, 2}, {pol_ 1^3, 2})

({pi_ 4^1, 1}, {pil_ 4^1, 1})
({pi_ 4^1, 2}, {pil_ 4^1, 2})
({pi_ 4^1, 3}, {pil_ 4^1, 3})
({pi_ 4^2, 1}, {pil_ 4^2, 1})
({pi_ 4^2, 2}, {pil_ 4^2, 2})
({pi_ 4^2, 3}, {pil_ 4^2, 3})

({po_ 4^1, 1}, {pol_ 4^1, 1})
({po_ 4^1, 2}, {pol_ 4^1, 2})
({po_ 4^1, 3}, {pol_ 4^1, 3})
({po_ 4^2, 1}, {pol_ 4^2, 1})
({po_ 4^2, 2}, {pol_ 4^2, 2})
({po_ 4^2, 3}, {pol_ 4^2, 3})

({pb_ 1^1, 1}, {pb_ 2^1, 1}, {pb_ 3^1, 1}, {pb_ 4^1, 1}, {pbl^1, 1})
({pb_ 1^1, 2}, {pb_ 2^1, 2}, {pb_ 3^1, 2}, {pb_ 4^1, 2}, {pbl^1, 2})
({pb_ 1^2, 1}, {pb_ 2^2, 1}, {pb_ 3^2, 1}, {pb_ 4^2, 1}, {pbl^2, 1})
({pb_ 1^2, 2}, {pb_ 2^2, 2}, {pb_ 3^2, 2}, {pb_ 4^2, 2}, {pbl^2, 2})

({pil_ 1^1,1},{pol_ 1^1,1},{pil_ 4^1,1},{pol_ 4^1,1},{pbl^1,1},{pil_ 1^1,2},
{pol_ 1^1,2},{pil_ 4^1,2},{pol_ 4^1,2},{pbl^1,2},{pil_ 1^2,1},{pol_ 1^2,1},
{pil_ 4^2,1},{pol_ 4^2,1},{pbl^2,1},{pil_ 1^2,2},{pol_ 1^2,2},{pil_ 4^2,2},
{pol_ 4^2,2},{pbl^2,2},{pil_ 1^3,1},{pol_ 1^3,1},{pil_ 1^3,2},{pol_ 1^3,2},
{pil_ 4^1,3},{pol_ 4^1,3},{pil_ 4^2,3},{pol_ 4^2,3})

({pi_ 1^1,1},{po_ 1^1,1},{pi_ 4^1,1},{po_ 4^1,1},{pb_ 1^1,1},{pb_ 2^1,1},
{pb_ 3^1,1},{pb_ 4^1,1},{pi_ 1^1,2},{po_ 1^1,2},{pi_ 4^1,2},{po_ 4^1,2},
{pb_ 1^1,2},{pb_ 2^1,2},{pb_ 3^1,2},{pb_ 4^1,2},{pi_ 1^2,1},{po_ 1^2,1},
{pi_ 4^2,1},{po_ 4^2,1},{pb_ 1^2,1},{pb_ 2^2,1},{pb_ 3^2,1},{pb_ 4^2,1},
{pi_ 1^2,2},{po_ 1^2,2},{pi_ 4^2,2},{po_ 4^2,2},{pb_ 1^2,2},{pb_ 2^2,2},
{pb_ 3^2,2},{pb_ 4^2,2},{pi_ 1^3,1},{po_ 1^3,1},{pi_ 1^3,2},{po_ 1^3,2},
{pi_ 4^1,3},{po_ 4^1,3},{pi_ 4^2,3},{po_ 4^2,3})

Listing 3. Place invariants of the open square grid with size 2 [23, Figure 6].

The graphical file format (.ndr) of the system Tina contains such
extra information, compared with the logical format (.net) described
in Section 5.1, as coordinates of vertices on a plane and arcs’ curves
description:

t <xpos> <ypos> <transition-name> <options>
p <xpos> <ypos> <place-name> <marking> <options>
e <vertex1-name> <vertex2-name> <weight> <options>
e <vertex1-name> <ang> <rad> <vertex2-name> <ang> <rad> <options>

Lines of types p and t describe places and transitions, respectively.
Each row contains node coordinates (xpos, ypos) on a plane and its
name; the place description also includes its initial marking. Each arc
is described separately with a line of type e. It contains names of the
source and target vertices and multiplicity (weight) for a straight arc;
for a curved arc, two pairs of additional parameters (ang, rad) define
an angle and radius of arc curve for both its ends.

