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This paper is concerned with the study of pseudorandom number gener-
ation  by  an  extension  of  the  original  cellular  automaton,  termed
nonuniform cellular automata. In order to demonstrate the efficacy of a
proposed random number generator, it is usually subject to a battery of
empirical  and  theoretical  tests.  By  using  a  standard  software  package
for  statistically  evaluating  the  quality  of  random  number  sequences
known as the Diehard battery test suite and TestU01, the results of the
proposed  model  are  validated,  and  we  demonstrate  that  cellular
automata  can  be  used  to  rapidly  produce  purely  random  temporal  bit
sequences to an arbitrary precision.

Introduction1.

Random  numbers  are  very  important  for  a  variety  of  purposes,  such
as  Monte  Carlo  techniques,  simulated  annealing  and  Brown
dynamics.  These  simulation  methods  depend  critically  on  the  quality
of  the  random  numbers,  as  measured  by  appropriate  statistical  tests.
When  a  large  amount  of  random  numbers  has  to  be  generated,  com-
putational  efficiency  is  also  very  important.  Built-in  devices  for  very
large-scale  integration  (VLSI)  circuits  are  another  application  area  of
random  numbers.  In  this  case,  as  well  as  for  fine-grained  massively
parallel  computers  and  for  on-board  applications,  it  is  essential  that
the  random  number  generator  also  be  amenable  to  hardware  imple-
mentation  in  terms  of  area,  number  of  gates  and  complexity  of  the
interconnections.  Several  deterministic  algorithms  for  producing
random  numbers  have  been  proposed  to  date.  In  Section  2,  we  will
review  the  principal  pseudorandom  number  generators  (PRNGs)
methods.  In  Section  3,  we  will  concentrate  on  generating  pseudo-
random  sequences  by  using  cellular  automata  (CAs).  The  proposed
cellular  automaton  (CA)  model  is  described  in  Section  3.2.  Our
results  in  Section  5  show  that  CA-based  PRNGs  can  yield  long-
period, high-quality random number sequences. We conclude that CA-
based  random  number  generators  offer  a  realistic  alternative  to  other
methods;  this  is  especially  true  in  the  case  of  VLSI  implementation,
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fine-grained massively parallel machines for statistical physics simula-
tion and built-in self-test circuits.

Random Number Generators2.

An Overview of Random Number Generators2.1

A  PRNG  is  an  algorithm  for  generating  a  sequence  of  numbers  that
approximates the properties of random numbers. The sequence is not
truly random, in that it is completely determined by a relatively small
set of initial values, called the state of the PRNG. Although sequences
that are closer to truly random can be generated using hardware ran-
dom  number  generators,  pseudorandom  numbers  are  important  in
practice  for  simulations  (e.g.,  of  physical  systems  with  the  Monte
Carlo  method)  and  are  central  in  the  practice  of  cryptography.  The
generator is exercised by steps, and two things occur concurrently dur-
ing  each  step:  there  is  a  transformation  of  the  state  information,  and
the generator outputs a fixed-size bit string. The generator seed is sim-
ply  the  initial  state  information.  With  any  pseudorandom  generator,
after  a  sufficient  number  of  steps,  the  generator  comes  back  to  some
sequence  of  states  that  was  already  visited.  Then,  the  period  of  the
generator is the number of steps required to do one full cycle through
the  visited  states.  Careful  mathematical  analysis  is  required  to  have
any  confidence  that  a  PRNG  generates  numbers  that  are  sufficiently
“random”  to  suit  the  intended  use.  All  practical  methods  for  obtain-
ing  random  numbers  are  based  on  deterministic  algorithms,  which  is
why  such  numbers  are  more  appropriately  called  pseudorandom,  as
distinguished from true random numbers resulting from some natural
physical process. In the following we will limit ourselves to uniformly
distributed  sequences  of  pseudorandom  numbers;  however,  there  are
well-known  ways  for  obtaining  sequences  distributed  according  to  a
different  distribution,  starting  from  a  uniformly  distributed  one.  In
practice,  the  output  from  many  common  PRNGs  exhibits  artifacts
that  cause  it  to  fail  statistical  pattern-detection  tests.  These  include,
but are certainly not limited to:

Shorter-than-expected  periods  for  some  seed  states;  such  seed  states
may be called “weak” in this context.

