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In this study, elementary cellular automata (CAs) are used to model the
process of generating new knowledge. Each research goal is formulated
as  a  target  state  of  an  elementary  cellular  automaton,  while  the  scien-
tific method used to reach this goal is represented as a rule. This system
has  many  similarities  to  the  actual  process  of  knowledge  generation,
mainly caused by the possible complex behavior of CAs. The proposed
model  is  then  used  to  compare  different  strategies  of  scientific  research
like  inter-  and  intradisciplinary  cooperation  in  different  scenarios.  The
obtained results are in agreement with reality and therefore substantiate
the  assumption  that  CAs  are  suitable  to  model  the  process  of  scientific
research. 
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Introduction1.

The  generation  and  diffusion  of  new  knowledge  are  of  great  signifi-
cance  for  today’s  knowledge-based  economy  [1–4].  According  to  the
triple  helix  concept  [5–7],  the  main  actors  in  these  processes  are  gov-
ernments,  industry  and  of  course  universities,  which  are  all  involved
in  producing  and  sharing  new  knowledge.  While  diffusion  of  knowl-
edge  has  been  investigated  very  thoroughly  [8–11],  the  actual  process
of generating knowledge is not yet completely understood. 

Knowledge  generation  is  closely  related  to  learning,  yet  these  two
processes are not identical. Learning is the process of absorbing infor-
mation  that  is  already  available  somewhere.  The  process  of  learning
can be observed in laboratory conditions [12–14], and there are vari-
ous  models  that  describe  the  learning  process,  like  statistical  learning
theory  [15],  connectivism  [16],  transformative  learning  [17]  or  social
learning  theory  [18].  The  generation  of  new  knowledge,  that  is,  the
process  of  doing  research,  is  fundamentally  different.  This  process  is
much more complex, and finding a suitable model is challenging. The
main  reason  for  this  is  that  generating  new  knowledge  is  a  creative
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process that does not follow simple rules, and therefore the success of
a  research  attempt  is  more  difficult  to  predict  than  the  success  of  an
attempt at learning new information. In order to fill this research gap,
we  propose  to  use  a  model  based  on  cellular  automata  (CAs)  to
model the process of generating new knowledge. 

CAs  are  discrete  models  consisting  of  a  grid  of  cells  with  a  finite
number  of  states.  They  can  be  used  in  many  scientific  fields  to  solve
diverse  problems  [19]  like  traffic  simulation  [20–22],  urban  devel-
opment  [23],  understanding  complex  social  systems  [24],  medical
models  [25],  energy-transport  models  [26],  lattice  gas  models  [27],
cryptography  [28],  studying  artificial  life  [29]  or  reservoir  comput-
ing  [30].  CAs  can  even  be  used  as  an  alternative  to  differential
equations�[31]. 

The  concept  of  CAs  was  proposed  by  Ulam  and  von  Neumann  in
the  1940s  [32].  One  of  the  most  popular  CAs,  Conway’s  Game  of
Life  [33],  introduced  a  broader  audience  to  the  concept  of  CAs  by
showcasing  the  immense  complexity  that  can  arise  from  simple  rules.
Although  there  are  many  different  forms  and  classes  of  CAs,  this
study  is  mainly  concerned  with  elementary  cellular  automata  (ECAs),
first systematically studied by Wolfram [34–37]. ECAs are one-dimen-
sional  CAs  that  only  allow  two  different  states  for  each  cell,  com-
monly labeled 0 and 1. Given an initial state of an ECA, the next state
of each cell can be determined by the current state of the cell, the cur-
rent  state  of  its  left  neighbor  and  the  current  state  of  its  right  neigh-
bor. Since each of these three cells can have two possible states, there
are  eight  different  combinations  of  those  three  states.  Each  of  these
combinations  can  result  in  the  new  state  being  either  0  or  1,  leading

