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A  composition  and  analysis  technique  was  developed  for  investigation
of infinite Petri nets with regular structure introduced for modeling net-
works,  clusters  and  computing  grids  that  also  concerns  cellular
automata and biological systems. A case study of a hypercube structure
composition and analysis is presented; particularities of modeling other
structures are discussed: triangular and hexagonal structures on a plane
and  a  hypertorus  in  a  multidimensional  space.  Parametric  description
of Petri nets, parametric representation of infinite systems for the calcu-
lation  of  place/transition  invariants  and  solving  them  in  parametric
form  allow  the  invariance  proof  for  infinite  Petri  net  models.  Complex
deadlocks are disclosed and a possibility of the network blocking via ill-
intentioned traffic revealed. Prospective directions for future research of
infinite Petri nets are formulated and hypotheses advanced. 

Introduction  1.

Petri nets find wide application in automated manufacture [1, 2], busi-
ness  [3],  telecommunications  [4],  computing  [5],  cellular  automata
[6,�7]  and  systems  biology  [8].  Classical  Petri  net  theory  was  devel-
oped for finite Petri nets. The first book on the subject was published
by Peterson [9], then a series of books appeared on various aspects of
Petri net theory and application. A review of them with the summary
of the current state of Petri net theory was published by Murata [10].
Recent  developments  include  particular  extensions  of  Petri  nets,  such
as  colored  Petri  nets  [11]  and  their  application  for  business  process
management  [3].  Moreover,  specializations  of  process-resource  Petri
nets were developed and applied for finding deadlocks in manufactur-
ing systems [1, 2].  
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The  verification  of  telecommunication  protocols  involving  an
unlimited  number  of  devices  is  a  significant  scientific  problem.  The
majority  of  known  works  study  communication  processes  in  pairs  of
communicating  devices  [12,  13].  But  anomalies  may  occur  that
involve  an  arbitrary  number  of  communicating  devices,  as  shown  in
the present paper. 

The  first  paper  where  infinite  Petri  nets  were  introduced  and
applied to solving practical tasks appeared in 2006, as cited in [14]; it
solved the problem of Marsan [15] of verification of an Ethernet net-
work with the common bus architecture. Then, as the result of accom-
plishing a project on a NATO grant, a series of papers was published.
Shmeleva  applied  infinite  Petri  nets  with  a  tree-like  structure  to  ana-
lyze a switched Ethernet network. Then the approach was applied for
analysis  of  square  computing  grids  [16].  Finally,  a  hypercube  struc-
ture was analyzed [17]. It was proven that there exists a possibility of
blocking  a  grid  or  network  by  ill-intentioned  traffic.  Recent  develop-
ments  include  studying  of  various  edge  conditions  of  grids  [18],  a
dual  parametric  description  of  a  grid  [19]  and  software  generators  of
grids’ models [20] with a given size. 

The  majority  of  Petri  net  examples  studied  in  the  literature  are
rather  simplified  models  of  real-life  systems  and  processes.  A  certain
gap  is  formed  between  large-scale  nets,  employed  in  real-life  projects,
and  illustrative  examples,  found  in  articles  and  monographs.  More-
over,  various  simulating  systems,  which  are  counted  in  dozens  and
hundreds,  have  been  tested  and  presented  on  simplified  examples  of
nets.  Thus,  there  is  a  definite  deficiency  of  both  realistic  models  and
simulating systems that are able to analyze large-scale nets in admissi-
ble  time.  In  many  cases,  detailed  models,  close  to  enterprise-class
specifications,  are  a  trade  secret,  and  simulating  systems,  which  are
able  to  analyze  them,  are  only  available  commercially.  So  certain  dif-
ficulties  arise  when  developing  formal  methods  of  Petri  net  analysis
and  the  corresponding  software,  induced  by  the  lack  of  actual  nets.
In �many cases, the application of random Petri nets does not give the
appreciated  result,  since  artificial  (industrial-level)  systems  possess  a
series  of  particularities—for  instance,  they  are  decomposed  into  a
few  functional  subnets  [14],  while  random  nets  are  close  to
indecomposable. 

A  demand  exists  for  a  library  of  large-scale  Petri  nets  that  are
either models or specifications of real-life systems, as well as for facili-
ties  for  automated  construction  (synthesis)  of  specific  Petri  nets  with
given  characteristics:  number  of  vertices,  density  and  localization  of
arcs, connectivity and so on. Owing to the lack of appropriate actual
nets, it is difficult to formulate a set of characteristics and their ranges
for various standard models: a parallel program; a computing, produc-
tion,  transport  or  other  system.  While  there  is  no  objective  precondi-
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tion  for  solving  general  tasks  of  Petri  net  synthesis,  it  is  possible  to
construct special generators of Petri nets [20] for separate application
domains [19]. 

Thus,  a  basis  of  infinite  Petri  nets  theory  was  developed  that  is
described  in  the  present  paper,  as  well  as  the  directions  for  future
work  to  accomplish  the  development  of  infinite  Petri  nets  theory.
Moreover,  a  case  study  of  Petri  net  software  generator  construction
for  modeling  computing  grids  is  presented  for  the  first  time  in
English.  The  described  technique  could  be  employed  in  a  wide  range
of  Petri  net  application  domains,  including  automated  manufacture,
business processes and programming. 

The first problem that researchers encountered when verifying net-
working protocols via Petri nets was the problem of exponential com-
putation  complexity  of  the  majority  of  known  analysis  methods.  To
solve  this  problem,  the  compositional  analysis  of  Petri  nets  [14]  was
offered  based  on  the  decomposition  of  a  net  into  the  set  of  its  func-
tional  subnets  (clans),  solving  tasks  for  each  clan  and  then,  either
simultaneous or sequential composition of functional subnets. Solving
a few systems with considerably lesser dimension (size) under the con-
dition  of  exponential  complexity  allowed  an  exponential  speedup  of
computations  and  verification  of  known  protocols,  such  as  ECMA,
BGP, TCP and IOTP, in a reasonable time [14]. 

The second problem arose when investigating protocols of the Eth-
ernet  network  with  common  bus  architecture  [15].  It  was  rather  sim-
ple to construct a model of a single device. The majority of protocols
stipulate  interaction  of  two  systems,  for  example,  as  protocol  TCP.
Electronic  commerce  protocol  IOTP  [21]  considers  a  few  interacting
systems,  but  their  number  is  constant:  Customer,  Merchant,  Payment
Handler,  Delivery  Handler  and  Merchant  Customer  Care  Provider.
An  Ethernet  segment  with  common  bus  architecture  could  contain  a
priori  an  unknown  number  of  computers,  which  is  reasonable  to  not
limit  in  research  in  spite  of  definite  physical  limitations  stated  in
standards. 

To  solve  this  problem,  infinite  Petri  nets  with  regular  structure
were introduced for the first time as a linear composition of the work-
station models [14]. The further progress of research was indicated by
the  number  of  dimensions  and  the  structure  of  devices’  connections:
tree-like  structures  for  analysis  of  switched  Ethernet;  triangular,  rect-
angular,  and  hexangular  grids  for  analysis  of  distributed  computa-
tions,  radio  and  television  broadcasting,  and  cellular  communications
[19],  as  well  as  various  edge  conditions  [18],  which  define  a  connec-
tion  of  a  model  with  its  environment.  In  the  most  general  form,
results  were  obtained  for  a  hypercube  with  an  arbitrary  size  and  an
arbitrary number of dimensions [17]. 
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The  practical  value  of  the  obtained  result  on  deadlocks  disclosure
within  the  mentioned  structures  and  their  classification  consists  in
revealing possibilities of network blocking via ill-intentioned traffic of
special form [16, 17, 22]. 

The present paper generalizes models studied in [23] of multidimen-
sional  spaces  and  structures  of  various  shapes:  triangular,  hexagonal;
it  also  specifies  a  technique  of  software  generators  [20]  for  models
with regular structure. 

Plain Grids of Different Shapes and Trees  2.

The  communication  device  model  [23]  (represented  with  equa-
tion�(1)), under various values of the parameter np, could be involved
in  composition  of  models  of  triangular  and  hexangular  grids,  trees
and networks of an arbitrary structure. From the models of devices in
the  forms  of  a  triangle  and  hexagon  (Figure  1),  models  of  triangular
and hexangular grids are composed (Figure 2).  