1.

Lack of uniformity of distribution. 2.

Correlation of successive values.3.

Poor dimensional distribution of the output sequence. 4.

The distances between where certain values occur are distributed differ-
ently from those in a random sequence distribution.

5.
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Random number generators must possess a number of properties if
they  are  to  be  useful  in  lengthy  stochastic  simulations  such  as  those
used  in  computational  physics.  One  of  the  most  popular  methods  for
generating  random  numbers  is  the  linear  congruential  generator.  It
uses a method similar to the folding schemes in chaotic maps. The gen-
eral formula is:

Xn+1 = (a Xn + c)modm n ≥ 0,

m > 0, 0 < a < m.
(1)

The value m > 0 is called the modulus, a is the multiplier, and c is an
additive constant. If c = 0, the generator is a multiplicative congruen-
tial generator. Linear congruential generators are periodic and tend to
give  a  lower  quality  of  randomness,  especially  when  a  large  number
of  random  values  are  needed.  If  reals  are  generated  directly  from  the
congruence relation, the period is less than or equal to m. The period
of  a  multiplicative  congruential  generator  is  bounded  above  by  the
number of positive integers less than or equal to the modulus that are
relatively  prime  to  the  modulus.  This  upper  bound  is  Euler’s  totient
function  of  the  modulus.  Another  method,  the  so-called  lagged-
Fibonacci generator, is also widely used. It has the form:

Xn = Xn-r opXn-pmodm. (2)

The numbers r and p are called lags and there are methods for choos-
ing  them  appropriately.  The  operator  op  can  be  one  of  the  following
binary operators: addition, subtraction, multiplication or exclusive or.
However, it should be noted that from the point of view of hardware
implementation,  both  congruential  and  lagged-Fibonacci  random
number  generators  are  not  very  suitable:  they  are  inefficient  in  terms
of silicon area and time when applied to fine-grained massively paral-
lel  machines,  for  built-in  self-test,  or  for  other  on-board  applications.
A  third  widespread  type  of  generator  is  the  so-called  linear  feedback
shift  register  (LFSR).  A  pseudorandom  sequence  is  generated  by  the
linear recursion equation:

Xn = (c1 Xn-1 + c2 Xn-2 +⋯ + ck Xn-k)mod 2. (3)

Linear  feedback  shift  registers  are  popular  generators  among  physi-
cists and computer engineers. There exist forms of LFSR that are suit-
able  for  hardware  implementation.  However,  it  turns  out  that  when
compared  with  equivalent  CA-based  generators,  they  are  of  lesser
quality;  furthermore,  they  are  less  favorable  in  terms  of  connectivity
and  delay,  although  the  area  needed  by  a  CA  cell  is  slightly  larger
than  that  of  an  LFSR  cell.  This  is  so  because  an  LFSR  with  a  large
number  of  memory  elements  and  feedback  has  an  irregular  intercon-
nection  structure,  which  makes  it  more  difficult  to  modularize  in
VLSI.  Moreover,  different  sequences  generated  by  the  same  CA  are
much  less  correlated  than  the  analogous  sequences  generated  by  an
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LFSR. This means that CA-generated bit sequences can be used in par-
allel, which offers clear advantages in applications. 

Cellular Automata for Random Number Generation2.2

Cellular  automaton-based  random  number  generators  evolve  a  state
vector of zeros and ones according to a deterministic rule. For a given
CA, an element (or cell) at a given position in the new state vector is
determined by certain neighboring cells of that cell in the old state vec-
tor. A subset of cells in the state vectors is then output as random bits
from  which  the  pseudorandom  numbers  are  generated.  In  the  last
decade, CAs have been used to generate “good” random numbers. 

The  first  work  examining  the  application  of  CAs  to  random  num-
ber  generation  is  that  of  Wolfram  [1],  in  which  the  uniform  2-state,
r = 1 rule 30 CA was extensively studied, demonstrating its ability to
produce  highly  random  temporal  bit  sequences.  Such  sequences  are
obtained by sampling the values that a particular cell (usually the cen-
tral  one)  attains  as  a  function  of  time.  In  Wolfram’s  work,  the  uni-
form  rule  30  CA  is  initialized  with  a  configuration  consisting  of  a
single  cell  in  state  1,  with  all  other  cells  being  in  state  0  [1].  The  ini-
tially  nonzero  cell  is  the  site  at  which  the  random  temporal  sequence
is generated. Wolfram studied this particular rule extensively, demon-
strating  its  suitability  as  a  high-performance  randomizer,  which  can
be  efficiently  implemented  in  parallel;  indeed,  this  CA  is  one  of  the
standard  generators  of  the  massively  parallel  Connection  Machine
CM2 [2]. 

