
Cellular Automaton-Based Pseudorandom

Number Generator

Zakarya Zarezadeh

Department of Philosophy, Literature and Art
University of Tor Vergata, 18-00173, Rome, Italy

This paper is concerned with the study of pseudorandom number gener-
ation by an extension of the original cellular automaton, termed
nonuniform cellular automata. In order to demonstrate the efficacy of a
proposed random number generator, it is usually subject to a battery of
empirical and theoretical tests. By using a standard software package
for statistically evaluating the quality of random number sequences
known as the Diehard battery test suite and TestU01, the results of the
proposed model are validated, and we demonstrate that cellular
automata can be used to rapidly produce purely random temporal bit
sequences to an arbitrary precision.

Introduction1.

Random numbers are very important for a variety of purposes, such
as Monte Carlo techniques, simulated annealing and Brown
dynamics. These simulation methods depend critically on the quality
of the random numbers, as measured by appropriate statistical tests.
When a large amount of random numbers has to be generated, com-
putational efficiency is also very important. Built-in devices for very
large-scale integration (VLSI) circuits are another application area of
random numbers. In this case, as well as for fine-grained massively
parallel computers and for on-board applications, it is essential that
the random number generator also be amenable to hardware imple-
mentation in terms of area, number of gates and complexity of the
interconnections. Several deterministic algorithms for producing
random numbers have been proposed to date. In Section 2, we will
review the principal pseudorandom number generators (PRNGs)
methods. In Section 3, we will concentrate on generating pseudo-
random sequences by using cellular automata (CAs). The proposed
cellular automaton (CA) model is described in Section 3.2. Our
results in Section 5 show that CA-based PRNGs can yield long-
period, high-quality random number sequences. We conclude that CA-
based random number generators offer a realistic alternative to other
methods; this is especially true in the case of VLSI implementation,

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

fine-grained massively parallel machines for statistical physics simula-
tion and built-in self-test circuits.

Random Number Generators2.

An Overview of Random Number Generators2.1

A PRNG is an algorithm for generating a sequence of numbers that
approximates the properties of random numbers. The sequence is not
truly random, in that it is completely determined by a relatively small
set of initial values, called the state of the PRNG. Although sequences
that are closer to truly random can be generated using hardware ran-
dom number generators, pseudorandom numbers are important in
practice for simulations (e.g., of physical systems with the Monte
Carlo method) and are central in the practice of cryptography. The
generator is exercised by steps, and two things occur concurrently dur-
ing each step: there is a transformation of the state information, and
the generator outputs a fixed-size bit string. The generator seed is sim-
ply the initial state information. With any pseudorandom generator,
after a sufficient number of steps, the generator comes back to some
sequence of states that was already visited. Then, the period of the
generator is the number of steps required to do one full cycle through
the visited states. Careful mathematical analysis is required to have
any confidence that a PRNG generates numbers that are sufficiently
“random” to suit the intended use. All practical methods for obtain-
ing random numbers are based on deterministic algorithms, which is
why such numbers are more appropriately called pseudorandom, as
distinguished from true random numbers resulting from some natural
physical process. In the following we will limit ourselves to uniformly
distributed sequences of pseudorandom numbers; however, there are
well-known ways for obtaining sequences distributed according to a
different distribution, starting from a uniformly distributed one. In
practice, the output from many common PRNGs exhibits artifacts
that cause it to fail statistical pattern-detection tests. These include,
but are certainly not limited to:

Shorter-than-expected periods for some seed states; such seed states
may be called “weak” in this context.

1.

Lack of uniformity of distribution. 2.

Correlation of successive values.3.

Poor dimensional distribution of the output sequence. 4.

The distances between where certain values occur are distributed differ-
ently from those in a random sequence distribution.

5.

374 Z. Zarezadeh

Complex Systems, 26 © 2017

Random number generators must possess a number of properties if
they are to be useful in lengthy stochastic simulations such as those
used in computational physics. One of the most popular methods for
generating random numbers is the linear congruential generator. It
uses a method similar to the folding schemes in chaotic maps. The gen-
eral formula is:

Xn+1 = (a Xn + c)modm n ≥ 0,

m > 0, 0 < a < m.
(1)

The value m > 0 is called the modulus, a is the multiplier, and c is an
additive constant. If c = 0, the generator is a multiplicative congruen-
tial generator. Linear congruential generators are periodic and tend to
give a lower quality of randomness, especially when a large number
of random values are needed. If reals are generated directly from the
congruence relation, the period is less than or equal to m. The period
of a multiplicative congruential generator is bounded above by the
number of positive integers less than or equal to the modulus that are
relatively prime to the modulus. This upper bound is Euler’s totient
function of the modulus. Another method, the so-called lagged-
Fibonacci generator, is also widely used. It has the form:

