
Two-Step Markov Update Algorithm for
Accuracy-Based Learning Classifier Systems

Mohammad Razeghi-Jahromi
Shabnam Nazmi
Abdollah Homaifar

Department of Electrical and Computer Engineering
North Carolina A&T State University
Autonomous Control and Information Technology (ACIT) Institute
1601 East Market Street
Fort IRC Building
Greensboro, NC 27411, USA
mohammad.razeghi-jahromi@us.abb.com
snazmi@aggies.ncat.edu
homaifar@ncat.edu

In this paper, we investigate the impact of a two-step Markov update
scheme for the reinforcement component of XCS, a family of accuracy-
based learning classifier systems. We use a mathematical framework
using discrete-time dynamical system theory to analyze the stability and
convergence of the proposed method. We provide frequency domain
analysis for classifier parameters to investigate the achieved improve-
ment of the XCS algorithm, employing a two-step update rule in the
transient and steady-state stages of learning. An experimental analysis
is performed to learn to solve a multiplexer benchmark problem to
compare the results of the proposed update rules with the original XCS.
The results show faster convergence, better steady-state training accu-
racy and less sensitivity to variations in learning rates.

Keywords: two-step Markov update rule; accuracy-based classifier
system; stability and convergence analysis; linear discrete-time
dynamical system

Introduction1.

Learning classifier systems (LCSs) [1] are machine learning techniques
that use evolutionary computation and reinforcement learning in a
supervised environment to model the system in the form of a popula-
tion of “IF condition, THEN action” rules. LCSs started to become
more popular after Wilson’s groundbreaking proposal, a simpler LCS
structure with no message list and a new fitness calculation approach
based on the classifier’s accuracy in predicting the environment pay-
off, namely XCS [2]. XCS employs a Q-learning-like [3] update strat-
egy and can work as a reinforcement learning or supervised learning

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

framework. In XCS, a genetic algorithm favors the evolution of those
classifiers that are maximally general and at the same time accurate in
labeling problem instances. A genetic algorithm attempts to increase
the number of classifiers with higher fitness by means of crossover
and mutation.

Performance of XCS in data analysis applications has been investi-
gated and proven to exceed some of the well-known machine learning
approaches [4, 5]. A variety of studies have been done to even further
simplify the structure of XCS and make it more appropriate for super-
vised learning problems, resulting in systems such as UCS [6].
ExSTraCS is another class of LCSs that employs a specific rule repre-
sentation scheme to store specified features in the classifier condition,
which helps to deal with problems with a larger number of features
[7]. XCS is also proposed to address clustering problems using learn-
ing classifiers [8]. Moreover, Stolzmann introduced ACS [9], which is
an anticipatory learning classifier system that is able to learn and pre-
dict the current state and also the next state of the problem and has
been shown to perform well in problems such as learning a maze. In
function approximation applications, XCSF [10, 11] is proposed,
which is able to learn an n-dimensional function using different
approximations such as hyper-rectangles, hyper-ellipsoids and convex
halls. Originally, LCS was structured to model a Boolean environ-
ment, although numerous studies have been proposed to represent
real-valued problems such as XCSR [5, 12] and problems with mixed
attributes as in AKLR [13]. The robust bidding strategy of strength-
based classifiers is studied in [14], and later in MLCS [15] is extended
to handle multi-label data, while the labels are allowed to have confi-
dence levels.

It has been shown that XCS is able to optimally solve Markov
problems, whereas it suffers when handling non-Markov problems.
Adding memory can help to overcome this problem through an inter-
nal register, which can store limited information about previous
states. Systems that adopt memory include XCSM [16] and XCSMH
[17]. In XCSM, the internal bit register is implemented directly
instead of a list of messages; however, in XCSMH, a compound explo-
ration is used in which the exploration strategy chooses internal
actions (register settings) deterministically, while selection of external
actions remains probabilistic.

In XCS, each classifier has a set of parameters that are updated in
every cycle in which the classifier participates in learning. The XCS
reinforcement module employs a Markov update scheme that uses
only the current value of the parameter to calculate its future value.
However, a classifier’s interaction with its environment has non-
Markov behavior, in the sense that given the present attributes of the
classifier, future values are not independent of the past. It is useful to

64 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

explicitly use an agent’s past parameter values in the update rule to
improve estimates of the parameter’s future values. Therefore, we ini-
tially focus on extending current update rules of XCS parameters to
an update rule with an additional history value.

Moreover, we aim to address the current LCS literature’s shortfall
for analyzing interactions among classifier parameters in the algo-
rithm. The lack of analysis tools affects our understanding of different
aspects of the problem, such as algorithm stability, convergence and
frequency domain analysis for performance investigation. Employing
various mathematical tools provides better insight to the problem and
future extensions of the algorithm.

This paper provides the following major contributions. First, the
two-step Markov update scheme for the XCS algorithm is formulated
to investigate its stability and convergence. Second, a frequency
domain analysis of the discussed update scheme has been provided to
investigate faster convergence and better steady-state training
accuracy. Since evolutionary-based machine learning algorithms are
computationally more expensive than non-evolutionary approaches,
reaching a reasonable accuracy threshold with fewer training itera-
tions is crucial. Moreover, a mathematical framework using discrete-
time dynamical system theory has been used to analyze the stability
and convergence of two-step Markov update rules. Additionally, the
sensitivity of the two-step update scheme to variations of learning
rates is studied numerically.

XCS Classifier Overview2.