A  nonuniform  CA  randomizer  was  presented  in  [3]  (based  on  the
work  in  [4]),  consisting  of  two  rules,  90  and  150,  arranged  in  a  spe-
cific  order  in  the  grid.  The  performance  of  this  CA  in  terms  of  ran-
dom  number  generation  was  found  to  be  at  least  as  good  as  that  of
rule  30,  with  the  added  benefit  of  less  costly  hardware  implementa-
tion.  It  is  interesting  in  that  it  combines  two  rules,  both  of  which  are
simple  linear  rules,  that  do  not  comprise  good  randomizers,  to  form
an  efficient,  high-performance  generator.  An  example  application  of
such  CA  randomizers  was  demonstrated  in  [5],  which  presented  the
design of a low-cost, high-capacity associative memory.

An  evolutionary  approach  for  obtaining  random  number  genera-
tors was taken in [6], which applied genetic programming to the evo-
lution of a symbolic LISP expression that acts as a rule for a uniform
CA (i.e., the expression is inserted into each CA cell, thereby compris-
ing the function according to which the cell’s next state is computed).
It demonstrated evolved expressions that are equivalent to Wolfram’s
rule 30. The work in [1–6] leads us to ask whether good CA random-
izers  can  be  coevolved  using  CAs;  the  results  reported  in  Section  5
suggest that.
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Cellular Automata3.

An Informal Introduction3.1

Cellular automata were originally conceived in the 1940s to provide a
formal framework for investigating the behavior of complex extended
systems  [7].  Cellular  automata  are  dynamical  systems  in  which  space
and  time  are  discrete.  Cellular  automaton  systems  are  composed  of
adjacent cells or sites arranged as a regular lattice, which evolve in dis-
crete  time  steps.  Each  cell  is  characterized  by  an  internal  state  whose
value  belongs  to  a  finite  set.  The  updating  of  these  states  is  made
simultaneously, according to a common local transition rule involving
a neighborhood of each cell. The state of a cell at the next time step is
determined  by  the  current  states  of  cells  in  a  surrounding  neighbor-
hood.  The  cellular  array  (grid)  is  d-dimensional,  where  d = 1, 2, 3  is
used  in  practice;  in  this  paper  we  concentrate  on  d = 1,  that  is,  one-
dimensional  grids.  The  identical  rule  contained  in  each  cell  is  essen-
tially  a  finite-state  machine,  usually  specified  in  the  form  of  a  rule
table  (also  known  as  the  transition  function),  with  an  entry  for  every
possible  neighborhood  configuration  of  states.  The  cellular  neighbor-
hood  of  a  cell  consists  of  itself  and  the  surrounding  (adjacent)  cells.
For  one-dimensional  CAs,  a  cell  is  connected  to  r  local  neighbors
(cells)  on  either  side,  where  r  is  referred  to  as  the  radius  (thus,  each
cell has 2r + 1 neighbors). A common method of examining the behav-
ior of one-dimensional CAs is to display a two-dimensional spacetime
diagram,  where  the  horizontal  axis  depicts  the  configuration  at  a
certain  time  t  and  the  vertical  axis  depicts  successive  time  steps  (e.g.,
Figure 1).

