
Exploring Halting Times for 
Unconventional Halting Schemes

Katarzyna Krzyzanska

Wolfram Summer Camp
East Amherst, NY 14051, United States of America
18kkrzyzanska@nardin.org

A  common  issue  in  the  study  of  Turing  machines  (TMs)  is  the  halting
problem, or whether and when a TM will cease moving. Generally, this
problem  has  been  proved  to  be  uncomputable,  though  it  is  possible  to
determine halting probabilities for more specific cases. In the following
study,  halting  probabilities  were  determined  using  two  unconventional
definitions  of  halting.  The  first  defines  halting  as  the  point  where  a
machine  reaches  a  certain,  prespecified  step;  the  second  defines  halting
as  the  point  where  cell  states  stop  changing  (though  head  states  may
still differ from step to step). Due to computational limitations, the halt-
ing  probabilities  for  TMs  with  fewer  head  and  cell  states  have  been
more  thoroughly  studied  than  for  more  complicated  machines,  but
nonetheless  some  data  has  been  garnered  concerning  those.  The  TMs
studied  ranged  from  two  possible  head  states  and  two  possible  cell
states to six possible head states and six possible cell states.
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Introduction1.

A Turing machine (TM) is a complex system where, on a row of cells,
the direction of the “head” and the state of the current cell determine
what  the  next  head  and  cell  states  will  be,  taking  into  account  the
movement of the head left or right on the row of cells. 

For example, a head state of one (perhaps indicating that the head
is facing up) with a cell state of zero (perhaps indicating a blank cell)
may follow such a rule that the head would next change to a state of
two,  change  the  cell  state  to  one,  and  move  one  unit  to  the  left.  This

can be represented as 1, 0 → 2, 1, -1.

A  set  of  rules  expressing  all  possible  head/cell  state  combinations
may appear as shown in Figure 1.

The  number  of  possible  head  and  cell  states  is  chosen  as  conve-
nience  allows.  The  simplest  useful  TMs  have  two  possible  cell  states
and two possible head states, and are thus denoted as 2,2 TMs. There

are  4096  such  machines,  given  by  the  formula  2sksk  [1,  2],  where  s
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is the number of possible head states and k is the number of possible
cell  states.  As  can  be  easily  noted,  the  number  of  possible  TM  rules
increases  at  a  great  rate,  so  although  TMs  reaching  up  to  6,6  TMs
have been studied, the amount of data that would have to be analyzed
in order to obtain meaningful results has slightly limited the extent to
which these and other more complicated TMs could be analyzed. 

Figure 1. Example rule plot of a 2,2 TM given by Mathematica. This particu-
lar plot exemplifies rule 1507.

A  TM  will  generally  either  halt  relatively  quickly  or  never  halt,  as
proven  by  Calude  and  Stay  [3],  though  there  exist  a  few  exceptions
where  a  TM  will  only  halt  after  an  “algorithmically  compressible”
amount  of  time  [4].  Within  this  paper,  not  only  is  this  theoretical
expectation examined numerically, but also the problem of reachabil-
ity  is  explored,  both  in  this  context  and  that  of  a  fixed,  unchanging
point of the machine tape. Granted, the issue of determining whether
the  tape  indeed  reaches  this  fixed  point  is  undecidable  as  a  general
case due to the halting problem, but experimentally it was found that
for small, specific samplings it was possible to determine. This will be
further discussed in Section 3. The time at which a TM halts is a func-
tion  of  its  algorithmic  (or  Kolmogorov–Chaitin)  complexity  [1,  3–6],
and  it  is  known  that  with  time,  the  halting  probability  of  a  TM  that
has not halted yet approaches zero [4, 7].