Xn = Xn-r opXn-pmodm. (2)

The numbers r and p are called lags and there are methods for choos-
ing them appropriately. The operator op can be one of the following
binary operators: addition, subtraction, multiplication or exclusive or.
However, it should be noted that from the point of view of hardware
implementation, both congruential and lagged-Fibonacci random
number generators are not very suitable: they are inefficient in terms
of silicon area and time when applied to fine-grained massively paral-
lel machines, for built-in self-test, or for other on-board applications.
A third widespread type of generator is the so-called linear feedback
shift register (LFSR). A pseudorandom sequence is generated by the
linear recursion equation:

Xn = (c1 Xn-1 + c2 Xn-2 +⋯ + ck Xn-k)mod 2. (3)

Linear feedback shift registers are popular generators among physi-
cists and computer engineers. There exist forms of LFSR that are suit-
able for hardware implementation. However, it turns out that when
compared with equivalent CA-based generators, they are of lesser
quality; furthermore, they are less favorable in terms of connectivity
and delay, although the area needed by a CA cell is slightly larger
than that of an LFSR cell. This is so because an LFSR with a large
number of memory elements and feedback has an irregular intercon-
nection structure, which makes it more difficult to modularize in
VLSI. Moreover, different sequences generated by the same CA are
much less correlated than the analogous sequences generated by an

Cellular Automaton-Based Pseudorandom Number Generator 375

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

LFSR. This means that CA-generated bit sequences can be used in par-
allel, which offers clear advantages in applications.

Cellular Automata for Random Number Generation2.2

Cellular automaton-based random number generators evolve a state
vector of zeros and ones according to a deterministic rule. For a given
CA, an element (or cell) at a given position in the new state vector is
determined by certain neighboring cells of that cell in the old state vec-
tor. A subset of cells in the state vectors is then output as random bits
from which the pseudorandom numbers are generated. In the last
decade, CAs have been used to generate “good” random numbers.

The first work examining the application of CAs to random num-
ber generation is that of Wolfram [1], in which the uniform 2-state,
r = 1 rule 30 CA was extensively studied, demonstrating its ability to
produce highly random temporal bit sequences. Such sequences are
obtained by sampling the values that a particular cell (usually the cen-
tral one) attains as a function of time. In Wolfram’s work, the uni-
form rule 30 CA is initialized with a configuration consisting of a
single cell in state 1, with all other cells being in state 0 [1]. The ini-
tially nonzero cell is the site at which the random temporal sequence
is generated. Wolfram studied this particular rule extensively, demon-
strating its suitability as a high-performance randomizer, which can
be efficiently implemented in parallel; indeed, this CA is one of the
standard generators of the massively parallel Connection Machine
CM2 [2].

A nonuniform CA randomizer was presented in [3] (based on the
work in [4]), consisting of two rules, 90 and 150, arranged in a spe-
cific order in the grid. The performance of this CA in terms of ran-
dom number generation was found to be at least as good as that of
rule 30, with the added benefit of less costly hardware implementa-
tion. It is interesting in that it combines two rules, both of which are
simple linear rules, that do not comprise good randomizers, to form
an efficient, high-performance generator. An example application of
such CA randomizers was demonstrated in [5], which presented the
design of a low-cost, high-capacity associative memory.

An evolutionary approach for obtaining random number genera-
tors was taken in [6], which applied genetic programming to the evo-
lution of a symbolic LISP expression that acts as a rule for a uniform
CA (i.e., the expression is inserted into each CA cell, thereby compris-
ing the function according to which the cell’s next state is computed).
It demonstrated evolved expressions that are equivalent to Wolfram’s
rule 30. The work in [1–6] leads us to ask whether good CA random-
izers can be coevolved using CAs; the results reported in Section 5
suggest that.

376 Z. Zarezadeh

Complex Systems, 26 © 2017

Cellular Automata3.

An Informal Introduction3.1

Cellular automata were originally conceived in the 1940s to provide a
formal framework for investigating the behavior of complex extended
systems [7]. Cellular automata are dynamical systems in which space
and time are discrete. Cellular automaton systems are composed of
adjacent cells or sites arranged as a regular lattice, which evolve in dis-
crete time steps. Each cell is characterized by an internal state whose
value belongs to a finite set. The updating of these states is made
simultaneously, according to a common local transition rule involving
a neighborhood of each cell. The state of a cell at the next time step is
determined by the current states of cells in a surrounding neighbor-
hood. The cellular array (grid) is d-dimensional, where d = 1, 2, 3 is
used in practice; in this paper we concentrate on d = 1, that is, one-
dimensional grids. The identical rule contained in each cell is essen-
tially a finite-state machine, usually specified in the form of a rule
table (also known as the transition function), with an entry for every
possible neighborhood configuration of states. The cellular neighbor-
hood of a cell consists of itself and the surrounding (adjacent) cells.
For one-dimensional CAs, a cell is connected to r local neighbors
(cells) on either side, where r is referred to as the radius (thus, each
cell has 2r + 1 neighbors). A common method of examining the behav-
ior of one-dimensional CAs is to display a two-dimensional spacetime
diagram, where the horizontal axis depicts the configuration at a
certain time t and the vertical axis depicts successive time steps (e.g.,
Figure 1).