364 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

Figure 8. Automatic visualization of a generated grid model in Tina.

The technique of generating .ndr files starts with drawing a model
of a grid node in Tina (Figure 4) and saving the corresponding .ndr
file. An example of a net fragment description containing a place, a
transition and an arc connecting them, for the grid node model shown
in Figure 4, looks like this:

p 200.0 50.0 {po_1} 0 n
t 240.0 130.0 {to_1} 0 w n
e {to_1} {po_1} 1 n

Then the .ndr file obtained is used as a pattern to fill in the main
loop of the generator, whose overall organization is similar to List-
ing�1. Only descriptions of vertices contain coordinates, which should
be recalculated for each node of the grid on its indices; the relative
format of the arcs’ curvature description does not require their correc-
tion. Based on an element description, a format string of the corre-
sponding printf operator is created. Instead of definite coordinates
(xpos, ypos) it contains format “%.1f %.1f” for printing recalculated
coordinates and a format “⋀%d.%d” is inserted into vertices’ names
for printing the current node index within the grid:

printf(“p %.1f %.1f {po_1^%d.%d} 0 n\n”,(i-1)*DI+200.0, (j-1)*DJ+50.0, j, i);
printf(“t %.1f %.1f {to_1^%d.%d} 0 w n\n”,(i-1)*DI+240.0, (j-1)*DJ+130.0, j, i);
printf(“e {to_1^%d.%d} {po_1^%d.%d} 1 n\n”,j, i, j, i);

Infinite Petri Nets: Part 2 365

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341

Coordinates of vertices are calculated based on vertical and hori-
zontal grid node offsets DI and DJ, respectively, which are equal to
the maximal coordinates of a single grid node description. Then the
local offset of a vertex within the grid node is added. Reverse order of
indices for coordinates regarding names is explained by the fact that
in the grid model a matrix order of indexing is used: first index (i)—
number of a row, second index (j)—number of a column. But in Tina,
the first coordinate axis (x) is horizontal and the second (y) is vertical.

Series of grid model generators, working in graphical format, were
developed and employed in investigation of infinite Petri nets’ proper-
ties [23]. An example of a generated open square grid model of size 4
is shown in Figure 9. The generators of the square grid model are
available at http://github.com/dazeorgacm/sq.

Figure 9. An example of the open square grid model of size 4 generated in
graphical format.

Recently, for generating a canvas of a generalized neighborhood of
cellular automata [7] in the form of a Petri net, software was devel-
oped, available at http://github.com/dazeorgacm/hmn. An example of

366 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

http://github.com/dazeorgacm/sq
http://github.com/dazeorgacm/hmn

the model obtained for the hypertorus cellular automaton is shown in
Figure 10.

Figure 10. A hypertorus finite cellular automata model.

Results and Hypothesis 6.

A basis of infinite Petri nets theory was developed for modeling com-
puting grids. The described technique could be employed in a wide
range of Petri net application domains, including automated manufac-
ture, business processes, programming and systems biology.

Infinite Petri nets and their invariants were represented in paramet-
ric form. For each of the obtained parametric descriptions of the
invariants of infinite Petri nets with regular structure, it was proven
that they are solutions of the corresponding infinite system of equa-
tions. To prove the Petri net invariance, it was not required to prove
that the obtained set of solutions form a basis; an invariant, having all

Infinite Petri Nets: Part 2 367

https://doi.org/10.25088/ComplexSystems.26.4.341

http://github.com/dazeorgacm/hmn
https://doi.org/10.25088/ComplexSystems.26.4.341

natural elements, was constructed explicitly in each case. For an extra
validation of results, the calculation of invariants on series of definite
grids of certain size was implemented in the environment of the sys-
tem Tina using ad hoc software generators of models; and also the
fact was used that all the models are conservative, and closed models
are consistent Petri nets because of the manner of their composition:
each vertex has the same number of incoming and outgoing arcs.

The two following statements have been proven:

Statement 1. Grid models are invariant Petri nets for an arbitrary grid
size and an arbitrary number of dimensions.

