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In  this  paper,  we  investigate  the  impact  of  a  two-step  Markov  update
scheme for the reinforcement component of XCS, a family of accuracy-
based  learning  classifier  systems.  We  use  a  mathematical  framework
using discrete-time dynamical system theory to analyze the stability and
convergence  of  the  proposed  method.  We  provide  frequency  domain
analysis  for  classifier  parameters  to  investigate  the  achieved  improve-
ment  of  the  XCS  algorithm,  employing  a  two-step  update  rule  in  the
transient  and  steady-state  stages  of  learning.  An  experimental  analysis
is  performed  to  learn  to  solve  a  multiplexer  benchmark  problem  to
compare the results of the proposed update rules with the original XCS.
The  results  show  faster  convergence,  better  steady-state  training  accu-
racy and less sensitivity to variations in learning rates. 
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Introduction1.

Learning classifier systems (LCSs) [1] are machine learning techniques
that  use  evolutionary  computation  and  reinforcement  learning  in  a
supervised environment to model the system in the form of a popula-
tion  of  “IF  condition,  THEN  action”  rules.  LCSs  started  to  become
more popular after Wilson’s groundbreaking proposal, a simpler LCS
structure with no message list and a new fitness calculation approach
based  on  the  classifier’s  accuracy  in  predicting  the  environment  pay-
off, namely XCS [2]. XCS employs a Q-learning-like [3] update strat-
egy  and  can  work  as  a  reinforcement  learning  or  supervised  learning
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framework. In XCS, a genetic algorithm favors the evolution of those
classifiers that are maximally general and at the same time accurate in
labeling  problem  instances.  A  genetic  algorithm  attempts  to  increase
the  number  of  classifiers  with  higher  fitness  by  means  of  crossover
and mutation.

Performance of XCS in data analysis applications has been investi-
gated and proven to exceed some of the well-known machine learning
approaches [4, 5]. A variety of studies have been done to even further
simplify the structure of XCS and make it more appropriate for super-
vised  learning  problems,  resulting  in  systems  such  as  UCS  [6].
ExSTraCS is another class of LCSs that employs a specific rule repre-
sentation scheme to store specified features in the classifier condition,
which  helps  to  deal  with  problems  with  a  larger  number  of  features
[7].  XCS  is  also  proposed  to  address  clustering  problems  using  learn-
ing classifiers [8]. Moreover, Stolzmann introduced ACS [9], which is
an anticipatory learning classifier system that is able to learn and pre-
dict  the  current  state  and  also  the  next  state  of  the  problem  and  has
been  shown  to  perform  well  in  problems  such  as  learning  a  maze.  In
function  approximation  applications,  XCSF  [10,  11]  is  proposed,
which  is  able  to  learn  an  n-dimensional  function  using  different
approximations such as hyper-rectangles, hyper-ellipsoids and convex
halls.  Originally,  LCS  was  structured  to  model  a  Boolean  environ-
ment,  although  numerous  studies  have  been  proposed  to  represent
real-valued problems such as XCSR [5, 12] and problems with mixed
attributes  as  in  AKLR  [13].  The  robust  bidding  strategy  of  strength-
based classifiers is studied in [14], and later in MLCS [15] is extended
to handle multi-label data, while the labels are allowed to have confi-
dence levels. 

It  has  been  shown  that  XCS  is  able  to  optimally  solve  Markov
problems,  whereas  it  suffers  when  handling  non-Markov  problems.
Adding memory can help to overcome this problem through an inter-
nal  register,  which  can  store  limited  information  about  previous
states.  Systems  that  adopt  memory  include  XCSM  [16]  and  XCSMH
[17].  In  XCSM,  the  internal  bit  register  is  implemented  directly
instead of a list of messages; however, in XCSMH, a compound explo-
ration  is  used  in  which  the  exploration  strategy  chooses  internal
actions  (register  settings)  deterministically,  while  selection  of  external
actions remains probabilistic. 

In  XCS,  each  classifier  has  a  set  of  parameters  that  are  updated  in
every  cycle  in  which  the  classifier  participates  in  learning.  The  XCS
reinforcement  module  employs  a  Markov  update  scheme  that  uses
only  the  current  value  of  the  parameter  to  calculate  its  future  value.
However,  a  classifier’s  interaction  with  its  environment  has  non-
Markov behavior, in the sense that given the present attributes of the
classifier, future values are not independent of the past. It is useful to
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explicitly  use  an  agent’s  past  parameter  values  in  the  update  rule  to
improve estimates of the parameter’s future values. Therefore, we ini-
tially  focus  on  extending  current  update  rules  of  XCS  parameters  to
an update rule with an additional history value. 

Moreover,  we  aim  to  address  the  current  LCS  literature’s  shortfall
for  analyzing  interactions  among  classifier  parameters  in  the  algo-
rithm. The lack of analysis tools affects our understanding of different
aspects  of  the  problem,  such  as  algorithm  stability,  convergence  and
frequency  domain  analysis  for  performance  investigation.  Employing
various mathematical tools provides better insight to the problem and
future extensions of the algorithm. 

