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To  identify  potential  universal  cellular  automata  (CAs),  a  method  is
developed  to  measure  the  information  processing  capacity  of  elemen-
tary  cellular  automata  (ECAs).  Two  features  of  CAs  are  considered:
ability  to  store  information  and  ability  to  process  information.  Local
collections  of  cells  are  defined  as  particles  of  CAs  and  the  information
contained  by  particles  is  examined.  By  using  this  method,  information
channels  and  intersections  of  channels  can  be  shown.  By  observing
these  two  features,  potential  universal  CAs  are  classified  into  a  certain
class,  and  all  ECAs  can  be  classified  into  four  groups,  which cor-
respond  to  Wolfram’s  four  classes:  1,  homogeneous;  2,  regular;  3,
chaotic and 4, complex. This result shows that using the abilities of stor-
ing  and  processing  information  to  characterize  complex  systems  is
effective and succinct. It is found that these abilities are capable of quan-
tifying the complexity of systems. 
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Introduction1.

A  universal  system  is  a  system  that  can  execute  any  computer  pro-
gram. In other words, it is feasible for it to execute any algorithm [1].
It  was  found  that  some  systems  with  simple  rules  can  be  a  universal
system,  such  as  rule  110  in  elementary  cellular  automata  (ECAs)
[1– 3]. Some tag systems and cyclic tag systems were proved to be uni-
versal,  which  are  also  systems  with  simple  rules  [2–4].  A  glider  sys-
tem, which is an idealized system to simulate particle processes of real
physical  systems,  was  also  proved  to  be  a  universal  system  [2].  And
particle  machines  (PMs)  in  periodic  backgrounds  were  proved  to  be
universal [5].

The  widespread  existence  of  universal  systems  implies  that  some
processes  with  simple  rules  in  the  real  world  may  be  able  to  execute
some  algorithms  or  any  algorithm.  Because  of  the  significant  number
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of  algorithms,  the  behaviors  of  these  systems  can  be  variable  and
complex, which was considered as a potential origin of complexity in
[3, 6]. 

Cellular  automata  (CAs)  can  show  a  wide  variety  of  complex
phenomena in the real world, and CAs are also sufficiently general for
a wide variety of physical, chemical, biological and other systems [7].
Identifying  universal  CAs  will  help  people  understand  the  origins  of
cellular  automaton  (CA)  behaviors  and  find  key  dynamics  of  compu-
tation. 

In this paper, a method is developed to identify potential universal
ECAs.  Two  abilities  of  a  system  are  considered:  (1)  ability  to  store
information;  and  (2)  ability  to  process  information.  We  found  these
two  features  can  identify  potential  universal  CAs  and  quantify  the
complexity of systems. 

Elementary Cellular Automata1.1

Cellular  automata  are  ideal  models  for  physical  systems  in  which
space and time are discrete, and ECAs are the simplest kind of CAs.

Elementary cellular automata are dynamic systems defined by deter-
ministic  rules,  working  on  a  one-dimensional  list  {cn}  with  n  cells.

Rules can be expressed by the function F: 

cnt + 1  F[cn-1(t), cn(t), cn+1(t)], (1)

where n ∈ ℤ.

Therefore, cnt + 1 is the function of itself, cn(t), and its two imme-

diate neighbors: cn-1(t) and cn+1(t). Each cn(t) has two possible states,

0  or  1.  So  there  should  be  a  list  R  of  length  23  8  to  define  a  rule,

and  there  will  be  28  256  different  rules.  If  R  is  equal  to

0, 0, 0, 1, 1, 1, 1, 0  and  it  is  considered  as  a  binary  code,  it  equals

30 in decimal base and is called ECA rule 30. 
With a given initial list L0, an ECA will apply the function F to all

cells in parallel to update Lt to Lt+1. That is, 

Lt⟶
F
Lt+1. (2)

By  doing  this  process  repeatedly,  a  matrix  M(rule) 

(L0, L1, … , Lt)  will  be  generated,  which  is  the  “spacetime  evolu-

tion.”  Figure 1  shows  two  spacetime  evolutions  generated  by  ECA
rule 30 and ECA rule 110, started with the same L0. 

