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Theories  relating  to  the  discretization  of  spacetime  and  results  from
quantum  information  theory  have  indicated  that  physically  observable
behavior may be emergent from such an underlying yet unknown micro-
scopic  theory.  In  this  paper,  a  candidate  discrete  system  based  on  the
structure  presented  in  [1]  is  explored  via  direct  computational  imple-
mentation.  The  microstates  of  the  system  evolve  via  information
transfer  mechanisms  on  dynamic  complete  graphs  built  upon  substitu-
tion  networks  developed  in  [1].  Using  the  positive  integer  edge  weights
as  measures  of  distance,  the  system  is  artificially  embedded  in  n  by
treating  the  flat  space  violations  as  stress,  resulting  in  a  curved  geom-
etry  (Figure  1).  This  stress  then  effects  a  force  on  the  vertices.  In  this
paper,  light  cone  dynamics  of  the  motion  of  the  minima  of  this  stress
are observed, along with superluminal motion of the vertices. We argue
that  this  superluminal  velocity  corresponds  to  the  quantum  mechanical
discontinuous  motion  of  particles  and  provides  possibilities  for
descriptions  of  entanglement  and  particle  spin  within  the  system.  Fur-
ther  to  this,  that  the  compatibility  of  this  type  of  dynamics  with rela-
tivistic  behavior  makes  this  system  nontrivial  and  worthy  of  further
investigation. 
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Introduction1.

The notion that observed physical behaviors are emergent from a bot-
tom-up  microscopic  description  has  been  incorporated  in  various
areas of theoretical physics in recent years. Causal set theory describes
an  abstract  generalized  structure  of  such  a  description  [2,  3].  Recent
insights  from  holography  and  quantum  information  theory  [4–6],  as
well as other new theoretical insights [7, 8], also imply an underlying
microscopic  description.  In  other  words,  quantum  mechanics  tells  us
a lot about how likely something is to happen, but it does not tell us
why,  on  the  most  fundamental  level,  it  is  that  likely  to  happen.  The
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approach of this paper is motivated by this, along with two reduction-
ist  world  views.  First,  that  an  underlying  discrete  spacetime  structure
[9–12] rectifies many of the infinities resulting from the incompatibili-
ties of general relativity and quantum field theory. This is detailed by
Sorkin  in  [13].  The  second  is  that  complex  dynamics  and  behaviors
emerge  from  fundamentally  simple  rules  that  may  be  implemented  as
networks, or cellular automata, on a (quantum) computer [14–18]. In
this  way,  it  is  not  unreasonable  to  propose  that  all  observable  phe-
nomena  in  the  universe  may  be  emergent  from  a  single  definable  and
computable microscopic discrete description of spacetime. 

Developments  in  quantum  mechanics  suggest  that  quantum  field
theory  (QFT)  may  be  computable  in  the  form  of  quantum  cellular
automata  (QCA)  [19,  20].  This  has  led  to  research  such  as  that  of
D’Ariano,  showing  physics  as  emergent  from  information  processing
[21];  essentially  that  QCA,  given  the  specific  fundamental  axioms  of
unitarity, homogeneity, locality and isotropy, can produce QFT as an
emergent theory [22–24]. The research of Requardt and Rastgoo into
the  structurally  dynamic  cellular  network  followed  a  somewhat  simi-
lar  approach.  Again,  the  motivation  being  that  underlying  spacetime
could be adequately described by cellular networks. This research was
initiated  in  the  late  1990s  with  [25]  and  [26],  and  continued  with
some  more  recent  publications  [27].  Parallel  to  this,  a  similar
approach  was  taken  up  by  Konopka,  Markopoulou  and  Smolin  in
[28],  where  they  suggest  evidence  for  holography  and  the  black  hole
entropy  law  resulting  from  the  continuum  spacetime  structure  emer-
gent  from  networks,  bearing  correlations  to  the  later  work  of  Ver-
linde [5, 6], but in the context of dynamic networks. 

In  this  paper,  a  microscopic  description  of  such  a  system  is  pre-
sented,  as  well  as  results  of  physically  comparable  behavior  emergent
from  its  implementation.  The  system  is  a  development  based  on  the
globally interacting fully connected stochastic substitution (FCSS) sys-
tem presented in [1]. 