This  paper  provides  the  following  major  contributions.  First,  the
two-step Markov update scheme for the XCS algorithm is formulated
to  investigate  its  stability  and  convergence.  Second,  a  frequency
domain analysis of the discussed update scheme has been provided to
investigate  faster  convergence  and  better  steady-state  training
accuracy.  Since  evolutionary-based  machine  learning  algorithms  are
computationally  more  expensive  than  non-evolutionary  approaches,
reaching  a  reasonable  accuracy  threshold  with  fewer  training  itera-
tions  is  crucial.  Moreover,  a  mathematical  framework  using  discrete-
time  dynamical  system  theory  has  been  used  to  analyze  the  stability
and  convergence  of  two-step  Markov  update  rules.  Additionally,  the
sensitivity  of  the  two-step  update  scheme  to  variations  of  learning
rates is studied numerically. 

XCS Classifier Overview2.

In this section, a brief description of the XCS algorithm is introduced.
More details are provided in [2, 18, 19].

XCS  acts  as  a  reinforcement  learning  agent  that  receives  inputs
regarding  the  current  state  of  the  environment,  reacts  with  actions
and  eventually  receives  a  payoff  as  an  indication  of  the  effectiveness
of  its  action.  The  goal  of  XCS  is  to  maximize  the  amount  of  payoff
gathered in the long run. 

The  interaction  of  XCS  with  the  environment  is  as  follows.  The
core  of  the  XCS  is  a  population  of  rules,  also  known  as  classifiers,
that each consists of a condition, an action and a number of parame-
ters  that  indicates  their  accuracy.  Once  the  algorithm  receives  an
input from the environment, it forms a match set [M] of all classifiers
that have a matching condition with the current input. The algorithm
starts with an empty population and for each input that has no match-
ing  classifier  in  the  population  creates  a  new  rule  with  a  matching
condition and the correct label of the input. This process is called cov-
ering.  For  each  unique  action  a  in  [M],  the  prediction  P(a)  is
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computed, which is an estimate of the payoff that the learner expects
from  the  system  when  action  a  is  performed.  The  prediction  array  is
calculated  by  the  fitness-weighted  average  of  all  matching  classifiers
that support action a as

Pa 

∑
cl∈[M]⋀cl.aa

pclFcl

∑
cl∈[M]⋀cl.aa

Fcl
, (1)

where  p  is  the  prediction  of  each  individual  classifier  cl  and  F  is  the
classifier  fitness.  Pa  forms  a  prediction  array  for  different  values  of

action  a,  and  XCS  selects  the  action  with  respect  to  the  values  in  the
prediction array, either by selecting maximum prediction or randomly
selecting one from those suggested by classifiers in [M] [18].

After  an  action  is  selected,  the  action  set  A  is  created  using  the

classifiers  that  advocate  the  selected  action.  After  the  action  is  per-

formed, the prediction p and prediction error ε of all classifiers in A

are updated through the following equations: 

p ← p + β(R - p), (2)

ε ← ε + β( R - p -ε), (3)

where β ∈ 0, 1 is the learning rate and R is the payoff received from

the  environment.  Finally,  fitness  F  is  updated  toward  the  classifier’s
current relative accuracy κ′, which is a function of classifier prediction
error as follows:

F ← F + β(κ′ - F). (4)

Introductory Review of Linear Discrete-Time Dynamical Systems3.

As stated in the Introduction, the stability and convergence of the pro-
posed  two-step  Markov  update  rules  are  investigated  in  the  frame-
work  of  discrete-time  dynamical  systems.  For  this  purpose,  we  give  a
short  description  of  some  of  the  fundamental  mathematical  tools  in
this  section,  which  are  necessary  for  analyzing  linear  discrete-time
dynamical systems. More details are provided in [20–22].

z-Transform3.1

A  mathematical  tool  commonly  used  for  the  analysis  of  discrete-time
dynamical  systems  is  the  z-transform.  The  role  of  the  z-transform  in
discrete-time  systems  is  similar  to  that  of  the  Laplace  transform  in
continuous-time systems.
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The  one-sided  (unilateral)  z-transform  of  a  sequence  x(t)  where  t
takes zero or positive integers (i.e., x(t)  0 for all t < 0) is defined as 

x(z)  {x(t)}  
t0

∞

x(t)z-t, (5)

where the symbol  denotes the z-transform of the term inside brack-
ets.  Equation  (5)  is,  in  general,  an  infinite  sum  or  infinite  power
series,  with  z  being  a  complex  variable.  For  any  given  sequence,  the
set  of  values  of  z  for  which  the  z-transform  converges  is  called  the
region  of  convergence  (ROC).  If  x(z)  is  given  as  a  rational  function
inside the ROC, that is,

x(z) 
p(z)

q(z)
, (6)

where p(z) and q(z) are polynomials in z, then the zeros are the roots
of the numerator polynomial and the poles (for finite values of z) are
the roots of the denominator polynomial.