Figure 1.A spacetime diagram of patterns generated by simple one-dimen-
sional CAs. The CAs consist of a row of about 200 sites whose values evolve
with time down the page according to simple logical rules. The value 0 or 1
of each site (represented by white or black) is determined from its own value
and the values of its two nearest neighbors on the step before. Patterns gener-
ated by 10 different rules are shown. In each case, the pattern is obtained
with a random initial state. Despite the simplicity of these CAs, the patterns
generated show considerable complexity.

Cellular Automaton-Based Pseudorandom Number Generator 377

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

 The term “configuration” refers to an assignment of ones and
zeros at a given time step (i.e., a horizontal line in the diagram).
When the same rule is applied to update cells of CAs, such CAs are
called uniform CAs, in contrast with nonuniform CAs, when different
rules are assigned to cells and used to update them. Using one-dimen-
sional, two-state CAs as a source of random bit sequences was first
suggested by Wolfram. He used uniform, one-dimensional CAs with
r = 1. In particular, he extensively studied rule 30. (Rule numbers are
given in accordance with Wolfram’s convention.) Nonuniform CAs
with two rules, 90 and 150, were used in [3, 8] and it was found that
the quality of generated pseudorandom number sequences (PNSs) was
better than the quality of the Wolfram system. Proposed in [9] was
the use of nonuniform, one-dimensional CAs with r = 1 and four
rules, 90, 105, 150 and 165, which provide high-quality PNSs and a
huge space of possible secret keys that are difficult for cryptanalysis.
Instead, in order to design rules for CAs, an evolutionary technique
called cellular programming (CP) was used to search for them. In this
paper we continue this line of research. We will use finite, one-dimen-
sional, nonuniform CAs. However, we extend the potential space of
rules by consideration of one size of rule neighborhood, namely a
neighborhood of radius r = 1. For example, in the case of rule 30 CA,
in Boolean form it can be written as:

fi, t + 1  fi - 1, t  f(i, t)  fi + 1, t (4)

where f(i, t) is the value of cell i at time t. The formula gives the state
of cell i at time step t + 1 as a Boolean function of the states of the
neighboring cells at time t. Random bit sequences are obtained by
sampling the values that a particular cell (usually the central one)
attains as a function of time. In order to further decorrelate bit
sequences, time spacing and site spacing are used. Time spacing
means that not all the bits generated are considered as part of the ran-
dom sequence. For instance, maybe only one bit is kept out of two,
referred to as a time space value of 1, which means that sequences
will be generated at half the maximal rate. In site spacing, only cer-
tain sites in a row are considered, where an integer number indicates
how many sites are to be ignored between two successive cells. In
practice, a site spacing of one or two is common, which means that
half or two-thirds of the output bits are lost. Figure 2 demonstrates
the workings of a rule 30 CA, both with and without time and site
spacing. Figure 3 shows a sequence of totalistic CAs with three possi-
ble colors for each cell.

Over the years, CAs have been applied to the study of general phe-
nomenological aspects of the world, including communication,
computation, construction, growth, reproduction, competition and
evolution (see, e.g., [10–15]). One of the most well-known CA rules,

378 Z. Zarezadeh

Complex Systems, 26 © 2017

the Game of Life, was conceived by Conway in the late 1960s
[16, 17] and was shown by him to be computation universal [18]. For
a review of computation-theoretic results, refer to [19]. Cellular
automata also provide a useful model for a branch of dynamical sys-
tems theory that studies the emergence of well-characterized collective
phenomena, such as ordering, turbulence, chaos, symmetry-breaking
and fractality [20, 21].

(a) (b) (c) (d) (e)

Figure 2.A spacetime diagram of CA rule 30. Grid size is N = 200; radius is
r = 1. White squares represent cells in state 0; black squares represent cells in
state 1. The pattern of configurations is shown through time (which increases
down the page). The initial configurations were generated by randomly set-
ting the state of each grid cell to 0 or 1 with uniform probability. (a) No
time/site spacing; (b) site spacing = 1; (c) time spacing = 1; (d) time/site spac-
ing = 1; (e) time/site spacing = 4.