(a) (b)

Figure 1. Forms of devices’ models: (a) triangle; (b) hexagon.  

Triangular grids correspond with the forms of the coverage area in
modern  systems  of  radio  and  television  broadcasting.  Hexangular
grids  find  their  wide  application  when  modeling  cellular  communica-
tion systems and networks. 

Application  of  infinite  models,  constructed  on  the  base  of  the
device  model  of  form  [23]  (equation  (1)),  historically  started  from
tree-like  structures,  which  are  the  model  of  modern  switched  net-
works  of  the  technology  Ethernet.  In  Figure  3,  a  binary  tree  is  repre-
sented,  which  is  convenient  for  theoretical  research;  modern  Ethernet
switches contain, as a rule, 8, 16, 24 and more ports. 
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(a) (b)

Figure 2. Composition of grids: (a) triangular; (b) hexangular.  

Figure 3. Composition of tree-like structures.  

In  the  conducted  research,  a  single  basic  fragment  was  employed
for  composition  of  either  trees  or  grids.  A  prospective  direction  is
working  with  a  few  basic  fragments  (a  finite  set)  and  arbitrary
schemes of their connection. 
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Cubic Grid  3.

All  early  studied  models  were  constructed  on  a  plane.  However,  for
solving boundary value problems in space, structures of cubes as a pat-
tern of processor (computers) connection is widely applied.  

To  construct  the  corresponding  model,  each  device  is  represented
by  a  cube  of  unit  size  with  ports  situated  on  its  facets  (Figure  4(a)).
For  generalization  on  an  arbitrary  number  of  dimensions,  when  con-
structing the cube model, a new system of the ports’ enumeration was
chosen.  Recall  that  within  the  rectangular  grid  model,  the  ports  were
enumerated clockwise starting from the upper side. 

Within a cube, the device ports (facets) have two indices: the first is
the  number  of  the  dimension,  and  the  second  is  the  number  of  the
direction.  The  number  of  the  dimension  corresponds  to  the  coordi-
nate  axis  along  which  (perpendicular  to  which)  opposite  facets  are
situated; the direction to the beginning of coordinates is designated as
1  and  the  direction  to  infinity  is  designated  as  2.  In  Figure  4(b),  a
graphical  representation  of  the  parametric  description  of  the  device
model  in  equation  (1)  from  [23]  is  shown,  taking  into  consideration
the system of the ports’ notation. 

(a) (b)

Figure 4. Model of a cube device.  

A scheme of the cubic grid model composition is represented in Fig-
ure 5. Neighboring devices, the same as for plane grids, are connected
via fusion (union) of the ports’ contact places. 
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Figure 5. Composition of a cube.  

Hypercube Grid Structure  4.

The  model  of  a  device  in  the  form  of  a  cube  (Figure  4(b))  does  not
possess  a  distinction  of  obviousness.  That  is  why,  in  the  further  con-
structions, a preference is given to the parametric description. The pre-
vious  constructions  were  implemented  with  the  increment  of  the
number  of  dimensions:  1–line,  2–plane,  3–space;  let  us  generalize  the
results on an arbitrary number of dimensions.  

Parametric Model of Hypercube Communication Device  4.1

Let us consider a d-dimensional space, where d  1, 2, …. Each com-
munication device is represented by a hypercube of size 1 in d-dimen-
sional  space.  The  communication  structure  composed  by  connected
communication  devices  constitutes  a  hypercube  of  size  k,  where

k  1, 2, …. So the total number of devices is Ndev  kd. Each device

Ri1,i2,… ,id
 has  its  index  (i1, i2, … , id),  where  iu  1, k,  u  1, d.  The

model  of  the  hypercube  communication  structure  is  denoted  as  Hd, k.

Next we describe the Petri net model of a device and then the compo-
sition of a communication structure model via connections of a device
with its neighbors.  

The  model  of  a  hypercube  device  is  denoted  as  Hd, 1  (number  of

dimensions equals d, size of the structure equals 1). On each facet of a

hypercube  device  Ri1, i2,… ,id
 in  d-dimensional  space  a  port  is  situated.

So  each  device  has  Nport  2 · d  ports;  two  ports  for  each  dimension

are  situated  at  the  opposite  facets  of  the  hypercube.  To  denote
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opposite  facets  for  a  dimension j  (j  1, d),  the  number  of  the  direc-
tion  is  used.  The  direction  is  denoted  by  the  variable n;  the  value
n  1 is used for the direction to zero in the corresponding dimension
and  the  value  n  2  is  used  for  the  opposite  direction  to  infinity.  So

the  ports  may  be  denoted  with  the  following  indices:  portj, n
i1, i2,… ,id ,

where iu  1, k, u  1, d, j  1, d, n  1, 2. Each  port is represented

by  the  two  channels  (input,  output);  each  channel  is  represented  by  a
pair  of  places:  one  place  for  the  packets  buffer,  the  other  for  the

buffer capacity. So each port of the device Ri1, i2,… ,id
 is represented by

the four following contact places: 

pij, n
i1, i2,…id input buffer of packets;

pilj, n
i1, i2,…id capacity of input buffer equals 1;

poj, n
i1, i2,…id output buffer of packets;

polj, n
i1, i2,…id capacity of output buffer equals 1.

The  inside  of  the  device  contains  Nport + 1  following  places.  The

packets  redirected  to  the  port  portj′, n′
i1, i2,… ,id

 are  stored  in  the  corre-

sponding  place  pbj′, n′
i1, i2,…id ,  and  one  place  pbli1, i2,…id

 contains  the

capacity of the internal buffer, where j′  1, d, n′  1, 2. Notice that

the  internal  buffer  is  represented  by  the  set  of  places  pbj′, n′
i1, i2,…id

 (one

place for each port) to distinguish the number of the destination port
given by indices j′, n′. 

The  transitions  of  the  device  Ri1, i2,… ,id
 provide  the  redirection  of

the  input  packets  from  an  input  port  buffer  place  pij, n
i1, i2,…id

 into  one

of  the  internal  buffer  places  pbj′, n′
i1, i2,…id ,  j′ ≠ j,  n′ ≠ n  and  then  the

transmission  of  the  packets  from  the  internal  buffer  place  pbj′, n′
i1, i2,…id

to the output buffer of the target port poj′, n′
i1, i2,…id . Moreover, the limita-

tions  of  the  buffers’  capacities  should  be  taken  into  consideration:
check  and  decrease  the  buffer  size  at  putting  the  packet  into  the
buffer;  increase  the  buffer  size  at  getting  the  packet  from  the  buffer.

So  each  port  portj, n
i1, i2,… ,id

 of  the  device  Ri1, i2,… ,id
 is  supplied  by

Nport  Nport - 1 + 1 following transitions: 

one transition for the output channel toj, n
i1, i2,…id

 with the input arcs from

places  pbj, n
i1, i2,…id ,  polj, n

i1, i2,…id
 and  the  output  arcs  to  places  poj, n

i1, i2,…id ,
pbli1, i2,…id

1.
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Nport - 1  transitions  tij, n, j′, n′
i1, i2,…id ,  j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n  for  the

input  channel  with  the  input  arcs  from  places  pij, n
i1,i2,…id ,  pbli1, i2,…id

 and

the output arcs to places pbj′, n′
i1, i2,…id , pilj, n

i1, i2,…id

2.

The formal parametric description of the net Hd, 1 is the following: 

tij, n, j′, n′ : pij, n, pbl → pbj′, n′ , pilj, n;

j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n;

toj, n : pbj, n, polj, n → poj, n, pbl

, j  1, d, n  1, 2 . (1)

If  the  net  Hd, 1  is  considered  as  a  model  of  the  device  Ri1, i2,… ,id
 in

the hypercube structure, the upper indices of its hypercube cell should
be added: 

tij, n,j′, n′
i1, i2,…id : pij, n

i1, i2,…id , pbli1, i2,…id →

pbj′, n′
i1, i2,…id , pilj, n

i1,i2,…id ,

j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n;

toj, n
i1, i2,…id : pbj, n

i1, i2,…id , polj, n
i1, i2,…id →

poj, n
i1, i2,…id , pbli1, i2,…id 

, j  1, d, n  1, 2 .