The  greatest  challenge  in  describing  such  a  microscopic  theory  is
that  it  must  be  consistent  with  all  observation  on  all  energy  levels.
Therefore,  as  each  layer  of  detail  is  added  to  the  description,  further
consistencies must be realized. The correct microscopic theory should
in  essence  speak  for  itself,  as  all  physically  comparable  behavior
should  be  emergent  and  should  ideally  be  based  on  rules  that  are  as
simple  as  possible.  This  paper  will  attempt  to  make  the  case  that  the
rules for the system investigated are indeed nontrivial, while also sim-
ple  and  aesthetic.  In  Section  4,  comparisons  with  physical  systems,
parallels to relevant physical theories and suggestions of further areas
to investigate in this system are made. So far, apparent physically com-
parable  behavior  includes  an  origin  of  particle  mass,  internal  particle
spin,  quantum  observation  and  wave/particle  duality,  light  cone
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dynamics  and  propagation  of  light/information  at  the  speed  of  light,
variety of interparticle interactions causing the emergence of complex
structures,  and  two  possibilities  for  nonlocal  entanglement  dynamics
and  quantum  tunneling.  These  will  be  explained  in  more  detail  in
Section 4. 

A  microscopic  description  must  be  Lorentz  covariant,  something
that  has  proven  difficult  for  many  microscopic  discrete  systems  [29].
The  system  implemented  in  this  paper  has  a  defined  spacetime,  coor-
dinate bases defined by choosing orientation vertices [1] and a mecha-
nism  for  transforming  between  them.  In  this  context,  the  rules
outlined in this paper are consistent with the postulates of special rela-
tivity  [30].  This  is  because  two  metrics  are  defined,  that  of  the
microstate graph and that of the embedded space n, and information
propagates  along  the  edges  of  the  microstate  graph,  the  geometry  of
which is independent of the configuration in n; therefore, no matter
how  an  observer  moves  through  the  system,  the  rate  of  information
transfer  remains  constant  within  the  state  graph.  What  we  see  in  this
paper  is  that  this  rate  of  information  transfer  results  in  light  cone
dynamics  of  particles,  with  the  light  cones  defined  on  the  metric  of
the system in n. Relativity is a local theory and is at odds with quan-
tum entanglement, a nonlocal theory [31]. However, by implementing
an information transport mechanism within the discrete system, simi-
lar to that implemented in [32], and a hidden velocity variable on ver-
tices,  we  observe  a  compatibility  of  nonlocal  action  at  a  distance  and
local  light  cone  dynamics  emergent  from  the  fundamental  rules  and
structure of the system. 

It  is  important  to  note  that  this  paper  is  describing  a  candidate
microscopic  structure  from  which  physically  comparable  behavior  is
expected  to  be  entirely  emergent.  Therefore,  the  main  aim  is  to  pro-
vide  a  definition  of  the  system  along  with  some  preliminary  results,
with the hopes of stimulating further analysis and investigation of the
system. We also hope to help encourage criticism outlining significant
violations of physical law that may be faced by this system and others
like it. 

Microstate Description and Rules2.

A  microstate  in  this  system  is  represented  by  a  complete  graph
G  (V, E)  called  the  state  graph,  where  the  vertices  represent  point
particles  (PPs)  and  the  edge  weights  represent  a  measure  of  spatial
extent  between  PPs  called  interaction  edges  (IEs).  The  IEs  are  chains
of  indivisible  identical  cells  called  space  elements  (SEs).  The  edge
weights of the graph correspond to the number of SEs in each IE that
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the  system  is  aware  of  in  that  moment  in  time.  The  graph  evolves  in

discrete  clock  time,  with  each  constituent PP, SE  undergoing  transi-

tion rules through each time step (TS).

Complete Graph Structure and Transition Rules2.1

During  a  transition  t → t + 1,  SEs  and  PPs  both  have  two  mutually
exclusive probabilistic actions that they may undergo.

Every  SE  within  the  system  may  duplicate  (1SE → 2SE)  or  reduce
(1SE → 0SE) with a probability of pd and pr, respectively. 

Every  PP  may  split  into  two  PPs  separated  by  one  SE
(1PP → 2PP + 1SE) or merge all SEs between two PPs reducing in the

same  TS  (2PP + kSE → 1PP),  with  probabilities  ps  and  pr
k,  respec-

tively,  where  k  is  the  number  of  SEs  between  the  two  PPs  at  time  t.
In  this  paper,  we  are  analyzing  purely  the  effect  of  the  information
propagation;  therefore,  we  consider  the  system  where  ps  0.  If  all

