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The  reversibility  issue  of  one-dimensional  asynchronous  cellular
automata (ACAs) is addressed in this paper. The cells of ACAs are up-
dated independently. The cellular automata (CAs) rules are classified as
reversible and irreversible rules.  The irreversible rules cannot configure
reversible  ACAs.  The  reversible  rules  may  configure  reversible  ACAs
depending upon the update of ACA cells. Finally, an algorithm is devel-
oped that outputs a sequence of ACA cells for a given CA rule to be up-
dated to generate a cycle for a reversible ACA. 

1. Introduction  

Cellular automata (CAs), proposed in the early 1950s on a two-dimen-
sional grid, are involved in a five-neighborhood interaction among the
cells with 29 states per cell [1]. Later, the CA structure was simplified
by  a  number  of  researchers  and  finally,  a  two-state  three-neighbor-
hood  CA  structure  was  proposed  on  a  one-dimensional  lattice  [2].
This  simplest  version of  CAs attracted  a  large  number  of  researchers
from  various  fields  due  to  their  simplicity  and  ability  of  modeling
physical systems successfully. However, all such CAs are synchronous
because all the cells of CAs update their states simultaneously.  

The  concept  of  asynchronous  cellular  automata  (ACAs)  was  first
developed  on  a  one-dimensional  lattice  [3].  A  formal  definition  of
ACAs for the two-dimensional CA structure was provided in [4]. The
one-dimensional ACAs were further studied in [5, 6].  S.  Wolfram [6]
refers to the ACAs as sequential  cellular automata.  The clocks of the
ACA cells are independent, so the cells are updated independently. 

The  reversibility  of  synchronous  CAs  has  been  studied  extensively
for  years  [7–9].  However,  reversibility  of  ACAs  is  an  almost  un-
touched  issue.  A  very  few  papers  on  the  issue  of  two-dimensional
ACAs  are  found  in  the  literature  [10]. However,  the  reversibility  of
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one-dimensional ACAs is an unexplored field. In this scenario, we tar-
get  exploring  the  issue  for  one-dimensional  two-state  three-neighbor-
hood ACAs. We use the term reversibility in a classical sense—that is,
starting from a CA state, a reversible ACA can reach to that particu-
lar CA state uniquely after a number of steps. During their evolution,
unlike  [3,  6],  we  consider  that  more  than  one  ACA  cell  may  be  up-
dated simultaneously. Based on the update of ACA cells in subsequent
steps,  we,  as  in  [11],  define  an  update  pattern  to  know which  cell  is
updated when.  While  an update  pattern along with an initial  state  is
given, the transition of CA states for an ACA can be observed. The up-
date patterns play a major role in the reversibility of ACAs. 

We have also identified a number of CA “rules” [2] as irreversible
rules, which cannot configure reversible ACAs with any set of update
patterns.  Only  reversible  rules  can  configure  reversible  ACAs  with  a
particular  set  of  update  patterns.  An  algorithm  is  also  developed  to
find an update pattern of a cycle for some reversible ACA. 

The  paper  is  organized  as  follows.  The  preliminaries  of  CAs  are
provided in Section 2. Section 3 defines the reversibility of ACAs, and
identifies the reversible and irreversible CA rules. The method to find
an  update  pattern  for  a  cycle  of  reversible  ACAs  is  reported  in  Sec-
tion!4. Section 5 concludes the paper.

2. Cellular Automata

CAs  are  the  discrete  spatially  extended  dynamical  systems  that  have
been studied extensively as models of physical systems. They evolve in
discrete  space  and time.  In  their  simplest  form,  as  proposed by  Wol-
fram [2],  CAs consist  of a lattice of cells,  each of which stores a dis-
crete variable at time t  that refers to the present state of the CA cell.
The next state of a cell is affected by its present state and the present
states  of  its  neighbors  at  time  t.  In  one-dimensional  two-state  three-
neighborhood  (self,  left  and  right  neighbors)  CAs,  the  next  state  of
each cell is determined as