Two  hundred  fifty-six  different  ECAs  can  be  classified.  In  this
paper,  we  compare  our  work  with  Wolfram’s  classification,  which  is
classes 1 through 4 in [3, 7]. The classes are: 1, homogeneous; 2, regu-

46 Y. Zhang

Complex Systems, 27 © 2018



lar;  3,  chaotic;  4,  complex.  Some  typical  spacetime  evolutions  are
shown  in  Figure  1.  There  are  also  some  other  classifications;  see
[8–10]. 

Figure 1. Evolution of four typical rules from classes 1 through 4. Rule 8 is in
class 1, rule 4 is in class 2, rule 30 is in class 3, and rule 110 is in class 4. 

Methodology2.

We  consider  two  abilities  of  ECA  rules:  ability  to  store  information
and  ability  to  process  information.  The  ability  to  store  information
will  make  the  system  stable  enough  and  not  too  noisy.  Only  when
information  can  be  stored  can  information  move  stably  in  a  system,
so  that  the  whole  system  can  be  related.  The  ability  to  process  infor-
mation  means  interactions  between  different  information  should  be
found in a system.

We  define  a  system  that  can  store  information  when  its  current
local states can be used to infer previous states at some location. It is
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true  that  some  reversible  systems  can  store  all  information  of  the
whole system, but this information can hardly be used to infer the pre-
vious  states,  because  many  of  them  are  computationally  irreducible.
Thus, the particle systems can cover the definition. 

We identify potential universal ECAs based on a theorem proposed
in  [5],  which  considers  particle-like  structures  and  their  behavior  in
systems  to  identify  Turing  machines  (TMs)  and  universal  Turing
machines (UTMs). 

A method was developed to extract particle patterns from ECAs to
build  “particle  machines”  and  to  measure  their  computational  ability
by taking into account their features. First, it is necessary to introduce
PMs and define particles in ECAs. 

Particle Machines2.1

A PM is a system in which particles can move, collide, annihilate and
generate  in  a  homogeneous  medium.  Figure  2  shows  a  typical  PM.
Data and configurations are injected from the left in the form of parti-
cles,  and  by  executing  this  system,  particles  will  have  interactions.
Lines  and  dotted  lines  in  Figure  2  represent  the  paths  of  particles.
After time t, the system will generate an output. The identity of a par-
ticle  includes  position,  phase  and  velocity.  During  collisions,  particles
can alter their identities or be generated or annihilated. These changes
of  particles  can  be  considered  as  a  function  of  particles  that  partici-
pate  in  the  collision,  which  is  the  collision  function.  Some  PMs  are
proved  to  be  TMs  or  UTMs  in  [5].  A  PM  is  at  least  a  TM  when:
(1)�identity  of  particles  can  change  during  collisions;  and  (2)  collision
function  depends  on  identities  of  particles.  For  the  first  requirement,
the  identity  of  particles  can  change  during  collisions;  this  also  means
new  particles  can  be  generated  during  collisions.  The  second  require-
ment means the result of a collision should depend on the types of par-
ticles  that  participate  in  the  collision.  If  no  particles  can  be  generated
or annihilated in collisions in a PM, then the PM is not a UTM. 

Figure 2. A typical PM. 
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Particles in Elementary Cellular Automata2.2

We define a local grid of cells in M(rule)
 as a particle in ECAs. Here we

consider  one  kind  of  particle:  their  sequence  may  change  periodically
or  not  change  through  time.  We  call  them  “elementary  particles.”  It
will be practical if we start with this simple kind of particle.

Particles  contain  information,  so  that  information  can  move  in
space and have interaction with other information, which is a kind of
computation  [11].  All  identities  of  particles:  location,  velocity  and
sequence,  can  be  computed  by  collisions.  And  all  of  these  identities
can be preserved if there are no collisions. 