SEs in an IE reduce in the same TS, then they are replaced by 1 SE.
One PP in this graph is named the central PP. At the point in time t

that these actions occur, the information of the actions begins to prop-
agate  through  the  IEs  at  a  rate  of  one  SE/TS.  A  duplication  propa-
gates  a  +1  and  a  reduction  propagates  a  -1;  these  values  undergo
superposition  as  they  propagate  through  the  dynamic  IEs.  This  hap-
pens on the radial IEs (IEs incident to the central PP) in one direction
toward  the  central  PP,  and  on  the  nonradial  IEs  in  both  directions
toward  the  two  enclosing  PPs.  Information  traveling  along  nonradial
IEs  is  transferred  to  a  radial  IE  incident  to  the  PP  it  is  propagating
toward  once  it  reaches  it.  This  information  resides  on  the  gaps  (or
nodes)  between  SEs,  and  so  it  is  stored  as  integer  values  in  nonradial
IEs  and  as  lists  of  integers  in  radial  IEs.  The  state  of  the  system
updates  according  to  the  information  that  reaches  the  central  PP  at
any  given  time  slice  t.  (This  results  in  the  fundamental  principle  of
conservation  of  information.  This  can  be  used  to  check  the  correct-
ness  of  coding  used  to  implement  the  system.)  This  gives  the  vertices
the  role  of  the  observer  in  the  system,  much  as  described  by  Illachin-
ski  [14].  (In  this  case,  propagation  would  have  to  be  considered  as
occurring in all directions, as this would force an equivalence between
radial  and  nonradial  IEs  under  a  transformation  of  reference  frame/
central  PP.)  This  means  that  there  is  a  global  symmetry  regarding
transformations between vertices within the system’s microstates. 

There  are  two  representations  for  the  microstates,  the  observed
microstate representation (the information that the system is aware of
at any time t) and the hidden microstate representation (all the infor-
mation that characterizes the microstate and therefore the correspond-
ing paths). 
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An  observed  microstate  γt  takes  the  form  of  the  state  matrix  Et,

where  Et  eijt ∈ Mmt
(ℕ),  where  mt  is  the  number  of  PPs  at  time  t,

eij ∈ ℕ  with  e1i  ei1,  and  eii  0.  Et  is  a  matrix  describing  the  edge

weights of graph G  (V, E). 
γt  with  γt

′
 represents  the  components  of  a  specific  microstate  at

time  t  for  observed  and  hidden  microstates,  respectively.  The
observed  microstate  corresponds  to  γt  Et,  and  the  hidden

microstate  γt
′
 takes  the  form  of  a  quadruplet  γt

′  Et, St, Tt, Rt.  St
represents  the  instantaneous  number  of  SEs  within  the  IEs  at  time  t,

where St  sijt ∈ Mmt
(ℕ), sij ∈ ℕ with sij  sji  and sii  0. Tt  and Rt

represent  arrays  that  store  the  information  of  propagating  actions
within  the  nonradial  and  radial  IEs  in  the  state  graph,  respectively.
In  our  case,  the  number  of  PPs  in  the  system  is  kept  constant  and
multiedges  are  not  implemented,  so  these  arrays  take  the  form

Tt  τijt  with  τij ∈ ℤs(i+1)(j+1)+1
 and  τij,k ∈ ℤ,  and  Rt  {ρi}t  with

ρi ∈ ℤs1i+1⨯ℤmt
 and ρi,kj ∈ ℤ. Both τij,k  and ρi,kj  represent the propa-

gating action information on an individual SE. 
The action propagation mechanism undergoes the following rules: 

First,  when  an  SE  undergoes  an  action,  that  information  is  initially
stored at the boundaries of that SE in the direction of propagation.

1.

If  at  time  t → t + 1  SE  k  in  radial  IE  ρi  duplicates,  then

ρi,k1
′ t  ρi,k1t + 1,  and  if  it  reduces,  ρi,k1

′ t  ρi,k1t - 1,  else

ρi,k1
′ t  ρi,k1t. 

i.

If  at  time  t → t + 1  SE  k  in  non-radial  IE  τij  duplicates,  then

τij,k
′ t  τij,kt + 1,  and  if  it reduces, τij,k

′ t  τij,kt - 1,  else

τij,k
′ t  τij,kt. 

ii.

The location of the information stored within the IE is changed each TS
due  to  the  actions  that  occurred  within  the  IE  in  that  TS.  Reductions

result in superposition of information. Δαi,k
ρ t  and Δαij,k

τ t  represent the

sum  of  all  actions  ahead  of  point  k  in  the  direction  of  propagation  at
time  t → t + 1  for  radial  and  nonradial  IE,  respectively.  Duplication
adds  1  and  reductions  subtract  1  from  this  total.  Starting  with  null
arrays, the following procedure is performed for all values of k, starting

with 1 and going up to sijt: 

2.