It should be noted that the TMs used in this project have been enu-
merated using the Wolfram programming language, and as such have
no  specific  halting  state.  Therefore,  this  paper  concerns  TMs  with  an
arbitrary  halting  configuration.  The  two  halting  configurations  stud-
ied include a halt state corresponding to some head/cell state combina-
tion  and  the  aforementioned  unchanging  point  in  the  tape.  That  is,
per  the  second  definition  of  halting,  a  TM  halts  when  it  reaches  a
point where the cell state no longer changes. It is in this sense that this
study  varies  from  others  such  as  [5]  and  [7].  Furthermore,  neither
does this study use TMs in the context of axioms as [7] does, nor are
the direct outputs of TMs analyzed as in [5]. Though all three of these
studies utilized Mathematica, they all made use of it for different pur-
poses  (the  use  of  Waldmeister  in  [7],  for  example),  some  of  which
may have contributed to differences in halting time distributions. This
issue,  as  well  as  other  such  dissimilarities,  is  touched  upon  in  Sec-
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tion�2.1.  Additionally,  the  scope  of  this  exploration  differs  from  that
of either [5] or [7], as those largely discuss n,2 TMs where 0 < n < 5,
whereas  this  study  obtained  results  for  s,k  TMs  reaching  1 < s < 7
and  1 < k < 7  through  random  selection  (s,k  values  of  one  were
assumed trivial and values of seven or more were too great to reason-
ably compute).

Since for certain TMs maximum halting times are known, any such
machine  that  does  not  halt  before  the  maximum  time  will  not  halt
after  it  [7].  These  known  maximum  halting  times  will  be  used  in  the
first definition of halting.

For the purposes of this study, every TM is assumed to have an infi-
nite,  one-dimensional,  blank  (all  cell  states  are  zero)  tape  at  its  dis-
posal,  and  the  range  that  the  head  moves  from  one  step  to  another
has been limited to one unit left or right. The head is assumed to start
at  a  state  of  one.  This  differs  from  other  configurations  where,  for
example,  a  one-sided  tape  with  a  finite  right  end  can  define  halting
simply by when the TM reaches this end [1, 8].

Halting as Defined by Rules2.

As aforementioned, a TM will not halt unless some halt state is speci-
fied.  In  this  instance,  the  halt  state  for  a  given  TM  is  defined  within
the set of rules in a manner similar to busy beaver TMs. Busy beavers
are machines with n head states and two cell states (denoted n,2) that
attempt  to  achieve  the  maximum  number  of  steps  before  halting.
These  are  known  to  have  maximum  halt  values  of  six,  24  and  107
steps for two, three and four possible head states, respectively [7, 9]. 

The rules can be defined by assigning every head state (s) on a cell
of state (a) to a new head state (sp), cell state (ap) and head displace-

ment (off ), denoted {s, a} → sp, ap, off. Here, the halt state was indi-

cated  by  assigning  a  single  {s, a}  in  any  set  of  rules  to  0, 3, 0.  In

practice,  this  did  not  actually  halt  the  TM,  but  it  did  provide  a
method to determine when a machine would have halted. As no other
rule would result in a head state of zero or a cell state of three, it was
easy to identify computationally which machines “halted.”

Definition 1. A  Turing  machine  has  halted  when  it  reaches  a  head/cell
state combination that, in its rule set, halts the machine.

Halting Probabilities of 2,2 Turing Machines2.1

Using  functions  created  within  Mathematica,  all  possible  TMs  with
two possible cell states and two possible head states in addition to the
halting  state  were  enumerated,  and  the  percent  of  those  halted  was
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calculated,  giving  the  approximate  halting  probability  for  2,2  TMs.
This  code  and  all  code  that  follows  in  this  paper  was  created
with  Mathematica  and  is  available  at  https://github.com/kk428/
TM-NCHalts/blob/master/TM_Code_Packge.m.

When  these  functions  were  run,  it  was  shown  that  any  given  2,2
TM with a halting state defined in its rules has about a 43.3% chance
of  halting.  This  is  markedly  higher  than  the  probability  given  by  [5],
about  30.44%,  and  [7],  about  34.56%.  It  is  lower  than  the  proba-
bility  given  by  [1],  which  is  about  66.7%,  though  this  was  on  a
one-sided  tape.  It  should  be  kept  in  mind,  furthermore,  that  the  enu-
meration of halting machines differs in this paper.