In this section, a brief description of the XCS algorithm is introduced.
More details are provided in [2, 18, 19].

XCS acts as a reinforcement learning agent that receives inputs
regarding the current state of the environment, reacts with actions
and eventually receives a payoff as an indication of the effectiveness
of its action. The goal of XCS is to maximize the amount of payoff
gathered in the long run.

The interaction of XCS with the environment is as follows. The
core of the XCS is a population of rules, also known as classifiers,
that each consists of a condition, an action and a number of parame-
ters that indicates their accuracy. Once the algorithm receives an
input from the environment, it forms a match set [M] of all classifiers
that have a matching condition with the current input. The algorithm
starts with an empty population and for each input that has no match-
ing classifier in the population creates a new rule with a matching
condition and the correct label of the input. This process is called cov-
ering. For each unique action a in [M], the prediction P(a) is

Two-Step Markov Update Algorithm 65

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

computed, which is an estimate of the payoff that the learner expects
from the system when action a is performed. The prediction array is
calculated by the fitness-weighted average of all matching classifiers
that support action a as

Pa 

∑
cl∈[M]⋀cl.aa

pclFcl

∑
cl∈[M]⋀cl.aa

Fcl
, (1)

where p is the prediction of each individual classifier cl and F is the
classifier fitness. Pa forms a prediction array for different values of

action a, and XCS selects the action with respect to the values in the
prediction array, either by selecting maximum prediction or randomly
selecting one from those suggested by classifiers in [M] [18].

After an action is selected, the action set A is created using the

classifiers that advocate the selected action. After the action is per-

formed, the prediction p and prediction error ε of all classifiers in A

are updated through the following equations:

p ← p + β(R - p), (2)

ε ← ε + β(R - p -ε), (3)

where β ∈ 0, 1 is the learning rate and R is the payoff received from

the environment. Finally, fitness F is updated toward the classifier’s
current relative accuracy κ′, which is a function of classifier prediction
error as follows:

F ← F + β(κ′ - F). (4)

Introductory Review of Linear Discrete-Time Dynamical Systems3.

As stated in the Introduction, the stability and convergence of the pro-
posed two-step Markov update rules are investigated in the frame-
work of discrete-time dynamical systems. For this purpose, we give a
short description of some of the fundamental mathematical tools in
this section, which are necessary for analyzing linear discrete-time
dynamical systems. More details are provided in [20–22].

z-Transform3.1

A mathematical tool commonly used for the analysis of discrete-time
dynamical systems is the z-transform. The role of the z-transform in
discrete-time systems is similar to that of the Laplace transform in
continuous-time systems.

66 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

The one-sided (unilateral) z-transform of a sequence x(t) where t
takes zero or positive integers (i.e., x(t)  0 for all t < 0) is defined as

x(z)  {x(t)}  
t0

∞

x(t)z-t, (5)

where the symbol  denotes the z-transform of the term inside brack-
ets. Equation (5) is, in general, an infinite sum or infinite power
series, with z being a complex variable. For any given sequence, the
set of values of z for which the z-transform converges is called the
region of convergence (ROC). If x(z) is given as a rational function
inside the ROC, that is,

x(z) 
p(z)

q(z)
, (6)

where p(z) and q(z) are polynomials in z, then the zeros are the roots
of the numerator polynomial and the poles (for finite values of z) are
the roots of the denominator polynomial.

Discrete-Time Fourier Transform3.2

Another mathematical tool commonly used for the analysis of
discrete-time dynamical systems is the discrete-time Fourier trans-
form. The discrete-time Fourier transform of a sequence x(t) where t
takes zero or positive integers (i.e., x(t)  0 for all t < 0) is defined as

xejω  
t0

∞

x(t)e-jωt, (7)

with ω being a real number ranging over an interval of length 2π and

j� -1 . In particular, if we replace the complex variable z in equa-

tion (5) with the complex variable ejω, then the z-transform reduces to

the Fourier transform. This is one motivation for the notation xejω

for the Fourier transform; when it exists, the Fourier transform is

simply x(z) with z  ejω. Mathematically, it means that the Fourier
transform of x(t) converges absolutely if and only if the ROC of the
z-transform of x(t) includes the unit circle.

Initial Value Theorem3.3

If x(t) has the z-transform x(z) and if limz→∞ x(z) exists, then the ini-

tial value x0 of x(t) is given by

x0  lim
z→∞

x(z). (8)

Basically, this theorem relates frequency domain analysis to the time
domain behavior as time approaches zero.

Two-Step Markov Update Algorithm 67

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

Final Value Theorem3.4

If x(t) has the z-transform x(z) and all the poles of x(z) lie inside the
unit circle, with the possible exception of a pole of order one at z  1,
then the final value of x(t), that is, the value of x(t) as t approaches
infinity, is given by

lim
t→∞

x(t)  lim
z→1

z - 1x(z). (9)

In contrast to the initial value theorem, the final value theorem relates
frequency domain analysis to the time domain behavior as time
approaches infinity.

Linear Discrete-Time Dynamical System3.5

The z-transform is particularly useful in the analysis of linear time-
invariant (LTI) systems described by the difference equations.