Figure 1.A  spacetime  diagram  of  patterns  generated  by  simple  one-dimen-
sional CAs. The CAs consist of a row of about 200 sites whose values evolve
with  time  down  the  page  according  to  simple  logical  rules.  The  value  0  or  1
of each site (represented by white or black) is determined from its own value
and the values of its two nearest neighbors on the step before. Patterns gener-
ated  by  10  different  rules  are  shown.  In  each  case,  the  pattern  is  obtained
with  a  random  initial  state.  Despite  the  simplicity  of  these  CAs,  the  patterns
generated show considerable complexity.
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 The  term  “configuration”  refers  to  an  assignment  of  ones  and
zeros  at  a  given  time  step  (i.e.,  a  horizontal  line  in  the  diagram).
When  the  same  rule  is  applied  to  update  cells  of  CAs,  such  CAs  are
called uniform CAs, in contrast with nonuniform CAs, when different
rules are assigned to cells and used to update them. Using one-dimen-
sional,  two-state  CAs  as  a  source  of  random  bit  sequences  was  first
suggested  by  Wolfram.  He  used  uniform,  one-dimensional  CAs  with
r = 1. In particular, he extensively studied rule 30. (Rule numbers are
given  in  accordance  with  Wolfram’s  convention.)  Nonuniform  CAs
with two rules, 90 and 150, were used in [3, 8] and it was found that
the quality of generated pseudorandom number sequences (PNSs) was
better  than  the  quality  of  the  Wolfram  system.  Proposed  in  [9]  was
the  use  of  nonuniform,  one-dimensional  CAs  with  r = 1  and  four
rules,  90,  105,  150  and  165,  which  provide  high-quality  PNSs  and  a
huge  space  of  possible  secret  keys  that  are  difficult  for  cryptanalysis.
Instead,  in  order  to  design  rules  for  CAs,  an  evolutionary  technique
called cellular programming (CP) was used to search for them. In this
paper we continue this line of research. We will use finite, one-dimen-
sional,  nonuniform  CAs.  However,  we  extend  the  potential  space  of
rules  by  consideration  of  one  size  of  rule  neighborhood,  namely  a
neighborhood of radius r = 1. For example, in the case of rule 30 CA,
in Boolean form it can be written as:

fi, t + 1  fi - 1, t  f(i, t)  fi + 1, t (4)

where f(i, t) is the value of cell i at time t. The formula gives the state
of  cell  i  at  time  step  t + 1  as  a  Boolean  function  of  the  states  of  the
neighboring  cells  at  time  t.  Random  bit  sequences  are  obtained  by
sampling  the  values  that  a  particular  cell  (usually  the  central  one)
attains  as  a  function  of  time.  In  order  to  further  decorrelate  bit
sequences,  time  spacing  and  site  spacing  are  used.  Time  spacing
means that not all the bits generated are considered as part of the ran-
dom  sequence.  For  instance,  maybe  only  one  bit  is  kept  out  of  two,
referred  to  as  a  time  space  value  of  1,  which  means  that  sequences
will  be  generated  at  half  the  maximal  rate.  In  site  spacing,  only  cer-
tain  sites  in  a  row  are  considered,  where  an  integer  number  indicates
how  many  sites  are  to  be  ignored  between  two  successive  cells.  In
practice,  a  site  spacing  of  one  or  two  is  common,  which  means  that
half  or  two-thirds  of  the  output  bits  are  lost.  Figure  2  demonstrates
the  workings  of  a  rule  30  CA,  both  with  and  without  time  and  site
spacing. Figure 3 shows a sequence of totalistic CAs with three possi-
ble colors for each cell.

Over the years, CAs have been applied to the study of general phe-
nomenological  aspects  of  the  world,  including  communication,
computation,  construction,  growth,  reproduction,  competition  and
evolution  (see,  e.g.,  [10–15]).  One  of  the  most  well-known  CA  rules,

378 Z. Zarezadeh

Complex Systems, 26 © 2017



the  Game  of  Life,  was  conceived  by  Conway  in  the  late  1960s
[16, 17] and was shown by him to be computation universal [18]. For
a  review  of  computation-theoretic  results,  refer  to  [19].  Cellular
automata  also  provide  a  useful  model  for  a  branch  of  dynamical  sys-
tems theory that studies the emergence of well-characterized collective
phenomena,  such  as  ordering,  turbulence,  chaos,  symmetry-breaking
and fractality [20, 21].

(a) (b) (c) (d) (e)

Figure 2.A  spacetime  diagram  of  CA  rule  30.  Grid  size  is  N = 200;  radius  is
r = 1. White squares represent cells in state 0; black squares represent cells in
state 1. The pattern of configurations is shown through time (which increases
down  the  page).  The  initial  configurations  were  generated  by  randomly  set-
ting  the  state  of  each  grid  cell  to  0  or  1  with  uniform  probability.  (a)  No
time/site spacing; (b) site spacing = 1; (c) time spacing = 1; (d) time/site spac-
ing = 1; (e) time/site spacing = 4.

