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In  this  paper,  a  single-soliton two-component  cellular  automaton (CA)
model of waves is presented as mobile self-localizations, also known as
particles, waves, or gliders, in addition to its version with memory. The
model is  based on coding sets  of  strings where each chain represents a
unique mobile self-localization. The original soliton models in CAs pro-
posed  with  filter  automata  are  briefly  discussed,  followed  by  solutions
in  elementary  CAs  (ECAs)  domain  with  the  famous  universal  ECA
rule!110,  and  reporting  a  number  of  new  solitonic  collisions  in  ECA
rule 54. A mobile self-localization in this study is equivalent to a single
soliton because the collisions of  the mobile  self-localizations studied in
this  paper  satisfy  the  property  of  solitonic  collisions.  A  specific  ECA
with  memory  (ECAM),  the  ECAM  rule  fR9maj:4,  is  also  presented;  it
displays single-soliton solutions from any initial  codification (including
random initial conditions) for a kind of mobile self-localization because
such  an  automaton  is  able  to  adjust  any  initial  condition  to  soliton
structures. 
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1. Introduction

A  soliton  can  be  defined  informally  as  follows:  when  two  solitary
waves  travel  in  opposite  directions  and  collide,  they  emerge  after
collision  with  the  same  shape  and  velocity  asymptotically.  The  phe-
nomenon  of  the  solitary  wave  was  first  recognized  by  English  engi-
neer  John  Scott  Russell  [1]  and  first  formalized  by  Diederick  J.  Ko-
rteweg  and  Gustav  de  Vries  in  1895  [2].  (Read  Russell’s  original
papers  at  http://www.ma.hw.ac.uk/~chris/scott_russell.html.)  How-
ever, in 1965 the physician Martin Kruskal coined the term “soliton”
to describe the phenomenon of the solitary wave.  

Solitons  in  one-dimensional  (1D)  cellular  automata  (CAs)  have
their  own  interest  and  history;  they  have  been  extensively  studied
since  1986  by  Kennet  Steiglitz  and  colleagues  [3–6].  These  studies
have been based on a variant of classic CAs, known as parity rule fil-
ter automata (PRFA). PRFA mainly use newly computed site values as
soon as they are available; they are also analogous to infinite impulse
response (IIR) digital filters, while conventional CAs correspond to fi-
nite  impulse response (FIR) [3].  Incidentally,  even more sophisticated
solitons with PRFA were obtained by Siwak in [7], showing large and
multiple  simultaneous  solitonic  sequential  collisions  (i.e.,  not  parallel
mapping).  Turbulence  solitons  in  1D CAs  were  explored  by  Aizawa,
Nishikawa, and Kaneko in [8]. 

Studying 1D soliton CAs is important because it allows for fast pro-
totyping  of  soliton  logic.  For  practical  implementations  of  soliton
logic,  see  the  overview developed  by  Blair  and  Wagner  in  [9],  which
led  to  novel  designs  of  optical  parallel  computers.  An interesting  im-
plementation  showing  the  wave  propagation  equation  in  lattice  gas
simulated with a partitioned CA was developed by Margolus, Toffoli,
and Vichniac in [10,  11].  Solitons have found numerous relevant ap-
plications,  including  in  fiber  optics,  breather  waves,  the  nonlinear
Schrödinger  equation,  magnets,  and  recently  in  proteins  and  DNA,
known as bio-solitons [12–16]. 

Historically, complex CAs have been related to the presence of mo-
bile  self-localizations  (also  called  gliders,  particles,  or  waves).  The
most famous CA is the two-dimensional (2D) CA in Conway’s Game
of Life [17], but we can also find a number of samples in 1D support-
ing  mobile  self-localizations,  as  in  [18–23].  Some  of  them  explicitly
process  signals  (not  mobile  self-localizations)  as  found  by  Delorme
and Mozayer  in  [24]  or  solve  the  firing  squad synchronization prob-
lem as found by Umeo in [25]. Indeed, a number of CAs have been ex-
ploited as physical models in [26–30]. 

This paper is organized as follows. Section 2 gives a general intro-
duction  on  CAs  and  basic  notation.  Section  3  presents  experimental
soliton solutions in CAs including solitons in complex elementary CA
(ECA) rules 54 and 110, and we report in this paper the soliton reac-
tions emerging in rule 54 from multiple collisions. In Section 3.3, we
display  a new  ECA  with  memory  (ECAM)  able  to  solve  experimen-
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tally the most simple single-soliton two-component solution from any
initial configuration. In Section 3.4, we discuss some computing capac-
ities based on solitons. In Section 4, we will discuss final remarks. 