The net represented by equation (1) is called a parametric Petri net
because  its  description  has  the  parameter  d  for  the  calculation  of  the
elements’  indices.  The  size  of  the  net  Hd, 1  is  unlimited  and  repre-

sented  by  the  parameter  d.  The  parametric  model  Hd, 1  is  illustrated

by  the  example  for  the  concrete  number  of  dimensions  d  3  shown
in Figure 4. It is rather difficult to visualize models for larger numbers
of dimensions. 

P-Invariants of Hypercube Communication Device Model  4.2

Using  the  parametric  description  in  equation  (1)  of  the  communica-
tion  device  model  Hd, 1  given  in  the  previous  section,  the  following

system was constructed for the calculation of p-invariants:  

toj, n : xpbj, n + xpolj, n  xpoj, n + xpbl,

tij, n, j′, n′ : xpij, n + xpbl  xpbj′, n′ + xpilj, n,

j  1, d, n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

(2)

Notice  that  the  system  of  equation  (2)  has  a  parametric  form;  its
parameter is the number of dimensions d. The system was constructed
directly  on  the  description  of  equation  (1),  using  the  usual  rule  that

Infinite Petri Nets: Part 2 349

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341


each  equation  corresponds  to  transition  and  contains  sums  for  its
input  and  output  arcs,  which  are  equal.  Sums  should  be  calculated
using  the  multiplicities  of  arcs,  but  all  the  arcs  of  equation  (1)  have
the  multiplicity  equaling  to  unit.  The  total  number  of  the  system  in

equation  (2)  equations  is  Nd, 1
t  4 · d2.  The  total  number  of  system

variables in equation (2) is Nd, 1
p  10 · d + 1. 

To  study  p-invariants  of  the  model  for  any  number  of  dimensions,
the  system  of  equation  (2)  should  be  solved  in  the  parametric  form.
The  obtained  parametric  solution  of  the  system  in  equation  (2)  has
the following form: 

pij, n, pilj, n, j  1, d, n  1, 2;

poj, n, polj, n, j  1, d, n  1, 2;

pbl, pbj, n, j  1, d, n  1, 2

pbj, n, pij, n, poj, n, j  1, d, n  1, 2

pbl, pilj, n, polj, n, j  1, d, n  1, 2

. (3)

The way solutions are described here is common enough for sparse
vectors  and  especially  for  the  Petri  net  theory.  Only  nonzero  compo-
nents  are  mentioned  by  the  names  of  the  corresponding  places.  The
nonzero multiplier 1 is omitted; in case it is not the unit, the notation
p * x  is  used,  where  x  is  the  value  of  the  invariant  for  place  p.  Such
notation  is  adopted  in  the  Tina  software  [24],  which  was  used  for
obtaining  the  Petri  net  figures  in  this  paper.  A  line  of  the  matrix  in
equation (3) gives us a set of lines according to the used indices i, j, n,
except the last two lines, which contain a variable number of compo-
nents given by indices. 

A  heuristic  algorithm  was  employed  for  the  construction  of  the
matrix in equation (3), but with Lemma 1 the proof is presented that
equation (3) is a solution of equation (2). The fact that equation (3) is
the basis solution is not required for the conclusion about the p-invari-
ance  of  Hd, 1.  The  total  number  of  solutions  in  the  matrix  in  equa-

tion�(3) is Nd, 1
pinv  4d + 3. 

Lemma 1.  Each  line  of  the  matrix  in  equation  (3)  is  a  solution  of  the
system in equation (2). 

Proof. Let us substitute each parametric line of equation (3) into each
parametric equation of the system in equation (2). It gives us the cor-
rect  statement.  At  the  substitution,  the  different  names  of  indices  are
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chosen. For instance, let us substitute the fourth line of equation (3) 

pbl,m, pil,m, pol,m, l  1, d, m  1, 2

into the second equation of (2)  

xpij, n + xpbl  xpbj′, n′ + xpilj, n, j  1, d,

n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

For  each  concrete  equation  given  by  valid  tuple  (j, n, j′, n′),  the
solution  contains  pij, n  at  l  j,  m  n  and  pbj′, n′  at  l  j′,  m  n′;

moreover,  the  other  variables  of  the  equation  xpbl, xpilj′, n′  are  not

mentioned  in  the  solution.  So  we  obtain  1 + 0  1 + 0,  reducing  fur-
ther to 1 = 1 for each equation. 

The  first  two  solutions  of  equation  (3)  are  slightly  different:  they
represent  a  series  of  lines  given  by  their  indices.  Let  us  substitute  the
first parametric line of equation (3) 

pil,m, pill,m, l  1, d, m  1, 2;

into the second parametric equation of equation (2)  

xpij, n + xpbl  xpbj′, n′ + xpilj, n, j  1, d,

n  1, 2, j′  1, d, n′  1, 2, j′ ≠ j, n′ ≠ n.

We obtain: 

when l ≠ j or m ≠ n: 0 + 0  0 + 0, reducing further to 0  0; 

when l  j and m  n: 1 + 0  0 + 1, reducing further to 1  1. 

In the same way, all the 5⨯2 combinations are checked. □

Theorem 1. The net Hd, 1 is a p-invariant Petri net for an arbitrary natu-

ral number d. 

Proof. Let us consider the sum of the fourth and the fifth lines of the
matrix in equation (3), which represents the solutions of the system in
equation (2) according to Lemma 5: 

pbj, n, pij, n, poj, n, j  1, d, n  1, 2

plus  

pbl, pilj, n, polj, n, j  1, d, n  1, 2

equals

pbl, pilj, n, polj, n, pbj, n, pij, n, poj, n,

j  1, d, n  1, 2.
(4)
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As  all  the  Nd, 1
p  10 · d + 1  places  are  mentioned  in  this  invariant,

the net Hd, 1  is a p-invariant Petri net for an arbitrary natural number

d. Moreover, as each component of equation (4) is equal to 1, the net
Hd, 1  is  a  safe  and  bounded  Petri  net  for  an  arbitrary  natural  num-

ber�d. □ 

Composition of Hypercube Model  4.3

The  connections  of  communication  devices  in  the  hypercube  are  pro-
vided  by  the  fusion  (union)  of  the  corresponding  contact  places  of
neighbor devices.  

Let  us  consider  an  internal  communication  device  Ri1,…ij,… ,id ,

iu  2, k - 1, u  1, d, j  1, d: 

Places of portj, 1
i1,… ,ij,… ,id

 are fused with the corresponding places of 

portj, 2
i1,… ,ij-1,… ,id , device Ri1,…ij-1,… ,id

 in such a way that place 

poj, 1
i1,… ,ij,…id

 is fused with pij, 2
i1,… ,ij-1,…id , place polj, 1

i1,… ,ij,…id—with 

pilj, 2
i1,… ,ij-1,…id , place pij, 1

i1,… ,ij,…id—with poj, 2
i1,… ,ij-1,…id , place pilj, 1

i1,… ,ij,…id—

with polj, 2
i1,… ,ij-1,…id . 

1.

Places of portj, 2
i1,… ,ij,… ,id

 are fused with the corresponding places of 

portj, 1
i1,… ,ij+1,… ,id , device Ri1,…ij+1,… ,id

 in such a way that place 

poj, 2
i1,… ,ij,…id

 is fused with pij, 1
i1,… ,ij+1,…id , place polj, 2

i1,… ,ij,…id—with 

pilj, 1
i1,… ,ij+1,…id , place pij, 2

i1,… ,ij,…id—with poj, 1
i1,… ,ij+1,…id , place pilj, 2

i1,… ,ij,…id—

with polj, 1
i1,… ,ij+1,…id . 

2.

To avoid duplication, the names of the places for the zero direction
ports n  1 will be considered with respect to the current device, and
for  the  infinity  direction  ports  n  2  with  respect  to  the  neighbor
devices  and  their  zero  direction  ports  n  1.  So  the  names  of  the
fusion  places  have  only  the  indices  of  the  zero  direction  ports  n  1.
Moreover, to simplify further notations, the places with the indices of
the  infinity  direction  ports  n  2  on  the  facets  (borders)  of  the  com-
munication  hypercube  are  named  with  respect  to  nonexistent  devices
with the indices equal to k + 1. So the names of ports with the indices
of  the  infinity  direction  n  2  do  not  appear  in  the  hypercube.  The
communication  hypercube  structure  described  is  denoted  as  Hd, k.  An

example of Hd, k for d  3, k  4 is represented in Figure 5. 