Discrete-Time Fourier Transform3.2

Another  mathematical  tool  commonly  used  for  the  analysis  of
discrete-time  dynamical  systems  is  the  discrete-time  Fourier  trans-
form.  The  discrete-time  Fourier  transform  of  a  sequence  x(t)  where  t
takes zero or positive integers (i.e., x(t)  0 for all t < 0) is defined as

xejω  
t0

∞

x(t)e-jωt, (7)

with ω being a real number ranging over an interval of length 2π and

j� -1 .  In  particular,  if  we  replace  the  complex  variable  z  in  equa-

tion (5) with the complex variable ejω, then the z-transform reduces to

the  Fourier  transform.  This  is  one  motivation  for  the  notation  xejω

for  the  Fourier  transform;  when  it  exists,  the  Fourier  transform  is

simply  x(z)  with  z  ejω.  Mathematically,  it  means  that  the  Fourier
transform  of  x(t)  converges  absolutely  if  and  only  if  the  ROC  of  the
z-transform of x(t) includes the unit circle.

Initial Value Theorem3.3

If  x(t)  has  the  z-transform  x(z)  and  if  limz→∞ x(z)  exists,  then  the  ini-

tial value x0 of x(t) is given by

x0  lim
z→∞

x(z). (8)

Basically,  this  theorem  relates  frequency  domain  analysis  to  the  time
domain behavior as time approaches zero.
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Final Value Theorem3.4

If  x(t)  has  the  z-transform  x(z)  and  all  the  poles  of  x(z)  lie  inside  the
unit circle, with the possible exception of a pole of order one at z  1,
then  the  final  value  of  x(t),  that  is,  the  value  of  x(t)  as  t  approaches
infinity, is given by

lim
t→∞

x(t)  lim
z→1

z - 1x(z). (9)

In contrast to the initial value theorem, the final value theorem relates
frequency  domain  analysis  to  the  time  domain  behavior  as  time
approaches infinity.

Linear Discrete-Time Dynamical System3.5

The  z-transform  is  particularly  useful  in  the  analysis  of  linear  time-
invariant  (LTI)  systems  described  by  the  difference  equations.

Consider  the  nth-order  LTI  discrete-time  system  characterized  by  the
following linear difference equation:

y(t) + a1yt - 1 +⋯ + any(t - n) 

b0u(t) + b1ut - 1 +⋯ + bnu(t - n),
(10)

where  u(t)  and  y(t)  are  the  system’s  input  and  output,  respectively,  at

the  tth  time  step.  Note  that  some  of  the  coefficients  ai  and  bj  may  be

zero.  By  taking  the  z-transform  of  equation  (10),  the  system  transfer
function is given by

H(z)�
y(z)

u(z)


b0z
n + b1z

n-1 +⋯ + bn

zn + a1z
n-1 +⋯ + an

. (11)

Lyapunov Stability3.6

Consider the discrete-time system with the state equation

xt + 1  f(x(t), u(t)), (12)

where  x ∈ n,  u ∈ m
 and  f ∈ n

 with  the  property  that  f0, 0  0.

An  equilibrium  point  x  0  of  the  unforced  (zero  input)  dynamical
system

xt + 1  fx(t), 0, (13)

is  called  globally  uniformly  asymptotically  stable  (GUAS),  if  it  is  sta-
ble  (in  the  Lyapunov  sense)  and  every  solution  converges  to  zero  as  t
goes to infinity, that is, limt→∞ ∥ x(t) ∥  0.

If  the  unforced  system  in  equation  (13)  has  a  GUAS  equilibrium
point  at  the  origin  x  0,  then  we  are  interested  in  whether  a
bounded  input  u(t)  implies  that  the  state  x(t)  is  bounded  too.  This  is
the  notion  of  input-to-state  stability.  It  is  shown  in  [20]  that  if
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equation (13) has a GUAS equilibrium point at the origin x  0, then
equation (12) is input-to-state stable. 

There  are  many  ways  to  realize  state-space  representations  for  the
LTI discrete-time system described by equation (10) or (11) as 

xt + 1  Gx(t) +Hu(t),

y(t)  Cx(t) +Du(t),
(14)

where  x ∈ n,  u ∈ m,  y ∈ r
 and  G,  H,  C  and  D  are  known  matri-

ces  with  compatible  dimensions.  The  origin  x  0  of  the  unforced
system

xt + 1  Gx(t) (15)

is  GUAS  if  and  only  if  all  eigenvalues  of  G  have  magnitude  less  than

1; that is, λiG < 1. Since the characteristic equation that is the deter-

minant of zI -G  can be written as

Δ(z)� zI -G  zn + a1z
n-1 +⋯ + an, (16)

therefore,  the  origin  x  0  of  the  unforced  system  in  equation  (15)  is
GUAS if and only if the poles of the system transfer function in equa-
tion (11) lie inside the unit circle in the z plane.

Jury Stability Test3.7

The  Jury  stability  test  can  be  applied  directly  to  the  characteristic
equation  Δ(z)  0  without  solving  for  the  roots.  The  test  reveals  the
existence  of  any  unstable  roots,  that  is,  the  roots  that  lie  outside  the
unit circle in the z plane.

XCS with Two-Step Markov Update Algorithm4.