2. One-Dimensional Cellular Automata

2.1 Elementary Cellular Automata  
A CA is a quadruple XS, j, m, c0\ evolving on a specific d-dimensional
lattice, where each cell xi, i œ N takes a state from a finite alphabet S
such as x œ S. A sequence s œ Sn  of n cell-states represents a string or
a global configuration c  on S.  We write a set  of finite configurations
as  Sn.  Cells  update  their  states  via  an evolution rule  j : Sm Ø S,  such
that  m  represents  a  cell  neighborhood  that  consists  of  a  central  cell
and a number of neighbors connected locally. There are †S§m  different
neighborhoods  and  if  k ! †S§,  then  we  have  kkn

 different  evolution
rules.  

An evolution diagram for a CA is represented by a sequence of con-
figurations 8ci<  generated by the global mapping F : Sn Ø Sn,  where a
global relation is given as F IctM Ø ct+1. Thus c0 is the initial configura-
tion.  Cell  states  of  a  configuration  ct  are  updated  simultaneously  by
the evolution rule as 

(1)j Ixi-r
t , … , xi

t, … , xi+r
t M Ø xi

t+1

where i  indicates cell  position and r  is  the radius of neighborhood m.
Thus,  the  ECA  class  represents  a  system  of  order  Hk ! 2, r ! 1L  in
Wolfram’s  notation  [28].  To  represent  a  specific  evolution  rule  we
will  write  the  evolution  rule  in  a  decimal  notation,  for  example,
jR110. Thus Figure 1 illustrates how evolution dynamics work in one
dimension for an ECA.  

2.2 Elementary Cellular Automata with Memory
Conventional CAs are memoryless: the new state of a cell depends on
the neighborhood configuration solely at the preceding time step of j.
CAs with memory are an extension of  CAs in such a way that  every
cell  xi  is  allowed to  remember  its  states  during  some fixed  period  of
its evolution. CAs with memory were originally proposed by Alonso-
Sanz in [31–34].  

Hence we implement a memory function f, as follows: 

(2)f Ixi
t-t, … , xi

t-1, xi
tM Ø si,
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Figure 1. Dynamic  in  ECA on an arbitrary  1D array  and hypothetical  evolu-
tion rule j.  

where t < t determines the degree of memory and each cell si œ S is a
state function of the series of states of the cell  xi  with memory back-
ward up to a specific value t. To execute the evolution, we apply the
original rule on the cells s as  

(3)jH… , si-1, si, si+1, …L Ø xi
t+1

to  get  an  evolution  with  memory.  Thus  in  CAs  with  memory,  while
the  mapping  j  remains  unaltered,  historic  memory  of  all  past  itera-
tions is retained by featuring each cell as a summary of its past states
from f. We can say that cells canalize memory to the map j [33].  

Let us consider the memory function f as a majority memory, 

fmaj Ø si,

where in case of a tie given by S1 ! S0  from f we take the last value
xi.  Thus,  fmaj  function  represents  the  classic  majority  function  (for
three values [35]). Then we have  

(4)fmajHa, b, cL : Ha Ô bL Ó Hb Ô cL Ó Hc Ô aL,
which  represents  the  cells  Ixi

t-t, … , xi
t-1, xi

tM  and  defines  a  temporal
ring  s  before  getting  the  next  global  configuration  c.  Of  course,  this
evaluation can be for any number of values of t. In this way, a num-
ber of functional memories may be used and not only the majority, in-
cluding the minority, parity, alpha, and more [33, 34]. 

The  evolution  rules  representation  for  ECAM is  given  in  [36–38],
as follows: 

(5)fCAR m:t
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where CAR is the decimal notation of a particular ECA rule and m is
the kind of memory used with a specific value of t. This way, for ex-
ample,  the  majority  memory  (maj)  incorporated  in  ECA rule  30  em-
ploying  five  steps  of  a  cell’s  history  (t ! 5)  is  denoted  simply  as
fR30maj:5.  The  memory  is  functional,  as  is  the  CA  itself;  see  a  sche-
matic  explanation  in  Figure  2.  However,  computationally  a  memory
function has a quadratic complexity calculating its evolution space. 