To  extract  the  identity  of  particles  from  an  ECA  spacetime  evolu-
tion, a certain sequence should be chosen for the research. We need to
choose  a  sequence  as  a  particle  to  study,  which  is  the  “target  parti-
cle.” As Figure 3(a) shows, we choose target particle  at the bottom
center  of  a  spacetime  evolution  and  mark  the  same  sequences  as
“linear particles” s, which are the dots in Figure 3(b). 

  can  be  explained  by  the  equation    Ltmax
(pL, pR),  where  Lt  is

the  tth  row  of  the  spacetime  evolution.  pL  and  pR  are  the  start  index

and the end index for . 

Target particle :

(a) (b)

Figure 3. (a)  An  illustration  of  how  it  takes  a  “target  particle”    from  a
matrix generated by ECA rule 110. The rectangle with a black frame is the tar-
get  particle  ,  and  gray  rectangles  mean  there  is  a  sequence  similar  to  ,
which are linear particles s. In this figure, the  and s are , and 54

same  sequences  are  found.  (b)  A  figure  of  matrix  (110).  t,x
(110)  p0  when

there is an  at {t, x}, or t,x  0. Dots at {t, x} mean t,x
(110)  p0.
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A  particle P  at t; x,  may  have  the  location t′; x′  at  time t′

(t′ < t). We call the particle at t′; x′ the father particle Pf  of P. If we

let P be , the Pf  will be one of the s. 

All  s  in  the  light  cone  of  P  are  possibly  the  father  particle  of  

(i.e.,  f );  we  assume  that  there  is  one  and  only  one    as  the  f ,  and

each  has probability p of being the f . So when there are n s, the

probability (i.e., p0) for an i to be a father particle is: 

p0(p, n)  p1 - pn-1. (3)

All  the  i  are  drawn  on  a  matrix  (rule),  such  as  in  Figure  3(b).

t,x
(rule)  p0  when there is an  at {t, x}, or t, x  0. We call (rule)

 a

“probability matrix.” The positions with black points will add a num-
ber  p0.  Each  black  point  means  there  is  a  linear  particle    of    at

(t, x); (t, x) is the location of the black point. t, x is equal to p0(p, n). 

The average (rule)
 generated with random initial lists: 


(rule)


1

N

i1

N

random
(rule) , (4)

will  show  some  patterns  that  represent  particles  and  the  behavior  of

particles. We call 
(rule)

 an “average matrix.” Figure 4 shows how an
average matrix was generated.

Figure 4. The average matrix 
(110), generated with 106  probability matrices,

with p  0.01 for equation (1). 

The  meaning  of  an  average  matrix  is:  if  a  particle  is  found  at  the
bottom  center  of  a  spacetime  evolution,  it  may  come  from  position

(t, x)  with  probability  t, x ∑t, x t. x.  So  the  pattern  in  an  average
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matrix  represents  traces  of  particles.  We  calculate  the  average  matrix

with N  106 for each rule. 

Extracting Particle Identity from an Average Matrix2.3

By observing patterns of average matrices, the identity of particles can
be  extracted.  A  typical  average  matrix  is  shown  in  Figure  4.  If  parti-
cles  can  emerge,  there  will  be  some  lines  in  the  average  matrix.  Each
line represents at least one particle, and their variations show interac-
tions between particles.

The  change  of  a  line’s  intensity  with  time  represents  interactions
between particles. If a particle is moving straight without any interac-
tions, the line’s intensity will not change through time. But if the parti-
cle  can  be  generated  by  other  particles,  it  will  not  be  found  before  it
was  created,  so  that  the  intensity  will  change  through  time;  mostly,
the intensity will get higher when t is getting higher. 

Result3.

We get  for all rules; some typical  are shown in Figure 5.

(a) (b)

Figure 5. (a) Four typical . (b) The intensity change with time for four typi-
cal rules. The t axis is time, and the D axis is the intensity of particle traces. It
can be seen that the intensity D(t) may change with time for some rules. 