Figure 3.A sequence of totalistic CAs with three possible colors for each cell.
Although their basic rules are more complicated, the CAs shown here do not
seem to have fundamentally more complicated behavior than the two-color
CAs shown in Figure 2. The symmetry of all the patterns is a consequence of
the basic structure of totalistic rules.

The systematic study of CAs in this context was pioneered by
Wolfram and studied extensively by him [22–24]. He investigated
CAs and their relationships to dynamical systems, identifying the fol-
lowing four qualitative classes of behavior, with analogs in the field

Cellular Automaton-Based Pseudorandom Number Generator 379

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

of dynamical systems (the latter are shown in parenthesis; see also
[25, 26]:

◼ Class I relaxes to a homogeneous state (limit points).

◼ Class II converges to simple separated periodic structures (limit cycles).

◼ Class III yields chaotic aperiodic patterns (chaotic behavior of the kind
associated with strange attractors).

◼ Class IV yields complex patterns of localized structures, including prop-
agating structures (very long transients with no apparent analog in con-
tinuous dynamical systems).

Basic Structure of Nonuniform Cellular Automata3.2

The basic model we employ in this paper is an extension of the origi-
nal CA model, termed nonuniform CAs (Figure 4). Such automata
function in the same way as uniform ones, the only difference being in
the cellular rules that need not be identical for all cells. Note that
nonuniform CAs share the basic “attractive” properties of uniform
ones (massive parallelism, locality of cellular interactions, simplicity
of cells). Nonuniform CAs were investigated in [27], which discusses
a one-dimensional CA in which a cell probabilistically selects one of
two rules at each time step. It showed that complex patterns appear
characteristic of class IV behavior [27]. Two generalizations of CAs
are presented in [28], namely, discrete neural networks and automata
networks. These are compared to the original model from a computa-
tional point of view that considers the classes of problems such
models can solve. In this section, we describe a prototype version of
our model, in which the following feature is added to the elementary
cellular automaton (ECA) presented in Section 3.1:

◼ A cell may contain a small number of different rules. At a given
moment only one rule is active and determines the cell’s function. An
inactive rule may be activated or copied into a neighboring cell.

(a) (b)

Figure 4. The behavior of nonuniform CAs with two colors. In each case, 400
steps of evolution are shown. (a) Nonuniform CA with random initial configu-
rations. (b) Shifted nonuniform CA, starting with a single black cell.

380 Z. Zarezadeh

Complex Systems, 26 © 2017

This feature could serve as a possible future enhancement in the
evolutionary studies as well. At this point, we present a system involv-
ing the growth and replication of complex structures that are created
from grid cells and behave as multicellular organisms once formed.
The system consists initially of two cell types, builders and replica-
tors, floating around on the grid.

◼ Historic memory can be embedded in the CA dynamics by endowing
memory in cells without altering the mappings ϕ.

Conventional CAs are ahistoric (memoryless); that is, the new state
of a cell depends on the neighborhood configuration solely at the pre-

ceding time step. Thus, if δi
(T)

 is taken to denote the value of cell i at

time step T, the site values evolve by iteration of the mapping:

δ(T+1) = ϕδj
(T) ∈ i (5)

where ϕ is an arbitrary function that specifies the CA rule operating
on the cells in the neighborhood  of the cell i. The standard frame-
work of CAs can be extended by implementing memory capabilities
in cells:

δ(T+1) = ϕSj
(T) ∈ i (6)

with Sj
(T)

 being a state function of the series of states of the cell j up to

time step T:

Sj
(T) = Sδj

1, … , δj
(T+1), δj

(T). (7)

Thus in CAs with memory, while the mapping ϕ remains unaltered,
the historic memory of all past iterations is retained by featuring each
cell by a summary of its past states. That is to say, cells canalize mem-
ory to the map ϕ. The dynamics of ECA rules is dramatically altered
when endowing cells with memory of the last steps, compared to the
conventional CA paradigm that merely takes into account the last con-
figuration. Particularly interesting is the effect of the parity rule acting
as memory on rule 30 and on the linear rules 90 and 150, as it gener-
ates a seemingly random dynamic, even if it causes the system to fail
in most of the randomness tests. Cellular automata with memory in
cells can be considered as a natural and promising extension of the
basic paradigm.

In this paper we study one-dimensional, 2-state, r = 1 nonuniform
CAs, in which each cell may contain a different rule. Spatially peri-
odic boundary conditions are used, resulting in a circular grid. Rather
than employ a genetic algorithm or cellular programming approach,
our algorithm (Figure 5) involves a single nonuniform CA of size ℕ.
After initializing the states of each cell, the CA starts to evolve accord-
ing to the assigned rule during a predefined number of time steps.