Statement 2. Grid models are not live Petri nets for an arbitrary grid
size and an arbitrary number of dimensions.

The three following hypothesis have been advanced:

Hypothesis 1. Occurrence of deadlocks increases the probability of new
deadlocks creation; thus, the growth of the number of deadlocks has
an avalanche-like character.

Hypothesis 2. Deadlocks could be caused by ill-intentioned traffic of a
special form.

Hypothesis 3. For infinite systems of the form in equation (6), the three
following situations are possible: it has no solution except the trivial;
it has solutions and they can be specified in a finite form; it has solu-
tions but they cannot be specified in a finite form.

To acknowledge Hypotheses 1 and 2, colored Petri nets [11] could
be employed in a way similar to that described in [22]. The proof of
Hypothesis 3 requires advances in modern mathematics theory.

All the models presented in this paper were constructed and ana-
lyzed in the system Tina [12] supplied with plugins Deborah and
Adrian [14], available at http://member.acm.org/~daze.

Conclusion7.

The search for new application domains, such as manufacturing and
transportation systems, will allow the generalization of the problem-
atic infinite Petri nets with regular structure and make it more inde-
pendent from the terminology of computer networks, clusters and
grids. Among such generalizations, we advise using a set of basic frag-
ments and formalizing the models’ composition rules.

When constructing the grid models, more attention could be paid
to the description of computational aspects of information processing
as well as to the architectural peculiarities of modern networking
devices.

368 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

http://member.acm.org/~daze

A general method of solving infinite systems of linear Diophantine
equations in non-negative integer numbers, which the invariant analy-
sis of the models is reduced to, is unknown. That is why the search
for such methods is significant. It could be possible to construct sepa-
rate methods for subclasses of nets and also prove that the obtained
set of the parametric solutions forms a basis.

Heterogeneous infinite systems of equations and inequalities could
be used to check the marking reachability conditions in infinite nets,
to search the siphons and traps using an analogy with the composi-
tional analysis of finite nets.

Not considered were methods of Petri net analysis via graphs of
reachable and coverable markings, which could be modified for work
with infinite nets.

Acknowledgments

The work was partially supported by NATO grant ICS.NUKR.
CLG982689 and presented at IEEE seminar
http://meetings.vtools.ieee.org/m/47179.

References

[1] Z. W. Li and A. M. Al-Almari (eds.), Formal Methods in Manufacturing
Systems: Recent Advances, Hershey, PA: Engineering Science Reference,
2013.

[2] Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated Manufac-
turing Systems: A Novel Petri Net Approach, London: Springer Verlag
Ltd., 2009.

[3] W. van der Aalst and C. Stahl, Modeling Business Processes: A Petri
Net-Oriented Approach, Cambridge, MA: MIT Press, 2011.

[4] C. Girault and R. Valk, Petri Nets for Systems Engineering: A Guide to
Modeling, Verification, and Applications, New York: Springer, 2003.

[5] E. Best, R. Devillers and M. Koutny, Petri Net Algebra, New York:
Springer, 2001.

[6] D. A. Zaitsev, “Simulating Cellular Automata by Infinite Petri Nets,”
Journal of Cellular Automata, 13(1–2), 2018 121–144.

[7] D. A. Zaitsev, “A Generalized Neighborhood for Cellular Automata,”
Theoretical Computer Science, 666(1), 2017 pp. 21–35.
doi:10.1016/j.tcs.2016.11.002.

[8] I. Koch, W. Reisig and F. Schreiber (eds.), Modeling in Systems Biology:
The Petri Net Approach, New York: Springer, 2011.

Infinite Petri Nets: Part 2 369

https://doi.org/10.25088/ComplexSystems.26.4.341

http://meetings.vtools.ieee.org/m/47179
https://doi.org/10.1016/j.tcs.2016.11.002
https://doi.org/10.25088/ComplexSystems.26.4.341

[9] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

[10] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-
ings of the IEEE, 77(4), 1989 pp. 541–580. doi:10.1109/5.24143.

[11] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems, New York: Springer, 2009 p. 384.

[12] G. Berthelot and R. Terrat, “Petri Nets Theory for the Correctness of
Protocols,” IEEE Transactions on Communications, 30(12), 1982
pp. 2497–2505. doi:10.1109/TCOM.1982.1095452.