The  formal  description  of  Hd, k  composition  is  given  with  the

following: 
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pij, 1
i1,… ,ij+1,…id : 

poj, 2
i1,… ,ij,…id ⋃ pij, 1

i1,… ,ij+1,…id

pilj, 1
i1,… ,ij+1,…id : 

polj, 2
i1,… ,ij,…id ⋃ pilj, 1

i1,… ,ij+1,…id

poj, 1
i1,… ,ij+1,…id : 

pij, 2
i1,… ,ij,…id ⋃ poj, 1

i1,… ,ij+1,…id

polj, 1
i1,… ,ij+1,…id : 

pilj, 2
i1,… ,ij,…id ⋃ polj, 1

i1,… ,ij+1,…id

, iu  1, k - 1, u  1, d, j  1, d ,

pij, 1
i1,… ,ij+1,…id :  poj, 2

i1,… ,ij,…id

pilj, 1
i1,… ,ij+1,…id :  polj, 2

i1,… ,ij,…id

poj, 1
i1,… ,ij+1,…id :  pij, 2

i1,… ,ij,…id

polj, 1
i1,… ,ij+1,…id :  pilj, 2

i1,… ,ij,…id

,
iu  1, k - 1, u  1, d,

j  1, d, u ≠ j, ij  k
.

The union sign ⋃ denotes the fusion of places; the left column gives
new names of places. 

P-Invariants of Hypercube Model  4.4

Using the abstract description of the communication hypercube model
Hd, k  given in the previous section, the following system is constructed

for the calculation of p-invariants:  

toj, 1
i1,… ,id : xpbj, 1

i1,… ,id + xpolj, 1
i1,… ,id  xpoj, 1

i1,… ,id + xpbli1,… ,id ,

tij, 1, j′,n′
i1,… ,id : xpij, 1

i1,… ,id + xpbli1,… ,id  xpbj′, n′
i1,…id + xpilj, 1

i1,… ,id ,

toj, 2
i1,… ,ij,… ,id : xpbj, 2

i1,… ,ij,… ,id + xpilj, 1
i1,… ,ij+1,… ,id 

xpij, 1
i1,… ,ij+1,… ,id + xpbli1,… ,ij,… ,id ,

tij, 2, j′, n′
i1,… ,ij,… ,id : xpoj, 1

i1,… ,ij+1,… ,id + xpbli1,… ,ij,… ,id 

xpbj′, n′
i1,… ,ij,… ,id + xpolj, 1

i1,… ,ij+1,… ,id ,

j  1, d, j′  1, d, n′  1,

2, j′ ≠ j, n′ ≠ n, iu  1, k, u  1, d.

(5)

The  total  number  of  system  equations  in  equation  (5)  is

Nd, k
t  4 · d2 · kd.  The  total  number  of  system  variables  in  equa-

Infinite Petri Nets: Part 2 353

https://doi.org/10.25088/ComplexSystems.26.4.341

https://doi.org/10.25088/ComplexSystems.26.4.341


tion�(5)  is  Nd, k
p  6 · d + 1 · kd + 4 · d · kd-1.  The  obtained  parametric

solution has the following form: 

pij,1
i1,… ,ij,… ,id , pilj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  1, k + 1;

poj,1
i1,… ,ij,… ,id , polj,1

i1,...ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  1, k + 1;

pbli1,… ,id , pbj,n
i1,… ,id , j  1, d, n  1, 2,

iu  1, k, u  1, d;

pbj,n
i1,… ,id , n  1, 2, j  1, d, iu  1, k, u  1, d,

pij,1
i1,… ,id , poj,1

i1,… ,id , j  1, d, iu  1, k, u  1, d,

pij,1
i1,… ,ij,… ,id , poj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  k + 1

pbli1,… ,id , pilj,1
i1,… ,id , polj,1

i1,… ,id , j  1, d,

iu  1, k, u  1, d,

pilj,1
i1,… ,ij,… ,id , polj,1

i1,… ,ij,… ,id , j  1, d,

iu  1, k, u  1, d, u ≠ j, ij  k + 1

. (6)

The total number of solutions is

Nd, k  1 + 2 · d · kd + 2 · d · kd-1 + 2.

Lemma 2.  Each  line  of  the  matrix  in  equation  (6)  is  a  solution  of  the
system in equation (5). 

Theorem 2. The net Hd, k  is a p-invariant Petri net for arbitrary natural

numbers d, k. 
The proofs of Lemma 2 and Theorem 2 were done in the same way

as for the net Hd, 1. 

Adding Models of Terminal Devices  4.5

The communication devices are attached to each other, constituting a
communication  structure,  but  they  are  created  only  for  packet  trans-
mission among the terminal devices: workstations and servers. In this
paper,  the  client-server  technique  of  interaction  is  not  studied,  so  the
types  of  terminal  devices  are  not  distinguished.  An  abstract  terminal
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device  provides  at  least  two  basic  functions:  send  packet  and  receive
packet.  These  basic  functions  are  implemented  in  the  model  repre-
sented in Figure 7 of [23].  

The model contains an internal buffer of the packets qb; transition
si  models  the  receiving  of  the  packets,  while  transition  so  models  the
sending.  The  model  keeps  the  balance  of  input  and  output  packets;
the limitation of buffer qbl size is not considered. 

The terminal devices shown in Figure 7 of [23] are attached to the
border  ports  of  the  hypercube  structure;  the  corresponding  model  is
denoted  as  HTd, k.  The  terminal  device  in  hypercube  structure  is

denoted  as  Ai1, …ij, … , id,  where  iu  1, k,  u  1, d,  j  1, d,  u ≠ j,

ij ∈ 1, k, and attached to the communication device Ri1,…ij,… ,id . The

formal  description  of  HTd, k  composition  using  HTd, k,

Ai1, …ij, … , id is given with the following: 

pij, 1
i1,… ,ij,…id :=

qoi1, … , ij, …id ⋃ pij, 1
i1,… ,ij,…id

pilj, 1
i1,… ,ij,…id :=

qoli1, … , ij, …id ⋃ pilj, 1
i1,… ,ij,…id

poj, 1
i1,… ,ij,…id :=

qii1, … , ij, …id ⋃ poj, 1
i1,… ,ij,…id

polj, 1
i1,… ,ij,…id :=

qili1, … , ij, …id ⋃ polj, 1
i1,… ,ij,…id

,
iu  1, k, u  1, d,

j  1, d, u ≠ j, ij  1
,

pij, 1
i1,… ,ij+1,…id :=

qii1, … , ij, …id ⋃ pij, 1
i1,… ,ij+1,…id

pilj, 1
i1,… ,ij+1,…id :=

qili1, … , ij, …id ⋃ pilj, 1
i1,… ,ij+1,…id

poj, 1
i1,… ,ij+1,…id :=

qoi1, … , ij, …id ⋃ poj, 1
i1,… ,ij+1,…id

polj, 1
i1,… ,ij+1,…id :=

qoli1, … , ij, …id ⋃ polj, 1
i1,… ,ij+1,…id

,
iu  1, k, u  1, d,

j  1, d, u ≠ j, ij  k
.
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In the same way as in [23], it was proven that HTd, k  is a p-invari-

ant Petri net for any given natural numbers d and k. 