Cellular Automaton-Based Pseudorandom Number Generator 381

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

��������������������
��������
������������������������������������
��
�����������

������������� ������������
�������������������������������������������������

������σ��
(�) �σ��

(�) �

����������������������������������

σ�
(�+�) = σ�

(�)

σ�
(�+�) = σ�

(�)

σ�
(�+�) = ϕ-�

(�) � 
(�)� +�

(�) 

σ�
(�+�) = ϕ-�

(�) � 
(�)� +�

(�) 

�� ����

Figure 5. Pseudocode of the nonuniform CA algorithm.

Figure 6.A spacetime diagram of nonuniform CAs; grid size is ℕ = 128, radius
is r = 1. White squares represent cells in state 0; black squares represent cells
in state 1. The initial configurations were generated by randomly setting the
state of each grid cell to 0 or 1 with uniform probability (upper). No time/site
spacing (lower). Site spacing of 1.

During the CA evolution, the preceding time steps are calculated and
serve as a transition function applied locally to a given rule. The size
and pattern of this transition function may differ from the neighbor-
hood associated with types of rules. Once a state and transition vector
is computed by evolving the CA by the specified neighbor rule, bits
are selected for random numbers from bits {start,start+skip(site
spacing),…}. In practice, using every second cell in each state vector
proves to be sufficient to pass all stringent randomness tests. For even
faster random number generation, a skip setting of 0 could be used,
but the quality of the random numbers will then decline. The skip

382 Z. Zarezadeh

Complex Systems, 26 © 2017

option tied to a large state vector size is useful for setting up a family
of independent generators that can be used in parallel computations.
A typical result of a single run of this process starting with a random
initial state (seed) is shown in Figure 6.

Statistical Testing of Random Number Generators and Historical
Development

4.

Over the years many statistical tests for testing random number gener-
ators have been proposed. One of the first collections was found in
earlier editions of [29]. These tests, plus a few others designed for test-
ing parallel generators, were implemented in SPRNG, a scalable
library for pseudorandom number generation in [30]. New and more
stringent tests, compared to the ones from [29], were introduced in
[31]. Most of these tests were later implemented in Diehard, a battery
of tests of randomness in [32], probably the best-known software
package for testing random number generators. The National Insti-
tute of Standards and Technology (NIST), developed the NIST Statisti-
cal Test Suite [33] for the evaluation of the Advanced Encryption
Standard (AES) candidate algorithms. The state-of-the-art library for
testing random number generators today is TestU01, a C library for
empirical testing of random number generators introduced in [34]. It
implements:

A large variety of different random number generators proposed in the
literature and/or used in software packages or operating systems.

1.

Most of the statistical tests from Diehard, the NIST package, the Knuth
collection, other tests found in the literature and some original ones.

2.

Predefined test batteries.3.

Tools for investigating dependence of the period length of a generator
within a whole family of random number generators and the length of
a sequence when this generator begins to fail a given test systematically.

4.

In essence, statistical testing of random number generators is nothing
but a particular kind of Monte Carlo simulation. Conversely, when
testing a random number generator for suitability with respect to a
particular Monte Carlo problem, running the simulation with a
related but simplified model, that is, one where the distribution of the
result can be attained theoretically, may serve as a test. Even if the dis-
tribution is not known, the results of the designated random number
generator can still be compared to the ones produced by a few other
“good” generators of quite different designs.

Most statistical tests for random number generators utilize the con-
cept of a p-value. P-values of single tests should not only be in the
proper range (not too close to 0 or 1), but should also be uniformly

Cellular Automaton-Based Pseudorandom Number Generator 383

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

distributed on 0, 1. Therefore, it might be useful to run the same test

many times independently, that is, on different parts of the original
sequence. Very often random number generators are tested against
whole batteries of tests, and therefore p-values close to 0 or 1 are not
too uncommon even for good (including perfect) generators (Table 1).
If the final p-value of a test is really close to 0 or 1, the random num-
ber generator is said to fail the test. If the p-value is suspicious, the
test is repeated and/or the sample size is increased, and often things
will then clarify. Otherwise, the random number generator is said to
have passed the test.

P-Value Interpretation

0.01 < p < 0.99 Clear passed

p or 1 - p < 10-10 Clear failure

Table 1. Interpretation of p-values.

Analysis of the Test Results5.

