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The  recent  developments  in  agent-based  modeling  of  several  N-person
games are reviewed and some features of the author’s software tools as
well as some applications are described. After explaining the transition
from  two-person  to  N-person  games,  the  classification  and  properties
of N-person games, our software tools, and agent personalities, the fol-
lowing  N-person  games  are  considered:  prisoners’  dilemma,  chicken
dilemma,  battle  of  the  sexes  game,  games  with  crossing  payoff  func-
tions, a new game with parabolic payoff functions, transitions between
different  N-person games,  and analytical  solutions of  N-person games.
Several practical applications are then considered.

1. Introduction

Game theory [1] is a well-developed discipline, but relatively little ef-
fort  has  been  devoted  to  the  theoretical  investigation  of  N-person
games [2–7]. The tragedy of the commons [8] pointed to the practical
importance of such games.

Axelrod’s famous tournaments [9] have generated an enormous in-
terest in N-person games. Unfortunately, however, these tournaments
are  not  really  N-person  games  but  a  series  of  two-person  games
among N  participants that have led to the investigation of numerous
two-person game strategies. Nevertheless, the interest is still alive and
many papers are devoted to this idea. 

The appearance of powerful personal computers has made the mod-
eling and simulation of N-person games possible. Several papers have
appeared  describing  simulations  of  some  practical  examples  [10–12].
Simulations in [13, 14] deserve special attention.

Our simulation tool [15] was developed specifically for the investi-
gation of N-person games. 

In  this  paper,  we  review  the  recent  developments  in  agent-based
modeling of several N-person games and describe some features of the
author’s software tools as well as some applications. After explaining
the  transition  from two-person  to  N-person  games,  the  classification
and properties of N-person games, our software tools, and agent per-
sonalities,  we  consider  the  following  N-person  games:  prisoners’
dilemma,  chicken  dilemma, battle  of  the  sexes  game,  games  with
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crossing  payoff  functions,  a  new  game  with  parabolic  payoff  func-
tions, transitions between different N-person games, and analytical so-
lutions of N-person games. These games are all played on a lattice.

The  following  practical  applications  are  then  considered  in
Section!14.

† The tragedy of the commons.

† Segregation.

† Mass transportation as an N-person chicken dilemma.

† Agent-based modeling of a simple market.

† Agent-based modeling of public radio membership campaigns.

† Standing ovation.

† Collective action and the N-person prisoners’ dilemma.

† Agent-based modeling of the El Farol Bar problem.

2. Two-Person Games

In  simple  two-person  games,  each  participant  has  exactly  two  avail-
able choices of actions (C or D) as indicated by this matrix:

C D
C a1, a2 b1, b2

D c1, c2 d1, d2

Matrix 1.

The  two  players  are  called  row  and  column  players,  respectively.
Four outcomes are possible: CC, CD, DC, and DD (the first choice is
that of the row player; the second is that of the column player). Each
player receives a payoff (reward or punishment) for each situation as
shown in the matrix.

The first of each pair of payoffs are for the row player; the second
are for the column player. There are 4 != 24 preference orderings for
each player  if  we require  that  each payoff  is  different.  Consequently,
the  matrix  represents  24ä24 = 576  preference  orderings,  but  not  all
of  these  correspond  to  distinct  games.  It  turns  out  that  there  are  ex-
actly 78 distinct  two-person games of  which only three are constant-
sum games [16]. 

If  a1 = a2,  b1 = c2,  c1 = b2,  and  d1 = d2,  the  game  is  symmetric.
There are 24 symmetric two-person games if  each payoff is  different.
For such a game we can simplify the matrix. Let us call the C  choice
cooperation  and  the  D  choice  defection.  R  is  the  reward  for  mutual
cooperation and  P is  the  punishment  for  mutual  defection.  T  is  the
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temptation  to  defect  when  the  other  player  cooperates,  and  S  is  the
sucker’s payoff for cooperating when the other player defects. Then:

C D
C R, R S, T
D T, S P, P

Matrix 2.

Note that these names and notations are arbitrary. C and D can be
any two actions and the payoffs can have any value.