to  28  256  different  rules  for  ECAs.  These  rules  can  be  represented
in  binary  notation  [34]  or  as  an  integer  (e.g.,  rule  00000011  corre-
sponds to rule 3). Analyzing all these rules systematically reveals that
some  of  them  lead  to  a  stable  state,  while  others  show  periodical
behavior. There are also rules that feature complex behavior. For rule
110,  it  was  even  proven  that  it  is  Turing  complete  [38].  An  example
of  such  complex  behavior  is  given  in  Figure  1,  which  shows  the  time
development of an arbitrary state using rule 110. ECAs are simple sys-
tems,  yet  they  can  show  complex  behavior  under  certain  circum-
stances, so they are suitable candidates to model the equally complex
process of generating new knowledge. 

An  abstract  picture  of  a  research  process  is  given  in  the  following.
Each  research  process  has  a  certain  starting  point  (previous  knowl-
edge and experience) and a research goal (e.g., finding the answer to a
specific research question). Researchers then apply a scientific method
(computer  simulations,  statistical  analysis,  surveys,  …)  to  reach  this
goal.  Some  attempts  are  successful  right  away,  while  for  other
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Figure 1. Time development of an arbitrary state using rule 110. Each line rep-
resents a discrete time step in this time development, with time running from
top  to  bottom.  In  this  visualization,  the  complex  nature  of  the  patterns  that
arise is clearly visible.

problems, more experience and therefore more attempts are necessary
to find a solution. This system has astonishing similarities to ECAs. If
we  interpret  both  the  current  state  of  knowledge  and  the  research
goal  as  states  of  an  ECA  and  the  applied  rule  as  the  applied  research
method, both systems share the following properties: 

◼ Some  rules  (methods)  are  better  suited  to  reach  the  target  state  than
others. 

◼ Some rules (methods)  are more flexible than others  and can be used to
reach many different target states. 

◼ Not  every  rule  (method)  can  be  used  to  reach  the  target  state,  given  a
specific initial state. 

◼ Similar  target  states  (research  goals)  can  be  reached  by  similar  rules
(methods). 

◼ Similar rules (methods) can show similar behavior. 

◼ Whether  or  not  a  target  state  (research  goal)  can  be  reached,  given  a
rule  (method)  and  an  initial  state  (previous  knowledge),  cannot  be
intuitively  understood,  but  it  is  rather  a  complex  process  with  unclear
outcome. 

These  similarities  can  be  utilized  to  construct  a  model  of  knowl-
edge generation using ECAs, as detailed in the following section. 

Methods2.

The  purpose  of  this  model  is  to  use  ECAs  to  simulate  the  process  of
research  and  knowledge  generation  and  compare  different  research
strategies in various situations. The research process is modeled in the
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following  way:  the  research  goal  (which  could  be  solving  a  specific
problem, finding the answer to a specific research question or advanc-
ing  the  field  in  some  other  way)  is  represented  as  a  state  of  an  ECA,
the so-called target state. The objective of the research process is now
to  reach  this  target  state  ST,  starting  from  an  initial  state  SI,  within

exactly  k  steps.  To  reach  this  objective,  different  approaches  and
methods  could  be  used.  They  are  represented  as  the  usual  rules  of
ECAs [34]. So the overall research objective can be formulated as 

ST  R
 k
SI, (1)

where  the  operator  R


 applies  the  rule  r  (0 ≤ r < 256)  to  a  state.  In
order  to  satisfy  this  equation,  the  simulated  researcher  has  to  select  a
method (rule) and can then try to produce knowledge by choosing an
arbitrary  initial  state  SI.  If  equation  (1)  is  satisfied,  the  research

attempt  was  successful.  A  visual  representation  of  such  a  successful
research attempt is given in Figure 2.

Figure 2. Successful  attempt  at  solving  a  research  problem.  A  certain  rule
(scientific  method)  is  applied  to  an  initial  state  (red)  for  a  certain  number  of
time  steps  (here,  10).  The  final  state  (yellow)  matches  the  target  state  (green)
perfectly, indicating complete success.

