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Following  from  the  work  of  Beggs  and  Tucker  on  the  computational
complexity  of  physical  oracles,  a  simple  diagonalization  argument  is
presented to show that generic physical systems, consisting of a Turing
machine and a deterministic physical oracle, permit computational irre-
ducibility. To illustrate this general result, a specific analysis is provided
for  such  a  system  (namely  a  scatter  machine  experiment  (SME)  in
which a classical particle is scattered by a sharp wedge) and proves that
it  must  be  computationally  irreducible.  Finally,  some  philosophical
implications of these results are discussed; in particular, it is shown that
the slowdown theorem implies the existence of classical physics experi-
ments  with  undecidable  observables,  as  well  as  the  existence  of  a defi-
nite  lower  bound  for  the  computational  irreducibility  of  the  laws  of
physics. Therefore, it is argued that the hypothesis that “the universe is
a  computer  simulation”  has  no  predictive  (i.e.,  only  retrodictive)
power. 
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Introduction1.

A  system  is  described  as  being  “computationally  irreducible”  if,
loosely speaking, it is not possible to “shortcut” its behavior computa-
tionally,  that  is,  if  it  is  impossible  to  predict  the  behavior  of  the  sys-
tem  using  fewer  computational  steps  than  the  system  itself  takes  to
evolve.  It  has  been  a  longstanding  conjecture  of  Wolfram  that  many
systems  in  nature,  including  the  physical  universe,  are  computation-
ally  irreducible  [1].  This  conjecture  arose  from  analyzing  elementary
cellular  automata,  such  as  rule  30,  as  a  convenient  idealization  for
physical systems, as in A New Kind of Science [2].

The goal of the present paper is to make this conjecture mathemati-
cally  precise  and  to  show  that  it  can  be  proved  rigorously  for  a  large
class  of  nonidealized  physical  systems,  that  is,  systems  that  are  not
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based  on  cellular  automata.  We  prove  this  very  general  result—the
“slowdown theorem”—by means of a diagonalization argument, anal-
ogous to the one used by Turing in the proof of the undecidability of
the halting problem [3]. 

Definition 1.  If  T  is  a  Turing  machine  that  computes  some  “definite”
function f : ℕ → ℕ (i.e., T  computes the value f(i) for some fixed input
i)  in  n  steps,  then  we  say  that  T’s  computation  is  computationally
reducible  if  and  only  if  there  exists  a  Turing  machine  T*

 that  com-
putes f(i) in m steps, where m < n [4, 5].

This algorithm T*
 is a speedup algorithm of T  [6]. In Definition 1,

it  is  necessary  for  T  and  T*
 to  be  the  same  type  of  Turing  machine,

since the relative efficiencies of different types of Turing machines are
not always equivalent, as illustrated by Theorem 1. 

Theorem 1. Given any k-tape Turing machine M, operating within time
f(n),  we  can  construct  a  1-tape  Turing  machine  M′,  operating  within

time Of(n)2, and such that for any input x, M′(x)  M(x) [7].

For this reason, we shall henceforth assume (without loss of gener-
ality) that all Turing machines referenced in this paper are 1-tape Tur-
ing machines [8, 9]. 

Definition 2. If T is a Turing machine that computes some definite func-
tion f : ℕ → ℕ in n steps, and T*

 is a Turing machine that computes f
in  m  steps,  then  the  degree  of  slowdown  of  T*’s  simulation  of  T  is
defined to be m - n.

It follows that, if a computation is irreducible, then any simulation
of it must be subject to a non-negative degree of slowdown [10]. 

Background to the Slowdown Theorem1.1

The slowdown theorem arose from the following thought experiment:
suppose  that  the  universe  is  a  Turing  machine,  T.  Now,  construct  a
physical  Turing  machine  T*

 that  simulates  T.  Since  T*
 is  a  physical

system,  we  can  think  of  it  as  encoding  abstract  computational  states
X as concrete physical states f(X).