Figure 3.A  sequence  of  totalistic  CAs  with  three  possible  colors  for  each  cell.
Although their basic rules are more complicated, the CAs shown here do not
seem  to  have  fundamentally  more  complicated  behavior  than  the  two-color
CAs shown in Figure 2. The symmetry of all the patterns is a consequence of
the basic structure of totalistic rules.

The  systematic  study  of  CAs  in  this  context  was  pioneered  by
Wolfram  and  studied  extensively  by  him  [22–24].  He  investigated
CAs  and  their  relationships  to  dynamical  systems,  identifying  the  fol-
lowing  four  qualitative  classes  of  behavior,  with  analogs  in  the  field
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of  dynamical  systems  (the  latter  are  shown  in  parenthesis;  see  also
[25, 26]:

◼ Class I relaxes to a homogeneous state (limit points).

◼ Class II converges to simple separated periodic structures (limit cycles).

◼ Class III yields chaotic  aperiodic patterns (chaotic behavior of the kind
associated with strange attractors).

◼ Class IV yields complex patterns of localized structures, including prop-
agating structures (very long transients with no apparent analog in con-
tinuous dynamical systems).

Basic Structure of Nonuniform Cellular Automata3.2

The basic model we employ in this paper is an extension of the origi-
nal  CA  model,  termed  nonuniform  CAs  (Figure  4).  Such  automata
function in the same way as uniform ones, the only difference being in
the  cellular  rules  that  need  not  be  identical  for  all  cells.  Note  that
nonuniform  CAs  share  the  basic  “attractive”  properties  of  uniform
ones  (massive  parallelism,  locality  of  cellular  interactions,  simplicity
of  cells).  Nonuniform  CAs  were  investigated  in  [27],  which  discusses
a  one-dimensional  CA  in  which  a  cell  probabilistically  selects  one  of
two  rules  at  each  time  step.  It  showed  that  complex  patterns  appear
characteristic  of  class  IV  behavior  [27].  Two  generalizations  of  CAs
are presented in [28], namely, discrete neural networks and automata
networks. These are compared to the original model from a computa-
tional  point  of  view  that  considers  the  classes  of  problems  such
models  can  solve.  In  this  section,  we  describe  a  prototype  version  of
our  model,  in  which  the  following  feature  is  added  to  the  elementary
cellular automaton (ECA) presented in Section 3.1:

◼ A  cell  may  contain  a  small  number  of  different  rules.  At  a  given
moment  only  one  rule  is  active  and  determines  the  cell’s  function.  An
inactive rule may be activated or copied into a neighboring cell.

(a) (b)

Figure 4. The behavior of nonuniform CAs with two colors. In each case, 400
steps of evolution are shown. (a) Nonuniform CA with random initial configu-
rations. (b) Shifted nonuniform CA, starting with a single black cell.
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This  feature  could  serve  as  a  possible  future  enhancement  in  the
evolutionary studies as well. At this point, we present a system involv-
ing  the  growth  and  replication  of  complex  structures  that  are  created
from  grid  cells  and  behave  as  multicellular  organisms  once  formed.
The  system  consists  initially  of  two  cell  types,  builders  and  replica-
tors, floating around on the grid.

◼ Historic  memory  can  be  embedded  in  the  CA  dynamics  by  endowing
memory in cells without altering the mappings ϕ.

Conventional CAs are ahistoric (memoryless); that is, the new state
of a cell depends on the neighborhood configuration solely at the pre-

ceding  time  step.  Thus,  if  δi
(T)

 is  taken  to  denote  the  value  of  cell  i  at

time step T, the site values evolve by iteration of the mapping:

δ(T+1) = ϕδj
(T) ∈ i (5)

where  ϕ  is  an  arbitrary  function  that  specifies  the  CA  rule  operating
on the  cells in  the neighborhood   of the  cell i.  The standard frame-
work  of  CAs  can  be  extended  by  implementing  memory  capabilities
in cells:

δ(T+1) = ϕSj
(T) ∈ i (6)

with Sj
(T)

 being a state function of the series of states of the cell j up to

time step T:

Sj
(T) = Sδj

1, … , δj
(T+1), δj

(T). (7)

Thus in CAs with memory, while the mapping ϕ remains unaltered,
the historic memory of all past iterations is retained by featuring each
cell by a summary of its past states. That is to say, cells canalize mem-
ory  to  the  map  ϕ.  The  dynamics  of  ECA  rules  is  dramatically  altered
when  endowing  cells  with  memory  of  the  last  steps,  compared  to  the
conventional CA paradigm that merely takes into account the last con-
figuration. Particularly interesting is the effect of the parity rule acting
as memory on rule 30 and on the linear rules 90 and 150, as it gener-
ates  a  seemingly  random  dynamic,  even  if  it  causes  the  system  to  fail
in  most  of  the  randomness  tests.  Cellular  automata  with  memory  in
cells  can  be  considered  as  a  natural  and  promising  extension  of  the
basic paradigm. 

In  this  paper  we  study  one-dimensional,  2-state,  r = 1  nonuniform
CAs,  in  which  each  cell  may  contain  a  different  rule.  Spatially  peri-
odic boundary conditions are used, resulting in a circular grid. Rather
than  employ  a  genetic  algorithm  or  cellular  programming  approach,
our  algorithm  (Figure  5)  involves  a  single  nonuniform  CA  of  size  ℕ.
After initializing the states of each cell, the CA starts to evolve accord-
ing  to  the  assigned  rule  during  a  predefined  number  of  time  steps.
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Figure 5. Pseudocode of the nonuniform CA algorithm.

Figure 6.A spacetime diagram of nonuniform CAs; grid size is ℕ = 128, radius
is r = 1. White squares represent cells in state 0; black squares represent cells
in  state  1.  The  initial  configurations  were  generated  by  randomly  setting  the
state of each grid cell to 0 or 1 with uniform probability (upper). No time/site
spacing (lower). Site spacing of 1.

During  the  CA  evolution,  the  preceding  time  steps  are  calculated  and
serve  as  a  transition  function  applied  locally  to  a  given  rule.  The  size
and  pattern  of  this  transition  function  may  differ  from  the  neighbor-
hood associated with types of rules. Once a state and transition vector
is  computed  by  evolving  the  CA  by  the  specified  neighbor  rule,  bits
are  selected  for  random  numbers  from  bits  {start,start+skip(site
spacing),…}.  In  practice,  using  every  second  cell  in  each  state  vector
proves to be sufficient to pass all stringent randomness tests. For even
faster  random  number  generation,  a  skip  setting  of  0  could  be  used,
but  the  quality  of  the  random  numbers  will  then  decline.  The  skip
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option tied to a large state vector size is useful for setting up a family
of  independent  generators  that  can  be  used  in  parallel  computations.
A typical result of a single run of this process starting with a random
initial state (seed) is shown in Figure 6.

Statistical Testing of Random Number Generators and Historical 
Development

4.

Over the years many statistical tests for testing random number gener-
ators  have  been  proposed.  One  of  the  first  collections  was  found  in
earlier editions of [29]. These tests, plus a few others designed for test-
ing  parallel  generators,  were  implemented  in  SPRNG,  a  scalable
library  for  pseudorandom  number  generation  in  [30].  New  and  more
stringent  tests,  compared  to  the  ones  from  [29],  were  introduced  in
[31]. Most of these tests were later implemented in Diehard, a battery
of  tests  of  randomness  in  [32],  probably  the  best-known  software
package  for  testing  random  number  generators.  The  National  Insti-
tute of Standards and Technology (NIST), developed the NIST Statisti-
cal  Test  Suite  [33]  for  the  evaluation  of  the  Advanced  Encryption
Standard  (AES)  candidate  algorithms.  The  state-of-the-art  library  for
testing  random  number  generators  today  is  TestU01,  a  C  library  for
empirical  testing  of  random  number  generators  introduced  in  [34].  It
implements:

A large variety of  different random number generators proposed in the
literature and/or used in software packages or operating systems.

1.

Most of the statistical tests from Diehard, the NIST package, the Knuth
collection, other tests found in the literature and some original ones.

2.

Predefined test batteries.3.