ρi,k+Δαi,k
ρ tj

′′ t  ρi,k+Δαi,k
ρ tj

′′ t + ρi,kj
′ t. i.

τij,k+Δαij,kτ t
′′ t  τij,k+Δαij,kτ t

′′ t + τij,k
′ t.ii.
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The  PPs  then  transfer  the  nonradial  information  incident  to  them  into
radial information toward the central PP, and the central PP updates its
state due to the incident information on it. Then all information does a
single propagation to its neighbor in the direction of propagation.

3.

The information incident on each PP is transferred from nonradial

to  radial,  ρi,sijt+1(j+1)t+1  τij,1t+1,  and  the  observed  microstate

is updated at the central PP, eijt+1  eijt + ρi,1jt+1. 

i.

Then the system does a single SE propagation ρi,k1t+1  ρi,k+11
′′ t

and τij,kt+1  τij,k+1
′′ . 

ii.

Stress Minimization Embedding and Forces in ℝn
 2.2

Each microstate path of γt1
→ γt2

 is written as ωγt1
, γt2

 ∈ ϖγt1
, γt2

,

where  ωγt1
, γt2

  γt1
, γt1+1

, … , γt2-1
, γt2

.  This  is  then  mapped  by

Θ  to  a  path  in  configuration  space  χtt1
, tt2

  Xt1
, Xt1+1

, … , Xt2
,

where  Xt  {xi}t  x0, x1, … , xmt
t  with  xi ∈ n.  From  this,  we

define Vt  {vi}t  v0, v1, … , vmt
t with vi ∈ n

 and vitxi(t+1) - xit,

and  At  {ai}t  a0, a1, … , amt
t  with  ai ∈ n

 and  aitvit - vi(t-1),

where xit, vit  and ait  are instantaneous positions, velocities and accel-

erations in spacetime, respectively.  (This mathematical representation
treats the number of PPs (mt) in the system as constant, and therefore

there is no shifting of the array index due to splitting and merging in
this  system  representation.  In  implementation,  this  ideal  system  can

be modeled by putting ps  0 and enforcing that if sijt → 0, then an

instantaneous  split  occurs  to  counteract  the  merger;  this  is  what  we
have  implemented  for  the  purposes  of  this  paper.)  For  any  initial
observed  microstate  Et  there  may  be  multiple  paths  in  configuration

space; however, for a specific Xt1
, it seems much more likely that only

a  unique  path  is  mapped  to.  eijt  eijt,  xit  {xi}t,  vit  {vi}t  and

ait  {ai}t.

The microstate is embedded in n
 by the map Θ :Mmt

(ℕ) → (n)mt ,

defined as Θ(Et+1, Xt, Vt)  (Xt+1, Vt+1). The function uses the vector

total  intrinsic  stress  incident  on  each  PP,  due  to  the  Euclidean  viola-
tions  of  the  system’s  configuration  in  n,  to  constitute  an  instanta-
neous acceleration on each PP’s velocity at time t: 

ait  
i∈{0,mt}

eijt - xit - xjt
xit - xjt

xit - xjt
. (1)
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Equation (1) gives the instantaneous acceleration on a single PP i at
time t. Therefore, the following conversions of the coordinates hold at
each  time  step,  vjt  vj(t-1) + ajt  and  xj(t+1)  xjt + vjt.  This  is  known

as a PP’s cumulative velocity. 
This  stress-induced  instantaneous  acceleration  constitutes  the

dynamics  of  the  positions  of  the  PPs  within  the  system.  The  accelera-
tion  is  always  directed  along  stress-minimizing  paths  toward  a  local
minimum of the stress: 

[xit]n  [xit]n-1 +


i∈{0,mt}

eijt - [xit]n-1 - xjtn-1
[xit]n-1 - xjtn-1

[xit]n-1 - xjtn-1
. (2)

Equation (2) describes the iterative formula that relaxes all PPs into

a  stress-minimizing  configuration  in  n.  X

t(Xt)  is  the  local  minimum

for  Xt,  where  Xt  {[xi]0}t  and  X

t(Xt)  limn→∞ [xi]nt.  Every

microstate  has  a  corresponding  geometry,  with  geodesics  that  tend
toward  the  local  minima.  (A  sample  of  these  geometries  from  ran-
domly  generated  microstates  of  edge  weights  between  1  and  100  can
be seen in Figure 1.) The velocity of a particle’s local stress minimum
is  known  as  its  minimized  velocity.  In  this  paper,  we  give  evidence
that  the  minimized  velocity  of  a  particle  averaged  over  microstates  is
bounded to be below 1 SE/TS. 