Since  T  computes  the  behavior  of  all  physical  systems  in  the
universe,  it  must  also  compute  the  behavior  of  T*.  If  T  is  computa-
tionally reducible, then it would be possible for T*

 to shortcut the evo-
lution of T, in order to determine what the physical state of T*

 will be
at some arbitrary point in the future. 

Therefore,  we  can  construct  a  simple  diagonalization  argument:  if
T*

 predicts  that  its  own  physical  state  will  be  X  at  some  point  in  the
future,  then  we  can  program  T*

 to  produce  an  output  state  corre-
sponding  to  some  different  physical  state  Y,  and  so  on.  By  construc-
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tion,  the  system  T*
 contradicts  any  predictions  that  are  made  about

its  behavior  by  T.  Thus,  by  contradiction,  T  cannot  be  computation-
ally reducible. 

The  purpose  of  the  remainder  of  this  paper  is  to  make  this  argu-
ment mathematically formal. We begin by presenting the argument in
full  generality  for  any  physical  system  T*

 containing  a  Turing
machine  T.  Then,  we  analyze  a  particular  type  of  physical  system,
first  studied  by  Beggs  and  Tucker  [11],  consisting  of  a  Turing
machine T  that consults a classical physics experiment E as an oracle
(we also provide a specific analysis of such a system: namely a scatter
machine experiment (SME) in which a classical particle is scattered by
a  sharp  wedge).  Finally,  we  discuss  some  philosophical  implications
of these results. 

For  the  remainder  of  this  paper,  we  shall  assume  that  all  physical
systems are discrete, such that any encoding function that maps com-
putational states onto physical states has the form f : ℕ → ℕ. 

The Slowdown Theorem2.

We  consider  some  generic  physical  system  T*
 that  contains  a  Turing

machine T:

T  can be connected to any finite collection of physical experiments
E.  T*

 starts  in  some  initial  physical  state  A  and  ends  in  some  final
physical state B. T, on the other hand, takes an input C and produces
an output D: 

The slowdown theorem states that: 

Theorem 2.  If  T*
 is  the  specification  of  a  computation  (acting  on  the

input A and producing the output B), then there exists an instance of
T*, namely T0

*, that is computationally irreducible.

Proof. We want to show that there exists a particular T*, namely T0
*,

such  that  T0
*

 is  computationally  irreducible.  We  suppose,  conversely,

that every T0
*
 is computationally reducible; that is, that for every Tur-

ing machine T0  and collection of physical experiments E0, there exists

a  Turing  machine  T0
**

 that,  for  any  given  A,  correctly  computes  B,

using fewer steps than T0
*
 itself takes. Therefore, T0

**
 can shortcut the

The Slowdown Theorem 179

https://doi.org/10.25088/ComplexSystems.27.2.177

https://doi.org/10.25088/ComplexSystems.27.2.177


physical evolution of T0
*
 and predict what the final state will be before

T0
*
 itself reaches it. 

Since  T0  is  itself  a  physical  system,  C  and  D  can  be  thought  of  as

being  the  initial  and  final  states  of  that  system,  respectively.  Let

g : ℕ → ℕ  be  the  associated  encoding  function,  such  that  gC  is  the

physical  state  of  T0  at  the  start  of  its  computation,  and  g(D)  is  the

physical state of T0 at the end of its computation. 

Since T0
*
 is a closed and deterministic classical system, information

about  T0
*’s  state  must  always  be  conserved  (since  Liouville’s  theorem

implies  that  T0
*’s  behavior  must  be  exactly  reversible).  Furthermore,

since T0  is a component of T0
*, it follows that T0’s input state will be

encoded within T0
*’s input state, and T0’s output state will correspond-

ingly  be  encoded  within  T0
*’s  output  state.  In  other  words,  A  must

somehow encode all of the information about gC, and B must some-

how encode all of the information about g(D). 
Thus,  we  let  f : ℕ → ℕ  be  the  associated  decoding  function,  such

that  fA  gC,  and  f(B)  g(D).  Now,  since  we  have  assumed  that

T0
*

 is  computationally  reducible  for  every  T0  and  E0,  it  follows  that

every T0  that simulates T0
*
 using the speedup algorithm T0

**
 must also

be  reducible.  This  allows  us  to  diagonalize  over  the  space  of  Turing

machine  input  pairs  T, A  and  construct  the  following  Turing

machine T0:

T0A 
 Y  if fT0

**A  g(X), 

 X otherwise, 
(1)

where  X ≠ Y.  In  other  words,  T0  uses  T0
**

 to  preempt  what  the  final

state of T0
*
 will be and then produces an output that forces T0

*
 to end

up  in  some  different  final  state.  Thus,  by  contradiction,  the  speedup
algorithm  T0

**
 does  not  exist  for  T0

*,  and  so  there  exists  at  least  one

such T0
*
 that is computationally irreducible. □

The Scatter Machine Experiment3.

We  consider  a  generic  physical  system  T*
 consisting  of  a  Turing

machine  T  that  accepts  an  input  A  and  outputs  a  natural  number  B.
The  value  of  B  then  determines  the  position  of  a  cannon,  which  pro-
jects a particle at a sharp wedge:
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After  colliding  with  the  wedge,  the  particle  will  either  scatter
upward  (into  Detector  1),  or  downward  (into  Detector  0),  depending
upon  the  position  of  the  cannon.  For  the  sake  of  simplicity,  we  shall
henceforth  assume  that  the  experiment  is  configured  in  such  a  way
that  the  particle  never  hits  the  point  of  the  wedge,  and  so  there  is  no
value of B for which the experiment becomes nondeterministic. 

We  capture  the  details  of  the  particle’s  trajectory  with  the  single
binary  observable  Y,  which  is  either  1  (corresponding  to  the  particle
being scattered up) or 0 (corresponding to the particle being scattered
down).  We  can  think  of  T*

 as  being  a  computation  (acting  on  the
input A and producing the output observable C). 

Beggs  and  Tucker  proved  Theorem  3  about  the  complexity  of  the
SME  experiment  (in  which  the  particle  is  allowed  to  hit  the  point  of
the wedge, and the experiment is therefore nondeterministic) in 2007. 

Theorem 3.  If  T  is  a  Turing  machine  with  polynomial  time,  then  T*

computes the nonuniform complexity class P  poly 12.

We shall prove Theorem 4 regarding its computational reducibility
(in which point collisions are not permitted). 

Theorem 4. If T*
 is Turing computable, then there exists an instance of

T*, namely T0
*, that is computationally irreducible.

Proof. We want to show that there exists a particular T*, namely T0
*,

such  that  T0
*

 is  computationally  irreducible.  We  suppose,  conversely,

that  every  T0
*

 is  computationally  reducible;  that  is,  that  for  every  T0
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there exists a Turing machine T0
**

 that, for any given A, correctly com-

putes the observable C, using fewer steps than T0
*
 itself takes. 

By  the  definition  of  the  system  T0
*,  the  observable  C  is  determined

by the output of the Turing machine T0, namely B. Therefore, we can

define an encoding function f : ℕ → ℕ, such that f(B)  C. Now, since
we have assumed that T0

*
 is computationally reducible for every T0, it

follows  that  every  T0  that  simulates  T0
*

 using  the  speedup  algorithm

T0
**

 must  also  be  reducible.  We  diagonalize  over  the  space  of  Turing

machine input pairs T, A accordingly: 

T0A 
 Y if T0

**A  f(X), 

 X otherwise, 
(2)

where  X ≠ Y.  We  have  therefore  produced  an  output  of  T0,  which

forces  the  observable  C  to  take  a  different  value  to  that  predicted  by
T0
**. Thus, by contradiction, the speedup algorithm T0

**
 does not exist

for T0
*, and so there exists at least one such T0

*
 that is computationally

irreducible. □

Implications3.1

Clearly,  the  amount  of  time  between  the  particle  being  fired  and  the
particle  being  detected  can  be  made  arbitrarily  large  (for  instance  by
moving  the  wedge  further  away  from  the  cannon,  moving  the  two
detectors  further  apart,  or  by  firing  the  particle  at  an  arbitrarily  low
speed). Thus, it follows that:

Corollary 1.  If  T*
 is  Turing  computable,  then  the  number  of  steps

required  to  compute  the  observable  C,  given  the  input  A,  can  be
unbounded (i.e., can be made arbitrarily large).