The  total  number  of  rules  that  halt  at  a  certain  step  was  likewise
given  by  a  function.  It  was  found  that  2016  TMs  halted  at  the  first
step, 1008 at the second, 288 at the third, 108 at the fourth, 12 at the
fifth and 60 at the sixth.

Figure  2  plots  the  step  at  which  these  TMs  halt  against  their  fre-
quency.  For  the  most  part,  there  is  a  great  downward  trend  concern-
ing at what step a 2,2 TM halts. It is far more likely for a machine to
halt  at  the  first  step  than  at  the  sixth,  which  makes  sense.  The  TMs
that  halted  at  the  first  step  would  have  to  consist  of  all  those  whose
rules dictated that a head state of one and a cell state of zero calls for
a  halt.  Any  TM  with  this  as  part  of  its  rule  set  will  definitely  halt  on
step  1.  On  the  other  hand,  those  rules  that  halt  on  step  2  have  to
depend  on  two  factors:  the  rule  dictating  what  should  happen  after
the initial state and the rule dictating what should be done after that.
It  would  follow  that  this  compounding  complexity  results  in  fewer
instances of halting. And of course, each step results in more complica-
tions, leading to a progressively decreasing halting probability.

The  plot  given  in  Figure  2  approximates  the  Levin  universal  semi-
measure  distribution  (see  [5,  6]),  though  it  may  vary  from  it  some-
what  because  of  how  the  halting  state  was  defined  and  how  TMs
were enumerated. Other approximations given by the distributions in
[5]  and  [7],  for  example,  both  employed  10 000  2,2  TMs  using  the

formula  4n + 22n  for  n,2  TMs.  This  study  instead  found  4096  2,2

TMs  given  by  2sksk  for  s,k  TMs,  as  did  [1],  though  this  does  not

account  for  the  additionally  defined  halting  state.  However,  taking
that  into  account,  there  would  still  only  be  a  total  of  8064  TMs  per
this study’s creation of TM rules. This discrepancy could clearly con-
tribute  to  differences  in  probability  and  intrinsically  implies  a  dispar-
ity in TM enumeration. Additionally, although this study, [5] and [7]
all used busy beavers in a sense to define halting (where there is a halt
state of zero outside of the two head and cell states), here the halting
state  had  to  be  explicitly  implemented  into  the  TM  rules  within  the
Mathematica  TuringMachine  function,  and  thus  the  TM  rules  them-
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selves  were  generated  as  systematic  combinations,  further  affecting
enumeration.  (Though  [5]  likewise  used  the  TuringMachine  function,
it can be assumed that the formulation differed.)
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Figure 2. Plot  of  the  step  at  which  a  function  halts  against  how  many  func-
tions halt at that step. The data points have only been joined for visualization
purposes. Note that this plot is fairly similar to Figures 1 and 6 in [7] in terms
of values and trends, respectively, except for the value of the number of TMs
that  halt  at  five  steps  (12  compared  with  362)  in  Figure  1.  Though  Figure  2
more  or  less  follows  the  trend  given  by  Table  2  of  [5],  the  differences  in  the
result  measured  (string  length  rather  than  halting  time)  allow  for  no  more
than an  estimate. Here  there appear  to be five  times as  many TMs  halting at
the sixth step as at the fifth; it is assumed to be a random result.

Halting Probabilities of 3,2 Turing Machines 2.2

Theoretically,  the  preceding  process  could  be  performed  for  3,2  and
4,2  TMs  as  well.  However,  the  runtime  needed  to  run  the  3,2  TM
counterpart  to  the  aforementioned  functions  as  well  as  the  memory
space  it  requires  made  it  unreasonable  to  proceed.  It  could  be  imag-
ined  that  functions  dealing  with  4,2  TMs  would  create  even  greater
difficulties.

Alternatively, it is possible to randomly select 3,2 TMs in order to
at  least  obtain  an  approximation  of  the  halting  probability.  There-
fore,  a  function  that  randomly  generates  a  rule  set  and  determines
whether it halts was defined.