Figure 1. Each  image  in  this  figure  shows  a  characteristic  geometry  that
emerges  out  of  an  observed  microstate  Et’s  embedding  in  2.  Each  image  in

the figure corresponds to a system consisting of 4 PPs. The images are formed

by  plotting  the  paths  taken  by  100  samples  of  Xn0t,  with  n → 100.  The

paths tend toward local minima X


tXt of the stress. Since the state matrix is

constant  for  each  geometry,  these  images  represent  a  snapshot  of  what  the
geometry of the state graph embedded in R2

 is at a moment in time. 
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In  Section  3,  evidence  will  be  provided  of  how  the  information
propagation  rate  of  one  SE  per  TS  within  the  discrete  graph  G
induces  an  intrinsic  speed  limit  on  the  expected  velocity  of  motion  of
these  minima  of  one  SE  per  TS  in  n.  The  velocity  of  PPs  in  the
microstate  is  cumulative,  and  therefore  maybe  far  greater  than  this;
however,  the  direction  of  acceleration  is  always  along  a  geodesic
directed toward the local minima. The result is a system that contains
light cone dynamics of a minimal potential, yet has superluminal oscil-
latory  dynamics  that  may  have  deeper  correlations  to  action  at  a
given  distance  entanglement  dynamic  of  the  quantum  mechanical
wavefunction. 

Results 3.

An  observation  is  a  subset  of  microstates  that  satisfy  a  given  condi-
tion.  This  represents  the  collapse  of  the  macrostate  evolution  into  a
specific microstate or set of microstates, much like the collapse of the
wavefunction  under  observation.  Therefore,  an  observation  could  be
characterized  as  a  set  of  microstates  of  which  one  PP  exists  within  a
specific  region  Δx  of  n,  much  like  in  a  position  measurement.  The
TS  after  the  moment  of  measurement,  there  exists  a  distribution  of

expected minimized velocities 〈V

t〉, as well as for the expected cumula-

tive velocities of the PP 〈Vt〉. Expected velocities are calculated by tak-

ing  the  statistical  average  of  all  minimized  or  cumulative  velocities  in
the instantaneous TS between two sets of microstates. 

Figures 2 and 3 show how the mean, standard deviation and maxi-
mum values for these distributions change as the size of the sample of
microstate paths is increased. 

As  you  can  see  from  Figures  2  and  3,  the  maximum  value  for  the
minimized velocities moves well below 1 when the number of samples
is  increased.  The  expected  cumulative  velocities  are  much  larger  and
do not appear to be quickly tending to below 1. Figure 4 shows how
the  distribution  of  minimized  velocities  after  an  observation  changes
as  the  number  of  iterations  is  increased.  The  effect  of  increasing  the
number  of  iterations  is  clearly  to  bring  the  distribution  of  expected
instantaneous minimized velocities below 1. 

In the  case of Figures  2 through 4, pd  and pr  are both  taken to be

1  2.  Figure  4  shows  how  the  distribution  of  the  expected  minimized

velocity  of  one  PP  takes  the  form  of  a  Poisson  distribution  and  bears
similarities  to  the  Maxwell–Boltzmann  distribution  of  speeds  in  an
idealized gaseous substance. 
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Figure 2. Here the mean, standard deviation and maximum value of the distri-
bution of the expected minimized velocity of one of the PPs within a system
embedded in 3 are shown, as the number of sample microstates 2n ⨯10
increases. The measurements of velocity are taken in the TS after an observa-
tion with Δx  20 is performed on the system.
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Figure 3. Here the mean, standard deviation and maximum value of the distri-
bution of the expected cumulative velocity of one of the PPs within a system
embedded in 3 are shown, as the number of sample microstates 2n ⨯10
increases. The measurements of velocity are taken in the TS after an observa-
tion Δx  20 is performed on the system.