Figure 2. Dynamics in ECAM on an arbitrary 1D array and hypothetical evo-
lution rule j and memory function fm with t ! 3.  

3. Solitons in One-Dimensional Cellular Automata    

A soliton is a solitary wave with nonlinear behavior that preserves its
form and speed, interacting with some kind of perturbation. The lat-
ter can be another wave or some obstacle, continuing its travel affect-
ing only its phase and position since each collision. One example is a
water  wave  traveling  and  interacting  with  other  waves;  they  can  be
found also in optics, sound, and molecules [12].  

The solitary  wave described by Scott  become formally  represented
by the Korteweg–de Vries equation [2] as

(6)ut + ux x x x + u ux ! 0,

where  the  function  u  measures  high-wave  and  x-position  at  time  t,
and every subindex represents partial differences. The second term rep-
resents scattering-wave and the last term is the nonlinear term [5].   
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However,  we  will  indicate  that  soliton  models  related  to  CAs  do
not find some direct relations matching some differential equation so-
lutions.  Nevertheless,  Steiglitz  has  displayed  some  properties  with
Manakov systems and PRFA in [6, 39] in the search for a computable
system collision-based soliton [4]. In addition, Adamatzky in [40] has
designed  a  way  to  manipulate  solitons  to  implement  logic  gates.  On
the  other  hand,  Chua  has  explicitly  developed  an  extended  analysis
on how ECAs can be described precisely as differential equations and
cellular complex networks (CCN) in [41]. 

Although many studies were done on ECAs, we cannot find much
about the soliton phenomena for each rule. Complex ECAs are direct
candidates to explore such reactions from the interaction of their mo-
bile self-localizations. Some explorations were described in [8, 19, 20,
22, 27, 29, 42, 43]. Solitons in CAs are characterized as a set of self-
organized  cells  emerging  on  the  evolution  space;  such  complex  pat-
terns have a form, volume, velocity, phase, period, mass, and shift. Of
course, not all these mobile self-localizations may work as solitons be-
cause  they  depend  on  their  interaction  with  other  structures.  Conse-
quently, a classification is necessary from the evolution space because
they cannot be inferred from the local rule. 

While a PRFA was designed to yield solitonic collisions calculating
the new values as soon as they are available, their mobile self-localiza-
tions present  a strong orientation to the left.  This  is  a  natural  conse-
quence of their function to calculate the next cell, which evaluates theHi - rLt+1  cells [3]. The main and most important difference from con-
ventional  ECAs  is  that  those  mobile  self-localizations  working  as
solitons  shall  be  searched explicitly  and cannot  be deduced to evolve
the system. Thus, not all complex ECAs are able to produce collisions
as solitons, although they could evolve some kind of mobile self-local-
izations.  Steiglitz  has  amply  researched  the  PRFA  with  the  goal  of
reaching unconventional computing devices based on soliton collision
[4–6, 44]. 

In  Sections  3.1  through  3.3,  we  will  discuss  particular  cases  with
complex ECAs and ECAM, displaying exact codifications to get soli-
ton  collisions  between  mobile  self-localizations.  We  will  also  present
some  computable  capacities.  In  the  ECA  domain,  we  have  selected
and researched only complex rules 54 and 110, because no other ECA
rules present a universe with such diversity of mobile self-localizations
and  consequently  an  ample  diversity  of  collisions.  In  the  ECAM do-
main, we will present a single case that experimentally solves the most
simple single-soliton two-component solution from any initial configu-
ration, the evolution rule fR9maj:4. 

3.1 Solitons in Elementary Cellular Automaton Rule 110    
ECA rule 110 is a complex CA evolving with a complicated system of
mobile self-localizations. Its local function is defined as follows:  
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(7)jR110 !
1 if 001, 010, 011, 101, 011

0 if 000, 100, 111.

Figure  3  illustrates  the  complex  dynamics  from  a  typical  random
initial  condition selecting the evolution rule jR110.  A number of mo-
bile  self-localizations  emerge  on  its  evolution  space  and  how a  num-
ber of them collide. 

Figure 3. Random evolution in rule 110 on a ring of 644 cells to 375 genera-
tions. White cells represent state 0 and black cells state 1 starting on 50% of
density. A filter is selected to get a better view of mobile self-localizations on
its periodic background.  