Consider the nth-order LTI discrete-time system characterized by the
following linear difference equation:

y(t) + a1yt - 1 +⋯ + any(t - n) 

b0u(t) + b1ut - 1 +⋯ + bnu(t - n),
(10)

where u(t) and y(t) are the system’s input and output, respectively, at

the tth time step. Note that some of the coefficients ai and bj may be

zero. By taking the z-transform of equation (10), the system transfer
function is given by

H(z)�
y(z)

u(z)


b0z
n + b1z

n-1 +⋯ + bn

zn + a1z
n-1 +⋯ + an

. (11)

Lyapunov Stability3.6

Consider the discrete-time system with the state equation

xt + 1  f(x(t), u(t)), (12)

where x ∈ n, u ∈ m
 and f ∈ n

 with the property that f0, 0  0.

An equilibrium point x  0 of the unforced (zero input) dynamical
system

xt + 1  fx(t), 0, (13)

is called globally uniformly asymptotically stable (GUAS), if it is sta-
ble (in the Lyapunov sense) and every solution converges to zero as t
goes to infinity, that is, limt→∞ ∥ x(t) ∥  0.

If the unforced system in equation (13) has a GUAS equilibrium
point at the origin x  0, then we are interested in whether a
bounded input u(t) implies that the state x(t) is bounded too. This is
the notion of input-to-state stability. It is shown in [20] that if

68 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

equation (13) has a GUAS equilibrium point at the origin x  0, then
equation (12) is input-to-state stable.

There are many ways to realize state-space representations for the
LTI discrete-time system described by equation (10) or (11) as

xt + 1  Gx(t) +Hu(t),

y(t)  Cx(t) +Du(t),
(14)

where x ∈ n, u ∈ m, y ∈ r
 and G, H, C and D are known matri-

ces with compatible dimensions. The origin x  0 of the unforced
system

xt + 1  Gx(t) (15)

is GUAS if and only if all eigenvalues of G have magnitude less than

1; that is, λiG < 1. Since the characteristic equation that is the deter-

minant of zI -G can be written as

Δ(z)� zI -G  zn + a1z
n-1 +⋯ + an, (16)

therefore, the origin x  0 of the unforced system in equation (15) is
GUAS if and only if the poles of the system transfer function in equa-
tion (11) lie inside the unit circle in the z plane.

Jury Stability Test3.7

The Jury stability test can be applied directly to the characteristic
equation Δ(z)  0 without solving for the roots. The test reveals the
existence of any unstable roots, that is, the roots that lie outside the
unit circle in the z plane.

XCS with Two-Step Markov Update Algorithm4.

Reinforcement Component4.1

In this section, the two-step Markov update scheme for the reinforce-
ment component of the XCS is formulated, based on the fact that
when the present value of the classifier is known, then its future value
is not independent of the past (non-Markov), and past information
(observations) can be explicitly used in the classifier update process to
achieve better predictions of future values. One can increase a two-
step Markov update to an n-step Markov update in general. Note

that only the classifier parameters in the action set A are updated;

that is, whenever a classifier participates in an action set, its predic-
tion, prediction error and fitness are updated based on the weighted
sum of its present and its one-step previous values. The weights are
controlled by different learning rates β and η.

Two-Step Markov Update Algorithm 69

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

In XCS, the Q-learning reinforcement module [3] is restated as a
difference equation in which present values are used to calculate
future values of the parameters. Therefore, classifier prediction p(t)
and prediction error ε(t) are updated through the following modified
difference equations in which the update arrow is replaced with an
equal sign to better serve the purpose of discrete-time analysis. The
convergence of the two-step update rule is guaranteed by choosing the
proper learning rates as derived in Section 4:

pt + 1  p(t) + β
β + η - 1

β
R - p(t) + 1 - ηpt - 1, (17)

εt + 1  ε(t) + β(R - p(t) - ε(t)) + 1 - ηεt - 1, (18)

for all iterations t ≥ 0, initial conditions p0  p-1  0 and

ε0  ε-1  0, where β ∈ 1 - η, 1 is the one-step learning rate,

η ∈ 0, 1 denotes the two-step learning rate and R is the payoff

received from the environment. Note that in equation (17), the coeffi-
cient of R is adapted to guarantee the asymptotic convergence of the
prediction p(t) to R when the model is completely trained. This is
shown in the proof of Lemma 1.

To update the classifier fitness F(t), the classifier accuracy κ(t) and
the classifier relative accuracy κ′(t) are computed as in the XCS algo-
rithm [23], as shown here:

κ(t) 

 1, ifε(t) < ε0

 α
ε(t)

ε0

-ν

, otherwise

κ′(t) 
κ(t) · num(t)

∑
cl∈[A]

κcl(t) · numcl(t)
.

(19)

The parameter ε0 > 0 controls the prediction error tolerance, the

parameters 0 < α < 1, ν > 0 are constants, and “num” is the number
of copies of the classifier being updated. Finally, classifier fitness F(t)
is updated toward the classifier’s current relative accuracy κ′(t)
through the following modified difference equation:

Ft + 1  F(t) + β
β + η - 1

βκ′(t) - F(t)
+ 1 - ηFt - 1, (20)

for all iterations t ≥ 0 and initial conditions F0  F-1  0. Note

that in equation (20), the coefficient of κ′(t) is adapted to guarantee
the asymptotic convergence of the fitness F(t) to 1 when the model is
completely trained.

70 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

Corollary 1. 1 - β and 1 - η are the weights of present and previous val-
ues in the two-step Markov update equations (17), (18) and (20). By
changing η continuously from 0+ to 1, one can observe the entire spec-
trum of the algorithm behavior from pure prSevious value to pure
present value update. As η approaches 1, the algorithm acts like the
original XCS and vice versa. When β < η, more weight is given to

the present than previous values and vice versa. If η ∈ 1  2, 1, then

there always exists β ∈ 1 - η, 1 such that β  η; that is, we have

equal weights for the present and previous values.