In Figures 5 and 6, 1 + 1-dimensional evolutions of one PP within
the embedded system in  are shown. The straight red lines represent
light cones of gradient 1 defined in n that begin once the PP has
been observed. The gray lines represent the points in time of each
observation (macrostate collapsing to a single microstate). The yellow
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Figure 4. Histograms showing the distribution of the expected minimized
velocity of a PP the TS after observation. These histograms correspond to a
sample size of 100 microstates.

and blue lines show the evolution of the expected minimized and
cumulative velocities, respectively. As can be seen clearly in Figure 5,
the cumulative velocity has oscillatory motion about the stress mini-
mum. However, in Figure 5(a) the path of the particle moves away
from the stress minimum; this is because to increase the speed of the
simulation, X


t(X t-1) was used as opposed to X


t(Xt). What this means

is that there are multiple local minima. With a superluminal velocity,
it is likely to be possible to jump between any two of these minima. It
may also be possible for a particle oscillating about one local mini-
mum, under macrostate collapse due to observation, to appear in a
different minimum. This is similar to the effects of quantum tunneling
or action at a distance of a spatially separated single-particle wave-
function.

Figure 5 provides evidence of how the overall expectation value of
the stress-minimized location X


t is constrained by the light cone

dynamics. However, some of the microstate paths do move outside of
the light cone temporarily. This is likely due to two main reasons.
First, as shown in Figure 4, as the number of iterations of the stress-
minimization algorithm is increased, the values for the velocity are
brought to below one, so there may not have been enough iterations
on this run. Second, each yellow dot represents a microstate, which
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experiences  temporary  fluctuations  in  its  state  that  would  be  evened
out with both time and sample averaging (this could have some com-
parability  to  the  quantum  mechanical  uncertainty  principle).  This
means that when the light cone dynamics are violated by one of these
microstates  outside  of  the  light  cone  being  observed,  as  in  Figure  6,
the  motion  then  moves  back  into  the  light  cone  only  a  few  TSs  later.
The  paths  tend  back  into  the  light  cone;  this  behavior  is  observed  in
all further observations of this kind. Figure 7 shows how as the proba-
bility  of  duplication  and  reduction  is  changed  in  favor  of  a  greater
rate  of  duplication,  the  average  velocity  of  the  PP  is  increased,  but  is
very clearly constrained to the gradient of the light cone. 

Figure 5. These  six  figures  show  various  evolutions  of  the  minimized  and
cumulative velocities of one PP in 1 + 1-dimensional spacetime diagrams. The
system consists of three PPs, with the probabilities for the actions between the
PP  whose  position  is  measured  and  the  other  two  PPs  given  to  the  right  of
each  evolution.  After  each  observation,  100  microstate  paths  are  followed;
these are implemented using a Monte Carlo loop. Yellow points represent the
locations of the stress minimum, and blue points represent the positions corre-
sponding to the particle’s cumulative velocity. 
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Figure 6. Evolution  of  a  1 + 1-dimensional  system  where  a  small  timescale
light cone violation is observed. 

Figure 7. These six figures are defined in the same way as in Figure 6. The dif-
ference  is  that  the  ratio  between  the  probability  of  duplication  and  reduction
is changed to favor duplication. Here you can see how the expected minimum
velocity  and  cumulative  velocity  merge  toward  the  light  cone  limit.  This
behavior implies an emergent intrinsic limit on the particle’s velocity. 

Here  there  is  a  system  that  has  a  minimum  stress  location  that
obeys  light  cone  dynamics  (besides  for  specifically  observed
microstates at the very small timescales when observed). This is repre-
sented by the yellow in the light cone spacetime diagrams. It also has
a position xit  that oscillates about the local stress minimum x it  with a

cumulative  velocity.  This  is  represented  by  the  blue  in  the  light  cone
spacetime  diagrams.  This  may  provide  the  potential  to  exhibit  nonlo-
cal  action  at  a  distance  dynamics  that,  since  it  is  fixed  to  oscillate
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about  the  local  stress  minimum,  still  obeys  fundamental  relativistic
principles.  This  behavior  is  emergent  from  the  fundamental  rules  and
structure of the system. 

Discussion and Comparisons4.

This  investigation  is  presented  to  show  the  preliminary  evidence  for
the  emergence  of  compatible  relativistic  and  quantum  behavior  for
this  specific  discrete  network.  The  system  implemented  here  is  still
incomplete, as it does not account for PP splitting and merging, multi-
IEs and IE cloning [1]. Interaction edge classes were used in setting up
the systems in Figures 5 through 7, but larger-scale interaction dynam-
ics  were  not  investigated  in  detail.  There  are  a  number  of  physical
comparisons that will now be outlined in this section.

Mass4.1

First, in [1] mass is defined within the system as directly related to the
number  of  PPs  local  to  a  region.  So  particles  of  different  masses  can
be  defined  as  clouds  of  PPs  whose  rate  of  splitting  is  equal  to  their
rate  of  merging,  and  so  the  number  of  PPs  in  a  localized  region
remains  constant.  This  means  that  if  the  stress  minimum  of  a  single
PP  obeys  light  cone  dynamics,  then  it  is  true  for  all  massive  particles
in the system, as the positions in space of massive clusters are defined
as the vector average of the locations of PPs within the cluster.