See detailed studies of rule 110 and mobile self-localizations in the
glider system [21, 45, 46], universality [38, 47–52], and collisions and
rule  110  objects  [53,  54].  So  generalities  can  be  explored  from  the
rule  110  repository.  (For  information  on  gliders  in  rule  110,  visit
http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html.  For  in-
formation  on  the  rule  110  repository,  visit  http://uncomp.uwe.ac.uk/
genaro/Rule110.html.)

We will focus on mobile self-localizations that present solitonic re-
actions.  Localizations  that  have  such a  property  are  classified  in  Fig-
ure  4,  following  Cook’s  notation  [47].  Here  we  can  observe  station-
ary, shift-right, and shift-left (displacements) localizations. 

Rule  110  has  an  unlimited  number  of  collisions  as  a  consequence
of some extendible mobile self-localizations [21, 53].  In this  way, we
have  first  constructed  a  set  of  configurations  c  coding  each  localiza-
tion and yielding the solitonic reaction desired. 
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B C1 C2 E F G A

Figure 4. Set of mobile self-localizations with solitonic properties in rule 110.  

To drive collisions and localizations, we will  use the set of regular
expressions  f1 _ 1  localization-based to  code  initial  configurations  in
rule  110;  for  full  details,  see  [45].  (For  information  on  glider-based
regular  language  in  rule  110,  visit  http://uncomp.uwe.ac.uk/
genaro/rule110/listPhasesR110.txt.)

Table 1 shows a number of properties for each mobile self-localiza-
tion (Figure 4), such as shift, period, speed, and volume (which can be
related  to  its  mass  as  well).  All  of  them shall  help  us  to  synchronize
collisions  given  a  specific  phase,  where  each  mobile  self-localization
may  present  different  contact  points  and  collide  with  other  mobile
self-localizations. To produce a specific collision between mobile self-
localizations  at  a  given  point,  we  must  have  full  control  over  initial
conditions, including distance between gliders and their phases at the
moment of collision. 

Mobile Self-Localization Shift Period Speed Volume

A 02 03 2 ê 3 º 0.666666 6

B 02 04 -1 ê 2 ! -0.5 8

C1 00 07 0 ê 7 ! 0 9–23

C2 00 07 0 ê 7 ! 0 17

E 08 30 -4 ê 15 º -0.266666 21

F 04 36 -1 ê 9 º -0.111111 15–29

Gn 14 42 -1 ê 3 º -0.333333 24–38

Table 1. Mobile self-localizations properties such as solitons.    

The  notation  proposed  to  codify  initial  conditions  in  rule  110  by
phases is as follows: 

(8)Ò1 HÒ2, fi _ 1L,
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where  #1  represents  a  particular  mobile  self-localization  (given  in
Table  1)  and  #2  represents  its  phase  if  it  has  a  period  greater  than
four  (for  full  details,  see  [45]).  Variable  fi  indicates  the  phase  cur-
rently  used  and  the  second  subscript  j  (forming  notation  fi _ j)  indi-
cates the selected master set of regular expressions.  

In [53],  we have calculated experimentally the whole set of binary
collisions  between  mobile  self-localizations  in  rule  110,  colliding  all
1-1  mobile  self-localizations.  Thus  in  [55,  56],  we  have  reported  all
soliton reactions in rule 110. 

This  way,  18  solitons  (between  two  mobile  self-localizations,  i.e.,
binary) in rule 110 can be coded in phases, as follows. 

(a) Soliton 1: A(f1 _ 1)-6 e-G(C,f1 _ 1) ö 8G, A< 
(b) Soliton 2: C1(A,f1 _ 1)-3 e-E(B,f1 _ 1) ö 9E, C1= 
(c) Soliton 3: C1(A,f1 _ 1)-3 e-E(C,f1 _ 1) ö 9E, C1= 
(d) Soliton 4: F(A,f1 _ 1)-3 e-B(f4 _ 1) ö 8B, F< 
(e) Soliton 5: C2(A,f1 _ 1)-3 e-E(C,f1 _ 1) ö 9E, C2= 
(f) Soliton 6: C1(A,f1 _ 1)-2 e-F(B,f1 _ 1) ö 8F, C1< 
(g) Soliton 7: C2(A,f1 _ 1)-2 e-F(A,f1 _ 1) ö 8F, C2< 
(h) Soliton 8: A(f1 _ 1)-4 e-E(A,f1 _ 1) ö 9E, A= 
(i) Soliton 9: A(f1 _ 1)-4 e-E(B,f1 _ 1) ö 9E, A= 
(j) Soliton 10: A(f1 _ 1)-4 e-E(C,f1 _ 1) ö 9E, A= 
(k) Soliton 11: A(f1 _ 1)-4 e-E(H,f1 _ 1) ö 9E, A= 
(l) Soliton 12: F(A,f1 _ 1)-e-E(A,f1 _ 1) ö 9E, F= 
(m) Soliton 13: F(A,f1 _ 1)-e-E(C,f1 _ 1) ö 9E, F= 
(n) Soliton 14: F(A,f1 _ 1)-e-E(D,f1 _ 1) ö 9E, F= 
(o) Soliton 15: F(A,f1 _ 1)-e-E(E,f1 _ 1) ö 9E, F= 
(p) Soliton 16: F(G,f1 _ 1)-e-E(A,f1 _ 1) ö 9E, F= 
(q) Soliton 17: F(G,f1 _ 1)-e-E(B,f1 _ 1) ö 9E, F= 
(r) Soliton 18: F(G,f1 _ 1)-e-E(H,f1 _ 1) ö 9E, F= 