[13] M. Diaz, “Modeling and Analysis of Communication and Cooperation
Protocols Using Petri Net Based Models,” Computer Networks, 6(6),
1982 pp. 419–441. doi:10.1016/0376-5075(82)90112-X.

[14] D. A. Zaitsev, Clans of Petri Nets: Verification of Protocols and Perfor-
mance Evaluation of Networks, Lambert Academic Publishing, 2013
p. 292.

[15] A. M. Marsan, G. Chiola and A. Fumagalli, “An Accurate Performance
Model of CSMA/CD Bus LAN,” in Advances in Petri Nets 1987 (APN
1986), (G. Rozenberg, ed.), 1987 pp. 146–161.
doi:10.1007/3-540-18086-9_ 24.

[16] T. R. Shmeleva, D. A. Zaitsev and I. D. Zaitsev, “Verification of Square
Communication Grid Protocols via Infinite Petri Nets,” 10th Middle
Eastern Simulation Multiconference (MESM 2009), Beirut, Lebanon,
2009 pp. 53–59.

[17] D. A. Zaitsev and T. R. Shmeleva, “Verification of Hypercube Commu-
nication Structures via Parametric Petri Nets,” Cybernetics and Systems
Analysis, 46(1), 2010 pp. 105–114. doi:10.1007/s10559-010-9189-y.

[18] D. A. Zaitsev, “Verification of Computing Grids with Special Edge Con-
ditions by Infinite Petri Nets,” Automatic Control and Computer Sci-
ences, 47(7), 2013 pp. 403–412. doi:10.3103/S0146411613070262.

[19] D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva, “Infinite Petri Nets as
Models of Grids,” in Encyclopedia of Information Science and Tech-
nology, 3rd ed., (M. Khosrow-Pour, ed.), Hershey, PA: IGI Global,
2014 pp.�187–204. doi:10.4018/978-1-4666-5888-2.ch019.

[20] D. A. Zaitsev, “Generators of Petri Net Models,” Computer Communi-
cation & Collaboration, 2(2), 2014 pp. 12–25.

[21] D. Burdett, Internet Open Trading Protocol—IOTP, Version 1.0E, RFC
2801, April, 2000 p. 290.

[22] D. A. Zaitsev, T. R. Shmeleva, W. Retschitzegger and B. Pröll, “Security
of Grid Structures under Disguised Traffic Attacks,” Cluster Comput-
ing, 19(3), 2016 pp. 1183–1200. doi:10.1007/s10586-016-0582-9.

[23] D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva, “Infinite Petri Nets:
Part 1, Modeling Square Grid Structures,” Complex Systems, 26(2),
2017 pp. 157–195. www.complex-systems.com/pdf/26-2-4.pdf.

370 D. A. Zaitsev, I. D. Zaitsev and T. R. Shmeleva

Complex Systems, 26 © 2017

https://doi.org/10.1109/5.24143
https://dx.doi.org/10.1109/TCOM.1982.1095452
https://doi.org/10.1016/0376-5075(82)90112-X
https://doi.org/10.1007/3-540-18086-9_24
https://dx.doi.org/10.1007/s10559-010-9189-y
https://dx.doi.org/10.3103/S0146411613070262
https://dx.doi.org/10.4018/978-1-4666-5888-2.ch019
https://dx.doi.org/10.1007/s10586-016-0582-9
http://www.complex-systems.com/pdf/26-2-4.pdf

[24] B. Berthomieu, P.-O. Ribet and F. Vernadat, “The Tool TINA:
Construction of Abstract State Spaces for Petri Nets and Time Petri
Nets,” International Journal of Production Research, 42(14), 2004
pp. 2741–2756. doi:10.1080/00207540412331312688.

[25] Information Resources Management Association, Grid and Cloud Com-
puting: Concepts, Methodologies, Tools and Applications, Hershey, PA:
IGI Global, 2012.

[26] N. P. Preve (ed.), Grid Computing: Towards a Global Interconnected
Infrastructure, London: Springer-Verlag, 2011 p. 312.

Infinite Petri Nets: Part 2 371

https://doi.org/10.25088/ComplexSystems.26.4.341

https://dx.doi.org/10.1080/00207540412331312688
https://doi.org/10.25088/ComplexSystems.26.4.341