(1)Si
t+1 ! f ISi-1

t , Si
t, Si+1

t M
where f  is the next state function and Si-1

t , Si
t, and Si+1

t  are the present

states of the left neighbor, self, and right neighbor of the ith CA cell at
time t. The function f : 80, 1<3 # 80, 1< can be expressed as a look-up
table  (see  Table  1).  The  decimal  equivalent  of  the  eight  next  states
(NS) is called a rule [2]. There are 28  (256) CA rules in the two-state
three-neighborhood  dependency.  Two  such  rules  are  60  and  51
(Table 1).  From the viewpoint  of  switching theory,  a  combination of
the present states (PS in Table 1) can be viewed as the min term  of a
three-variable  (Si-1

t , Si
t, Si+1

t )  switching  function.  So,  each  column  of
the first row of Table 1 is referred to as rule min term (RMT). 
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PS: 111 110 101 100 011 010 001 000 Rule

HRMTL H7L H6L H5L H4L H3L H2L H1L H0L
HiLNS: 0 0 1 1 1 1 0 0 60

HiiLNS: 0 0 1 1 0 0 1 1 51

Table 1. Look-up table for rules 60 and 51. 

The collection of states of all cells (S1
t , S2

t , … , Sn
t ) at time t is called

a  CA  state  on  that  time.  If  the  leftmost  and  rightmost  cells  are  the
neighbors  of  each  other  (i.e.,  S0

t ! Sn
t  and  Sn+1

t ! S1
t  for  CAs  with  n

cells), the CAs are periodic boundary CAs. On the other hand, in null
boundary CAs, S0

t ! Sn+1
t ! 0 (null).

If all of the CA cells update their states simultaneously they are syn-
chronous  CAs.  In  asynchronous  CAs,  the  cells  are  updated  indepen-
dently.  Therefore,  ACAs  have  decentralized  control  structure,  and  as
a  result,  any  number  of  ACA  cells  may  be  updated  in  a  single  time
step. So, we consider, unlike [3, 6], that more than one—even all the
ACA cells—may update their states simultaneously. 

Figure 1. Partial  state  transition  diagram  of  rule  60  ACA.  The  cells  updated
during state transition are noted over the arrows.  

During  their  evolution  with  time,  CAs  (synchronous  and  asyn-
chronous)  generate  a  sequence  of  states.  The  next  state  of  a  CA can
be determined in a synchronous CA configured with a particular rule.
However,  the  next  state  of  ACAs  depends  not  only  on  the  rule,  but
also  on  the  cells  that  are  updated  at  that  time.  We denote  the  set  of
cells,  updated  at  time  t,  as  ut.  Therefore,  an  update  pattern
U ! Xu1, u2, … , ut, …\  is  used  to  observe  which  cells  are  updated
when.  If  the  CA  rule  and  an  update  pattern  with  an  initial  state  is
given,  the  state  transitions  for  the  ACA  can  be  identified.  A  partial
state  transition diagram of  four-cell  rule  60 ACA with a null  bound-
ary  condition  is  shown  in  Figure  1.  The  states  are  noted  in  circles,
whereas  the  cells  updated  during  state  transitions  are  noted  over  the
arrows.  The  update  pattern  for  this  transition  U ! X82<, 81, 4<,82, 4<, 83<, 82, 4<, 83, 4<, 82<, …\  is  associated  with  CA  state  15.  The
output of the first cell is considered as the least significant bit (LSB) of
the CA state. It is, therefore, obvious that the state transition of ACAs
depends on both the CA rule and the update pattern. However, a sin-
gle  state  transition  diagram may  not  cover  all  the  CA states.  To  ob-
serve  the  transitions  of  other  CA states, another  one  or  more  update
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patterns  may  be  needed.  A  set  of  update  patterns  can  actually  illus-
trate the transition of all states. 

We address the reversibility issue for such ACAs in Section 3. 

3. The Reversibility of Asynchronous Cellular Automata  

The  state  transition  diagram  classifies  the  CA  states  as  cyclic  and
acyclic. If a CA state lies on some cycle in the state transition diagram
of the CA, the state is cyclic; otherwise, it is acyclic. The CAs are re-
versible if all the CA states are cyclic; otherwise, they are irreversible.
The  reversibility,  explored  in  synchronous  domain,  guarantees  that
each CA state has a unique predecessor and successor.  