Tools  for  investigating  dependence  of  the  period  length  of  a  generator
within  a  whole  family  of  random  number  generators  and  the  length  of
a sequence when this generator begins to fail a given test systematically.

4.

In  essence,  statistical  testing  of  random  number  generators  is  nothing
but  a  particular  kind  of  Monte  Carlo  simulation.  Conversely,  when
testing  a  random  number  generator  for  suitability  with  respect  to  a
particular  Monte  Carlo  problem,  running  the  simulation  with  a
related but simplified model, that is, one where the distribution of the
result can be attained theoretically, may serve as a test. Even if the dis-
tribution  is  not  known,  the  results  of  the  designated  random  number
generator  can  still  be  compared  to  the  ones  produced  by  a  few  other
“good” generators of quite different designs. 

Most statistical tests for random number generators utilize the con-
cept  of  a  p-value.  P-values  of  single  tests  should  not  only  be  in  the
proper  range  (not  too  close  to  0  or  1),  but  should  also  be  uniformly
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distributed on 0, 1. Therefore, it might be useful to run the same test

many  times  independently,  that  is,  on  different  parts  of  the  original
sequence.  Very  often  random  number  generators  are  tested  against
whole batteries of tests, and therefore p-values close to 0 or 1 are not
too uncommon even for good (including perfect) generators (Table 1).
If the final p-value of a test is really close to 0 or 1, the random num-
ber  generator  is  said  to  fail  the  test.  If  the  p-value  is  suspicious,  the
test  is  repeated  and/or  the  sample  size  is  increased,  and  often  things
will  then  clarify.  Otherwise,  the  random  number  generator  is  said  to
have passed the test.

P-Value Interpretation

0.01 < p < 0.99 Clear passed

p or 1 - p < 10-10 Clear failure

Table 1. Interpretation of p-values.

Analysis of the Test Results5.

In  order  to  demonstrate  the  efficacy  of  a  proposed  random  number
generator, it is usually subject to a battery of empirical and theoretical
tests.  For  the  tests,  we  have  used  Diehard  and  TestU01.  In  order  to
apply the tests, we generated sequences of length L random bits using
this  procedure:  the  CA  of  radius  r = 1,  size  ℕ = 256  and  1024,  with
site  spacing  ss = 1  is  run  for  t  time  steps,  thus  generating

t * ℕ  ss + 1  random  temporal  bit  sequences  of  length  L.  Table  2

shows the results of applying the test battery Crush from the random
number generator software package TestU01 and the Diehard battery
of  tests  to  our  novel  CA-based  model.  We  note  that  the  nonuniform
CAs  attain  very  good  results  on  all  tests.  Our  results  are  somewhat
better  than  rule  30,  90  and  105  CAs  as  PRNGs  and  also  markedly
improved in comparison to rule 30, which attains lower scores on the
statistical  tests.  All  these  CAs  failed  the  bitstream  and  OPSO  tests.
With  respect  to  the  OQSO  test,  rule  30  had  always  failed,  while  the
other  rules  sometimes  produced  good  (passing)  strings.  We  conclude
that  on  the  whole,  uniform  CAs  comprise  fairly  good  generators,  but
they do not compare well with standard classical PRNG. In our simu-
lations (using grids of sizes ℕ = 256 and 1024), we observed that high-
performance  architecture  is  attained  as  the  grid  size  increases
(computation  time  is  linear  with  grid  size).  We  have  shown  that  the
nonuniform  CA  algorithm  can  be  applied  to  the  difficult  problem  of
generating  random  numbers.  While  a  more  extensive  suite  of  tests  is
in order, it seems safe to say at this point these results are comparable
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to the entropy values obtained in [6], as well as to those of the rule-30
CA of Wolfram [1] and the nonuniform CA rules {90, 150} of [3, 8].
Our results are also better than the CA rules {90, 150}, and markedly
improved  in  comparison  to  the  nonuniform  CA  randomizer  in  [9].
Furthermore,  there  is  a  notable  advantage  arising  from  the  existence
of a “tunable” algorithm for the generation of randomizers.