In  general,  however,  the  first  attempt  will  not  be  successful,  so  an
iterative  optimization  process  is  used,  representing  the  researcher’s
efforts  to  arrive  at  a  satisfying  solution.  Therefore,  we  need  a  way  to
measure the success of a research attempt. This is done by comparing
the  final  state  SF,  that  is,  the  state  that  results  from  applying  rule  r  k

times  to  state  SI,  to  the  target  state  ST.  Using  a  binary  representation
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of both states, the proximity to the target P can be calculated as 

P 
∑i i - ST

(i) - SF
(i)

∑i i
, (2)

leading  to  P  1  for  exact  matches.  Using  this  proximity,  a  simple
optimization algorithm is used to model the research process. Starting
from an initial state SI, a modified state SM is generated by changing a

random  bit  from  SI.  Then  the  proximity  to  the  target  state  of  both

states  is  calculated.  If  SM  leads  to  a  lower  proximity,  it  is  discarded;

otherwise,  SM  replaces  SI.  This  process  leads  to  a  monotonically

increasing  proximity.  We  allow  for  500  such  iteration  steps,  after
which  the  final  success  of  this  research  process  is  evaluated  as  the
proximity to the target state of the last (and therefore best) of the 500
attempts.  One  possible  development  of  the  proximity  during  the
research process is depicted in Figure 3. Note that selecting a different
number  for  the  allowed  steps  has  no  influence  on  the  qualitative
results, as long as it big enough for the optimization process to make
significant progress (≥100).

Figure 3. Proximity  development  during  an  iterative  research  process.  The
proximity  is  increasing  monotonically,  but  P  1  is  not  necessarily  reached
within 500 iteration steps.

This  process  represents  the  standard,  uncooperative  research  strat-
egy.  One  method  (rule)  is  chosen  and  the  method  is  applied  to  the
problem  until  the  best  possible  solution  (given  the  allowed  time)  is
found.  However,  there  are  other  strategies  that  can  also  be  investi-
gated  using  this  model.  Intradisciplinary  research  benefits  from  the
experience  of  other  researchers  in  the  same  field,  which  can  drasti-
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cally improve the results. The methods used or generated by intradisci-
plinary research are similar to the ones researchers would use without
cooperating,  but  they  are  not  the  same,  and  could  be  better  suited  to
solve the problem at hand. Here, intradisciplinary research is modeled
in  the  following  way.  After  successive  attempts  to  solve  the  research
problem fail (i.e., if the proximity does not improve after several itera-
tion steps), the applied method (rule) is slightly modified by changing
one random bit. So rule 00001111 could change to 10001111, which
is  a  different  but  closely  related  rule.  If  this  new  rule  produces  better
results, it is used; otherwise, it is discarded. 

Interdisciplinary  research  is  depicted  in  a  similar  way.  After  a  cer-
tain  number  of  failed  attempts,  a  new  method  is  found  by  cooperat-
ing. Since here the cooperators come from a completely different field,
the  method  (rule)  is  not  related  to  the  old  rule,  but  chosen  as  a
random  rule  of  ECAs.  Again,  it  is  only  used  if  it  provides  a  benefit;
otherwise,  it  is  discarded.  An  overview  of  how  the  different  research
strategies are modeled is given in Figure 4. 

Figure 4. Modeled  research  process  for  different  research  strategies.  While
uncooperative research stays with the initial method, cooperative research can
lead to modifications or changes of the method used.