We get the number of particle traces for each ECA rule, which cor-
responds  to  the  number  of  particles.  All  traces  are  straight  lines  with
various  angles.  For  the  rules  shown  in  Figure  5,  rule  54  has  three
traces, rule 62 has two traces, rule 110 has more than six traces, and

rule  18  has  a  smooth  trace.  We  use  Trule  to  represent  the  count  of
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traces,  such  as T54  3,  which  can  be  used  as  a  parameter  to  clas-

sify ECAs. 
The intensity of traces may change through time. The result shows

that  they  have  two  kinds  of  behavior:  (1)  constant;  and  (2)  variable

(mostly,  the  intensity  increases  when  t  increases).  We  use  Crule  to

represent the existence of variability, such as C54  1 (1 is variable,

0 is constant). These two behaviors can be used as a parameter to clas-
sify ECAs. In Figure 5, traces in rules 54, 62 and 110 are getting more
obvious as time t increases. Figure 5 shows how the intensity of parti-
cle traces varies with time, where D(t)  max(Lt). 

Power  laws  show  in  some  rules,  where  D(t) ~ (tmax - t)
-α,  such  as

rules  146  and  18;  such  power  laws  were  also  found  by  [12]  (see  Fig-
ure 8). 

Identifying Turing Machines and Potential Universal Turing 

Machines
3.1

To identify TMs and potential UTMs, the two parameters mentioned
will  be  used  to  classify  ECA  rules  into  four  classes.  According  to  the

theorem of PMs [5], when Trule ≥ 2 and Crule  1, then this ECA

rule  behaves  as  a  TM  and  can  potentially  be  a  UTM.  A  PM  that  is  a
TM  should  have  at  least  two  particle  traces,  so  that  it  is  possible  to
have  interactions  between  particles.  Also,  the  intensity  of  traces
should  change,  which  represents  that  new  particles  can  be  generated
during  collisions.  So  all  rules  can  be  classified  into  four  classes:
A  T ≥ 2  and  C  1,  B  T < 2  and  C  1,  C  T < 2  and  C  0,  and  D
T ≥ 2 and C  0. 

Figure 6 shows the final classification for all ECA rules. Each point
represents  a  rule  for  an  ECA.  The  x  axis  is  “number  of  traces,”  and
the  y  axis  represents  the  existence  of  changes  in  the  information
traces, where 0 means constant and 1 means variable. The shape of a
point represents its class in Wolfram’s classification. 

In  class  A,  rules  have  complex  behaviors,  and  many  particles  with
plentiful  interactions  can  be  found.  The  information  here  will  be
stored  and  processed.  Then  they  can  be  considered  as  a  TM  with
enough  complexity  and  computational  ability,  which  was  considered
to  have  connections  with  Turing  universality  [6,  13].  In  class  B,  rules
will  generate  some  random  patterns,  and  since  the  particles  have  too
many  interactions  with  the  background,  information  traces  are  dissi-
pated.  The  information  here  cannot  be  stored.  In  class  C,  rules  will
generate  continuous  or  random  structures  without  any  complex
behavior.  Rules  in  this  class  do  not  have  particles,  or  have  particles
but  no  interactions.  In  class  D,  rules  will  generate  some  structures
that  do  not  have  enough  interactions,  which  will  not  have  any
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complex  behavior  either.  New  particles  cannot  be  generated  during
collisions. 

Figure 6. The  classification  of  ECAs,  divided  by  the  number  of  paths  and
intensity variation. The number of paths is associated with the ability to store
information,  and  intensity  variation  is  associated  with  the  ability  to  process
information.  In  each  phase,  rules  will  have  similar  behaviors.  In  phase  A,  all
rules have both a high number of traces (T ≥ 2) and interactions that can gen-
erate particles, so that it is possible for these rules to have complex behaviors.
The  shape  of  a  point  represents  its  class  in  Wolfram’s  classification.  Each
point  in  this  figure  represents  a  rule,  and  their  positions  were  moved  ran-
domly ( ~ 0.3) to avoid overlaps. 

Class  C  can  be  divided  into  two  subclasses,  as  shown  in  Figure  6,
separated  by  a  dotted  line.  We  use  “rulex”  to  express  the  subclasses.

C0  means the subclass of class C with T  0. C1  means a subclass of

class  C  with  T  1.  In  C0,  rules  do  not  have  any  particles;  the  infor-

mation here cannot be stored or processed. In C1, rules have particles

but  do  not  have  interactions  between  particles.  The  information  here
can be stored but cannot be processed. 