Reinforcement Component4.1

In this section, the two-step Markov update scheme for the reinforce-
ment  component  of  the  XCS  is  formulated,  based  on  the  fact  that
when the present value of the classifier is known, then its future value
is  not  independent  of  the  past  (non-Markov),  and  past  information
(observations) can be explicitly used in the classifier update process to
achieve  better  predictions  of  future  values.  One  can  increase  a  two-
step  Markov  update  to  an  n-step  Markov  update  in  general.  Note

that  only  the  classifier  parameters  in  the  action  set  A  are  updated;

that  is,  whenever  a  classifier  participates  in  an  action  set,  its  predic-
tion,  prediction  error  and  fitness  are  updated  based  on  the  weighted
sum  of  its  present  and  its  one-step  previous  values.  The  weights  are
controlled by different learning rates β and η.
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In  XCS,  the  Q-learning  reinforcement  module  [3]  is  restated  as  a
difference  equation  in  which  present  values  are  used  to  calculate
future  values  of  the  parameters.  Therefore,  classifier  prediction  p(t)
and  prediction  error  ε(t)  are  updated  through  the  following  modified
difference  equations  in  which  the  update  arrow  is  replaced  with  an
equal  sign  to  better  serve  the  purpose  of  discrete-time  analysis.  The
convergence of the two-step update rule is guaranteed by choosing the
proper learning rates as derived in Section 4:

pt + 1  p(t) + β
β + η - 1

β
R - p(t) + 1 - ηpt - 1, (17)

εt + 1  ε(t) + β(R - p(t) - ε(t)) + 1 - ηεt - 1, (18)

for  all  iterations  t ≥ 0,  initial  conditions  p0  p-1  0  and

ε0  ε-1  0,  where  β ∈ 1 - η, 1  is  the  one-step  learning  rate,

η ∈ 0, 1  denotes  the  two-step  learning  rate  and  R  is  the  payoff

received from the environment. Note that in equation (17), the coeffi-
cient  of  R  is  adapted  to  guarantee  the  asymptotic  convergence  of  the
prediction  p(t)  to  R  when  the  model  is  completely  trained.  This  is
shown in the proof of Lemma 1.

To  update  the  classifier  fitness  F(t),  the  classifier  accuracy  κ(t)  and
the  classifier  relative  accuracy  κ′(t)  are  computed  as  in  the  XCS  algo-
rithm [23], as shown here: 

κ(t) 

 1,  ifε(t) < ε0 

 α
ε(t)

ε0

-ν

,  otherwise 

κ′(t) 
κ(t) · num(t)

∑
cl∈[A]

κcl(t) · numcl(t)
.

(19)

The  parameter  ε0 > 0  controls  the  prediction  error  tolerance,  the

parameters  0 < α < 1,  ν > 0  are  constants,  and  “num”  is  the  number
of  copies  of  the  classifier  being  updated.  Finally,  classifier  fitness  F(t)
is  updated  toward  the  classifier’s  current  relative  accuracy  κ′(t)
through the following modified difference equation:

Ft + 1  F(t) + β
β + η - 1

βκ′(t) - F(t)
+ 1 - ηFt - 1, (20)

for  all  iterations  t ≥ 0  and  initial  conditions  F0  F-1  0.  Note

that  in  equation  (20),  the  coefficient  of  κ′(t)  is  adapted  to  guarantee
the  asymptotic  convergence  of  the  fitness  F(t)  to  1  when  the  model  is
completely trained.
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Corollary 1. 1 - β and 1 - η are the weights of present and previous val-
ues  in  the  two-step  Markov  update  equations  (17),  (18)  and  (20).  By
changing η continuously from 0+ to 1, one can observe the entire spec-
trum  of  the  algorithm  behavior  from  pure  prSevious  value  to  pure
present  value  update.  As  η  approaches  1,  the  algorithm  acts  like  the
original  XCS  and  vice  versa.  When  β < η,  more  weight  is  given  to

the  present  than  previous  values  and  vice  versa.  If  η ∈ 1  2, 1,  then

there  always  exists  β ∈ 1 - η, 1  such  that  β  η;  that  is,  we  have

equal weights for the present and previous values. 

Stability and Convergence Analysis 4.2

In this section, the set of classifier parameters is analyzed for stability
and  convergence  of  the  learning  algorithm,  that  is,  difference  equa-
tions (17), (18) and (20). By finding a proper range for learning rates
β  and  η,  we  have  shown  that  the  proposed  two-step  Markov  update
algorithm  is  GUAS;  hence  the  stability  and  convergence  of  the  algo-
rithm is guaranteed.

Defining  a  new  variable  q(t)�R - p(t)  with  initial  conditions

q0  q-1  R, equations (17) and (18) can be rewritten as 

qt + 1  1 - βq(t) + 1 - ηqt - 1, (21)

εt + 1  1 - βε(t) + 1 - ηεt - 1 + βq(t), (22)

which is a discrete-time cascade dynamical system and has an equilib-

rium  point  at  (q, ε)  0, 0.  The  set  of  dynamical  systems  (21)  and

(22) is called  cascade since  (21) does not depend on  ε(t) and the out-
put  of  (21),  that  is,  q(t),  is  fed  as  an  input  to  (22).  To  show  that  the
equilibrium  point  of  the  set  of  equations  (21)  and  (22)  is  GUAS,  the
following lemma is introduced. 