Stability and Convergence Analysis 4.2

In this section, the set of classifier parameters is analyzed for stability
and convergence of the learning algorithm, that is, difference equa-
tions (17), (18) and (20). By finding a proper range for learning rates
β and η, we have shown that the proposed two-step Markov update
algorithm is GUAS; hence the stability and convergence of the algo-
rithm is guaranteed.

Defining a new variable q(t)�R - p(t) with initial conditions

q0  q-1  R, equations (17) and (18) can be rewritten as

qt + 1  1 - βq(t) + 1 - ηqt - 1, (21)

εt + 1  1 - βε(t) + 1 - ηεt - 1 + βq(t), (22)

which is a discrete-time cascade dynamical system and has an equilib-

rium point at (q, ε)  0, 0. The set of dynamical systems (21) and

(22) is called cascade since (21) does not depend on ε(t) and the out-
put of (21), that is, q(t), is fed as an input to (22). To show that the
equilibrium point of the set of equations (21) and (22) is GUAS, the
following lemma is introduced.

Lemma 1. If equation (22), with q(t) as its input, is input-to-state stable
and equation (21) has a GUAS equilibrium point at the origin q  0,
then the cascade dynamical system (21) and (22) has a GUAS equilib-

rium point at the origin (q, ε)  0, 0.

Proof. Taking the z-transform of equation (21) with the initial condi-

tion q0  R leads to

q(z) 
Rz2

z2 - 1 - βz - 1 - η
. (23)

Equation (21) has a GUAS equilibrium point at its origin q  0 if and
only if the characteristic equation

Δ(z)  z2 - 1 - βz - 1 - η (24)

Two-Step Markov Update Algorithm 71

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

is stable, that is, all the poles of q(z) lie within the unit circle in the z
plane. The Jury stability test is applied to determine the stability of
the characteristic equation (24) without solving for the roots. There-
fore, the following conditions must be satisfied:

1 - η < 1⇒ 0 < η < 2

β + η - 1 > 0⇒ β > 1 - η

-β + η + 1 > 0⇒ β < 1 + η.

(25)

In addition to these three conditions, two additional sufficient con-
ditions are imposed by the non-negativity of present and previous
updating weights on the states of the system to make sure the predic-
tion, prediction error and fitness values are all non-negative for all t,
as in the following:

η ≤ 1 and β ≤ 1. (26)

Considering the inequalities (25) and (26) together implies that

0 < η ≤ 1 and 1 - η < β ≤ 1. (27)

From the global asymptotic stability of the origin of equation (21),
it is concluded that

lim
t→∞

q(t)  0 ⇒ lim
t→∞

p(t)  R, (28)

which shows that the classifier prediction p(t) is bounded for all t and
globally asymptotically converges to R.

In order to show that equation (22) is input-to-state stable, it is
required that the unforced system

εt + 1  1 - βε(t) + 1 - ηεt - 1 (29)

have a GUAS equilibrium point at its origin ε  0, which is equiva-
lent to having the same stable characteristic equation as (24). Hence,
choosing the learning rates as in (27) ensures that (22) is input-to-
state stable. Therefore, using the fact that the origin of system (21) is
GUAS, we conclude that the origin of system (22), which is ε  0, is
also GUAS; that is, limt→∞ ε(t)  0. This proves that the classifier pre-

diction error ε(t) is bounded for all t and globally asymptotically con-

verges to zero. This concludes the proof of Lemma 1. □

Corollary 2. Satisfying the learning rates β and η in equation (27) forces
both poles of the characteristic equation (24) to be always inside the
unit circle. Furthermore, the poles always appear as one having a posi-

tive real root r+ ≥ 0 and one a negative real root r- ≤ 0, as

1 - β
2
+ 41 - η ≥ 1 - β

2
 for every β and η in equation (27). From

characteristic equation (24), we have

72 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

r+

1 - β + 1 - β
2
+ 41 - η

2
,

r-

1 - β - 1 - β
2
+ 41 - η

2
.

(30)

Also, equation (27) implies that

0 ≤ 1 - η < β ≤ 1 ⇒ 1 - β ≤ 1 - β
2
+ 41 - η < 1 + β. (31)

Combining equations (30) and (31), we have

-1 ≤ -β < r- ≤ 0 ≤ 1 - β ≤ r+ < 1. (32)

In the case of η  1, that is, r-  0, r+  1 - β, the characteristic equa-

tion (24) would be a first-order characteristic equation with a single
pole at z  1 - β, as there is a pole zero cancellation in equation (23)
at z  0, which is the original one-step XCS.

Corollary 3. As explained in Corollary 2, the classifier prediction
update equation (17) is a second-order system with two real distinct
poles r+ and r- inside the unit circle. This system is called over-

damped; that is, the response p(t) is smooth and nonoscillatory and
asymptotically follows the payoff R. Therefore, for every t there are

p(t) ≤ R ⇒ R - p(t) ≥ 0. (33)

As a result, R - p(t) that originally is introduced in the XCS update
rule can be replaced with R - p(t) in the prediction error update equa-
tion�(18). The same reasoning applies to one-step prediction as in
equation (3), which is a stable first-order system that never oscillates.