When going through the dark curve in Figure 6 (counterclockwise),
the frequency of finding interactions is continually growing. When the
frequency  is  higher  than  it  is  in  class  A,  it  will  generate  too  much
noise, so particles and information will be scattered. When it is lower
than  the  frequency  in  class  A,  the  number  of  interactions  is  not

Definition and Identification of Information Storage and Processing Capabilities 53

https://doi.org/10.25088/ComplexSystems.27.1.45

https://doi.org/10.25088/ComplexSystems.27.1.145


enough  to  do  computation  or  universal  computation,  so  the  behavior
is too simple to get complex behaviors. 

Some  typical  rules  in  these  four  classes  are  shown  in  Table  D.1.
The classification of all rules is shown in Figure 7. 

The  relation  between  this  classification  and  Wolfram’s classifi-
cation was also studied. According to Figure 8, classes C1  and D have

a  strong  correlation  to  a  certain  Wolfram  class,  which  is  class  2.
Classes A, B and C0  contain some different Wolfram classes. Here the

reduced entropy is used to measure the relation between the two clas-
sifications, because the Wolfram classification does not have an order.

The  reduced  entropy  is  defined  as  h  H /Hmax  H  log n,  where

Hmax is the maximum that entropy H could be. 

Figure 7. This is the final classification of all ECA rules with the method intro-
duced in this paper. In this matrix, each kind of texture or color represents a
class defined by this paper (see the column at the right side), and the numbers
over  each  square  are  the  rule  indexes.  Each  texture  is  associated  with  the
ability  of  processing  and  storing  information,  which  corresponds  to  the
computational ability. Class A, which has both high information storage and
processing  ability,  is  considered  as  having  a  high  computational  ability.
Rule 110, which is a UTM, is classified into this class.
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Figure 8. This  figure  shows  the  relation  between  Wolfram’s  classification  and
the  classification  in  this  paper.  The  orange  line  with  dot  markers  is  the  aver-
age of Wi, which is Wolfram’s classes of the rules in class i of this paper. The

average  numbers  only  make  sense  when  all  rules  in  a  certain  class  (of  this
paper) have the same Wolfram class, because the Wolfram class does not have
an  order.  The  blue  line  with  square  markers  is  the  reduced  entropy  of  the
Wolfram  classes  of  rules  in  a  certain  class  in  this  paper,  which  can  measure
the correlation between these two kinds of classification. The reduced entropy

is  defined  as h  H Hmax  H  log n,  where H  is  the  entropy  of Wi,  and n

is the length of Wi. 

Discussion4.

In  this  study,  we  consider  two  abilities  as  key  dynamics  for
computation:

Ability to store information. 1.

Ability to process information. 2.

The  ability  to  store  information  means  there  should  be  particles
emerging  in  a  system  so  that  information  can  move  in  the  system.  In
this  way,  the  whole  system  can  be  connected  and  linked  to  be  an
entirety,  which  was  considered  as  a  common  feature  of  complex  sys-
tems.  The  ability  to  process  information  means  the  system  can  com-
pute information and execute algorithms. 

By using the coarse-grained method, robust patterns can be found,
and  rules  with  different  computational  abilities  are  classified  into  a
particular class (class A, shown in Figure 6). 

All ECA rules can be classified into four classes, which correspond
to  Wolfram’s  classification.  All  rules  in  class  1  and  most  rules  in
class 2  (Wolfram’s  classification)  were  found  to  not  have  interactions
that can generate new particles. Most rules in class 3 are found to not
have  enough  particles  to  perform  universal  computation.  All  rules  in
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class 4 are found classified into class A in this study. Rules 146, 183,
18 and 22, which are classified into class 3 (chaotic) by Wolfram, are
classified into class A in this study, which means these rules are capa-
ble  of  doing  complex  computations.  This  result  corresponds  to  the
research in [12]. Particles and interactions are found in rule 146, and
it  is  shown  that  the  intensity  of  traces  in  the  average  matrix  corre-
sponds  to  [12].  The  differences  of  the  classifications  between  this
paper  and  Wolfram  come  from  the  different  criteria.  For  example,  in
Wolfram  class  2,  some  rules  show  particle  interactions  and  others  do
not; these were classified into different classes in this paper. 