This function resulted in, when run to select 1000 TMs five times,
609,  575,  576,  593  and  602  nonhalting  values  and  thus  391,  425,
424,  407  and  398  halting  values.  Runtime  generally  limited  the  cre-
ation  of  a  larger  sample  set.  Taking  the  average  of  these  values  gives
an  approximate  halting  probability  of  about  40.9%  for  3,2  TMs.
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Although this value is fairly close to the 43.3% halting probability of
2,2 TMs, as not a single value exceeded or matched it among the non-
averaged  values,  it  seems  fair  to  assume  that  the  halting  probability
decreased from 2,2 to 3,2 TMs.

This  could  be  because  even  though  3,2  TMs  have  more  head/cell
state  combinations,  for  every  rule  set  there  is  still  only  one  head/cell
state that results in a halt state. For a given rule set, all head/cell state
combinations  may  not  have  the  same  probability  of  occurring  within
a TM, but it follows that a randomly selected TM would be less likely
to  generate  the  precise  head/cell  combination  needed  at  a  given  step
rather  than  one  of  the  many  other  possible  combinations.  If  this  pat-
tern  continues,  then  it  could  be  said  that  the  total  possible  TMs
increase  at  a  faster  rate  than  halting  TMs.  In  this  case,  by  increasing
possible head or cell states, the TM becomes overall less likely to halt
in the style of the increasing complexity of 2,2 TMs.

Halting Probabilities of 4,2 Turing Machines and n,2 Turing 

Machines with Greater Numbers of Head States
2.3

In the same way as used for 3,2 TMs, the halting probabilities of 4,2
TMs  can  be,  in  theory,  determined  using  random  samples.  However,
the maximum halting times for n,2 TMs where n is greater than four
are  unknown,  and  furthermore,  even  the  lower  limits  determined  for
certain  values  of  n  are  too  large  to  effectively  use  in  computations.
For  example,  5,2  TMs  have  a  lower  limit  of  47 176 870  maximum
steps, whereas 4,2 TMs have only 107 [1, 5, 9]. 

Concerning the aforementioned maximum halt times, the only time
they would be used in calculations would be to provide a limit for the
halting  state  to  develop.  It  could  be  reasonably  possible  to  gather
some data within the first 10000 steps or so of 5,2 TMs, for example,
but this may not necessarily represent the overall halting probability. 

However,  even  though  it  does  seem  possible  to  approximate  halt-
ing  probabilities  for  4,2  TMs,  even  this  seems  to  be  unfeasible,  or  at
least difficult, in terms of computational strength (see [1, 8] and espe-
cially  [5]).  The  great  number  of  rule  sets  to  choose  from  (rather  than
the  maximum  halting  time)  restrains  the  selected  computations  from
generating  even  one  random  4,2  TM,  let  alone  enough  to  make  up  a
sample size. Though Section 5 of [1] referred to the random selection
of  4,2  TMs,  it  should  be  noted  that  both  the  sampling  process  and
how  halting  was  defined  differed  somewhat.  The  sampling  process
included  a  correlation  with  3,2  TMs,  and  TM  halting  itself  was
treated as the completion of a function rather than the definition used
previously.  Furthermore,  even  in  this  case  it  was  acknowledged  that
the samples garnered may be “not at all representative.”
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Halting Probabilities of 2,3 Turing Machines2.4

In  the  same  vein  as  the  problems  of  5,2  TMs  and  greater,  most  n,3
TMs  have  unknown  maximum  halting  times  or  ones  that  are  too
great  to  produce  meaningful  results.  Only  2,3  TMs  with  a  maximum
halting  time  of  38  are  within  the  range  of  reasonable  computation;
even 3,3 TMs have a lower limit of 374676 383 maximum steps [10].
Selecting  random  halting  TMs  is  therefore  an  effective  method  to
approximate the halting probability of 2,3 TMs.