An obvious challenge for such an evolving, distributed knowledge
representation is the continuous support of all problem subspaces,
which is identified as niche support. In XCS, niche support is guaran-
teed by a niche-based deletion method plus an occurrence-based repro-
duction method. In [24], assuming a Markov chain model for niche
support, population is distributed according to a binomial distribu-
tion over all niches of the problem in steady state. It concludes that at
steady state, equation (19) results in

lim
t→∞

κ′(t)  1. (34)

Two-Step Markov Update Algorithm 73

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

The relative accuracy κ′(t) given in equation (19) is also bounded by

0 ≤ κ′(t) ≤ 1 with κ′0 ≠ 0 as κ0  1, due to initialization of

ε0  0. Using the final value theorem, equation (34) implies that

κ′(z) can be decomposed as

{κ′(t)}  κ′(z) 
1

z - 1
·
b(z)

d(z)
, (35)

where b(z) and d(z) are polynomials in z with no factor of z - 1.

Using the initial value theorem, we also have

κ′0 ≠ 0 ⇒ lim
z→∞

κ′(z)  lim
z→∞

1

z - 1
·
b(z)

d(z)
≠ 0, (36)

where b(z)  d(z) is a stable rational transfer function that satisfies the

following degree condition:

degb(z)  degd(z) + 1. (37)

Since κ′(z) satisfies the conditions of the final value theorem, as all of
its poles lie inside the unit circle with a pole of order one at z  1, we
conclude that

1  lim
t→∞

κ′(t)  lim
z→1

z - 1κ′(z) 
b1

d1
. (38)

The analysis of relative accuracy will shed light on the convergence of
classifier fitness. To show that classifier fitness F(t) is updated toward
the classifier’s current relative accuracy κ′(t), equation (20) is rewrit-
ten as

Ft + 1  1 - βF(t) + 1 - ηFt - 1 + β + η - 1κ′(t), (39)

which is input-to-state stable with κ′(t) as its input because the
unforced equation (39) has the same characteristic equation as (24).

Taking the z-transform of (39) with the initial condition F0  0

yields

F(z) 
β + η - 1z

z2 - 1 - βz - 1 - η
· κ′(z). (40)

From equations (27) and (35) it can be concluded that F(z) satisfies
the conditions of the final value theorem. Consequently, we have

lim
t→∞

F(t)  lim
z→1

z - 1F(z)  lim
z→1

z - 1κ′(z)  lim
t→∞

κ′(t)  1. (41)

Therefore, the classifier fitness F(t) is also bounded for all t and glob-
ally asymptotically converges to 1.

74 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

Frequency Domain Analysis 4.3

In order to gain a better understanding of the impact of the modified
reinforcement component of the XCS on the dynamic of the overall
algorithm, in this section, the frequency responses of the transfer func-
tions between the input payoff R and the output prediction error ε(t)
are studied. In particular, this analysis will provide a clear understand-
ing of the transient behavior and the steady-state accuracy of the pro-
posed algorithm. For the proposed two-step and the original XCS
update algorithms, parameters are denoted here by the subscripts
“2-step” and “1-step,” respectively.

Lemma 2. The two-step update scheme has a faster prediction error
convergence rate in the transient and better steady-state accuracy com-
pared to the original XCS.

Proof. The prediction and prediction error update equations for the
one-step update scheme are given by

p
1-step

t + 1  1 - βp
1-step

(t) + βR,

ε
1-step

t + 1  1 - βε
1-step

(t) - βp
1-step

(t) + βR,
(42)

which is a linear discrete-time cascade dynamical system. The transfer
function from the input payoff R to the output prediction error

ε
1-step

(t) is given by

H1-step(z)�
ε1-step(z)

R(z)


βz - 1

z - 1 - β
2
. (43)

Similarly, equations (17) and (18) together are also a linear discrete-
time cascade dynamical system of the proposed method, and the trans-
fer function from the input payoff R to the output prediction error
ε2-step(t) is given by

H2-step(z)�
ε2-step(z)

R(z)


βzz - 1z + 1 - η

z2 - 1 - βz - 1 - η
2
. (44)

To compare the two transfer functions (43) and (44), we first need to
define their ratio as

H(z)�
H

2-step
(z)

H
1-step

(z)

ε
2-step

(z)

ε
1-step

(z)


zz + 1 - ηz - 1 + β
2

z2 - 1 - βz - 1 - η
2
. (45)

Clearly for η  1, the ratio in equation (45) is always 1, regardless of
the value of β.

Since equation (45) is a stable rational system transfer function, its
ROC includes the unit circle. Therefore, if we replace the complex

Two-Step Markov Update Algorithm 75

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

variable z in equation (45) with the complex quantity ejω, then the
z-transform reduces to the Fourier transform.

Next, we show that the two-step update scheme has a faster conver-
gence rate in the transient and better steady-state accuracy compared
to the original XCS. First, we need to show that the amplitude of the
Fourier transform of equation (44) is greater than equation (43) or
equivalently, the amplitude of the Fourier transform of equation (45)
is greater than 1 over the low-frequency range, that is, ω around 0,
and the high-frequency range, that is, ω around ±π. For the low-
frequency range, we have

lim
ω→0

Hejω  lim
z→1

H(z) 
β22 - η

β + η - 12
≥ 1, (46)

where the inequality is satisfied, with the equality holding only for
η  1.