T-Invariants and Deadlocks of Hypercube  4.6

The  same  approach  is  applied  for  calculating  the  t-invariants.  The
only  difference  is  that  for  t-invariants,  each  equation  corresponds  to
place  and  variables  correspond  to  transitions.  It  is  an  advantage  that
the  Petri  net  Hd, k  is  not  t-invariant,  but  it  is  quite  trivial  because  the

modeled system is open, since the terminal devices are not attached. It
was  proven  that  the  model  of  closed  system  with  attached  terminal
devices  HTd, k  is  a  t-invariant  Petri  net  for  arbitrary  natural  numbers

d, k. But the consistency of the model does not imply its liveness.  
Each  pair  of  neighbor  communication  devices  can  fall  into  a  local

deadlock,  for  instance,  when  the  device  Ri1,… ,ij,… ,id
 gets  l  packets

directed to the device Ri1,… ,ij+1,… ,id
 and the device Ri1,… ,ij+1,… ,id

 gets

l  packets  directed  to  the  device  Ri1,… ,ij,… ,id
 and,  moreover,  the  input

and output buffers of their common port are occupied with the pack-
ets,  where  l  is  the  limitation  of  the  internal  buffer  size  (marking  of

places  pbli1,… ,ij,… ,id ,  pbli1,… ,ij+1,… ,id ).  Such  a  situation  constitutes  the
t-dead marking for the transitions of both devices, while other transi-
tions of the net HTd,k are potentially live. 

But  the  structure  of  all  the  possible  deadlocks  is  more  sophis-
ticated.  We  show  that  deadlocks  occur  either  in  cycles  (chains)  of
blockings involving a few communicating devices (where the pair is a
particular case) or because of isolation with surrounding deadlocks. 

For  the  description  of  complex  deadlocks  of  the  net  HTd, k,  the

graph GHd, k  of connections is constructed. In the graph GHd, k, each

node corresponds to a communication device and has arcs directed to
its  neighbors.  An  example  of  internal  node  connections  for  GH3, k  is

shown in Figure 6. An arc with two arrows denotes two arcs of oppo-
site directions. 

A  directed  simple  cycle  in  the  graph  GHd, k  represents  a  deadlock

of the communication hypercube HTd, k. In a deadlock cycle, each arc

connecting  a  pair  of  neighbor  devices  Ri1,… ,iu,… ,id ,  Ri1,… ,iu
′ ,… ,id ,

iu - iu
′   1 means that Ri1,… ,iu,… ,id

 blocks itself if and only if it got l

packets directed to Ri1,… ,iu
′ ,… ,id , its output buffer of the port connect-

ing  Ri1,… ,iu,… ,id
 with  Ri1,… ,iu

′ ,… ,id
 contains  a  packet,  and  the  device

Ri1,… ,iu
′ ,… ,id

 is  blocked  also.  When  the  cycle  ends,  the  last  device
blocks  itself  because  the  first  device  is  blocked  and  cannot  receive
packets.
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Figure 6. Node connections of the graph GH3, k.  

Let us prove that all the transitions of a blocked device Ri1,… ,iu,… ,id

are dead. For distinctness we denote 

r 
1, iu - iu

′  -1,

2, iu - iu
′  1.

All the transitions tij, n, j′, n′
i1,… ,id

 are dead because marking of their input

place  pbli1,… ,id
 equals  zero,  so  the  device  cannot  receive  packets.  All

the  transitions  toj, n
i1,… ,id ,  n ≠ r  are  dead  because  each  of  their  input

places  pbj, n
i1,… ,id

 has  zero  marking.  The  transition  tou, r
i1,… ,id

 is  dead

because marking of its input place polu, r
i1,… ,id

 is zero. So the device can-

not send packets. Notice that marking of polu, r
i1,… ,id

 cannot be changed

because Ri1,… ,iu
′ ,… ,id

 is blocked. 
Nonsimple cycles of GHd, k  represent deadlocks also. For instance,

if  device  Ri1,… ,…,iu,… ,iv,… ,id
 belongs  to  two  simple  cycles  and  it  got

two  output  arcs  directed  to  Ri1,… ,…,iu
′ ,… ,iv,… ,id

 and

Ri1,… ,…,iu,… ,iv
′ ,… ,id ,  it  means  that  Ri1,… ,…,iu,… ,iv,… ,id

 blocks  itself  and

Ri1,… ,…,iu
′ ,… ,iv,… ,id ,  Ri1,… ,…,iu,… ,iv

′ ,… ,id
 are  blocked  also.  In  this  case,

Ri1,… ,…,iu,… ,iv,… ,id
 blocks  itself,  having  au  packets  directed  to

Ri1,… ,…,iu
′ ,… ,iv,… ,id

 and  av  packets  directed  to  Ri1,… ,…,iu,… ,iv
′ ,… ,id ,

where  au + av  l,  and  moreover,  each  corresponding  output  port

buffer  of  Ri1,… ,…,iu,… ,iv,… ,id
 contains  a  packet  when  au > 0  (av > 0).

Inductive reasoning gives the proof for d simple cycles. 
The  other  kind  of  deadlock  is  induced  by  the  isolation  of  a  device

by  deadlocks  containing  all  its  neighbor  devices.  It  can  be  done  with
one  simple  cycle  as  well.  For  instance,  in  GH3, k,  the  following  cycle

Ri1-1, i2, i3 ,  Ri1-1, i2+1, i3 ,  Ri1, i2+1, i3 ,  Ri1, i2+1, i3+1,  Ri1, i2, i3+1,
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Ri1+1, i2, i3+1,  Ri1+1, i2, i3 ,  Ri1+1, i2-1, i3 ,  Ri1, i2-1, i3 ,  Ri1, i2-1, i3-1,

Ri1, i2, i3-1,  Ri1-1, i2, i3-1,  Ri1-1, i2, i3
 contains  all  the  neighbors  of

Ri1, i2, i3
 (Ri1-1, i2, i3 ,  Ri1, i2+1, i3 ,  Ri1, i2, i3+1,  Ri1+1, i2, i3 ,  Ri1, i2-1, i3 ,

Ri1, i2, i3-1),  so  the  device  Ri1, i2, i3
 is  blocked  because  of  isolation.  The

isolation  of  a  node  can  be  generalized  on  the  blocking  of  a  simple
chain by the isolation of its last node. 

So  a  deadlock  is  a  chain  of  blockings  where  the  last  node  is
blocked because: 

It coincides with the first node.1.

It belongs to another deadlock.2.

It is isolated by another deadlock.3.

It is very significant that deadlocks that have occurred create more
possibilities  for  new  deadlocks  occurring.  So  the  process  has
avalanche-like  character.  A  full  deadlock  involving  all  the  devices
(and  all  the  transitions)  occurs  when  cycles  (chains)  contain  all  the

devices  in  the  hypercube.  It  requires  at  least  l + 1 · kd  packets  pro-

vided  by  the  terminal  devices.  But  if  isolations  of  devices  occur,  a
small number of packets is required. 

In spite of the fact that rather sophisticated hypercube communica-
tion  structures  were  studied,  the  described  deadlocks  in  the  chains
(cycles)  of  blockings  and  isolations  are  rather  common  for  real-life
communication  graphs,  where  devices  with  the  compulsory  buffering
are  used.  We  believe  that  these  deadlocks  may  be  purposely  inflicted
by the specially situated generators of the particular traffic. In real-life
networks,  the  blocking  of  the  devices  is  overcome  by  the  timeout
mechanisms causing the cleaning of the buffers, but this leads to a con-
siderable  decrease  in  network  performance  as  soon  as  the  situation  is
repeated by the special generators of ill-intentioned traffic. 

A hypertorus structure, common for (thermo) nuclear physics appli-
cations, is composed in a similar way by connecting opposite sides of
a  hypercube  structure  [18].  The  software  generators  of  hypertorus
models are available at http://github.com/dazeorgacm/htgen.

Software Generators of Grid Models  5.

During  development  of  plugins  for  the  known  simulating  system
Tina,  named  Deborah  and  Adriana  [14]  and  destined  for  Petri  nets
decomposition into clans and compositional calculation of invariants,
respectively, software generators of Petri nets [20] were applied. They
produced  large-scale  Petri  nets  that  were  thereafter  used  as  tests.
These  nets  had  the  structure  of  a  simple  chain,  a  simple  loop  and  a
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sequence of connected basic fragments. Thus, the possibility of testing
program  modules  on  nets  with  many  thousands  of  vertices  was  pro-
vided.  Analogous  generators  were  used  for  verification  of  Ethernet
protocols  and  analysis  of  computing  grids  [25,  26],  with  the  aim  of
creating  an  inductive  base  for  generalizing  obtained  results  on  struc-
tures of an arbitrary size.  