Definition 1.  The ACAs are reversible if each CA state can uniquely be
reached  starting  from  that  particular  state  with  an  update  pattern.
Otherwise, they are irreversible. 

Figure 2. Four-cell  rule  60  reversible  ACAs  in  null  boundary  condition.  The
cells updated are noted on the edges.  

Figure 2 depicts the state transition diagram of four-cell rule 60 re-
versible  ACAs  with  null  boundary  condition.  There  are  eight  update
patterns,  one for  each cycle,  in  the  ACAs.  The update  patterns  (with
corresponding initial states) are X81<\  (0), X82<,  84<,  82<,  84<\  (15), X83<\
(8),  X83<,  83<\  (6),  X82<,  82<\  (9),  X84<,  84<\  (4),  X83<,  83<\  (14),  and X82<,82<\  (1).  The  CA  rules,  building  blocks  of  reversible  and  irreversible
ACAs, are classified as the reversible and irreversible rules. 
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Definition 2.  A  CA rule  R  is  an  irreversible  rule  if  there  is  a  CA  state
that  can  never  be  cyclic  for  any  update  pattern,  while  the  ACAs  are
configured with R. Otherwise, R is a reversible rule. 

For example, rule 77 (01001101) in null-boundary condition is an
irreversible  rule.  Starting  from  the  all-0  CA  state,  returning  back  to
the 00 … 0 state in rule 77 ACAs cannot be done with any update pat-
tern.  On the other hand, rule 60 is  a reversible rule in null  and peri-
odic  boundary  conditions.  Each  state  can  be  uniquely  reached  for
some update pattern (Figure 2). 

Now we characterize the irreversible rules that can never configure
reversible ACAs. Theorem 1 characterizes the irreversible rules in peri-
odic boundary condition. 

Theorem 1. A rule R is irreversible if and only if the all-0 or all-1 state
of  the  ACA,  configured  with  R  in  periodic  boundary  condition,  is
acyclic for all possible update patterns.  

Proof.   If the all-0 or all-1 state of the ACA, configured with R, can-
not  be  returned  back  with  any  update  pattern,  then  obviously  the
ACA and hence the R  are irreversible.  Now, we shall  show that R  is
irreversible only if the all-0 or all-1 state is acyclic. 

A  CA  state  can  be  viewed  as  a  sequence  of  RMTs.  For  example,
the state 1100 in periodic boundary condition can be viewed as 3641,
where 3, 6, 4, and 1 are corresponding RMTs on which the state can
be  changed.  Combine  the  eight  RMTs  into  four  sets:  80,  2<,  81,  3<,84,  6<,  and  85,  7<.  The  three-bit  binary  representation  of  the  RMTs
shows that the middle bit of each set is the complement of each other.
We next show that if a sequence of RMTs of an arbitrary rule, corre-
sponding to some CA state, contains both the elements of any one of
the above sets, the state is cyclic. 

Consider  that  RMTs  0  and  2  are  simultaneously  present  in  a  se-
quence of RMTs, corresponding to some CA state,  ".  If  RMT 0 is 0
or RMT 2 is 1, " can be updated properly to get a single-length cycle.
If  RMT  0  is  1  and  RMT  2  is  0,  then  a  two-length  cycle  can  be  de-
signed by updating a single cell. Therefore, " is cyclic for any value of
RMT 0 and RMT 2. If "  contains the RMTs 1 and 3, 4 and 6, or 5
and  7  simultaneously,  then  it  can  also  be  shown  with  similar  logic
that " is cyclic. 

The rest  of  the states whose corresponding RMTs are from differ-
ent  sets  may form single-length cycles  depending on the  RMT values
by  updating  a  single  cell.  The  states  that  are  not  in  some  cycle  can
form  two-length  cycles  by  updating  two  or  more  consecutive  cells.
Hence, these states are also cyclic. 