Generator
Parameters Test Package

Number of
Statistics Result

ℕ = 256,
skip = 1

Diehard 126 All tests were passed

ℕ = 1024,
skip = 1

Crush-TestU01 144 All tests were passed

Table 2.Results  of  the  Diehard  and  test  battery  Crush  (software  package
TestU01  (1.2.3)).  (Note:  skip  or  site  spacing  means  an  integer  number  indi-
cates how many sites are to be ignored between two successive cells.)

Conclusion6.

This  section  highlights  the  contributions  of  this  paper  and  some  fea-
tures  by  which  it  differs  from  the  original  cellular  automaton  (CA)
model, organized in chronological order.

◼ Whereas  the  CA  model  consists  of  uniform  cells,  each  containing  the
same  rule,  we  consider  the  nonuniform  case  where  different  cells  may
contain  different  rules.  A  possible  extension  is  the  addition  of  restric-
tions to the nonuniform cellular automata (CAs), which have proven in
the past more powerful than uniform ones, at no extra cost in terms of
“software”  or  “hardware,”  while  being  faster  to  evolve  and  restricted
to the scope of computation. In fact, it is easy to see that a uniform CA
can  simulate  a  nonuniform  one  by  encoding  all  the  different  rules  as
one (huge) rule, employing a large number of states. One feature of our
model,  namely,  the  “active”  nature  of  rules,  whereby  they  may  effect
changes upon neighboring cells, may also be obviated by using “static”
rules  with  larger  neighborhoods,  performing  the  equivalent  operations.
While  these  arguments  hold  true  in  principle,  we  argue  that  this  is  not
so  in  practice.  The  power  offered  by  our  model  cannot  strictly  be
reduced  to  the  question  of  computational  power.  Nonetheless,  our
investigations  reported  in  the  following  sections  do  indeed  show  that
our model holds potential for the exploration of CA phenomena.

◼ A novel developmental process of our system was presented. In this sys-
tem,  evolution  takes  place  not  only  in  state  space  as  in  the  CA  model,
but  also  in  rule  space;  rules  may  change  (evolve)  over  time.  A  cell  may
contain a small number of different rules. At a given moment, only one
rule is active and determines the cell’s function. An inactive rule may be
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activated  or  copied  into  a  neighboring  cell.  At  this  point,  we  present  a
system  involving  the  growth  and  replication  of  complex  structures  that
are  created  from  grid  cells  and  behave  as  multicellular  organisms  once
formed.

◼ A  useful  additional  component  is  internal,  finite  memory.  The  dynam-
ics of elementary rules is dramatically altered when endowing cells with
memory  of  the  previous  time  steps,  compared  to  the  conventional  CA
paradigm  that  merely  takes  into  account  the  last  configuration.  Per-
haps, as a result of a further full rigorous study of CAs with memory, it
will  be  possible  to  paraphrase  [35]  in  presenting  CAs  with  memory  as
an  alternative  to  (rather  than  an  approximation  of)  integral  equations
in modeling, in particular, to Volterra integral equations that appear in
the study of many phenomena incorporating memory, which are impor-
tant  in  applied  sciences  such  as  population  dynamics,  diffusion,  neural
networks and so on.

◼  An  analysis  of  pseudocode  of  the  nonuniform  CA  algorithm.  In  this
analysis,  we  showed  a  number  of  features  of  such  a  method,  demon-
strating the traps into which this algorithm may fall.

◼ In  this  paper,  we  have  reported  results  of  the  study  on  using  CAs  as  a
basic  form  of  a  high-speed  massively  parallel  computation  engine.  The
main  assumption  of  our  approach  was  to  consider  nonuniform  one-
dimensional  CAs.  After  we  constructed  a  novel  CA—demonstrated  in
Section  3.2—we  verified  the  performance  of  a  CA-based  random  num-
ber  generator  with  the  Diehard  and  TestU01  suites  of  statistical  tests.
Table 2 summarizes our findings, ranking all tested results according to
the quality of the random numbers. Finally, an extensive suite of statis-
tical  tests  and  the  results  of  experiments  have  shown  that  our
nonuniform  CA  algorithm  can  be  applied  to  the  difficult  problem  of
generating  random  numbers.  Such  CAs  can  be  efficiently  implemented
in  hardware  and  can  be  applied  in  the  field  of  parallel  computation.
However,  the  main  contribution  is  thus  to  have  paved  the  path  for
future developments of similar systems.
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