Lemma 1. If equation (22), with q(t) as its input, is input-to-state stable
and  equation  (21)  has  a  GUAS  equilibrium  point  at  the  origin  q  0,
then the cascade dynamical system (21) and (22) has a GUAS equilib-

rium point at the origin (q, ε)  0, 0.

Proof. Taking the z-transform of equation (21) with the initial condi-

tion q0  R leads to 

q(z) 
Rz2

z2 - 1 - βz - 1 - η
. (23)

Equation (21) has a GUAS equilibrium point at its origin q  0 if and
only if the characteristic equation

Δ(z)  z2 - 1 - βz - 1 - η (24)
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is stable, that is, all the poles of q(z) lie within the unit circle in the z
plane.  The  Jury  stability  test  is  applied  to  determine  the  stability  of
the  characteristic  equation  (24)  without  solving  for  the  roots.  There-
fore, the following conditions must be satisfied:

1 - η < 1⇒ 0 < η < 2

β + η - 1 > 0⇒ β > 1 - η

-β + η + 1 > 0⇒ β < 1 + η.

(25)

In  addition  to  these  three  conditions,  two  additional  sufficient  con-
ditions  are  imposed  by  the  non-negativity  of  present  and  previous
updating weights on the states of the system to make sure the predic-
tion,  prediction  error  and  fitness  values  are  all  non-negative  for  all  t,
as in the following:

η ≤ 1 and β ≤ 1. (26)

Considering the inequalities (25) and (26) together implies that

0 < η ≤ 1 and 1 - η < β ≤ 1. (27)

From the global asymptotic stability of the origin of equation (21),
it is concluded that 

lim
t→∞

q(t)  0 ⇒ lim
t→∞

p(t)  R, (28)

which shows that the classifier prediction p(t) is bounded for all t and
globally asymptotically converges to R.

In  order  to  show  that  equation  (22)  is  input-to-state  stable,  it  is
required that the unforced system

εt + 1  1 - βε(t) + 1 - ηεt - 1 (29)

have  a  GUAS  equilibrium  point  at  its  origin  ε  0,  which  is  equiva-
lent  to  having  the  same  stable  characteristic  equation  as  (24).  Hence,
choosing  the  learning  rates  as  in  (27)  ensures  that  (22)  is  input-to-
state stable. Therefore, using the fact that the origin of system (21) is
GUAS,  we  conclude  that  the  origin  of  system  (22),  which  is  ε  0,  is
also GUAS; that is, limt→∞ ε(t)  0. This proves that the classifier pre-

diction error ε(t) is bounded for all t and globally asymptotically con-

verges to zero. This concludes the proof of Lemma 1. □ 

Corollary 2. Satisfying the learning rates β and η in equation (27) forces
both  poles  of  the  characteristic  equation  (24)  to  be  always  inside  the
unit circle. Furthermore, the poles always appear as one having a posi-

tive  real  root  r+ ≥ 0  and  one  a  negative  real  root  r- ≤ 0,  as

1 - β
2
+ 41 - η ≥ 1 - β

2
 for  every  β  and  η  in  equation  (27).  From

characteristic equation (24), we have
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r+

1 - β + 1 - β
2
+ 41 - η

2
,

r-

1 - β - 1 - β
2
+ 41 - η

2
.

(30)

Also, equation (27) implies that

0 ≤ 1 - η < β ≤ 1 ⇒ 1 - β ≤ 1 - β
2
+ 41 - η < 1 + β. (31)

Combining equations (30) and (31), we have

-1 ≤ -β < r- ≤ 0 ≤ 1 - β ≤ r+ < 1. (32)

In the case of η  1, that is, r-  0, r+  1 - β, the characteristic equa-

tion  (24)  would  be  a  first-order  characteristic  equation  with  a  single
pole at z  1 - β, as there is a pole zero cancellation in equation (23)
at z  0, which is the original one-step XCS.

Corollary 3.  As  explained  in  Corollary  2,  the  classifier  prediction
update  equation  (17)  is  a  second-order  system  with  two  real  distinct
poles  r+  and  r-  inside  the  unit  circle.  This  system  is  called  over-

damped;  that  is,  the  response  p(t)  is  smooth  and  nonoscillatory  and
asymptotically follows the payoff R. Therefore, for every t there are

p(t) ≤ R ⇒ R - p(t) ≥ 0. (33)

As  a  result,  R - p(t)  that  originally  is  introduced  in  the  XCS  update
rule can be replaced with R - p(t) in the prediction error update equa-
tion�(18).  The  same  reasoning  applies  to  one-step  prediction  as  in
equation (3), which is a stable first-order system that never oscillates.