Therefore, all the states other than all-0 and all-1 of any ACA can
be cyclic for some update patterns. Hence, if all-0 and all-1 states are
cyclic, the rule R that configures ACAs is reversible; otherwise, R is ir-
reversible. ·
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Corollary 1.  A rule  R  is  irreversible  if  (i)  the RMTs 0,  2,  7,  and either
RMT 3 or 6 of R are 1, or (ii) the RMTs 0, 5, 7, and either RMT 1 or
4 are 0 in periodic boundary condition. 

Proof.    We  shall  prove  the  corollary  by  identifying  the  RMTs  of  R
for  which  the  all-0  or  all-1  state  cannot  be  returned  back
(Theorem!1). 

If  RMT 0 is  1,  the  ACA,  configured with  R  in  periodic  boundary
condition,  cannot  form  a  single-length  cycle  with  an  all-0  state  be-
cause  the  next  state  contains  at  least  one  1  while  the  ACAs  are  up-
dated. To form a cycle, these 1s are to be 0 in subsequent steps. How-
ever, these 1s cannot be 0 if RMTs 2 and 7, and any one of RMTs 3
and 6 of R, are 1. Therefore, the all-0 state cannot be returned back if
the RMTs 0, 2, 7, and either RMTs 3 or 6 of R are 1. 

Similarly,  the ACA cannot form a single-length cycle with an all-1
state if RMT 7 is 0. Moreover, the ACA with the state can never form
a cycle  of  any length in  periodic  boundary  condition if  RMTs 0 and
5, and any one of RMTs 1 and 4 of R, are 0. Hence, an all-1 state can-
not  be  returned  back  if  the  RMTs  0,  5,  7,  and  either  RMT  1  or  4
are!0. ·

There are (i) 24 rules where RMTs 0, 2, 7, and either RMT 3 or 6
are  1,  and  (ii)  another  24  rules  where  RMTs  0,  5,  7,  and  either
RMT!1 or  4 are  0.  The list  of  48 such irreversible  rules  are  noted in
Table 2. The rest are reversible rules, each of which can configure re-
versible  ACAs  in  periodic  boundary  condition  for  some  update  pat-
terns.  Now,  we  present  Theorem  2  to  characterize  the  irreversible
rules in null boundary condition. 

0 2 4 6 8 10 12 14
16 20 24 28 64 66 68 70
72 74 76 78 80 84 88 92
141 143 157 159 173 175 189 191
197 199 205 207 213 215 221 223
229 231 237 239 245 247 253 255

Table 2. Irreversible rules in periodic boundary condition.    

Theorem 2.  A  rule  R  is  irreversible  if  and  only  if  the  all-0,  all-1,  or
10101…1 state  of  ACAs,  configured with R  in  null  boundary condi-
tion, is acyclic for all possible update patterns.   

Proof.    The proof is similar to that of Theorem 1 with an exception
that  the  10101…1 state  is  to  be  considered in  case  of  null  boundary
condition.  Irrespective  of  R,  this  state  cannot  be  cyclic  in  null
boundary condition. ·
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Corollary 2. A rule R is irreversible if (i) the RMTs 0 and 2, and either
RMT 3 or 6 of R, are 1, or (ii) the RMTs 0, 1, 3, 4, 5, 6, and 7 are 0,
or (iii) the RMTs 0 and 2 are 0, RMTs 5 and 7 are 1, and if RMT 1 is
0 or RMT 3 is 1, then either RMT 4 is 0 or RMT 6 is 1, while R con-
figures an ACA in null boundary condition. 

Proof.    We  shall  prove  the  corollary  by  identifying  the  RMTs  of  R
for which the all-0, all-1, or 10101…1 state cannot be returned back
(Theorem 2). 

If RMT 0 is 1, the ACA, configured with R in null boundary condi-
tion, cannot form a single-length cycle with the all-0 state, as the next
state always contains at  least  one 1.  To form a cycle,  these 1s are to
be  0  in  subsequent  steps.  However,  these  1s  cannot  be  0  if  RMTs  2
and any one  of  RMTs 3  and 6  of  R  are  1.  Therefore,  the  all-0  state
cannot be returned back if the RMTs 0, 2, and either RMT 3 or 6 of
R are 1. 