Of course, from these solitonic binary collisions we can codify and
synchronize  most structures  and therefore  get  multiple  solitonic  reac-
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tions increasing its complexity. For example, we have the next codifi-
cation: 

(s) Multiple soliton: 
C1(B,f1 _ 1)-e-C1(A,f1 _ 1)-2 e-C2(A,f1 _ 1)-e-F(A,f1 _ 1)-e-E(A,f1 _ 1)-
3 e-E(C,f2 _ 1) ö 9E, E, F, C1, C1, C2=. 

All these solitons in rule 110 are displayed in Figure 5. Each codifi-
cation of (a) to (r) presents the binary case, and (s) presents a multiple
solitonic  collision  with  six  localizations,  where  each  is  synchronized
to produce the soliton reaction. 

Figure 5. (a–r) Binary solitons in rule 110, and one case (s) illustrating multi-
ple  solitonic  collision  with  six  mobile  self-localizations,  synchronized  and
evolving in 964 generations.  
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Yet  as  a  special  case  in  rule  110,  we  can  find  a  collision  called  a
pseudo-soliton  [55]  that  works  recovering  the  original  localization
after two collisions. This is performed with B, B, and F  localizations.
Localizations B and B have the same period and speed, but their vol-
umes are different. 

In  [53],  we  calculated  the  whole  set  of  binary  collisions  between
mobile  self-localizations  and  summarized  them  in  Table  2.  We  have
placed  particular  attention  on  asterisk  labels  because  they  represent
precisely the pseudo-soliton in rule 110. Hence we know that the reac-
tion F Ø B ! 8B, F< and also that F Ø B ! 9B, F=, thus a loop may be
constructed  to  synchronize  such  collisions.  Figure  6  displays  such  a
construction, given its codification in phases as

F(G,f3 _ 1)-2 e-F(A,f1 _ 1)-e-B(f1 _ 1)-5 e-B(B,f4 _ 1). 

Collisions F Ø B Collisions F Ø B 

F(A,f1 _ 1)-e-B(A,f1 _ 1) ! 9A, B, B, F= F(A,f1 _ 1)-e-B(f1 _ 1) ! 9B, F= * 

F(A,f1 _ 1)-e-B(B,f1 _ 1) ! 8A, 2 C3, C1< F(G,f1 _ 1)-e-B(f1 _ 1) ! 9B, F= * 

F(A,f1 _ 1)-e-B(C,f1 _ 1) ! 8A, C2< F(H,f1 _ 1)-e-B(f1 _ 1) ! 9D2, A2=
F(G,f1 _ 1)-e-B(A,f1 _ 1) ! 9C2, A2= F(A2)-e-B ! 8B, F< (soliton) 

F(G,f1 _ 1)-e-B(B,f1 _ 1) ! 9A, A3, A, E

F(G,f1 _ 1)-e-B(C,f1 _ 1) ! 8B, F< * 

F(H,f1 _ 1)-e-B(A,f1 _ 1) ! 8A, C2< 
F(H,f1 _ 1)-e-B(B,f1 _ 1) ! 9E, A5= 
F(H,f1 _ 1)-e-B(C,f1 _ 1) ! 9E, A5= 
F(A2,f1 _ 1)-e-B(A,f1 _ 1) ! 8C1< 
F(A2,f1 _ 1)-e-B(B,f1 _ 1) ! 9A, B3, E= 

Table 2. Reactions  relation  between  B,  B,  and  F  mobile  self-localizations  in
rule 110.    