Running a function analogous to the one mentioned in Section 2.2,
values  of  680,  665,  686,  673  and  670  total  nonhalting  TMs  were
returned,  respectively  giving  values  of  320,  335,  314,  327  and  330
halting  TMs.  The  average  of  these  values  yields  a  halting  probability
of 32.52% for 2,3 TMs.

This,  much  like  in  Section  2.2,  could  be  explained  by  increasing
TM  complexity.  As  increasing  the  possible  cell  states  by  one
decreased the halting probability by significantly more than increasing
the  possible  head  states  by  one  did  (-10.78%  instead  of  -2.4%),  it
appears  that  here  cell  states  may  affect  TM  functionality  to  a  greater
degree than head states do.

Halting as Defined by Cell State3.

An  alternative  way  to  define  a  halting  state  could  be  to  claim  that  a
machine halts when the cell state no longer changes from step to step
after  reaching  a  fixed  point.  This,  however,  allows  for  the  head  to
keep  changing  position.  It  has  been  noted  that  the  general  case  for
deciding  whether  a  given  TM  eventually  reaches  this  fixed  point  is
undecidable  because  of  the  halting  problem.  However,  here  only
small,  specific  samples  of  TMs  were  tested  using  only  100  steps  to
determine  whether  they  eventually  no  longer  vary  in  cell  state.
Though 100 may seem a bit low considering the lower limits on poten-
tial busy beavers, it was found that probability values did not vary sig-
nificantly  between  using  100  and  1000  values,  and  furthermore  that
using even greater values would be computationally unfeasible. In this
case,  to  determine  whether  a  TM  without  a  halt  state  explicitly
defined in its rules will eventually reach this unchanging point, a func-
tion was created that looks for four repeats in a row at n - 1, n, n + 1
and n + 2 steps, then determines whether this pattern holds true at 2n.
Here, 100 was used as n. If a TM held to the same cell state for such
a  length  of  time,  it  can  be  assumed  that  the  cell  states  would  no
longer change.

Definition 2. A  Turing  machine  has  halted  when  there  is  no  longer  a
change in cell states from step n to step n + 1 for any value of n above
a given limit.
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Explanation of the Need for 2n3.1

Originally, the pattern at 2n (or even at n + 2) was not evaluated, as it
seemed natural that a TM that produces the same result three times in
a row would continue to do so for the fourth, fifth, sixth and so forth
time.  However,  the  fact  that  the  head  moves  and  may  be  in  different
positions even when cell states are identical had been underestimated,
leading  to  a  mistake  in  computations  noted  when  the  halt  times  of
various  TMs  were  plotted  and  outliers  were  uncovered  that  could
only be accounted for by the fact that these TMs did not actually halt. 

Most  of  the  values,  predictably,  required  fewer  than  six  steps  to
halt, but three data points appeared to have halted after 90 steps, indi-
cating a mistake in defining halting. These TMs simply had repeating
sets of three cell states throughout.

By  additionally  checking  for  2n  and  n + 2,  it  was  ensured  that  a
given TM actually does have constant, identical cell states from a cer-
tain point onward. It may be conceivable that a function repeats four
times,  continues  erratically,  and  then  by  chance  hits  upon  the  same
row  of  cell  states  as  before  at  2n,  but  this  seems  highly  improbable.
Even  if  a  significant  number  of  TMs  have  four-step  repetition,  it  is
unlikely  that  this  combination  of  cell  states  would  occur  again  at  2n.
Furthermore,  the  three  outliers  detected  previously  indeed  had  three-
step  repetition,  but  each  cycle  of  three  steps  differed  from  the pre-
vious  one  (though,  admittedly  they  do  not  perhaps  exemplify  an
adequate  sample  set).  At  any  rate,  this  exception  seems  unlikely
enough to be discounted in random selection.