In null boundary condition, the state of the left (right) neighbor of
the  leftmost  (rightmost)  cell  is  always  0.  So,  RMT  3  and  RMT  7
(RMT 6 and RMT 7) of R are equivalent for the leftmost (rightmost)
cell.  Therefore,  the ACA with all-1 state can form a single-length cy-
cle for some update pattern if RMT 3, RMT 6, or RMT 7 is 1. To re-
strict  such  a  cycle,  the  RMTs  3,  6,  and  7  of  R  are  0.  While  these
RMTs  are  0,  the  ACA  with  all-1  state,  due  to  the  update  of  cells,
reaches  to  another  state  that  contains  at  least  one  0.  However,  the
all-1 state cannot be returned back if RMTs 0, 1, 4, and 5 are 0. So,
the all-1 state is acyclic if the RMTs 0, 1, 3, 4, 5, 6, and 7 are 0. 

To form a single-length cycle with the 10101…1 state, RMT 2 is to
be 1 or RMT 5 is  to be 0.  If  RMT 2 is  0 and RMT 5 is  1,  a single-
length  cycle  in  null  boundary  condition  cannot  be  formed  with  the
10101… 1  state.  However,  two  or  more  consecutive  bits  of  the  de-
rived  state  may  be  0  or  1;  even  all-0  or  all-1  states  may  be  reached.
The  10101… 1 state  cannot  be  returned  back  from the  all-1  state  in
null  boundary  condition  if  RMT  3  and  6  are  1,  and  from  the  all-0
state if RMT 0 is 0. For any combination of 0s and 1s in the derived
state,  if  any  of  the  following  RMT  values  are  found  in  R,  the
10101… 1 state cannot be returned back. 

111 110 101 100 011 010 001 000

H7L H6L H5L H4L H3L H2L H1L H0L
1 * 1 0 1 0 * 0

1 1 1 * 1 0 * 0

1 * 1 0 * 0 0 0

1 1 1 * * 0 0 0

The RMTs that can take any value (0/1) are denoted with “*”. Hence,
the 10101… 1 state is acyclic if the RMTs 0 and 2 are 0, RMTs 5 and
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7 are 1, and if RMT 1 is 0 or RMT 3 is 1, then either RMT 4 is 0 or
RMT 6 is 1. ·

In null boundary condition, there are (i) 48 irreversible rules while
RMTs  0,  2,  and  either  3  or  6  of  R  are  1,  (ii)  two  irreversible  rules
while  RMTs  0,  1,  3,  4,  5,  6,  and  7  are  0,  and  (iii)  nine  irreversible
rules while RMTs 0 and 2 are 0, RMTs 5 and 7 are 1, and if RMT 1
is 0 or RMT 3 is 1, then either RMT 4 is 0 or RMT 6 is 1. Such irre-
versible rules are listed in Table 3. The rest are reversible rules, which
can configure reversible  ACAs in null  boundary condition with some
update patterns.

0 4 13 15 29 31 45 47
61 63 69 71 77 79 85 87
93 95 101 103 109 111 117 119
125 127 141 143 157 159 160 168
170 173 175 189 191 197 199 205
207 213 215 221 223 224 229 231
232 234 237 239 240 245 247 248
250 253 255

Table 3. Irreversible rules in null boundary condition.    

However,  the  reversibility  of  ACAs  depends  not  only  on  the  rule,
but also on update patterns. For example, rule 60 can configure irre-
versible ACAs (Figure 1) as well as reversible ACAs (Figure 2) depend-
ing  upon  the  update  patterns.  Since  the  ACA  cells  are  independent,
and  so  updated  arbitrarily,  it  cannot  be  predicted  in  advance  that
ACAs  configured  with  a  reversible  rule  are  reversible.  If  a  set  of  up-
date  patterns  received  from  ACAs  configured  with  a  reversible  rule
during generation of all states are given, then only whether the ACAs
were reversible can be analyzed. This discussion leads to Theorem 3. 