3.2 Solitons in Elementary Cellular Automaton Rule 54    
ECA rule 54 is a complex CA evolving with an apparently simple sys-
tem  of  mobile  self-localizations.  Its  local  function  is  defined  as  fol-
lows:  

(9)jR54 !
1 if 001, 010, 100, 101

0 if 000, 011, 110, 111.
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Figure 6. Pseudo-soliton in rule 110.  

Figure 7 illustrates the complex dynamics from a typical random in-
itial  condition selecting the evolution rule  jR54.  A number of  mobile
self-localizations  emerge  on  its  evolution  space  and  collide.  Particu-
larly,  rule  54 is  able  to  evolve  with  the  emergence  of  glider  gun pat-
terns due to random initial conditions, a feature that cannot be found
on any other ECAs. (A glider gun is a complex structure that periodi-
cally  emits  a  localization,  famously  known  from  the  Game  of  Life
CA.)

Detailed analysis of various aspects of ECA rule 54 can be found in
the  localizations  system  [19,  57–59],  computations  [58],  collisions
[58], and algebraic properties [60, 61]. So generalities can be explored
from  the  rule  54  repository.  (For  information  on  gliders  in  rule  54,
visit  http://uncomp.uwe.ac.uk/genaro/rule54/glidersRule54.html.  For
information on the rule  54 repository,  visit  http://uncomp.uwe.ac.uk/
genaro/Rule54.html.)

The set  of  mobile self-localizations in rule 54 is  significantly small
compared with rule 110 (which has a base set of 12 mobile self-local-
izations). Rule  54  basically  has  four  primitive  or  basic  mobile  self-
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localizations  (two  stationary,  one  shift-right,  and  one  shift-left  dis-
placements)  and  three  kinds  of  glider  guns  [58].  This  way,  basic
mobile self-localizations work to produce solitons from multiple colli-
sions. In Figure 8, we present these basic mobile self-localizations fol-
lowing Boccara’s notation [19]. 

Figure 7. Random evolution in  rule  54 on a  ring  of  644 cells  to  375 genera-
tions. White cells represent the state 0 and black cells the state 1. The evolu-
tion  starts  with  a  density  at  50%.  A  filter  is  applied  to  get  a  better  view  of
mobile self-localizations and collisions on its periodic background.  

w go ge w

Figure 8. Set of mobile self-localizations with solitonic properties in rule 54.  

Particularly,  solitons  in  rule  54  cannot  emerge  from  binary  colli-
sions; instead, they are found in multiple collisions. This way, solitons
there are on the domain of triple collisions and beyond [58].  Proper-
ties for these mobile self-localizations are characterized in Table 3. 
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Mobile Self-Localization Shift Period Speed Volume

w 2 2 1 2

w -2 2 -1 0–4

go 0 4 0 6–2

ge 0 4 0 7–3

Table 3. Basic mobile self-localizations properties in rule 54.    

In this paper, we report an unexplored set of solitonic collisions in
rule 54. They are obtained for systematic analysis by reactions across
multiple collisions.  

Figure  9  presents  14 kinds  of  solitons  constructed  in  rule  54.  It  is
easy to recognize that you can derive 28 similar reactions in total, be-
cause  rule  54  is  a  symmetric  rule  and  therefore  you  can  obtain  the
next 14 symmetric collisions. 

Figure  9(a)  and  (b)  display  two  pairs  of  mobile  self-localizations
producing  the  same  soliton  reaction;  however,  the  collision  is  differ-
ent because while in (a) the first pair of mobile self-localizations delay
its  trajectory,  in  (b)  it  advances  for  six  cells.  Thus  these  are  possible
controller  intervals  of  mobile  self-localizations  trajectories.  Similar
cases are presented in Figure 9(c), (d), and (e), but these reactions are
between three mobile self-localizations. 

Figure  9(g)  starts  a  solitonic  reaction  with  more  than  four  mobile
self-localizations, but here we employ more space between intervals of
mobile  self-localizations  (see  (f)  and  (h)  as  well).  Hence  we  can  use
several  mobile  self-localizations  to  preserve  the  soliton  reaction.  No-
ticeably,  Figure 9(i),  (j),  and (k) display three different kinds of colli-
sions  to  get  soliton  reactions,  employing  four  mobile  self-localiza-
tions. 