Second,  information  propagates  through  all  space,  and  therefore  it
is  possible  to  define  an  information  density  of  space.  In  [5]  Verlinde
argues  that  entropy  change  is  proportional  to  mass  by  being  able  to
split  particles  into  subparticles;  this  is  consistent  with  the  notion  of
mass  being  defined  by  the  number  of  constituent  PPs  within  a  local-
ized  space.  He  also  argues  that  space  is  a  storage  space  for  informa-
tion  whose  entropic  dynamics  in  closed  screens  around  particles  with
mass  produce  Newton’s  laws  and  Einstein  gravity  as  an  emergent
entropic  force.  The  density  of  information  in  this  information-propa-
gating  graph  is  proportional  to  the  area,  and  if  we  consider  a  screen
around  each  particle,  there  is  an  emergent  region  (the  updated  state
graph)  and  a  hidden  side  (the  hidden  microstate).  This  theory  has
been validated further in [6]. 

Third,  the  greater  the  mass  of  a  cluster,  the  greater  the  number  of
IEs  incident  on  the  enclosed  PPs  comprising  the  mass  of  the  cluster.
This  is  likely  to  have  an  effect  on  the  frequency  of  the  oscillation  of
the cluster due to an increased stress on the cluster, as the stress is pro-
portional to the number of IEs incident in a region. This would result
in  particles  of  higher  mass  having  higher  frequencies;  however,  it
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would  be  necessary  to  scale  the  system  to  the  point  where  the  stress
on  the  region  is  vastly  smaller  than  the  total  stress  in  the  system.  If
splitting  and  merging  were  implemented  in  this  system,  it  would  fur-
ther  increase  the  number  of  multi-IEs  incident  on  the  cluster  and  so
further increase the stress and therefore the frequency. 

Internal Particle Spin4.2

This  model  treats  all  massive  particles  as  clusters  of  PPs,  with  some
finite radius. This means that these clusters may contain internal angu-
lar  momentum.  If  a  magnetic  force  is  exerted  on  particles  in  the  sys-
tem  with  charge,  then  the  angular  momentum  of  the  PPs  around  the
mean position of PPs of the cluster could have the effect of exerting a
force on the PPs. This observation would be confined to particles with
mass; massless bosons would not contain spin, as they are not consti-
tuted  of  PPs,  besides  a  single  PP  that  would  seem  to  also  have  zero
internal  angular  momentum,  as  it  does  not  have  any  spatial  extent.
Spins would also sum, so long as they were in a local region of space.
Since cumulative velocities of PPs are conserved over velocity transfor-
mations,  action  at  a  distance  as  described  in  this  paper  would  not
affect  the  spin  of  these  particles.  Further  to  this,  since  the  velocities
are  superluminal,  then  the  magnetic  moment  of  particles  has  the
potential to be accounted for this way. Further investigations into the
spin of particle clusters in this system have been done and have shown
that  the  total  internal  angular  momentum  of  the  PP  clusters  is  inde-
pendent  from  their  mass,  and  that  the  spins  appear  to  tend  to  well-
defined  equilibrium  values.  These  results  will  be  released  in  a  later
paper.

Coordinate Frame and Observation4.3

Within  this  system,  there  is  a  definition  of  the  frame  of  reference  by
which  the  state  graph  is  embedded  into  n

 by  the  orientation  vertex
set  [1].  This  set  can  be  changed  to  any  set  to  define  the  new  coordi-
nate  frame,  which  can  be  done  via  a  basis  transformation.  Only  PPs
may  be  at  the  center  of  a  coordinate  frame,  since  they  are  the
“observers.”  The  information  propagation  speed  is  independent  of
the  relative  velocity  of  the  centralized  PP.  The  entire  state  of  the  sys-
tem  is  updated  at  the  centralized  PP,  much  like  the  concept  that  all
possibilities  do  not  exist  until  they  are  observed.  Observation  of  the
particles’  locations  in  n

 collapses  the  microstate  ensemble  to  a
smaller  ensemble  defined  by  an  uncertainty.  Observation,  or  collapse
of the system into a smaller set of microstates, has the effect of induc-
ing inhomogeneity in the evolution of the system, resulting in the for-
mation  of  complex  structures,  depending  on  the  definition  of  the
observation.
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Information and Energy Transfer4.4

Energy within this system is defined as the rate of actions observed by
the  centralized  PP.  It  is  not  created  or  destroyed  in  the  propagation
mechanism,  and  when  it  is  finally  incident  on  the  centralized  PP,  it
updates the state of the entire system, changing the stress distribution
and  velocities.  Much  like  massless  bosons  transferring  information  at
light speed, actions that occur within the system are propagated at an
average velocity of 1 SE per TS, which scales to the speed of light if 1
is  scaled  to  the  plank  length  and  that  is  taken  to  be  the  ultraviolet
cutoff.