An  obvious  challenge  for  such  an  evolving,  distributed  knowledge
representation  is  the  continuous  support  of  all  problem  subspaces,
which is identified as niche support. In XCS, niche support is guaran-
teed by a niche-based deletion method plus an occurrence-based repro-
duction  method.  In  [24],  assuming  a  Markov  chain  model  for  niche
support,  population  is  distributed  according  to  a  binomial  distribu-
tion over all niches of the problem in steady state. It concludes that at
steady state, equation (19) results in 

lim
t→∞

κ′(t)  1. (34)
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The  relative  accuracy  κ′(t)  given  in  equation  (19)  is  also  bounded  by

0 ≤ κ′(t) ≤ 1  with κ′0 ≠ 0  as κ0  1,  due  to  initialization  of

ε0  0.  Using  the  final  value  theorem,  equation  (34)  implies  that

κ′(z) can be decomposed as

{κ′(t)}  κ′(z) 
1

z - 1
·
b(z)

d(z)
, (35)

where  b(z)  and  d(z)  are  polynomials  in  z  with  no  factor  of  z - 1.

Using the initial value theorem, we also have

κ′0 ≠ 0 ⇒ lim
z→∞

κ′(z)  lim
z→∞

1

z - 1
·
b(z)

d(z)
≠ 0, (36)

where b(z)  d(z) is a stable rational transfer function that satisfies the

following degree condition:

degb(z)  degd(z) + 1. (37)

Since κ′(z) satisfies the conditions of the final value theorem, as all of
its poles lie inside the unit circle with a pole of order one at z  1, we
conclude that

1  lim
t→∞

κ′(t)  lim
z→1

z - 1κ′(z) 
b1

d1
. (38)

The analysis of relative accuracy will shed light on the convergence of
classifier fitness. To show that classifier fitness F(t) is updated toward
the  classifier’s  current  relative  accuracy  κ′(t),  equation  (20)  is  rewrit-
ten as

Ft + 1  1 - βF(t) + 1 - ηFt - 1 + β + η - 1κ′(t), (39)

which  is  input-to-state  stable  with  κ′(t)  as  its  input  because  the
unforced  equation  (39)  has  the  same  characteristic  equation  as  (24).

Taking  the  z-transform  of  (39)  with  the  initial  condition  F0  0

yields

F(z) 
β + η - 1z

z2 - 1 - βz - 1 - η
· κ′(z). (40)

From equations (27) and (35) it can be concluded that F(z) satisfies
the conditions of the final value theorem. Consequently, we have 

lim
t→∞

F(t)  lim
z→1

z - 1F(z)  lim
z→1

z - 1κ′(z)  lim
t→∞

κ′(t)  1. (41)

Therefore, the classifier fitness F(t) is also bounded for all t and glob-
ally asymptotically converges to 1.
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Frequency Domain Analysis 4.3

In order to gain a better understanding of the impact of the modified
reinforcement  component  of  the  XCS  on  the  dynamic  of  the  overall
algorithm, in this section, the frequency responses of the transfer func-
tions between  the input payoff R and  the output prediction error ε(t)
are studied. In particular, this analysis will provide a clear understand-
ing of the transient behavior and the steady-state accuracy of the pro-
posed  algorithm.  For  the  proposed  two-step  and  the  original  XCS
update  algorithms,  parameters  are  denoted  here  by  the  subscripts
“2-step” and “1-step,” respectively. 

Lemma 2.  The  two-step  update  scheme  has  a  faster  prediction  error
convergence rate in the transient and better steady-state accuracy com-
pared to the original XCS.

Proof.  The  prediction  and  prediction  error  update  equations  for  the
one-step update scheme are given by 

p
1-step

t + 1  1 - βp
1-step

(t) + βR,

ε
1-step

t + 1  1 - βε
1-step

(t) - βp
1-step

(t) + βR,
(42)

which is a linear discrete-time cascade dynamical system. The transfer
function  from  the  input  payoff  R  to  the  output  prediction  error

ε
1-step

(t) is given by

H1-step(z)�
ε1-step(z)

R(z)


βz - 1

z - 1 - β
2
. (43)

Similarly,  equations  (17)  and  (18)  together  are  also  a  linear  discrete-
time cascade dynamical system of the proposed method, and the trans-
fer  function  from  the  input  payoff  R  to  the  output  prediction  error
ε2-step(t) is given by

H2-step(z)�
ε2-step(z)

R(z)


βzz - 1z + 1 - η

z2 - 1 - βz - 1 - η
2
. (44)

To compare the two transfer functions (43) and (44), we first need to
define their ratio as

H(z)�
H

2-step
(z)

H
1-step

(z)

ε
2-step

(z)

ε
1-step

(z)


zz + 1 - ηz - 1 + β
2

z2 - 1 - βz - 1 - η
2
. (45)

Clearly for η  1, the ratio in equation (45) is always 1, regardless of
the value of β.

Since equation (45) is a stable rational system transfer function, its
ROC  includes  the  unit  circle.  Therefore,  if  we  replace  the  complex

Two-Step Markov Update Algorithm 75

https://doi.org/10.25088/ComplexSystems.27.1.63

https://doi.org/10.25088/ComplexSystems.27.1.63


variable  z  in  equation  (45)  with  the  complex  quantity  ejω,  then  the
z-transform reduces to the Fourier transform. 