Since  the  problems  of  storing  and  processing  information  can  be
found  in  various  fields,  such  as  chemical  systems  [14]  and  hydrody-
namics  [15,  16],  and  this  method  is  not  based  on  specific  features  of
ECAs,  it  can  potentially  be  applied  to  other  systems,  such  as  bird
flocks  [17],  traffic  flow  [18],  chaotic  behaviors  [15,  16]  and  complex
networks [19]. This method can also be used to quantify the complex-
ity  of  systems  (universal  Turing  machines  are  considered  to  have  the
highest  complexity  by  [3]),  which  will  make  people  have  a  deeper
understanding of complex behaviors. 
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Appendix

Particles in Elementary Cellular AutomataA.

A  local  grid  of  cells  in  M  is  defined  as  a  particle  in  ECAs.  Back-
grounds  are  also  particles,  which  do  not  have  any  interactions  with
other  particles  or  themselves.  According  to  the  definition  of  particles
in ECAs:

  Ltmax
(pL, pR). (A.1)

In  this  study,  the  size  of  a  spacetime  evolution  is  200, 200.  The

target particle is

  L200100 - 2, 100 + 2. (A.2)
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For the formula

p0(p, n)  p1 - pn-1, (A.3)

the number of p is a priori hypothesis; choosing a proper p will make
images  clear.  Figure  A.1  shows  that  the  formula  with  different  p  will
not  change  its  whole  behavior.  Experiments  show  that  choosing
p  0.01 will make average matrices clear enough. 

Figure A.1.Relation of p0 with different p and N. 

Particles in Rule 146B.

Figure  B.1  shows  particles  in  spacetime  for  rule  146.  These  particles
are also introduced by [12]. 

Figure B.1. Particles are found in rule 146. 
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Changes of Line IntensityC.

The  change  of  a  line’s  intensity  with  time  represents  interactions
between  particles.  If  a  particle  moves  straight  without  any  interac-
tions,  the  intensity  of  the  line  will  remain  unchanged  through  time.
But  if  the  particle  can  be  generated  by  other  particles,  it  will  not  be
found  before  it  was  generated,  so  that  the  intensity  of  lines  will
change  through  time;  mostly,  the  intensity  will  get  higher  when  t  is
getting  higher.  To  get  the  particle  changes  through  time,  we  define  a
function D(t) to get the intensity of the paths:

D(t)  max(Lt). (C.1)

Figure C.1 shows the procedure of extracting the growth pattern of
particles and three examples for rules 149, 2 and 26. 

(a) (b)

(c) (d)

Figure C.1. Extracting  growth  pattern  of  particles.  (a)  The  growth  of  particle
intensity represents interactions of particles. (b) An example of particle inten-
sity, generated with rule 149, which has a growth pattern. (c) Generated with
rule  2,  which  does  not  have  a  growth  pattern.  (d)  Generated  with  rule  26,
with multiple particles that all do not have a growth pattern. 

The Growth of Particle Traces’ Intensity for Rule 146C.1

Particles  were  found  in  rule  146  (shown  in  Figure  C.2),  while  also
found  earlier  in  2010  [12].  In  that  study,  the  intensity  of  particles  in
rule 146 has a power law of the form

nb(t) ~ t-α, (C.2)
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with  α  0.4789 ± 0.0006  [12].  When  this  formula  with  this  number
was applied to the data in this study (shown in Figure C.2), it showed
a good fit result.

Figure C.2. The points are the data for the growth of particles’ traces. The line
is  the  figure  of  function  y  (tmax - t)-0.4789,  which  has  the  same  form  as

nb(t) ~ t-α. It shows that the power law also is shown in this kind of measure-

ment, and it has a good fit when using the number of α from [12].
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Typical Rules for Four ClassesD.

Some  spacetime  evolutions  of  typical  rules  in  each  class  are  shown  in
Table D.1.

Table D.1. Typical rules of four classes. 
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