Interactions and Emergence of Complex Structures4.5

This is an area with a lot of potential for further research. The imple-
mentation  of  IE  classes  with  different  values  for  pd  and  pr  may  pro-

vide  a  framework  for  complex  interactions.  Particles  of  different
masses  can  be  classified  by  splitting  and  merging  clouds  of  PPs,  and
the  interaction  between  these  clouds  can  be  governed  by  defined  IEs
that are cloned and brought into multi-IEs. These IE classes can be of
three main types, pd < pr, pd  pr and pd > pr. The first is likely to be

the  interaction  that  governs  particle  masses,  the  second  is  likely  to
behave  elastically,  much  like  the  strong  force,  and  the  third  could
count for some form of repulsion or spatial expansion. Large scales of
these  systems  would  have  interesting  dynamics  and  likely  complex
stable structures emerging. Splitting, while in some cases affecting the
particle’s  mass,  may  result  in  behavior  that  is  comparable  to  weak
decay and high energy particle interactions. This may be when a split
creates  an  IE  of  a  different  class  and  a  PP  cloud  is  separated  into
two. These are all areas for future study. Some small-scale dynamical
evolutions  of  this  system  can  be  seen  at  the  following  URLs:
https://youtu.be/EKpzZymNGVg,  https://youtu.be/yjFdHpJlsp4  and
https://youtu.be/8oQVaJwJVUo.  These  visualizations  show  the  evolu-
tion of a 4 PP system.

Entanglement and Quantum Tunneling4.6

There  are  two  classes  of  nonlocal  entanglement  dynamics  emerging
from this system. The first is the ability for a particle to move superlu-
minally  between  local  minima.  This  corresponds  to  the  case  of  a  sin-
gle  particle  that  has  had  its  wavefunction  separated  in  space,  giving
the appearance of having moved non-relativistically when an observa-
tion is made. This behavior can also be affiliated with a form of quan-
tum  tunneling,  the  ability  for  a  particle  to  appear  over  an  energy
barrier simply due to the fact that its position probability amplitude is
nonzero  on  the  other  side  of  the  potential  barrier.  The  second  class
results  from  the  fact  that  this  system  uses  two  metrics,  one  for  the
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state  graph  G,  Et,  and  one  for  the  configuration  in  n,  Xt.  External

forces  on  particles  may  make  their  distance  in  n
 be  much  greater

than their distance in the graph G. If there are interactions through G
that  are  independent  of  or  minimally  affected  by  Xt,  then  there  is  a

possibility  for  these  to  take  effect  even  if  the  two  particles  are  at  a
great distance from each other in n.

Conclusion5.

The results from this paper are still somewhat qualitative and prelimi-
nary;  however,  the  aim  is  to  explain  the  rules  of  the  system  and
demonstrate  both  its  simplicity  and  nontriviality  in  the  context  of
physical  compatibility.  The  hope  is  that  other  researchers  will  see  the
potential  in  this  system  and  others  like  it  and  help  in  scaling  up  the
simulations.  Further  experiments  are  to  be  done  on  this  system  and
similar  systems.  These  include  testing  for  length  contraction  and  time
dilation,  uncertainty  principle,  weak  interactions  (further  investiga-
tions  into  point  particle  (PP)  splitting  and  localized  interaction  edge
(IE)  action  probabilities),  particle  masses  (system  stress  and  oscilla-
tions),  particle  spin,  and  thermodynamic  and  mechanical  compar-
isons, as well as many others. Some of these experiments have already
been  implemented  and  research  is  underway,  although  issues  regard-
ing  how  you  scale  a  system  like  this  efficiently  do  need  to  be
addressed,  as  well  as  how  to  implement  all  aspects  of  the  system
simultaneously.  This  is  a  great  computational  challenge;  however,
observing  the  behavior  of  such  discrete  dynamic  physically  compara-
ble systems may give us some insight into the underlying mechanisms
that govern the behaviors of real physical systems.
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