Next, we show that the two-step update scheme has a faster conver-
gence  rate  in  the  transient  and  better  steady-state  accuracy  compared
to the original XCS. First, we need to show that the amplitude of the
Fourier  transform  of  equation  (44)  is  greater  than  equation  (43)  or
equivalently,  the  amplitude  of  the  Fourier  transform  of  equation  (45)
is  greater  than  1  over  the  low-frequency  range,  that  is,  ω  around  0,
and  the  high-frequency  range,  that  is,  ω  around  ±π.  For  the  low-
frequency range, we have 

lim
ω→0

Hejω  lim
z→1

H(z) 
β22 - η

β + η - 12
≥ 1, (46)

where  the  inequality  is  satisfied,  with  the  equality  holding  only  for
η  1.

The  inequality  in  equation  (46)  is  satisfied  because  according  to
equation (27), 2 - η ≥ 1 and 

0 ≤ 1 - η < β ≤ 1 ⇒ 0 ≤
1 - η

β
< 1 ⇒ 0 < 1 -

1 - η

β
≤ 1

⇒
β

β + η - 1
≥ 1 ⇒

β22 - η

β + η - 12
≥ 1.

(47)

Similarly, for the high-frequency range we have

lim
ω→±π

Hejω  lim
z→-1

H(z) 
η2 - β

2

1 - β + η
2
≥ 1, (48)

where  the  inequality  is  satisfied,  with  the  equality  holding  only  for
η  1.

To  show  that  the  inequality  in  equation  (48)  is  satisfied,  we  know
from equation (27) that 

0 ≤ 1 - β < η and 1 - η ≥ 0 and η2 ≤ η. (49)

Then,

1 - β
2
< η2 ≤ η

⇒ 1 - η1 - β
2
- η ≤ 0

⇒ 1 - ηβ2 - 2β + 1 - η
2
≤ 0

⇒ 1 + β2 + η2 - 2β + 2η - 2βη ≤ 4η - 4ηβ + ηβ2

⇒ 1 - β + η
2
≤ η2 - β

2

⇒
η2 - β

2

1 - β + η
2
≥ 1.

(50)
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This concludes the proof of Lemma 2. □ 

The overall accuracy of the XCS model is a function of its individ-
ual  rule’s  prediction  error;  therefore,  the  two-step  update  XCS  algo-
rithm  has  a  faster  convergence  and  better  steady-state  accuracy.
Figure 1: (a, b) is the amplitude plot of the Fourier transform of equa-
tion (45); that is, 

Hejω 
H2-stepejω

H1-stepejω


zz + 1 - ηz - 1 + β
2

z2 - 1 - βz - 1 - η
2
zejω

, (51)

for  the  range  of  ω  between  -π  and  π  for  some  values  of  η  and  β,
which shows how the amplitudes vary over this frequency range. Fig-
ure  1(a)  is  magnified  around  unity  amplitude  and  is  plotted  in
Figure�1(b) for better illustration. As we have shown in Lemma 2, the
two-step  update  scheme  has  a  faster  convergence  rate  over  the  high-
frequency  range,  that  is,  ω  around  ±π,  and  better  steady-state  accu-
racy over the low-frequency range, that is, ω around 0, as implied by

Hejω, which is greater than 1.

Figure 1. (a) Hejω. (b) Magnified plot (a) around unity amplitude.

Numerical Results and Discussion5.

In  this  section,  to  investigate  the  effect  of  the  proposed  two-step
update  scheme  compared  to  the  original  one-step  update,  the  XCS
algorithm  is  trained  to  solve  the  multiplexer  problem.  For  this
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purpose,  three  multiplexer  problems,  that  is,  6-MUX,  11-MUX  and
20-MUX,  are  solved.  The  common  parameters  used  for  all  the  prob-
lems  are  α  0.1,  ε0  0.0001,  ν  25,  μ  0.04,  R  1000,  and  the

probability  of  specifying  an  attribute is  equal  to  0.5  [23].  Finally,  the
frequency of applying GA is 10, and tournament selection is used for
reproduction.  Population  size  (N)  and  crossover  probability  (χ)  are
specified  for  each  experiment  later  in  the  problem.  β  and  η  are
selected according to equation (27) to observe variations in the results.

Due  to  the  stochastic  nature  of  the  algorithm,  to  have  a  reliable
result, the model needs to be trained multiple times and accuracy aver-

aged over trained models. We define the empirical mean X of m runs
that forms a collection of m random variables X1, … , Xm, which are

independent  and  identically  distributed  (i.i.d.)  and  bounded  by  the

interval 0, 1. The empirical mean is given as 

X 
X1 +⋯ +Xm

m
. (52)

If we choose

m ≥
ln 2

λ

2σ2
, (53)

through  Hoeffding’s  inequality  [25],  then  with  probability  at  least

1 - λ, the difference between the empirical mean X and the true mean

E[X]  is  at  most  σ,  where  E[ · ]  denotes  the  mathematical  expected
value of its argument. The σ says how far we are willing to allow the
empirical  mean  to  be  from  the  true  mean,  and  the  λ  says  with  what
probability  we  are  willing  to  allow  a  deviation  larger  than  σ.  For  a
given λ  0.10 and σ  0.15 in equation (53), we have m ≥ 66; there-
fore, simulation results are averaged over 66 runs.