In order to demonstrate the efficacy of a proposed random number
generator, it is usually subject to a battery of empirical and theoretical
tests. For the tests, we have used Diehard and TestU01. In order to
apply the tests, we generated sequences of length L random bits using
this procedure: the CA of radius r = 1, size ℕ = 256 and 1024, with
site spacing ss = 1 is run for t time steps, thus generating

t * ℕ  ss + 1 random temporal bit sequences of length L. Table 2

shows the results of applying the test battery Crush from the random
number generator software package TestU01 and the Diehard battery
of tests to our novel CA-based model. We note that the nonuniform
CAs attain very good results on all tests. Our results are somewhat
better than rule 30, 90 and 105 CAs as PRNGs and also markedly
improved in comparison to rule 30, which attains lower scores on the
statistical tests. All these CAs failed the bitstream and OPSO tests.
With respect to the OQSO test, rule 30 had always failed, while the
other rules sometimes produced good (passing) strings. We conclude
that on the whole, uniform CAs comprise fairly good generators, but
they do not compare well with standard classical PRNG. In our simu-
lations (using grids of sizes ℕ = 256 and 1024), we observed that high-
performance architecture is attained as the grid size increases
(computation time is linear with grid size). We have shown that the
nonuniform CA algorithm can be applied to the difficult problem of
generating random numbers. While a more extensive suite of tests is
in order, it seems safe to say at this point these results are comparable

384 Z. Zarezadeh

Complex Systems, 26 © 2017

to the entropy values obtained in [6], as well as to those of the rule-30
CA of Wolfram [1] and the nonuniform CA rules {90, 150} of [3, 8].
Our results are also better than the CA rules {90, 150}, and markedly
improved in comparison to the nonuniform CA randomizer in [9].
Furthermore, there is a notable advantage arising from the existence
of a “tunable” algorithm for the generation of randomizers.

Generator
Parameters Test Package

Number of
Statistics Result

ℕ = 256,
skip = 1

Diehard 126 All tests were passed

ℕ = 1024,
skip = 1

Crush-TestU01 144 All tests were passed

Table 2.Results of the Diehard and test battery Crush (software package
TestU01 (1.2.3)). (Note: skip or site spacing means an integer number indi-
cates how many sites are to be ignored between two successive cells.)

Conclusion6.

This section highlights the contributions of this paper and some fea-
tures by which it differs from the original cellular automaton (CA)
model, organized in chronological order.

◼ Whereas the CA model consists of uniform cells, each containing the
same rule, we consider the nonuniform case where different cells may
contain different rules. A possible extension is the addition of restric-
tions to the nonuniform cellular automata (CAs), which have proven in
the past more powerful than uniform ones, at no extra cost in terms of
“software” or “hardware,” while being faster to evolve and restricted
to the scope of computation. In fact, it is easy to see that a uniform CA
can simulate a nonuniform one by encoding all the different rules as
one (huge) rule, employing a large number of states. One feature of our
model, namely, the “active” nature of rules, whereby they may effect
changes upon neighboring cells, may also be obviated by using “static”
rules with larger neighborhoods, performing the equivalent operations.
While these arguments hold true in principle, we argue that this is not
so in practice. The power offered by our model cannot strictly be
reduced to the question of computational power. Nonetheless, our
investigations reported in the following sections do indeed show that
our model holds potential for the exploration of CA phenomena.

◼ A novel developmental process of our system was presented. In this sys-
tem, evolution takes place not only in state space as in the CA model,
but also in rule space; rules may change (evolve) over time. A cell may
contain a small number of different rules. At a given moment, only one
rule is active and determines the cell’s function. An inactive rule may be

Cellular Automaton-Based Pseudorandom Number Generator 385

https://doi.org/10.25088/ComplexSystems.26.4.373

https://doi.org/10.25088/ComplexSystems.26.4.373

activated or copied into a neighboring cell. At this point, we present a
system involving the growth and replication of complex structures that
are created from grid cells and behave as multicellular organisms once
formed.

◼ A useful additional component is internal, finite memory. The dynam-
ics of elementary rules is dramatically altered when endowing cells with
memory of the previous time steps, compared to the conventional CA
paradigm that merely takes into account the last configuration. Per-
haps, as a result of a further full rigorous study of CAs with memory, it
will be possible to paraphrase [35] in presenting CAs with memory as
an alternative to (rather than an approximation of) integral equations
in modeling, in particular, to Volterra integral equations that appear in
the study of many phenomena incorporating memory, which are impor-
tant in applied sciences such as population dynamics, diffusion, neural
networks and so on.

◼ An analysis of pseudocode of the nonuniform CA algorithm. In this
analysis, we showed a number of features of such a method, demon-
strating the traps into which this algorithm may fall.