This section represents, in essence, a case study of software genera-
tors of grid model construction, and the described technique could be
employed  in  a  wide  range  of  Petri  net  application  domains,  including
automated manufacture, business processes and programming. 

Formats of Files  5.1

The  simulating  system  Tina  accepts  two  formats  of  files  describing  a
Petri  net:  logical  (.net)  and  graphical  (.ndr).  For  constructing  genera-
tors (Figure 7), either of the formats could be used. Since for big Petri
nets  their  visual  representation  becomes  inessential,  in  the  present
paper,  a  logical  format  is  employed  substantially.  When  required,
visualization of a Petri net is done by embedded facilities of Tina that
provide  automatic  construction  of  files  with  a  graphical  format
(drawing net).  

Figure 7. General scheme of a Petri net generator operation.  

A  file  with  a  logical  format  (.net)  contains  an  abstract  description
of  a  Petri  net  without  information  regarding  its  visual  representation.
A  Petri  net  graph  is  described  as  a  list  of  transitions  and  their  input
and  output  arcs;  the  initial  marking  is  described  as  a  list  of  places
with  values  of  their  marking.  In  addition,  Tina  employs  information
such as auxiliary labels of vertices, types of arcs, transitions’ priorities
and  times  of  transitions’  firing.  Such  additional  information  is  not
used  in  the  present  paper  for  generating  a  classical  Petri  net,  namely
its graph required for structural analysis via calculation of places’ and
transitions’  invariants.  In  the  simplified  form,  the  file  format  is
described as follows: 

tr <t-name> <p-name>[*<weight>],... -> <p-name>$[*<weight>],...
...
pl <p-name> (<marking>)
...
net <net-name>
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The transition description begins with the reserved word “tr”, then
the list of the transition’s incoming arcs follows, and after a delimiter
“->”  the  list  of  outgoing  arcs  follows.  An  arc  is  described  by  a  place
name  and  the  arc’s  multiplicity  (weight)  is  indicated  after  a  delimiter
“*”;  multiplicity  equal  to  unit  is  omitted.  Compound  names  of  ver-
tices  are  parenthesized  in  curly  brackets.  An  example  of  a  file  is
shown in Listing�2. 

Software Implementation of a Generator  5.2

The  parametric  description  of  grids  via  the  form  [23]  (represented
with equation (3)) is source data for software implementation of Petri
net  generators.  The  generator  of  the  open  square  grid  models  in  pro-
gramming language C is shown in Listing 1. The value of parameter k
of  the  square  grid  size  is  inputted  from  the  command  line  as  argv[1].
Then, on each of the variables i, j used in [23] (equation (3)), the cor-
responding loop is organized; because of the small range of variable v,
as an alternative to additional loops, the direct enumeration of all vari-
ants is employed.  

/* generate open square grid on plane */
#include <stdio.h>

main( int argc, char * argv[] )
{
 int k,i,j;
 if( argc < 2 )
 {
  printf("*** USAGE: g2o k\n");
  return 2;

 }
 else k = atoi( argv[1] );

 for(i=1; i<=k; i++)
  for(j=1; j<=k; j++)
  {
    printf("tr {to_1^%d,%d} {pol_1^%d,%d} {pb_1^%d,%d} -> 

{po_1^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {ti_1,2^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} -> 

{pil_1^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {ti_1,3^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} -> 

{pil_1^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {ti_1,4^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} -> 

{pil_1^%d,%d} {pb_4^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {to_4^%d,%d} {pol_4^%d,%d} {pb_4^%d,%d} -> 

{po_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {ti_4,1^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} -> 

{pil_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
    printf("tr {ti_4,2^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} -> 

{pil_4^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );
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 printf("tr {ti_4,3^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->
{pil_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j );

 printf("tr {to_2^%d,%d} {pil_4^%d,%d} {pb_2^%d,%d} ->
{pi_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j );

 printf("tr {ti_2,1^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j );

 printf("tr {ti_2,3^%d.%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j );

 printf("tr {ti_2,4^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->
{pol_4^%d,%d} {pb_4^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j );

 printf("tr {to_3^%d,%d} {pil_1^%d,%d} {pb_3^%d,%d} ->
{pi_1^%d,%d} {pbl^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j );

 printf("tr {ti_3,1^%d,%d} {po_1^%d^%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_1^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j );

 printf("tr {ti_3,2^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_2^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j );

 printf("tr {ti_3,4^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->
{pol_1^%d,%d} {pb_4^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j );

 }
 printf("net n2o%d\n", k);
}

Listing 1. Generator of the open square grid model. 

In  Listing  2,  a  Petri  net  generated  by  the  program,  shown  in  List-
ing�1, at the parameter value k  2, is represented; the net completely
corresponds  to  the  graphical  representation  of  the  grid  model  shown
in [23, Figure 6]. 

tr {to_1^1,1} {pol_1^1,1} {pb_1^1,1} -> {po_1^1,1} {pbl^1,1}
tr {ti_1,2^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_2^1,1}
tr {ti_1,3^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_3^1,1}
tr {ti_1,4^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_4^1,1}
tr {to_4^1,1} {pol_4^1,1} {pb_4^1,1} -> {po_4^1,1} {pbl^1,1}
tr {ti_4,1^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_1^1,1}
tr {ti_4,2^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_2^1,1}
tr {ti_4,3^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_3^1,1}
tr {to_2^1,1} {pil_4^1,2} {pb_2^1,1} -> {pi_4^1,2} {pbl^1,1}
tr {ti_2,1^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_1^1,1}
tr {ti_2,3^1.1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_3^1,1}
tr {ti_2,4^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_4^1,1}
tr {to_3^1,1} {pil_1^2,1} {pb_3^1,1} -> {pi_1^2,1} {pbl^1,1}
tr {ti_3,1^1,1} {po_1^2^1} {pbl^1,1} -> {pol_1^2,1} {pb_1^1,1}
tr {ti_3,2^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_2^1,1}
tr {ti_3,4^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_4^1,1}
tr {to_1^1,2} {pol_1^1,2} {pb_1^1,2} -> {po_1^1,2} {pbl^1,2}
tr {ti_1,2^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_2^1,2}
tr {ti_1,3^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_3^1,2}
tr {ti_1,4^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_4^1,2}
tr {to_4^1,2} {pol_4^1,2} {pb_4^1,2} -> {po_4^1,2} {pbl^1,2}
tr {ti_4,1^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_1^1,2}
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tr {ti_4,2^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_2^1,2}
tr {ti_4,3^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_3^1,2}
tr {to_2^1,2} {pil_4^1,3} {pb_2^1,2} -> {pi_4^1,3} {pbl^1,2}
tr {ti_2,1^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_1^1,2}
tr {ti_2,3^1.2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_3^1,2}
tr {ti_2,4^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_4^1,2}
tr {to_3^1,2} {pil_1^2,2} {pb_3^1,2} -> {pi_1^2,2} {pbl^1,2}
tr {ti_3,1^1,2} {po_1^2^2} {pbl^1,2} -> {pol_1^2,2} {pb_1^1,2}
tr {ti_3,2^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_2^1,2}
tr {ti_3,4^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_4^1,2}
tr {to_1^2,1} {pol_1^2,1} {pb_1^2,1} -> {po_1^2,1} {pbl^2,1}
tr {ti_1,2^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_2^2,1}
tr {ti_1,3^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_3^2,1}
tr {ti_1,4^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_4^2,1}
tr {to_4^2,1} {pol_4^2,1} {pb_4^2,1} -> {po_4^2,1} {pbl^2,1}
tr {ti_4,1^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_1^2,1}
tr {ti_4,2^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_2^2,1}
tr {ti_4,3^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_3^2,1}
tr {to_2^2,1} {pil_4^2,2} {pb_2^2,1} -> {pi_4^2,2} {pbl^2,1}
tr {ti_2,1^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_1^2,1}
tr {ti_2,3^2.1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_3^2,1}
tr {ti_2,4^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_4^2,1}
tr {to_3^2,1} {pil_1^3,1} {pb_3^2,1} -> {pi_1^3,1} {pbl^2,1}
tr {ti_3,1^2,1} {po_1^3^1} {pbl^2,1} -> {pol_1^3,1} {pb_1^2,1}
tr {ti_3,2^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_2^2,1}
tr {ti_3,4^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_4^2,1}
tr {to_1^2,2} {pol_1^2,2} {pb_1^2,2} -> {po_1^2,2} {pbl^2,2}
tr {ti_1,2^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_2^2,2}
tr {ti_1,3^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_3^2,2}
tr {ti_1,4^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_4^2,2}
tr {to_4^2,2} {pol_4^2,2} {pb_4^2,2} -> {po_4^2,2} {pbl^2,2}
tr {ti_4,1^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_1^2,2}
tr {ti_4,2^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_2^2,2}
tr {ti_4,3^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_3^2,2}
tr {to_2^2,2} {pil_4^2,3} {pb_2^2,2} -> {pi_4^2,3} {pbl^2,2}
tr {ti_2,1^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_1^2,2}
tr {ti_2,3^2.2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_3^2,2}
tr {ti_2,4^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_4^2,2}
tr {to_3^2,2} {pil_1^3,2} {pb_3^2,2} -> {pi_1^3,2} {pbl^2,2}
tr {ti_3,1^2,2} {po_1^3^2} {pbl^2,2} -> {pol_1^3,2} {pb_1^2,2}
tr {ti_3,2^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_2^2,2}
tr {ti_3,4^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_4^2,2}
net n2o2