To investigate the benefits of these research strategies, each of them
is applied to random problems (random target states) of various diffi-
culties.  The  difficulty  of  a  problem  is  here  defined  as  the  size  of  the
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ECA, so a target state with only 10 cells represents a simple problem,
while a target state with 200 cells represents a difficult problem. Each
strategy  is  used  to  solve  the  same  1000  research  problems,  and  we
evaluate the performance by looking at the distribution of final prox-
imities  and  the  percentage  of  fully  successful  attempts,  defined  by
P  1.  In  addition  to  this  investigation,  we  simulate  a  scenario  in
which  the  solution  of  a  similar  problem  is  already  known.  Here,  the
starting  point  of  each  research  strategy  is  the  insight  that  a  specific
initial state leads to a known target state using a specific rule. The tar-
get  state  that  needs  to  be  reached  is  only  a  slight  modification  to  the
already-solved  target  state.  All  three  research  strategies  try  to  solve
the  new  problem  with  the  solution  of  the  old  problem  as  the  initial
guess,  modified  in  the  usual  way  for  cooperative  research.  The
number of time steps after the target state should be reached (i.e., the
parameter k in equation (1)) can be chosen arbitrarily, since it has no
significant influence on the final results, as long as k ≥ 5. Simulations
were  performed  with  k = 10,  and  the  results  are  presented  in  the
following section.

Results3.

Results  for  solving  simple  research  problems  (the  size  of  the  target
state  is  10  cells  here)  are  presented  in  Figure  5(a).  Here  it  is  evident
that  interdisciplinary  research  has  the  highest  potential  to  solve  the
problem. Nearly 30% of all problems were solved with P  1, so the
target  state  was  reached  exactly.  Intradisciplinary  research  performed
slightly  worse,  with  about  12%  total  success.  For  uncooperative
research,  fewer  than  10%  of  research  questions  were  solved  with
P  1.  The  uncooperative  strategy  shows  the  biggest  variance,  which
corresponds  to  the  fact  that  some  scientific  methods  are  simply  not
suitable to solve certain problems.

The  results  of  a  medium-sized  problem  (20  cells)  are  presented  in
Figure 5(b). The findings are similar to the simple problem, yet the dif-
ference  between  the  strategies  is  less  pronounced.  Fully  successful
attempts  were  reached  in  6.1%  of  all  cases  for  interdisciplinary
research.  Intradisciplinary  research  and  uncooperative  research
reached 5.2% and 2.0%, respectively. 

Figure 5(c) shows the results of attempts to solve difficult problems
(a target state with 100 cells). Here, the results are qualitatively differ-
ent  from  previous  scenarios.  While  uncooperative  research  has  the
biggest variance regarding research success, it also has the highest per-
centage of fully successful attempts (16.5%). In this case, this strategy
is  therefore  the  most  successful,  when  compared  to  intradisciplinary
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Figure 5. Success rate for solving research problems. (a) Simple research prob-
lems (10 cells). Here, interdisciplinary cooperation is more successful than the
other  strategies.  The  uncooperative  strategy  performs  worst.  (b)  Medium
research  problems  (20  cells).  The  situation  is  similar  to  the  one  for  simple
problems.  The  differences  between  strategies  are,  however,  less  pronounced.
(c)  Difficult  research  problems  (100  cells).  Here,  the  uncooperative  strategy
performs  best  on  average  and  has  the  most  100%  successful  attempts.
(d) Medium research problems (20 cells), when the solution to a similar prob-
lem  is  already  known.  In  this  scenario,  the  uncooperative  strategy  outper-
forms  all  other  strategies,  since  changing  the  research  method  used  due  to
cooperation is a disadvantage in this case.

cooperation (8.7%) and interdisciplinary cooperation (6.5%). A possi-
ble  interpretation  of  this  result  is  that  difficult  problems  simply  take
more  time  and  effort  to  solve.  Changing  the  applied  method  or  using
a completely different one can therefore be a disadvantage in this situ-
ation.  Staying  with  one  method  may  sometimes  produce  bad  results,
but  there  is  also  a  significant  chance  that  it  will  lead  to  achieving  the
research  goal,  if  one  tries  long  enough.  For  very  difficult  problems,
failures  are  somehow  necessary  in  the  scientific  process.  However,  by
gathering  knowledge  and  experience  in  one  specific  method,  even
these problems can be solved. 