◼ In this paper, we have reported results of the study on using CAs as a
basic form of a high-speed massively parallel computation engine. The
main assumption of our approach was to consider nonuniform one-
dimensional CAs. After we constructed a novel CA—demonstrated in
Section 3.2—we verified the performance of a CA-based random num-
ber generator with the Diehard and TestU01 suites of statistical tests.
Table 2 summarizes our findings, ranking all tested results according to
the quality of the random numbers. Finally, an extensive suite of statis-
tical tests and the results of experiments have shown that our
nonuniform CA algorithm can be applied to the difficult problem of
generating random numbers. Such CAs can be efficiently implemented
in hardware and can be applied in the field of parallel computation.
However, the main contribution is thus to have paved the path for
future developments of similar systems.

References

[1] S. Wolfram, “Random Sequence Generation by Cellular Automata,”
Advances in Applied Mathematics, 7(2), 1986 pp. 123–169.
doi:10.1016/0196-8858(86)90028-X.

[2] Connection, The Connection Machine: CM-200 Series Technical Sum-
mary, Cambridge, MA: Thinking Machines Corporation, 1991.

[3] P. D. Hortensius, R. D. McLeod and H. C. Card, “Parallel Random
Number Generation for VLSI Systems Using Cellular Automata,” IEEE
Transactions on Computers, 38(10), 1989 pp. 1466–1473.
doi:10.1109/12.35843.

386 Z. Zarezadeh

Complex Systems, 26 © 2017

https://dx.doi.org/10.1016/0196-8858(86)90028-X
https://dx.doi.org/10.1109/12.35843

[4] P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller and
H. C. Card. “Cellular Automata-Based Pseudorandom Number Genera-
tors for Built-In Self-Test,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(8), 1989 pp. 842–859.
doi:10.1109/43.31545.

[5] D. R. Chowdhury, I. S. Gupta and P. P. Chaudhuri, “A Low-Cost High-
Capacity Associative Memory Design Using Cellular Automata,” IEEE
Transactions on Computers, 44(10), 1995 pp. 1260–1264.
doi:10.1109/12.467703.

[6] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, Cambridge, MA: The MIT Press, 1992.

[7] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[8] S. Nandi, B. K. Kar and P. P. Chaudhuri, “Theory and Applications of
Cellular Automata in Cryptography,” IEEE Transactions on Comput-
ers, 43(12), 1994 pp. 1346–1357. doi:10.1109/12.338094.

[9] M. Tomassini and M. Perrenoud, “Stream Ciphers with One- and Two-
Dimensional Cellular Automata,” in Parallel Problem Solving from
Nature PPSN VI, LNCS VI (PPSN 2000), (M. Schoenauer et al., eds.),
Berlin, Heidelberg: Springer, 2000 pp. 722–731
doi:10.1007/3-540-45356-3_ 71.

[10] A. W. Burks, ed., Essays on Cellular Automata, Urbana, IL: University
of Illinois Press, 1970.

[11] A. R. Smith, Cellular Automata Theory, Technical Report 2, Digital
Systems Laboratory, Stanford Electronics Laboratories, Stanford Univer-
sity, 1969.

[12] A. R. Smith, “Simple Computation-Universal Cellular Spaces,” Journal
of the ACM, 18(3), 1971 pp. 339–353. doi:10.1145/321650.321652.

[13] A. R. Smith, “Simple Nontrivial Self-Reproducing Machines,” in Arti-
ficial Life II, Vol. X of SFI Studies in the Sciences of Complexity
(C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen, eds.), Red-
wood City, CA: Addison-Wesley, 1992 pp. 709–725.

[14] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Envi-
ronment for Modeling, Cambridge, MA: MIT Press, 1987.

[15] [15] J.-Y. Perrier, M. Sipper and J. Zahnd, 1996. “Toward a Viable,
Self-Reproducing Universal Computer,” Physica D: Nonlinear Phenom-
ena, 97(4), 1996 pp. 335–352. doi:10.1016/0167-2789(96)00091-7.

[16] M. Gardner, “Mathematical Games: The Fantastic Combinations of
John H. Conway’s New Solitaire Game ‘Life’,” Scientific American,
223, 1970 pp. 120–123.

[17] M. Gardner, “On Cellular Automata, Self-Replication, the Garden of
Eden and the Game ‘Life’,” Scientific American, 224(2), 1971
pp.�112–117.

Cellular Automaton-Based Pseudorandom Number Generator 387

https://doi.org/10.25088/ComplexSystems.26.4.373

https://dx.doi.org/10.1109/43.31545
https://dx.doi.org/10.1109/12.467703
https://dx.doi.org/10.1109/12.338094
https://doi.org/10.1007/3-540-45356-3_71
https://doi.org/10.1145/321650.321652
https://doi.org/10.1016/0167-2789(96)00091-7
https://doi.org/10.25088/ComplexSystems.26.4.373

[18] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for Your
Mathematical Plays, New York: Academic Press, 1982 pp. 817–850.