Listing 2. Generated model of the open square grid of size 2 (.net format). 

Application of Generated Nets  5.3

The  main  application  area  of  specific  grid  models,  obtained  as  the
result  of  running  generators,  is  the  formation  of  a  database  of  actual
nets for further inductive conclusions regarding the properties of infi-
nite Petri nets with regular structure.  
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On  the  basis  of  calculation  and  analysis  of  place  invariants  for  a
sequence  of  grid  models  with  definite  sizes,  the  general  parametric
description of invariants was obtained and the p-invariance of a Petri
net for an arbitrary value of parameter k was proven [23]. Analogous
results  were  obtained  in  Section  4  for  hypercube  structures  of  an
arbitrary  size  with  an  arbitrary  number  of  dimensions.  For  instance,
the parametric description of place invariants of the grid (represented
here with equation (2)) has the form shown in [23, equation�(15)]. 

Parametric  representation  [23,  equation  (15)]  of  the  basis  invari-
ants  matrix  is  rather  sophisticated  because  it  is  valid  for  any  given
magnitude  of  parameter  k.  Only  nonzero  elements  are  listed,  and  in
the example of a square grid, all of them are equal to unit. There are
two  types  of  parametric  rows:  each  of  rows  1  through  5  describes  a
set  of  rows  with  a  few  nonzero  elements  (two  for  rows  1  through  4
and  five  for  row  5);  each  of  rows  6  and  7  describes  a  single  row
containing  a  set  of  nonzero  elements.  To  distinguish  the  difference,
brackets are used. 

Invariants  calculated  by  the  system  Tina  for  definite  values  of
parameter  k  coincide  with  invariants  generated  from  [23,  equa-
tion�(15)]. Thus, the described technique could be used for generating
net  invariants  on  their  parametric  description.  For  instance,  the  place
invariants  of  the  net,  shown  in  Figure  6  of  [23],  are  represented  in
Listing 3 in an explicit form. 

In some cases, the automatic visualization of generated nets is use-
ful  for  evaluating  general  patterns  of  layout  and  doing  an  additional
check of composition rules. In Figure 8, a model of a grid of size 4 is
represented in graphical form, which is created automatically by simu-
lating the system in Tina. 

Moreover,  generated  Petri  net  models  could  be  applied  as  tests  in
Petri  net  simulating  and  analysis  systems  development,  especially
when  the  properties  of  studied  nets  are  known  a  priori.  For  instance,
the  considered  models  of  grids  are  safe  according  to  the  composition
rules  because  each  transition  has  exactly  two  input  and  two  output
places. It allows debugging software on large dimension nets. 

Generating Petri Nets in Graphical Form  5.4

Automatic  visualization  of  grid  models  is  not  distinguished  by  clear-
ness  and  allows  visual  evaluation  of  the  general  pattern  only.  Some
applications require working with graphical formats, for instance, for
watching  a  token  game  and  studying  transition  firing  sequences.  A
model could be generated in graphical format as well.  
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({pi_ 1^1, 1}, {pil_ 1^1, 1})
({pi_ 1^1, 2}, {pil_ 1^1, 2})
({pi_ 1^2, 1}, {pil_ 1^2, 1})
({pi_ 1^2, 2}, {pil_ 1^2, 2})
({pi_ 1^3, 1}, {pil_ 1^3, 1})
({pi_ 1^3, 2}, {pil_ 1^3, 2})

({po_ 1^1, 1}, {pol_ 1^1, 1})
({po_ 1^1, 2}, {pol_ 1^1, 2})
({po_ 1^2, 1}, {pol_ 1^2, 1})
({po_ 1^2, 2}, {pol_ 1^2, 2})
({po_ 1^3, 1}, {pol_ 1^3, 1})
({po_ 1^3, 2}, {pol_ 1^3, 2})

({pi_ 4^1, 1}, {pil_ 4^1, 1})
({pi_ 4^1, 2}, {pil_ 4^1, 2})
({pi_ 4^1, 3}, {pil_ 4^1, 3})
({pi_ 4^2, 1}, {pil_ 4^2, 1})
({pi_ 4^2, 2}, {pil_ 4^2, 2})
({pi_ 4^2, 3}, {pil_ 4^2, 3})

({po_ 4^1, 1}, {pol_ 4^1, 1})
({po_ 4^1, 2}, {pol_ 4^1, 2})
({po_ 4^1, 3}, {pol_ 4^1, 3})
({po_ 4^2, 1}, {pol_ 4^2, 1})
({po_ 4^2, 2}, {pol_ 4^2, 2})
({po_ 4^2, 3}, {pol_ 4^2, 3})

({pb_ 1^1, 1}, {pb_ 2^1, 1}, {pb_ 3^1, 1}, {pb_ 4^1, 1}, {pbl^1, 1})
({pb_ 1^1, 2}, {pb_ 2^1, 2}, {pb_ 3^1, 2}, {pb_ 4^1, 2}, {pbl^1, 2})
({pb_ 1^2, 1}, {pb_ 2^2, 1}, {pb_ 3^2, 1}, {pb_ 4^2, 1}, {pbl^2, 1})
({pb_ 1^2, 2}, {pb_ 2^2, 2}, {pb_ 3^2, 2}, {pb_ 4^2, 2}, {pbl^2, 2})

({pil_ 1^1,1},{pol_ 1^1,1},{pil_ 4^1,1},{pol_ 4^1,1},{pbl^1,1},{pil_ 1^1,2},
{pol_ 1^1,2},{pil_ 4^1,2},{pol_ 4^1,2},{pbl^1,2},{pil_ 1^2,1},{pol_ 1^2,1},
{pil_ 4^2,1},{pol_ 4^2,1},{pbl^2,1},{pil_ 1^2,2},{pol_ 1^2,2},{pil_ 4^2,2},
{pol_ 4^2,2},{pbl^2,2},{pil_ 1^3,1},{pol_ 1^3,1},{pil_ 1^3,2},{pol_ 1^3,2},
{pil_ 4^1,3},{pol_ 4^1,3},{pil_ 4^2,3},{pol_ 4^2,3})

({pi_ 1^1,1},{po_ 1^1,1},{pi_ 4^1,1},{po_ 4^1,1},{pb_ 1^1,1},{pb_ 2^1,1},
{pb_ 3^1,1},{pb_ 4^1,1},{pi_ 1^1,2},{po_ 1^1,2},{pi_ 4^1,2},{po_ 4^1,2},
{pb_ 1^1,2},{pb_ 2^1,2},{pb_ 3^1,2},{pb_ 4^1,2},{pi_ 1^2,1},{po_ 1^2,1},
{pi_ 4^2,1},{po_ 4^2,1},{pb_ 1^2,1},{pb_ 2^2,1},{pb_ 3^2,1},{pb_ 4^2,1},
{pi_ 1^2,2},{po_ 1^2,2},{pi_ 4^2,2},{po_ 4^2,2},{pb_ 1^2,2},{pb_ 2^2,2},
{pb_ 3^2,2},{pb_ 4^2,2},{pi_ 1^3,1},{po_ 1^3,1},{pi_ 1^3,2},{po_ 1^3,2},
{pi_ 4^1,3},{po_ 4^1,3},{pi_ 4^2,3},{po_ 4^2,3})

Listing 3. Place invariants of the open square grid with size 2 [23, Figure 6]. 