Therefore,  T*’s  computation  of  C  from  A  can  be  made  to  take  an
arbitrarily large number of steps, yet we have also shown that T*

 can
be computationally irreducible, which yields the following remarkable
corollary: 

Corollary 2. Determining the value of the observable C, given the input
A, can (in general) be undecidable.

Note  that  these  results  would  hold  for  any  generic  physical  system
T*

 in which the output of a Turing machine T determines the input of
some deterministic physical experiment E: 
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The SME is just a particularly elegant minimal example of such an
experiment E for which computational irreducibility holds. 

Some Philosophical Remarks4.

In  order  to  evade  the  diagonalization  argument  presented  in  this
paper, it is necessary to assert one of two things: either T*

 is not Tur-
ing  computable  (i.e.,  T*

 is  a  hypercomputer),  or  T*
 can  be  computa-

tionally  irreducible.  Both  of  these  possibilities  seem  to  be,  in  many
ways, philosophically objectionable.

We have established that the outcome of the experiment E is com-
pletely  determined  by  the  output  of  the  Turing  machine  T.  Yet,  if  T*

is a hypercomputer, then somehow the combination of T  and E must
be  able  to  compute  partial  functions  that  could  not  have  been  com-
puted  by  T  alone.  Though  highly  counterintuitive,  this  resolution
would  be  consistent  with  the  complexity-theoretic  results  of  Beggs
and Tucker. 

On the other hand, it seems intuitively obvious that one could opti-
mize  T*

 in  the  case  of  the  SME  system,  thereby  reducing  the  number
of  steps  required  to  compute  C  (for  instance,  by  making  the  particle
travel more quickly, moving the wedge closer to the cannon, or mov-
ing  the  detectors  closer  together).  However,  if  T*

 is  computationally
irreducible, then it follows that no such optimizations can be possible
(since they would imply reducibility of T*). In other words, even if the
experiment is made intentionally inefficient by adding arbitrary redun-
dancies,  it  would  not  be  possible  to  optimize  it  without  somehow
modifying the results: one would still need to simulate all of the redun-
dancies and inefficiencies explicitly and in their entirety. 

Furthermore,  the  fact  that  T*’s  (irreducible)  computation  can
involve a theoretically unbounded number of steps implies that classi-
cal  physics  experiments  can  give  rise  to  undecidable  observables.
More  generally,  it  implies  that  there  exist  deterministic  classical  sys-
tems  about  which  one  can  ask  undecidable  questions.  One  plausible
candidate would be the n-body problem [2]. 

Conjecture  1.  The  question  of  whether  a  given  body  will  ever  escape
from  a  gravitationally  interacting  n-body  system  is,  in  general,
undecidable. 

These  arguments  clearly  do  not  apply  to  quantum-mechanical  sys-
tems  in  which  observables  exhibit  nondeterministic  behavior  follow-
ing measurement. 

If  the  universe  is  Turing  computable,  then  the  slowdown  theorem
implies  that  any  simulation  of  it  must  be  subject  to  a  non-negative
degree  of  slowdown.  This  immediately  entails  that  the  hypothesis
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“the  universe  is  Turing  computable”  has  no  predictive  power,  since
making  predictions  would  require  being  able  to  simulate  the  universe
in such a way as to shortcut its evolution, thereby determining the out-
comes  of  events  that  will  occur  in  the  future.  The  arguments  in  this
paper  demonstrate  that  the  construction  of  any  such  simulation
would  inevitably  lead  to  logical  contradictions,  so  such  a  hypothesis
would only be testable through retrodiction. 

Thus,  the  slowdown  theorem  implies  that  the  only  universes  that
are  computationally  reducible  (and  that  can  therefore  be  simulated
without  the  effects  of  non-negative  slowdown)  are  those  universes  in
which  the  laws  of  physics  are  sufficiently  restrictive  that  they  do  not
permit the construction of universal Turing machines [13]. 
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