The  last  set  of  collisions  (Figure  9(l),  (m),  and  (n))  display  more
large  synchronizations  of  mobile  self-localizations,  with  different  in-
tervals and numbers of them. Of course, it is possible to design more
sophisticated  collisions  working  with  a  diverse  range  of  packages  of
mobile and stationary self-localizations. 

3.3 Solitons in Elementary Cellular Automata with Memory    
In  this  section,  we  will  present  the  simple  single-soliton  two-compo-
nent  solution  [44]  for  a  specific  ECAM.  The  main  characteristic  is
that only one mobile self-localization is processed. Thus a mobile self-
localization  with  shift-right  and  shift-left  displacement  always  pro-
duces the same reaction.  

An  extensive  and  systematic  analysis  is  done  for  ECAM  in  [62].
From  here,  we  have  selected  the  ECAM  rule  fR9maj:4,  because  no
other rule has the same features. 
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Figure 9. Catalog of soliton collisions in rule 54.  

Figure 10 shows the ECA base that shall be enriched with majority
memory  function  (see  Section  2.2).  We  study  ECA  rule  9  because  it
displays  basic  interaction  of  solitons  with  simple  collisions.  In  Fig-
ure!10(a),  a  single  soliton  travels  along  the  evolution  space,  while  in
(b)  a  number  of  interactions  occur  during  a  short  history,  starting
from a random initial condition. Extending the evolution space in (c),
we  can  better  observe  how these  solitons  emerge  in  ECA rule  9  and
how they collide inside a fast stationary periodic attractor. 
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HaL HbL

HcL
Figure 10. Typical snapshots of ECA rule 9. (a) Evolution starts with a single
cell in state 1. (b) A random evolution is presented at 50%. (c) Other random
evolutions with small pixels, 360 cells for 331 generations.  

In  [36,  37,  63],  we  have  demonstrated  how ECAs,  when enriched
with  memory,  produce  different  dynamics.  Here  we  will  exploit  this
tool to get simple solitonic reactions. 

We use the majority memory with t ! 4 in ECA rule 9. Obtain the
ECAM rule fR9maj:4, which evolves with two mobile self-localizations

emerging on its  evolution space:  "fR9maj:4
! :p, p>.  The localization’s

properties  are  easy  to  calculate.  The  p  mobile  self-localization  has  a
volume  of  5ä6  cells,  a  mass  of  12  cells,  and  moves  two  cells  in  five
generations  (shift-right  displacement).  The  p  mobile  self-localization
has a volume of 5ä3 cells, a mass of seven cells, and moves two cells
in five generations (shift-left displacement). 
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Mobile  self-localizations  emerging  in  ECAM fR9maj:4  preserve  the
solitonic reaction after any collision. But there are really two different
collisions (two contact points [3] or phases [45] in every mobile self-
localization) between p and p mobile self-localizations. At the first col-
lision, the soliton is preserved because the sequence is fused in a string
of  four  cells  in  state  one,  while  the  second  reaction  fuses  a  string  of
eight cells in state one. Finally, they open in both mobile self-localiza-
tions after exactly seven generations. 

Thus the automaton fR9maj:4  adjusts every string to always evolve
with  the  same  mobile  self-localization  and  soliton  reactions,  as  fol-
lows in the next relation of collisions: 

p Ø p ! :p, p>, and p ! p ! :p, p>.
Figure 11 illustrates three different random initial conditions where

the  ECAM  rule  fR9maj:4  always  evolves  in  solitonic  collisions.  The
first evolution (Figure 11(a)) starts with an initial density of 10% for
state one. The result implies a high production of p mobile self-local-

izations  with  very  few  p  mobile  self-localizations,  always  preserving

the  solitonic  collisions  inside  bigger  fields  of  p.  In  the  opposite  case,
the second evolution (Figure 11(b))  has an initial  density of  80% for
state  one  and  again  produces  high  concentrations  of  p  mobile  self-

localizations with some p  mobile  self-localizations;  however,  the new
solitonic  reaction  is  always  preserved.  The  final  evolution
(Figure!11(c)) displays 50% of states one and zero, generating a simi-
lar  distribution  of  both  mobile  self-localizations.  In  all  cases,  the
ECAM  rule  fR9maj:4  evolves  any  initial  condition  in  solitons.  Thus
you  can  begin  with  any  number  of  mobile  self-localizations  in
fR9maj:4  and  the  solitons  are  always  produced—a  characteristic  that
no  conventional  ECAs  have.  However,  such  behavior  can  be  repro-
duced identically in other kinds of CAs, including the reversible block
CAs  (also  known  as  partitioned  1D  CAs)  explored  by  Wolfram  in
[48, Chapter 9]. 