The  graphical  file  format  (.ndr)  of  the  system  Tina  contains  such
extra  information,  compared  with  the  logical  format  (.net)  described
in  Section  5.1,  as  coordinates  of  vertices  on  a  plane  and  arcs’  curves
description: 

t <xpos> <ypos> <transition-name> <options>
p <xpos> <ypos> <place-name> <marking> <options>
e <vertex1-name> <vertex2-name> <weight> <options>
e <vertex1-name> <ang> <rad> <vertex2-name> <ang> <rad> <options>

Lines  of  types  p  and  t  describe  places  and  transitions,  respectively.
Each  row  contains  node  coordinates  (xpos,  ypos)  on  a  plane  and  its
name; the place description also includes its initial marking. Each arc
is  described  separately  with  a  line  of  type  e.  It  contains  names  of  the
source  and  target  vertices  and  multiplicity  (weight)  for  a  straight  arc;
for a curved arc, two pairs of additional parameters (ang, rad) define
an angle and radius of arc curve for both its ends. 
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Figure 8. Automatic visualization of a generated grid model in Tina.  

The  technique  of  generating  .ndr  files  starts  with  drawing  a  model
of  a  grid  node  in  Tina  (Figure  4)  and  saving  the  corresponding  .ndr
file.  An  example  of  a  net  fragment  description  containing  a  place,  a
transition and an arc connecting them, for the grid node model shown
in Figure 4, looks like this: 

p 200.0 50.0 {po_1} 0 n
t 240.0 130.0 {to_1} 0 w n
e {to_1} {po_1} 1 n

Then  the  .ndr  file  obtained  is  used  as  a  pattern  to  fill  in  the  main
loop  of  the  generator,  whose  overall  organization  is  similar  to  List-
ing�1. Only descriptions of vertices contain coordinates, which should
be  recalculated  for  each  node  of  the  grid  on  its  indices;  the  relative
format of the arcs’ curvature description does not require their correc-
tion.  Based  on  an  element  description,  a  format  string  of  the  corre-
sponding  printf  operator  is  created.  Instead  of  definite  coordinates
(xpos, ypos) it contains format “%.1f %.1f” for printing recalculated
coordinates  and  a  format  “⋀%d.%d”  is  inserted  into  vertices’  names
for printing the current node index within the grid: 

printf(“p %.1f %.1f {po_1^%d.%d} 0 n\n”,(i-1)*DI+200.0, (j-1)*DJ+50.0, j, i);
printf(“t %.1f %.1f {to_1^%d.%d} 0 w n\n”,(i-1)*DI+240.0, (j-1)*DJ+130.0, j, i);
printf(“e {to_1^%d.%d} {po_1^%d.%d} 1 n\n”,j, i, j, i);
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Coordinates  of  vertices  are  calculated  based  on  vertical  and  hori-
zontal  grid  node  offsets  DI  and  DJ,  respectively,  which  are  equal  to
the  maximal  coordinates  of  a  single  grid  node  description.  Then  the
local offset of a vertex within the grid node is added. Reverse order of
indices  for  coordinates  regarding  names  is  explained  by  the  fact  that
in  the  grid  model  a  matrix  order  of  indexing  is  used:  first  index  (i)—
number of a row, second index (j)—number of a column. But in Tina,
the first coordinate axis (x) is horizontal and the second (y) is vertical. 

Series of grid model generators, working in graphical format, were
developed and employed in investigation of infinite Petri nets’ proper-
ties [23]. An example of a generated open square grid model of size 4
is  shown  in  Figure  9.  The  generators  of  the  square  grid  model  are
available at http://github.com/dazeorgacm/sq. 

Figure 9. An  example  of  the  open  square  grid  model  of  size  4  generated  in
graphical format. 

Recently, for generating a canvas of a generalized neighborhood of
cellular  automata  [7]  in  the  form  of  a  Petri  net,  software  was  devel-
oped,  available  at  http://github.com/dazeorgacm/hmn.  An  example  of
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the model obtained for the hypertorus cellular automaton is shown in
Figure 10. 

Figure 10. A hypertorus finite cellular automata model.  

Results and Hypothesis   6.

A basis of infinite Petri nets theory was developed for modeling com-
puting  grids.  The  described  technique  could  be  employed  in  a  wide
range of Petri net application domains, including automated manufac-
ture, business processes, programming and systems biology.  

Infinite Petri nets and their invariants were represented in paramet-
ric  form.  For  each  of  the  obtained  parametric  descriptions  of  the
invariants  of  infinite  Petri  nets  with  regular  structure,  it  was  proven
that  they  are  solutions  of  the  corresponding  infinite  system  of  equa-
tions.  To  prove  the  Petri  net  invariance,  it  was  not  required  to  prove
that the obtained set of solutions form a basis; an invariant, having all
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natural elements, was constructed explicitly in each case. For an extra
validation of results, the calculation of invariants on series of definite
grids  of  certain  size  was  implemented  in  the  environment  of  the  sys-
tem  Tina  using  ad  hoc  software  generators  of  models;  and  also  the
fact was used that all the models are conservative, and closed models
are  consistent  Petri  nets  because  of  the  manner  of  their  composition:
each vertex has the same number of incoming and outgoing arcs. 

The two following statements have been proven: 

Statement 1.  Grid  models  are  invariant  Petri  nets  for  an  arbitrary  grid
size and an arbitrary number of dimensions.   

Statement 2.  Grid  models  are  not  live  Petri  nets  for  an  arbitrary  grid
size and an arbitrary number of dimensions.   

The three following hypothesis have been advanced: 

Hypothesis 1. Occurrence of deadlocks increases the probability of new
deadlocks  creation;  thus,  the  growth  of  the  number  of  deadlocks  has
an avalanche-like character.

Hypothesis  2.  Deadlocks  could  be  caused  by  ill-intentioned  traffic  of  a
special form.   

Hypothesis 3. For infinite systems of the form in equation (6), the three
following  situations  are  possible:  it  has  no  solution  except  the  trivial;
it has solutions and they can be specified in a finite form; it has solu-
tions but they cannot be specified in a finite form.

To acknowledge Hypotheses 1 and 2, colored Petri nets [11] could
be  employed  in  a  way  similar  to  that  described  in  [22].  The  proof  of
Hypothesis 3 requires advances in modern mathematics theory. 

All  the  models  presented  in  this  paper  were  constructed  and  ana-
lyzed  in  the  system  Tina  [12]  supplied  with  plugins  Deborah  and
Adrian [14], available at http://member.acm.org/~daze. 

Conclusion7.

The  search  for  new  application  domains,  such  as  manufacturing  and
transportation  systems,  will  allow  the  generalization  of  the  problem-
atic  infinite  Petri  nets  with  regular  structure  and  make  it  more  inde-
pendent  from  the  terminology  of  computer  networks,  clusters  and
grids. Among such generalizations, we advise using a set of basic frag-
ments and formalizing the models’ composition rules.  

When  constructing  the  grid  models,  more  attention  could  be  paid
to the description of computational aspects of information processing
as  well  as  to  the  architectural  peculiarities  of  modern  networking
devices. 
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A  general  method  of  solving  infinite  systems  of  linear  Diophantine
equations in non-negative integer numbers, which the invariant analy-
sis  of  the  models  is  reduced  to,  is  unknown.  That  is  why  the  search
for such methods is significant. It could be possible to construct sepa-
rate  methods  for  subclasses  of  nets  and  also  prove  that  the  obtained
set of the parametric solutions forms a basis. 

Heterogeneous  infinite  systems  of  equations  and  inequalities  could
be  used  to  check  the  marking  reachability  conditions  in  infinite  nets,
to  search  the  siphons  and  traps  using  an  analogy  with  the  composi-
tional analysis of finite nets. 

Not  considered  were  methods  of  Petri  net  analysis  via  graphs  of
reachable and coverable markings, which could be modified for work
with infinite nets. 
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