Halting Probability for Various Turing Machines3.2

To  create  a  sample  set,  a  function  was  created  that  generates  1000
random TMs within a certain set of s,k TMs where the rules were pre-
defined  by  Mathematica  as  integer  values  ranging  from  zero  to

2sksk - 1. Each of these TMs is run for 100 steps and is classified

as halting or nonhalting according to the aforementioned method.
With  these  values, a  table  of  halting  probabilities  for TMs  ranging

from 2,2 to 6,6 TMs was created (see Table 1).
This  data  can  be  used  to  observe  trends  both  when  the  cell  states

keep  constant  while  the  head  states  change  and  when  the  head  states
are  constant  and  the  cell  states  change,  given  by  Figures  3  and  4,
respectively.

The  cell  state  appears  to  determine  halting  probabilities  to  a
greater degree than the head state, much as was noted in Section 2.4.
However, perhaps in this case this results from the fact that with Defi-
nition  2  of  halting,  only  the  cell  state,  rather  than  a  head/cell  state
combination, determined when a machine should stop. As head states
did  not  explicitly  determine  TM  halting  in  this  definition,  they  only
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affected  halting  probability  in  the  sense  that  they  increased  the  possi-
ble  states  of  the  machine.  As  described  in  the  context  of  Definition  1
of  halting,  increasing  possible  states  of  a  machine  may  not  increase
the number of those states that result in halting.

s k 2 3 4 5 6

2 0.43210 0.27745 0.19690 0.15535 0.12590

3 0.39370 0.24090 0.17205 0.13495 0.10885

4 0.36475 0.22085 0.15805 0.12745 0.10285

5 0.34470 0.20650 0.14870 0.12005 0.09760

6 0.33055 0.20255 0.14240 0.10835 0.08915

Table 1. Table  of  halting  probabilities  from  2,2  TMs  to  6,6  TMs.  The  s  col-
umn represents the total number of head states, and the k row represents the
total  number  of  cell  states.  The  values  represent  the  halting  probability  for
each respective set of s,k TMs.
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Figure 3. Plot where cell states are held constant while the head states change.
The  data  points  have  only  been  joined  for  visualization  purposes.  Each  line
represents a different constant cell state.

Although  it  is  possible  to  find  functions  that  somewhat  resemble
the preceding plots, for the most part, polynomial approximations are
inaccurate. As these plots refer specifically to the relation the head or
cell  state  has  with  probability,  they  are  likely  irrelevant  to  the  Levin
distribution. 
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Figure 4. Plot where head states are held constant while the cell states change.
The  data  points  have  only  been  joined  for  visualization  purposes.  Each  line
represents a different constant head state.

Evaluating Halting 2,2 Turing Machines3.3

Figure  5  provides  a  log  plot  of  the  halting  times  of  the  1774  halting
2,2  TMs.  The  step  at  which  they  halt  was  assessed  after  testing  all
4096 of these TMs.
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Figure 5. Log plot of the step at which a function halts against how many func-
tions halt at that step. The data points have only been joined for visualization
purposes; the gap in the line connecting these points arises from the fact that
no  TM  halted  at  three  steps.  This  plot  fulfills  the  same  function  as  Figure  2,
but represents the values under a different definition of halting. 

94 K. Krzyzanska

Complex Systems, 27 © 2018



As  mentioned  in  the  context  of  Figure  2,  Figure  5  may  approxi-
mate  the  Levin  distribution,  though  due  to  the  halting  schematic,  it
likely varies more than previously mentioned plots. 

Although  the  2,2  halt  times  from  Definition  1  of  halting  ranged
from  one  to  six,  the  halt  times  for  Definition  2  range  from  zero  to
five.  This  arises  mainly  through  the  different  definitions  of  “halting”
in  each  case.  For  example,  it  would  clearly  be  impossible  for  a
machine  to  halt  after  zero  steps  using  Definition  1;  that  would  imply
that the TM halted before it even started. This, however, is acceptable
per  Definition  2,  as  this  definition  describes  a  change  in  state  rather
than  a  state  in  itself.  That  is,  when  there  is  no  change  in  state,  the
machine  is  said  to  halt,  as  opposed  to  a  machine  reaching  a  single
“halt state.” Furthermore, it appears that 2,2 TMs never halt at three
or six steps per Definition 2. This may be a random consequence; the
low  number  of  machines  that  halt  at  four  and  five  steps  would  cer-
tainly  allow  it.  However,  it  is  interesting  how  both  Definitions  1  and
2  briefly  increase  after  a  stretch  of  decreasing  values,  though  more
accurate  data  is  needed  for  a  conclusion;  the  small  number  of  TMs
that halt at later steps increases the inaccuracy of approximations.