The inequality in equation (46) is satisfied because according to
equation (27), 2 - η ≥ 1 and

0 ≤ 1 - η < β ≤ 1 ⇒ 0 ≤
1 - η

β
< 1 ⇒ 0 < 1 -

1 - η

β
≤ 1

⇒
β

β + η - 1
≥ 1 ⇒

β22 - η

β + η - 12
≥ 1.

(47)

Similarly, for the high-frequency range we have

lim
ω→±π

Hejω  lim
z→-1

H(z) 
η2 - β

2

1 - β + η
2
≥ 1, (48)

where the inequality is satisfied, with the equality holding only for
η  1.

To show that the inequality in equation (48) is satisfied, we know
from equation (27) that

0 ≤ 1 - β < η and 1 - η ≥ 0 and η2 ≤ η. (49)

Then,

1 - β
2
< η2 ≤ η

⇒ 1 - η1 - β
2
- η ≤ 0

⇒ 1 - ηβ2 - 2β + 1 - η
2
≤ 0

⇒ 1 + β2 + η2 - 2β + 2η - 2βη ≤ 4η - 4ηβ + ηβ2

⇒ 1 - β + η
2
≤ η2 - β

2

⇒
η2 - β

2

1 - β + η
2
≥ 1.

(50)

76 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

This concludes the proof of Lemma 2. □

The overall accuracy of the XCS model is a function of its individ-
ual rule’s prediction error; therefore, the two-step update XCS algo-
rithm has a faster convergence and better steady-state accuracy.
Figure 1: (a, b) is the amplitude plot of the Fourier transform of equa-
tion (45); that is,

Hejω 
H2-stepejω

H1-stepejω


zz + 1 - ηz - 1 + β
2

z2 - 1 - βz - 1 - η
2
zejω

, (51)

for the range of ω between -π and π for some values of η and β,
which shows how the amplitudes vary over this frequency range. Fig-
ure 1(a) is magnified around unity amplitude and is plotted in
Figure�1(b) for better illustration. As we have shown in Lemma 2, the
two-step update scheme has a faster convergence rate over the high-
frequency range, that is, ω around ±π, and better steady-state accu-
racy over the low-frequency range, that is, ω around 0, as implied by

Hejω, which is greater than 1.

Figure 1. (a) Hejω. (b) Magnified plot (a) around unity amplitude.

Numerical Results and Discussion5.

In this section, to investigate the effect of the proposed two-step
update scheme compared to the original one-step update, the XCS
algorithm is trained to solve the multiplexer problem. For this

Two-Step Markov Update Algorithm 77

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

purpose, three multiplexer problems, that is, 6-MUX, 11-MUX and
20-MUX, are solved. The common parameters used for all the prob-
lems are α  0.1, ε0  0.0001, ν  25, μ  0.04, R  1000, and the

probability of specifying an attribute is equal to 0.5 [23]. Finally, the
frequency of applying GA is 10, and tournament selection is used for
reproduction. Population size (N) and crossover probability (χ) are
specified for each experiment later in the problem. β and η are
selected according to equation (27) to observe variations in the results.

Due to the stochastic nature of the algorithm, to have a reliable
result, the model needs to be trained multiple times and accuracy aver-

aged over trained models. We define the empirical mean X of m runs
that forms a collection of m random variables X1, … , Xm, which are

independent and identically distributed (i.i.d.) and bounded by the

interval 0, 1. The empirical mean is given as

X 
X1 +⋯ +Xm

m
. (52)

If we choose

m ≥
ln 2

λ

2σ2
, (53)

through Hoeffding’s inequality [25], then with probability at least

1 - λ, the difference between the empirical mean X and the true mean

E[X] is at most σ, where E[·] denotes the mathematical expected
value of its argument. The σ says how far we are willing to allow the
empirical mean to be from the true mean, and the λ says with what
probability we are willing to allow a deviation larger than σ. For a
given λ  0.10 and σ  0.15 in equation (53), we have m ≥ 66; there-
fore, simulation results are averaged over 66 runs.

In the literature, the value of β is selected to be 0.2 [24, 26], yet it
is worthwhile to investigate how the algorithm will behave with differ-
ent learning rates. The accuracy is computed as the percentage of cor-
rect classifications:

accuracy 
number of correct classifications

number of covered instances
. (54)

In the first experiment, three different combinations of β and η are
selected and the training accuracy of the algorithm is plotted in Fig-
ure�2 for both update rules. As expected from the weighted sum of the
current and previous values in the two-step update, the result shows
that the two-step update rule is less sensitive to variations in learning
rates β and η and has a faster convergence rate in the transient and
steady state, while in the one-step approach, the training accuracy

78 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

deteriorates as β increases. Nonetheless, the final training accuracies
are almost equal for both updates.

Figure 2. Comparison of learning accuracy for two-step (solid line) and one-
step (dotted line) update rules for the 6-MUX problem.

To elaborate more on the effects of the proposed update rules,
using information from one extra step back in time acts like a lag-lead
compensator in conventional control theory, which helps to have
faster convergence and better steady-state accuracy. In other words,
adding memory will help to generate a better estimate of future clas-
sifier parameters specifically when the present values of parameters
are experiencing undesired variations for partially correct classifiers.
Partially correct classifiers refer to relatively general classifiers that
can match more problem instances, which do not necessarily classify
correctly.