In the literature, the value of β is selected to be 0.2 [24, 26], yet it
is worthwhile to investigate how the algorithm will behave with differ-
ent learning rates. The accuracy is computed as the percentage of cor-
rect classifications:

accuracy 
number of correct classifications

number of covered instances
. (54)

In  the  first  experiment,  three  different  combinations  of  β  and  η  are
selected  and  the  training  accuracy  of  the  algorithm  is  plotted  in  Fig-
ure�2 for both update rules. As expected from the weighted sum of the
current  and  previous  values  in  the  two-step  update,  the  result  shows
that the two-step update rule is less sensitive to variations in learning
rates  β  and  η  and  has  a  faster  convergence  rate  in  the  transient  and
steady  state,  while  in  the  one-step  approach,  the  training  accuracy
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deteriorates  as  β  increases.  Nonetheless,  the  final  training  accuracies
are almost equal for both updates.

Figure 2. Comparison  of  learning  accuracy  for  two-step  (solid  line)  and  one-
step (dotted line) update rules for the 6-MUX problem.

To  elaborate  more  on  the  effects  of  the  proposed  update  rules,
using information from one extra step back in time acts like a lag-lead
compensator  in  conventional  control  theory,  which  helps  to  have
faster  convergence  and  better  steady-state  accuracy.  In  other  words,
adding  memory  will  help  to  generate  a  better  estimate  of  future  clas-
sifier  parameters  specifically  when  the  present  values  of  parameters
are  experiencing  undesired  variations  for  partially  correct  classifiers.
Partially  correct  classifiers  refer  to  relatively  general  classifiers  that
can  match  more  problem  instances,  which  do  not  necessarily  classify
correctly. 

Experiments  on  11-MUX  and  20-MUX  problems  as  demonstrated
in Figures 3 and 4 also confirm the improvement in the rate at which
the  algorithm  learns  the  problem.  The  results  show  that  the  two-step
update  rule  is  less  sensitive  to  variations  in  β  and  η,  has  a  faster  con-
vergence  rate  in  the  transient  and  steady  state,  and  achieves  better
training  accuracy  specifically  for  the  20-MUX  problem.  The  only
exception  in  these  results  corresponds  to  β  0.25  for  the  one-step
update in the 11-MUX problem, which demonstrates much faster con-
vergence compared to its respective two-step update. 

According to Lemma 2, the two-step update scheme is expected to
improve  the  performance  of  the  prediction  error  in  the  early  stage  of
learning and the steady state. However, it seems unfeasible to find an
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Figure 3. Comparison  of  learning  accuracy  for  two-step  (solid  line)  and  one-
step (dotted line) update rules for the 11-MUX problem.

Figure 4. Comparison  of  learning  accuracy  for  two-step  (solid  line)  and  one-

step  (dotted  line)  update  rules  for  the  20-MUX  problem.  N  4000,

χ  0.95, 2000 samples out of 220
 environment size.

exact mapping between the frequency domain and time domain for a
learning  algorithm.  This  becomes  even  worse  when  the  performance
evaluation  is  problem  independent—in  other  words,  no  complexity
measure  of  the  problem  is  considered  in  the  performance  analysis.
The  6-MUX  problem  is  less  complex  compared  to  11-MUX  and
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20-MUX  problems  with  more  inputs;  as  a  result  its  performance  has
improved  over  the  entire  learning  time.  On  the  other  hand,  in
11-MUX,  the  problem  complexity  influences  the  expected  improve-
ment  such  that  the  effective  range  (namely  low-frequency  and  high-
frequency ranges) of the proposed update is different than the 6-MUX
problem.  More  specifically,  for  the  case  of  η  0.80,  β  0.25,  the
effect of the two-step update rule vanishes faster than other combina-
tions of the learning rates. Therefore, the one-step update scheme out-
performs the proposed update rule. The 20-MUX problem behaves as
expected for all combinations of learning rates and the entire learning
time. 

According  to  the  experiments,  the  fact  that  the  algorithm  tends  to
converge  faster  suggests  the  idea  that  the  proposed  method  relatively
supports those classifiers with correct actions that tend to be accurate
in two consecutive appearances in the action set. This is an extra pres-
sure toward evolving accurate solutions. 

Conclusions and Future Work6.

In this work, a novel two-step Markov update scheme for XCS classi-
fier  systems  and  mathematical  representations  for  rules  to  update  the
classifier parameters using discrete-time dynamical systems theory are
presented.  The  stability  and  convergence  of  the  two-step  update  rules
are analyzed. The frequency domain analysis for classifier parameters
has been provided. We also presented the robustness and performance
improvement  of  the  XCS  algorithm  employing  the  two-step  update
rule  using  numerical  experiments.  The  implementation  cost  includes
adding  four  float-type  variables  for  each  macro  classifier  and  some
arithmetic  calculations,  while  its  computational  complexity  and
algorithm run time are almost the same. We have shown that using a
non-Markov  update  contributes  to  faster  learning  and  more  accurate
training at steady state.

Thus  far, our  analysis has  been  carried out  independently of  prob-
lem  size  and  generality  of  classifiers,  which  may  substantially  impact
XCS  performance.  In  future  work,  the  authors  will  address  these
issues and investigate their effects on algorithm dynamics. The perfor-
mance of the algorithm will also be studied with real-world problems. 
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