Additionally,  it  can  be  noticed  that  although  neither  definition
exceeds  six  steps  to  halt,  with  Definition  2  it  is  generally  more  likely
that  the  machine  will  halt  at  or  before  the  first  step.  This  may  be
observed through the low number of TMs halting after step one given
by Figure 6.

●

●

●
● ● ●

■

■

■ ■ ■ ■

● Halting Definition 1

■ Halting Definition 2

0 1 2 3 4 5 6

0

20

40

60

80

Halting Time

P
e
rc
e
n
t
o
f
T
M
s

(a)

Figure 6. (continues)
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Figure 6. Line  plots  representing  the  distributions  of  the  step  at  which  2,2
TMs  halt.  The  data  points  have  only  been  joined  for  visualization  purposes.
(a)  Represents  the  halting  step  distributions  using  the  first  and  second  defini-
tions of halting. (b) Shows the same distribution as the orange plot of (a), but
does  not  include  the  TMs  that  halted  at  step  zero,  emphasizing  proportion-
ately how many TMs halted at step one.

Evaluating Turing Machines with Greater Numbers of Head and 

Cell States
3.4

Much  like  the  problems  faced  with  gathering  data  using  Definition  1
of  halting,  it  is  implausible  to  completely  evaluate  more  complicated
TMs.  Although  in  the  preceding  example  of  2,2  TMs  every  possible
rule  set  was  evaluated,  this  is  clearly  impractical  for  TMs  with  even
slightly  more  possible  head  or  cell  states.  Therefore,  the  approach  of
random selection was taken. 

A list of associations corresponding with all 25 TMs touched upon
in Section 3.2, spanning from 2,2 TMs to 6,6 TMs, was created, gen-
erating 100 000 TMs per s,k combination and determining the halting
times of each (Figure 7).

In  all  cases,  TMs  that  halt  immediately  make  up  a  clear  majority,
often  with  more  than  10 000  TMs.  The  frequency  of  TMs  that  halt
immediately  is  given  in  Table  2.  With  head  states  held  constant,  the
percent  of  immediately  halting  TMs  decreased  as  total  cell  states
increased  (and  likewise  for  constant  cell  states),  reflecting  the  pattern
noted  in  Table  1.  Furthermore,  the  range  of  steps  at  which  TMs
halted  generally  increased  according  to  this  same  pattern,  ranging  up
to halting times of 98, as given in Table 3. 
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Figure 7. Log  plots  of  the  halting  times  of  all  25  measured  TMs.  The  data
points  have  only  been  joined  for  visualization  purposes.  Please  note  that  this
figure  is  only  intended  to  provide  a  general  idea  of  the  spread  of  halting
times. The blue plots represent TMs with fewer possible head/cell state combi-
nations,  beginning  with  2,2  TMs,  2,3  TMs,  and  so  forth,  while  the  red  plots
represent TMs with more possible combinations, going down from 6,6 TMs,
5,5 TMs, and so forth.

s k 2 3 4 5 6

2 38067 22 532 15 881 12298 9928

3 32198 17 875 11 976 8983 7004

4 28318 14 666 9656 7107 5497

5 25342 12 754 8145 5716 4603

6 22931 11 094 7124 5195 3838

Table 2. Table  of  the  peak  values  of  TM  counts  for  halting  steps  from  2,2
TMs  to  6,6  TMs.  The  s  column  represents  the  total  number  of  head  states,
and  the  k  row  represents  the  total  number  of  cell  states.  In  all  instances,  the
greatest number of TMs halted at step zero. 