By  the  way,  recently  a  soliton  was  discovered  in  ECA  rule  26
(Figure 12). 
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HcL
Figure 11. Typical snapshots of ECAM rule fR9maj:4. (a) Starts with an initial
density of 10%. (b) Presents an initial density of 80%. (c) Has an initial den-
sity of 50%. All evolutions are filtered for the best visualization of mobile self-
localization interaction; the evolutions are on a ring of 776 cells for 315 gen-
erations.  
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Figure 12. Soliton in class 2 ECA rule 26.  

3.4 Computing with Cellular Automata Solitons    
Solitons are useful for preserving information such as in the fiber-op-
tic  communications  field.  Of  particular  interest  is  whether  such  soli-
tons could emulate an equivalent Turing machine. Steiglitz et al. have
designed a number of results trying to reach this goal in [4–6, 44] and
logic  gates  with solitons  in  [9,  40].  In  [63],  for  example,  the  authors
have  developed  a  very  simple  substitution  system  as  an  implementa-
tion  of  the  function  addToHead(),  based  on  soliton  reactions,  where
such  mechanisms  can  also  be  designed  as  simple  colliders  [38].  Fig-
ure!13 displays such operations between two mobile self-localizations
in the ECAM fR30maj:8 [36, 63].  

Figure 13. The  ECAM  fR30maj:8  presents  a  solitonic  collision  that  can  be
coded for any n, m œ "+, such that pfR30maj:8

n Ø qfR30maj:8
m  is always a soliton. 
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During  the  last  decade,  we  have  seen  a  number  of  significant  ad-
vances in work with solitons for modeling unconventional computing
devices [5–7, 9, 40, 44, 63, 64, 65]. As a result, we can see how soli-
tons could be important in developing computable devices in the con-
struction  of  equivalent  Turing  machines.  We  also  want  to  recall  the
results obtained in ECA rule 110, where a cyclic tag system was devel-
oped to perform computation-based collisions with a large number of
mobile  self-localizations  on  an  incredible  global  synchronization  in
millions  of  cells.  Solitonic  reactions  were  very  useful  to  write  binary
data  and  preserve  information  in  the  whole  mechanism.  For  full
details,  see  [47–49,  51,  52].  (Details  and  large  snapshots  about
the  cyclic  tag  system  working  in  rule  110  can  be  found  at
http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html.)

Figure  14  illustrates  how  information,  encoded  in  a  configuration
of  solitons  (localizations),  may  be  conserved  and  recognized.  For  ex-
ample,  a collision between trains A4  of gliders with glider E  leads to
formation  of  new  traveling  localizations,  or  bits.  Moreover,  when  a
bit is already on the tape—represented by a configuration of four sta-
tionary  C2  localizations—the  train  of  gliders  E,  traveling  east,  does
not destroy the bit. The train just passes through the configuration of
localizations (for full details, see [52]).  

4. Conclusions    

We have reported a complete number of solitons in elementary cellu-
lar  automaton  (ECA)  rule  110  from  binary  collisions.  For  ECA
rule!54,  we have reported a  new number  of  collisions  that  yield  soli-
tons,  which could  be  manipulated  to  develop computable  devices,  or
even  further,  complex  constructions  based  on  solitonic  reactions.  Fi-
nally,  we  have  characterized  a  simple  single-soliton  two-component
solution  with  a  simple  ECA  with  memory  (ECAM)  fR9maj:4,  where
mobile  self-localizations  always  work  as  solitons  even  starting  from
random initial  conditions,  because  each soliton is  always constructed
from fR9maj:4.  

With  regards  to  memory  effect  in  CAs  [33,  34],  we  recently  have
studied how a memory function helps to describe dynamics properties
that are not evident at the first instance [36, 37, 63]. In the present pa-
per, the majority memory selected in ECA rule  9 opens a new evolu-
tion  rule  ECAM  fR9maj:4  able  to  simulate  solitons.  Of  course,  frag-
ments of the original evolution rule determine such dynamics. 
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Figure 14. Solitons working to yield, handle, and control bits in one cyclic tag
system in rule 110. This evolution begins with 793 cells to 1144 generations;
the evolution is filtered, suppressing its ether (periodic background).  
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