The situation changes drastically, if one is interested in the solution
of  a  problem,  when  the  solution  to  a  similar  problem  is  already
known,  as  depicted  in  Figure  5(d).  These  problems  were  of  medium
difficulty  (20  cells).  Since  an  approximate  solution  was  already
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known,  all  strategies  performed  better  than  for  an  ordinary  problem
of  medium  difficulty.  The  percentage  of  perfect  solutions  was  11.3%
for  interdisciplinary  research  and  14.9%  for  intradisciplinary
research.  For  uncooperative  research,  27.9%  of  all  attempts  were
fully  successful,  and  the  average  research  success  was  above  95%.
This result is in agreement with the real scientific process. If a similar
problem  has  already  been  solved,  using  a  similar  method  is  very  suc-
cessful.  Changing  a  method  that  is  proven  to  work  by  combining  the
original method with methods of other researchers can be a big disad-
vantage,  and  it  may  be  more  beneficial  to  rely  on  methods  that  are
well established in the scientific field in question. 

Discussion4.

This  study  shows  that  it  is  indeed  possible  to  use  elementary  cellular
automata (ECAs) to model the process of research and knowledge gen-
eration.  Obtained  results  are  in  agreement  with  the  observed  reality,
and  the  model  can  serve  as  a  starting  point  for  further  investigations
of  the  advantages  and  disadvantages  of  different  research  strategies.
While  most  problems  benefit  from  cooperation,  there  are  two  special
cases  in  which  cooperation  might  not  be  beneficial.  If  the  research
problem is too difficult, not cooperating was the best strategy. Focus-
ing  on  one  single  approach  and  gathering  experience  there  has  a
higher  success  chance  than  using  new,  cooperative  approaches.  Also,
if the solution to a similar problem is known, it is better to rely on the
established method than to try new, cooperative methods.

The presented model relies on ECAs to model the research process,
which  makes  it  quite  abstract.  Each  research  goal  is  formulated  as  a
random state of an ECA of an arbitrary size that determines the diffi-
culty of the posed problem. The process of reaching this research goal
is  then  a  simple  optimization.  Even  though  this  depiction  of  the
research  process  is  simplistic,  it  can  serve  as  an  elementary  model.  In
that sense, its simple nature is a big advantage. The model is also suit-
able  for  investigating  different  research  strategies,  by  slightly  modify-
ing the optimization process. This is a significant simplification, since
here  the  research  strategies  only  differ  in  terms  of  method  used,  even
though  intra-  and  interdisciplinary  cooperation  can  have  more  effects
on  the  research  process,  but  are  not  included  here.  Nevertheless,  the
presented model produces plausible results and can serve as a starting
point for a more advanced model. 

Various expansions are conceivable to make the model more realis-
tic. While the simple optimization process used here is a viable way to
depict  the  research  process,  more  elaborate  optimization  techniques
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that  also  allow  for  decreasing  proximity,  like  simulated  annealing
[39], could also be used and might be closer to reality. However, too-
elaborate  techniques  would  lead  to  a  perfect  solution  for  most  prob-
lems and can therefore not be used to model the process of generating
knowledge.  So  the  choice  of  the  optimization  algorithm  is  arbitrary,
but  the  chosen  technique  does  lead  to  realistic  results.  Another  inter-
esting  expansion  would  be  to  restrict  the  allowed  rules  to  rules  with
class 3 or 4 behavior [40], to better account for the complexity of the
process of knowledge generation. 

The  problem  of  finding  a  suitable  way  of  modeling  the  generation
of new knowledge is deeply connected to our lack of understanding of
how  research  exactly  works  on  a  fundamental  level  and  what  pro-
cesses  and  effects  are  responsible  for  the  success  or  failure  of  a
research attempt. One has to accept that this may never be completely
understood, since the system is simply too complex. This may also be
the reason why ECAs are so well suited to model the research process.
They  can  feature  astonishing  complexity  as  well  and  seem  to  share
many properties of the investigated complex system. This makes them
promising  candidates  for  modeling  complex  systems  in  general  and
underpins the need for further research in the field of CAs. 
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