Experiments on 11-MUX and 20-MUX problems as demonstrated
in Figures 3 and 4 also confirm the improvement in the rate at which
the algorithm learns the problem. The results show that the two-step
update rule is less sensitive to variations in β and η, has a faster con-
vergence rate in the transient and steady state, and achieves better
training accuracy specifically for the 20-MUX problem. The only
exception in these results corresponds to β  0.25 for the one-step
update in the 11-MUX problem, which demonstrates much faster con-
vergence compared to its respective two-step update.

According to Lemma 2, the two-step update scheme is expected to
improve the performance of the prediction error in the early stage of
learning and the steady state. However, it seems unfeasible to find an

Two-Step Markov Update Algorithm 79

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

Figure 3. Comparison of learning accuracy for two-step (solid line) and one-
step (dotted line) update rules for the 11-MUX problem.

Figure 4. Comparison of learning accuracy for two-step (solid line) and one-

step (dotted line) update rules for the 20-MUX problem. N  4000,

χ  0.95, 2000 samples out of 220
 environment size.

exact mapping between the frequency domain and time domain for a
learning algorithm. This becomes even worse when the performance
evaluation is problem independent—in other words, no complexity
measure of the problem is considered in the performance analysis.
The 6-MUX problem is less complex compared to 11-MUX and

80 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

20-MUX problems with more inputs; as a result its performance has
improved over the entire learning time. On the other hand, in
11-MUX, the problem complexity influences the expected improve-
ment such that the effective range (namely low-frequency and high-
frequency ranges) of the proposed update is different than the 6-MUX
problem. More specifically, for the case of η  0.80, β  0.25, the
effect of the two-step update rule vanishes faster than other combina-
tions of the learning rates. Therefore, the one-step update scheme out-
performs the proposed update rule. The 20-MUX problem behaves as
expected for all combinations of learning rates and the entire learning
time.

According to the experiments, the fact that the algorithm tends to
converge faster suggests the idea that the proposed method relatively
supports those classifiers with correct actions that tend to be accurate
in two consecutive appearances in the action set. This is an extra pres-
sure toward evolving accurate solutions.

Conclusions and Future Work6.

In this work, a novel two-step Markov update scheme for XCS classi-
fier systems and mathematical representations for rules to update the
classifier parameters using discrete-time dynamical systems theory are
presented. The stability and convergence of the two-step update rules
are analyzed. The frequency domain analysis for classifier parameters
has been provided. We also presented the robustness and performance
improvement of the XCS algorithm employing the two-step update
rule using numerical experiments. The implementation cost includes
adding four float-type variables for each macro classifier and some
arithmetic calculations, while its computational complexity and
algorithm run time are almost the same. We have shown that using a
non-Markov update contributes to faster learning and more accurate
training at steady state.

Thus far, our analysis has been carried out independently of prob-
lem size and generality of classifiers, which may substantially impact
XCS performance. In future work, the authors will address these
issues and investigate their effects on algorithm dynamics. The perfor-
mance of the algorithm will also be studied with real-world problems.

Acknowledgments

This paper is based on research sponsored by the Air Force Research
Laboratory and the Office of the Secretary of Defense (OSD) under
agreement number FA8750-15-2-0116. The US government is

Two-Step Markov Update Algorithm 81

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63

authorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force Research
Laboratory and the OSD or the US government. The authors would
like to thank the Air Force Research Laboratory and the OSD.

References

[1] J. H. Holland, “Adaptation,” Progress in Theoretical Biology, Vol. 4
(F. M. Snell and R. Rosen, eds.), New York: Academic Press, Inc., 1976
pp. 263–293. doi:10.1016/B978-0-12-543104-0.50012-3.

[2] S. W. Wilson, “Classifier Fitness Based on Accuracy,” Evolutionary
Computation, 3(2), 1995 pp. 149–175. doi:10.1162/evco.1995.3.2.149.

[3] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine Learning,
8(3–4), 1992 pp. 279–292. doi:10.1007/BF00992698.

[4] P. L. Lanzi, “Mining Interesting Knowledge from Data with the XCS
Classifier System,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2001) (L. Spector, ed.), San Francisco:
Morgan Kaufmann Publishers, 2001 pp. 958–965.

[5] S. W. Wilson, “Mining Oblique Data with XCS,” in Advances in Learn-
ing Classifier Systems (IWLCS 2000) (P. L. Lanzi, W. Stolzmann and
S. W. Wilson, eds.), Berlin, Heidelberg: Springer, 2001 pp. 158–174.
doi:10.1007/3-540-44640-0_ 11.

[6] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-Based Learning
Classifier Systems: Models, Analysis and Applications to Classification
Tasks,” Evolutionary Computation, 11(3), 2003 pp. 209–238.
doi:10.1162/106365603322365289.

[7] R. Urbanowicz, N. Ramanand and J. Moore, “Continuous Endpoint
Data Mining with ExSTraCS: A Supervised Learning Classifier System,”
in Proceedings of the Companion Publication of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, Madrid, Spain, New
York: ACM, 2015 pp. 1029–1036. doi:10.1145/2739482.2768453.

[8] K. Tamee, L. Bull and O. Pinngern, “Towards Clustering with XCS,”
in Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation, London, England, New York: ACM, 2007
pp. 1854–1860. doi:10.1145/1276958.1277326.

[9] W. Stolzmann, “An Introduction to Anticipatory Classifier Systems,” in
International Workshop on Learning Classifier Systems (IWLCS 1999),
Berlin, Heidelberg: Springer-Verlag, 2000 pp. 175–194.
doi:10.1007/3-540-45027-0_ 9.