Theorem 3. It is hard to synthesize reversible one-dimensional ACAs. 

However,  the  update  patterns  can  be  designed  for  the  cycles  of
some reversible ACAs. While the ACAs follow those update patterns,
cycles are formed. We identify such update patterns in Section 4. 

4. Identifying the Update Pattern for a Cycle  

The reversible rules require different sets of update patterns to get re-
versible ACAs. Even for a particular reversible rule, various sets of up-
date  patterns  may  be  identified  that  result  in  different  reversible
ACAs.  An update  pattern  can  produce  a  cycle  if  the  initial  state  and
the ACA are given. In this section, we identify such an update pattern
that forms a cycle for some reversible ACAs. We next present a theo-
rem that characterizes the states forming a cycle.  
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Theorem 4.  The  sequence  of  unique  states  XS1, S2, … , Sl, S1\  of  an  n-
cell CA forms a cycle of length l ¥ 1 if the number of bits that flip at
the ith (1 § i § n) position of the states is either 0 or even. 

Proof.    Consider that the ith  bit of the CA state S1  is d.  Now, if the
ith  bit position of the sequence is flipped to d£  in some Sj, then the bit

position is to be flipped in some Sj+k  to get back d at the ith  bit posi-
tion,  where  1 < j < j + k § l + 1.  So,  two  transitions  are  there.  If  an-
other  such  j  exists,  then  corresponding  k  also  exists.  Hence,  an  even
number of bit flipping is required. ·

To get  a  cycle  for  some reversible  ACAs,  an  update  pattern  along
with  some  initial  state  is  required  that  generates  l  distinct  CA  states
for a cycle of length l. Since the states of a cycle are to be distinct, the
update pattern should be designed in such a way that at least one bit
of a state flips to get the next state. Moreover, in any subsequence of
states, the bits of states are not to be flipped an even number of times
(Theorem 4). If they flip, the l states cannot be distinct. 

Therefore, generation of distinct states depends not only on the up-
date  pattern,  but  also  on  the  initial  state.  This  is  because  the  initial
state may not allow an arbitrary bit to flip for an arbitrary reversible
rule that configures the ACA. However, rule 51 (Table 1) is the only
rule  that  always  allows  a  cell  to  flip  its  state  when  updated.  So,
rule!51 ACAs do not depend on the initial  state to form a cycle.  The
following rule is designed to generate an update pattern for a cycle of
length 2i  (1 § i § n) by updating a single cell at a time, where n is the
number of ACA cells. 

To get a cycle of length 2i  (1 § i § n) of an n-cell rule 51 ACA, form a
sequence  of  i  cells  to  be  updated  arbitrarily.  Start  with  an  arbitrary

state. Update the I2j-1Mth  state by updating the jth  cell (1 § j § i) of the

sequence  to  generate  the  next  state.  Repeat  the  update  of  the  jth  cell
after each 2j  state, where j < i. However, update the ith  cell again after
the 2i-1 state to get a cycle of length 2i. 

Example 1.  To  design  a  full-length  cycle  for  a  four-cell  rule  51  ACA
(length ! 24),  all  the  cells  are  to  be  updated in  some sequence.  Con-
sider  that  the sequence of  updating is  SEQ ! X1, 2, 3, 4\  and the ini-
tial state is 0100. Each jth  cell of SEQ is selected for the first time to

update the I2j-1Mth state. Hence, to get the second state, the first bit of

the initial  state  (I2j-1Mth  state,  where j ! 1) is  updated.  Similarly,  the
second, third, and fourth cells are selected for the first time to update
the  second,  fourth,  and  eighth  states,  respectively.  The  first  cell  is
again selected to update  the  third,  fifth,  and all  odd states  (i.e.,  after
each 2j  state where j ! 1). After the first time update, the second and
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third  cells  are  selected  repeatedly  to  update  after  every  22  and  23