[19] K. Culik II, L. P. Hurd and S. Yu, “Computation Theoretic Aspects of
Cellular Automata,” Physica D, 45(1–3), 1990 pp. 357–378.
doi:10.1016/0167-2789(90)90194-T.

[20] G. Y. Vichniac, “Simulating Physics with Cellular Automata,” Physica
D: Nonlinear Phenomena, 10(1–2), 1984 pp. 96–116.
doi:10.1016/0167-2789(84)90253-7.

[21] C. H. Bennett and G. Grinstein, “Role of Irreversibility in Stabilizing
Complex and Nonergodic Behavior in Locally Interacting Discrete Sys-
tems,” Physical Review Letters, 55(7), 1985 pp. 657–660.
doi:10.1103/PhysRevLett.55.657.

[22] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of�
Modern Physics, 55(3), 1983 pp. 601–644.
doi:10.1103/RevModPhys.55.601.

[23] S. Wolfram, “Cellular Automata as Models of Complexity,” Nature,
311, 1984 pp. 419–424. doi:10.1038/311419a0.

[24] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[25] C. G. Langton, “Studying Artificial Life with Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 22(1–3), 1986 pp. 120–149.
doi:10.1016/0167-2789(86)90237-X.

[26] C. G. Langton, “Life at the Edge of Chaos,” in Artificial Life II, Vol. X
of SFI Studies in the Sciences of Complexity (C. G. Langton, C. Taylor,
J. D. Farmer and S. Rasmussen, eds.), Redwood City, CA: Addison-
Wesley, 1992 pp. 41–91.

[27] G. Y. Vichniac, P. Tamayo and H. Hartman, “Annealed and Quenched
Inhomogeneous Cellular Automata,” Journal of Statistical Physics,
45(5–6), 1986 pp. 875–883. doi:10.1007/BF01020578.

[28] M. Garzon, “Cellular Automata and Discrete Neural Networks,” Phys-
ica D: Nonlinear Phenomena, 45(1–3), 1990 pp. 431–440.
doi:10.1016/0167-2789(90)90200-9.

[29] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd ed., Reading, MA: Addison-Wesley, 1981.

[30] M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A Scalable
Library for Pseudorandom Number Generation,” ACM Transactions on
Mathematical Software, 26(3), 2000 pp. 436–461.
doi:10.1145/358407.358427.

[31] G. Marsaglia, “A Current View of Random Number Generators,” in
Computational Science and Statistics: Proceedings of the Sixteenth
Symposium on the Interface, Atlanta, Georgia, 1984 (L. Billard, ed.),
New York: North-Holland, 1985 pp. 3–10.

388 Z. Zarezadeh

Complex Systems, 26 © 2017

https://dx.doi.org/10.1016/0167-2789(90)90194-T
https://dx.doi.org/10.1016/0167-2789(84)90253-7
https://dx.doi.org/10.1103/PhysRevLett.55.657
https://dx.doi.org/10.1103/RevModPhys.55.601
https://dx.doi.org/10.1038/311419a0
https://dx.doi.org/10.1016/0167-2789(84)90245-8
https://dx.doi.org/10.1016/0167-2789(86)90237-X
https://dx.doi.org/10.1007/BF01020578
https://dx.doi.org/10.1016/0167-2789(90)90200-9
https://dx.doi.org/10.1145/358407.358427

[32] G. Marsaglia, “DIEHARD: Battery of Tests of Randomness,” 1996.

[33] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, et al., “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” NIST Special
Publication 800-22 Rev. 1a, Gaithersburg, MD: National Institute of
Standards and Technology, 2001.
csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final.

[34] P. L’Ecuyer and R. Simard, “TestU01: A C Library for Empirical Test-
ing of Random Number Generators,” ACM Transactions on Mathemat-
ical Software, 33(4), 2007 Article No. 22.
doi:10.1145/1268776.1268777.

[35] T. Toffoli, “Cellular Automata as an Alternative to (Rather Than an
Approximation of) Differential Equations in Modeling Physics,” Physica
D: Nonlinear Phenomena, 10(1–2), 1984 pp. 117–127.
doi:10.1016/0167-2789(84)90254-9.

Cellular Automaton-Based Pseudorandom Number Generator 389

https://doi.org/10.25088/ComplexSystems.26.4.373

https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://dx.doi.org/10.1145/1268776.1268777
https://dx.doi.org/10.1016/0167-2789(84)90254-9
https://doi.org/10.25088/ComplexSystems.26.4.373