82 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

https://dx.doi.org/10.1016/B978-0-12-543104-0.50012-3
https://dx.doi.org/10.1162/evco.1995.3.2.149
https://dx.doi.org/10.1007/BF00992698
https://doi.org/10.1007/3-540-44640-0_11
https://dx.doi.org/10.1162/106365603322365289
https://dx.doi.org/10.1145/2739482.2768453
https://dx.doi.org/10.1145/1276958.1277326
https://doi.org/10.1007/3-540-45027-0_9

[10] M. V. Butz, P. L. Lanzi and S. W. Wilson, “Function Approximation
with XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and
Compaction,” IEEE Transactions on Evolutionary Computation, 12(3),
2008 pp. 355–376. doi:10.1109/TEVC.2007.903551.

[11] S. W. Wilson, “Classifiers That Approximate Functions,” Natural Com-
puting, 1(2–3), 2002 pp. 211–234. doi:10.1023/A:1016535925043.

[12] C. Stone and L. Bull, “For Real! XCS with Continuous-Valued Inputs,”
Evolutionary Computation, 11(3), 2003 pp. 299–336.
doi:10.1162/106365603322365315.

[13] J. Bacardit and N. Krasnogor, “A Mixed Discrete-Continuous Attribute
List Representation for Large Scale Classification Domains,” in Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’09), Montreal, New York: ACM, 2009
pp.�1155–1162. doi:10.1145/1569901.1570057.

[14] A. Workineh and A. Homaifar, “Robust Bidding in Learning Classifier
Systems Using Loan and Bid History,” Complex Systems, 19(3), 2011
pp. 287–303. www.complex-systems.com/pdf/19-3-6.pdf.

[15] S. Nazmi, M. Razeghi-Jahromi and A. Homaifar, “Multi-label Classifica-
tion with Weighted Labels Using Learning Classifier Systems,” in
Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications (ICMLA 2017), Cancun, Mexico (X. Chen,
B. Luo, F. Luo, V. Palade and M. A. Wani, eds.), Piscataway, NJ:
IEEE, 2017.

[16] P. L. Lanzi, “Adding Memory to XCS,” in 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence, Anchorage, AK, Piscataway,
NJ: IEEE, 1998 pp. 609–614.

[17] P. L. Lanzi and S. W. Wilson, “Toward Optimal Classifier System Per-
formance in Non-Markov Environments,” Evolutionary Computation,
8(4), 2000 pp. 393–418. doi:10.1162/106365600568239.

[18] M. V. Butz and S. W. Wilson, “An Algorithmic Description of XCS,” in
International Workshop on Learning Classifier Systems (IWLCS 2000)
(P. L. Lanzi, W. Stolzmann and S. W. Wilson, eds.), Berlin, Heidelberg:
Springer, 2000 pp. 253–272. doi:10.1007/3-540-44640-0_ 15.

[19] S. W. Wilson, “Generalization in the XCS Classifier System,” in Genetic
Programming 1998: Proceedings of the Third Annual Conference, Madi-
son, WI (J. Koza, et al., eds.), San Francisco: Morgan Kaufmann, 1998
pp. 665–674.

[20] H. K. Khalil, Nonlinear Systems, 3rd ed., Englewood Cliffs, NJ: Prentice
Hall, 2002.

[21] K. Ogata, Discrete-Time Control Systems, 2nd ed., Upper Saddle River,
NJ: Prentice Hall, 1995.

[22] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed., Upper Saddle River, NJ: Prentice-Hall, 2010.

Two-Step Markov Update Algorithm 83

https://doi.org/10.25088/ComplexSystems.27.1.63

https://dx.doi.org/10.1109/TEVC.2007.903551
https://dx.doi.org/10.1023/A:1016535925043
https://dx.doi.org/10.1162/106365603322365315
https://dx.doi.org/10.1145/1569901.1570057
http://www.complex-systems.com/pdf/19-3-6.pdf
https://dx.doi.org/10.1162/106365600568239
https://dx.doi.org/10.1007/3-540-44640-0_15
https://doi.org/10.25088/ComplexSystems.27.1.63

[23] M. V. Butz, T. Kovacs, P. L. Lanzi and S. W. Wilson, “Toward a The-
ory of Generalization and Learning in XCS,” IEEE Transactions on Evo-
lutionary Computation, 8(1), 2004 pp. 28–46.
doi:10.1109/TEVC.2003.818194.

[24] M. V. Butz, D. E. Goldberg, P. L. Lanzi and K. Sastry, Bounding the
Population Size to Ensure Niche Support in XCS, IlliGAL Report No.
2004033, Illinois Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign, 2004.

[25] H. Dehling and W. Philipp, “Empirical Process Techniques for Depen-
dent Data,” Empirical Process Techniques for Dependent Data
(H. Dehling, T. Mikosch and M. Sørensen, eds.), Boston: Birkhäuser,
2012. doi:10.1007/978-1-4612-0099-4_ 1.

[26] A. Orriols-Puig and E. Bernadó-Mansilla, “A Further Look at UCS Clas-
sifier System,” in The Genetic and Evolutionary Computation Confer-
ence (GECCO ’06), Seattle, New York: ACM, 2006 pp. 8–12.

84 M. Razeghi-Jahromi, S. Nazmi and A. Homaifar

Complex Systems, 27 © 2018

https://dx.doi.org/10.1109/TEVC.2003.818194
https://dx.doi.org/10.1007/978-1-4612-0099-4_1