states,  respectively.  The  last  cell  is  updated  for  the  second  time  after
23  states  (2i-1  states  where  i ! 4)  to  complete  the  cycle.  Therefore,
the sequence of states in the cycle is X0100, 1100, 1000, 0000, 0010,
1010, 1110, 0110, 0111, 1111, 1011, 0011, 0001, 1001, 1101, 0101,
0100\.  The  update  pattern  is  X81<,  82<,  81<,  83<,  81<,  82<,  81<,  84<,  81<,82<, 81<, 83<, 81<, 82<, 81<, 84<\ (Figure 3(a)). Here, the update pattern is
independent of the initial state, but depends on SEQ (the update pat-
tern and the cycle of rule 51 ACA are the same for both the boundary
conditions).  However,  if  the  cells  are  updated  randomly,  the  ACA
may  not  even  be  reversible.  No  cycle  can  be  found  in  such  a  case
(Figure 3(b)).  

Figure 3. State  transition  of  four-cell  rule  51  ACAs  (updating  a  single  cell  in
each step). Here, the output of the first cell is considered as the LSB. (a) Full-
length cycle ACAs. (b) Random update of cells.  

However, cycles can be formed by updating multiple cells simulta-
neously. An n-cell rule 51 ACA can form a cycle of maximum length
2n-m+1  while m cells (1 § m § n) are updated simultaneously. In such
a  case,  the  same  way  of  single-cell  update  to  get  a  cycle  can  be  fol-
lowed with an exception that each entry in the sequence of cells, to be
updated, is a set of m  cells. Example 2 illustrates the cycle formation
by updating multiple cells. 

Example 2.  Let  us  consider  that  n ! 4  and  m ! 2.  To  get  an  eight-
length  (2n-m+1)  cycle  of  the  ACA,  a  sequence  SEQ ! X81,  2<,  82,  3<,83,  4<\  of  cells  is  formed  arbitrarily.  Consider  that  the  initial  state  is
0100.  The  first  and  second  bits  are  updated  to  generate  the  second
state  (1000).  Similarly,  the  cells  of  the  second  and  third  entries  of
SEQ are selected to update the second and fourth states. As in Exam-
ple 1, the cells of the first set (81, 2<) are repeatedly selected to update
the odd states. The cells of the second set (82, 3<) are selected again to
update  the  sixth  state.  Therefore, a  sequence  X0100,  1000,  1110,
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0010, 0001, 1101, 1011, 0111, 0100\ of states is obtained and the up-
date pattern is X81, 2<, 82, 3<, 81, 2<, 83, 4<, 81, 2<, 82, 3<, 81, 2<, 83, 4<\
(Figure  4(a)).  However,  while  two  cells  are  arbitrarily  updated
(violating the given rule), no such cycle is formed (Figure 4(b)). 

Figure 4. State transition of four-cell rule 51 ACAs, updating two cells in each
step (the output of the first cell is considered as the LSB). (a) Eight-length cy-
cle of rule 51 ACAs. (b) Random update of cells.  

The  update  method,  designed  for  the  rule  51  reversible  ACA,
guides us to develop Algorithm 1, which finds the update pattern for
a  cycle  of  some reversible  ACAs.  The  algorithm is  independent  from
the boundary condition. It takes the CA rule, the cycle length to be de-
signed (2i),  the initial  state  (S),  and the number of  cells  updated in a
single  step (m)  as  input.  However,  with arbitrary ACAs and an arbi-
trary initial state, a cycle of given length may not be designed. In such
cases, the algorithm finds a cycle that is close in length with the given
cycle length. It outputs the update pattern with the cycle length, if the
cycle can be designed. 

The  algorithm  first  forms  a  sequence  of  i  unique  sets  arbitrarily.
The  sets  are  also  designed  arbitrarily  with  m  ACA cells  per  set.  The
update style of rule 51 reversible ACAs is followed to generate the up-
date pattern.  If  no bit  flips  during the update of  a set  of  m  cells,  an-
other set of m cells is searched so that at least one bit flips. If no such
set  is  found,  then  the  algorithm reports  that  “Cycle  is  not  possible”.
While  2i  states  are  covered but  no cycle  is  formed,  the  algorithm at-
tempts to form a cycle by generating a very few states. 