Tables  1–3  all  demonstrate  how  increasing  possible  TM  states
decreases  halting  probability.  This  largely  corresponds  to  observa-
tions  made  previously.  In  this  instance,  for  a  TM  to  halt,  it  must
reach a particular row of cell states that repeats itself infinitely despite
a  moving  head,  essentially  creating  a  loop.  The  more  steps  a  given
loop requires for a TM to reach it, the less likely it is that any random
TM will achieve it. This is why immediately halting TMs are far more
common:  the  halting  loop  is  achieved  for  any  TM  with  {1,0}→{1,0,off}
in  its  rule  set,  where  off  represents  any  horizontal  offset  of  the  head.
For a machine to enter a halting loop at a later step, it would have to
be the result of all the steps preceding it. The more steps that precede
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it,  the  more  total  results  are  available  at  that  particular  step,  leading
to  a  lower  halting  probability.  It  follows  that  increasing  the  number
of  possible  options  available  for  a  TM  would  likewise  compound  the
number  of  options  for  every  additional  step,  decreasing  the  halting
probability further.

s k 2 3 4 5 6

2 5 18 30 58 79

3 14 60 74 93 87

4 22 68 94 97 96

5 58 73 95 98 98

6 50 91 92 98 98

Table 3. Table of maximum halting times from 2,2 TMs to 6,6 TMs. The s col-
umn represents the total number of head states, and the k row represents the
total  number  of  cell  states.  These  TMs  were  run  for  only  100  steps,  and
though some of the greater times, such as 98, suggest that a higher limit may
have  been  more  appropriate,  none  of  these  values  represented  more  than
three  TMs  out  of  100 000,  suggesting  that  selecting  larger  values  would
obtain only similarly trivial results. 

Conclusion4.

Generally  speaking,  a  Turing  machine  (TM)  will  either  halt  relatively
soon or never halt [3]. Per Definition 1 of halting and the TM enumer-
ation schematic used in this study, where a halt state is defined in the
TM  rule  set,  2,2  TMs  have  a  43.3%  chance  of  halting.  A  given  halt-
ing  TM  is  more  likely  to  halt  at  the  first  step  than  any  other;  that  is,
the  halting  probability  of  a  TM  decreases  with  time  and  will  have  a
smaller  chance  of  halting  at  every  step  it  progresses,  reflecting  previ-
ous  observations  such  as  in  [4]  or  [7].  Furthermore,  the  distribution
of  these  halting  times  likely  approximated  the  Levin  universal  semi-
measure  distribution.  The  halting  probabilities  for  3,2  and  2,3  TMs
were,  respectively,  40.9%  and  32.52%.  Computational  limitations
prevent  TMs  with  four  or  more  options  for  head  or  cell  state  from
being  analyzed,  even  through  random  selection.  However,  from  the
limited  data  collected,  it  appears  that  increasing  the  possible  TM
states  decreases  the  halting  probability,  and  that  possible  cell  states
affect this more than possible head states. 

Using  Definition  2  of  halting,  where  a  TM  halts  when  it  reaches  a
fixed  point  where  the  cell  state  no  longer  changes,  approximate  halt-
ing  probabilities  for  TMs  ranging  from  2,2  to  6,6  TMs  were  found.
These  values  are  displayed  in  Table  1.  As  either  the  possible  head  or
cell  states  increase,  the  halting  probability  decreases,  reflecting  the
trend observed with Definition 1. In general, it is far more likely for a
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TM to halt at or before a time of one than at any other step, with the
probability  of  a  TM  halting  at  a  later  step  decreasing  at  a  noticeably
faster rate than under Definition 1. Despite this, TMs were found that
did  not  halt  until  step  98,  which  is  near  the  limit  placed  on  runtime.
Overall,  this  reflects  the  aforementioned  observations  and  demon-
strates  the  fact  that  although  the  general  halting  probability  of  a  TM
is  undecidable  due  to  the  halting  problem,  halting  probabilities  may
be approximated for specific cases.
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