Algorithm 1. FindACACycle

Input:  R  (rule),  n  (#  cells),  2i  (cycle  length,  1 § i § n),  S  (initial  state),
m (# cells updated in each step)

Output: Update pattern with the cycle length, if a cycle is possible

Step 1: Form a sequence SEQ of i unique sets of m ACA cells 
arbitrarily.

Reversibility in Asynchronous Cellular Automata 81

Complex Systems, 21 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.1.71



Step 2: Load the ACA, configured with R, with S.

Step 3: For k ! 1 to 2i, repeat Step 4 to Step 9.

Step 4: If k ! 2j-1 (1 § j § i), select the jth set of SEQ.
If k ! 2i, select the ith set of SEQ.
If k ! 2j-1 + p * 2j (p is a positive integer and 1 § j < i), 

select the jth set.

Step 5: Update ACA cells of the selected set.

Step 6: If no cell flips during the update, find a set of m cells so that

(a) at least one cell flips, and (b) the generated state is unique. 

Otherwise, go to Step 9.

Step 7: If no such set is found in Step 6, go to Step 14.

Step 8: Update the ACA cells according to the set designed in Step 6.

Step 9: Print the ACA cells that are updated to generate the next 
state of k.

Step 10: If no cycle is formed, identify the bits of the 2i + 1 state that 
differ from the initial state, S. Otherwise, go to Step 15.

Step 11: Update the ACA cells to flip the identified bits.

Step 12: If few cells flip, print those cells. Update the nearest cells of 
the remaining bits (one-by-one or more than one at a time) so that 
the S is reached within a few steps.

Step 13: If a cycle is formed, go to Step 15.

Step 14: Print “Cycle is not possible” and exit.

Step 15: Print the length of the cycle and exit. 

Example 3 illustrates the execution of Algorithm 1. 

Example 3.  Let us consider R ! 123, n ! 6, cycle length ! 8 (23), S !
011111, and m ! 2. The formation of  the cycle  following Algorithm
1 is  shown in Figure 5.  First,  a  sequence of  three sets  SEQ ! X81, 3<,81,  4<,  82,  4<\  is  formed  arbitrarily  (Step  1).  The  ACA  is  configured
with  rule  123  in  null  boundary  condition.  To  get  the  next  state  of
011111 (initial state), the first and third cells are updated (Steps 4 and
5).  In Figure 5,  the update pattern of  a rule  51 ACA is  noted on the
left  side  of  the  states,  and  the  update  pattern  generated  by  the  algo-
rithm is  shown on the right side.  To update the second state (similar
to the sixth state) according to the update pattern of the rule 51 ACA,
the  set  81,  4<  is  selected.  Since  no  cell  flips  here,  another  set  81,  5<
is  searched  (Step  6).  After  the  generation  of  eight  states,  a  cycle  is
not  formed.  Another  four  states  are  generated  to  form  a  cycle
(Steps!10–12). Therefore, the length of the cycle is 12.
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Figure 5. Generation of the cycle for the rule 123 ACA. At most, two cells are
updated simultaneously.  

We  have  experimented  with  different  reversible  rules.  It  is  found
that  for  a  number  of  reversible  rules,  the  update  pattern  can  be  de-
signed  utilizing  Algorithm 1  to  get  a  full-length  cycle  (by  updating  a
single cell at a time). A few of such rules are: 3, 19, 35, 83, 115, 131,
147, 163, 179, 211, and 243. 

5. Conclusion 

The  reversibility  in  one-dimensional  asynchronous  cellular  automata
(ACAs) has been addressed in this paper. The ACA cells  are updated
independently. Depending on their update during state transition, the
update  pattern  is  defined.  The  paper  has  classified  the  cellular  au-
tomata (CAs) rules as reversible and irreversible. The irreversible rules
cannot  configure  reversible  ACAs  with  any  set  of  update  patterns.
The  reversibility  of  ACAs  depends  on  both  the  rule  and  update  pat-
terns. Finally, the paper reports an algorithm to get an update pattern
for a cycle of ACAs.  
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