Among the 24 games, the following are especially well known and
important:

† Prisoners’ dilemma: T > R > P > S (equilibrium: DD)

† Chicken: T > R > S > P (equilibria: CD and DC)

† Benevolent chicken: T > S > R > P (equilibria: CD and DC) 

† Leader: S > T > R > P (equilibria: CD and DC) 

† Battle of the sexes: T > S > P > R (equilibria: CD and DC)

† Stag hunt: R > T > P > S (equilibria: CC and DD)

† Deadlock: T > P > R > S (equilibrium: DD)

An equilibrium means that if either of the two players abandon this sit-
uation, their position will not improve.

Let  us  call  those  games  where  the  temptation’s  payoff  is  greater
than  the  reward  that  is  greater  than  the  punishment  (T > R > P)
dilemmas.  The first four games satisfy this condition. In these games,
defection is preferred to cooperation in spite of the fact that coopera-
tion would lead to the most advantageous situation for both players. 

Poundstone’s  definition  [17]  is  different  from  this  one.  He  calls  a
game a dilemma if it satisfies the following two conditions: R > S and
T > P.  This is  true for six games. From the provided list,  four games
satisfy  both  conditions:  prisoners’  dilemma,  chicken,  stag  hunt,  and
deadlock. Only the first two are dilemmas by both definitions. Let us
look at both of them.

In prisoners’ dilemma, no matter what the other player does, both
players’  best  choice  is  defection.  As  a  result,  mutual  defection  is  the
equilibrium. It is a dilemma because mutual cooperation would be bet-
ter for both players. 

In  the  case  of  chicken,  mutual  defection is  the  worst  possible  out-
come  that  both  players  try  to  avoid,  but  they  do  not  want  to  be
“chickens” either.  Therefore,  each will  do the  opposite  of  their  part-
ner’s choice.
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3. N-Person Games

In  social  and  economic  games  there  are  more  than  two  participants
(the number of participants is N  where N > 2). These are usually not
constant-sum games: every participant can win as in a regulated free-
market  economy  or  lose  as  during  market  crashes.  The  participants
are  almost  never  rational  because  even  if  they  are  extremely  intelli-
gent, it is impossible to calculate the payoffs of all of their choices.

There  are  additional  major  differences  between  two-person  and
N-person  games.  In  two-person  games  each  participant’s  choice  is
clear.  If  the  number  of  participants  is  high,  defection  is  anonymous
and  the  harm caused  by  defections  is  diffused.  Rewards  and  punish-
ments  are  dependent  on  the  ratio  of  cooperators  among  the  partici-
pants,  that  is,  on  the  statistical  distribution  of  the  participants’
choices.

One of the best  examples of  N-person games is  the tragedy of the
commons  [8].  There  is  a  pasture  open  to  all  herdsmen  of  a  village.
They use it to feed their cattle. The pasture can sustain a certain num-
ber  of  animals.  The  tragedy  develops  when  the  herdsmen  all  try  to
maximize their gains by adding more animals to their herds. This is a
typical  N-person  prisoners’  dilemma.  To  add  more  animals  always
seems to  be  advantageous  (defection is  a  dominant  strategy),  but  the
result  is  that  all  animals  die  because  of  the  finite  size  of  the
overcrowded pasture. Freedom in the commons brings ruin to all. Ev-
eryone rushes toward ruin pursuing their seemingly best interests.

Fortunately, not all people behave like this. They have different per-
sonalities.  This  may  lead  to  equilibria  that  are  different  from  total
ruin.  We  can  investigate  the  role  of  personalities  by  agent-based
modeling.

At a first glance, an N-person game looks like a well-defined prob-
lem. However, at least the following questions arise immediately [18]:

1. Who are the players?
They can be people, groups, organizations, departments, cities, coun-

tries,  nerve  cells,  ants,  computers,  or  anything  else.  They  can  be  very
simple  or  enormously  complex.  Their  common  features  are  that  they
are autonomous (they have no controller above them) and are intercon-
nected with each other. It is generally accepted to call them agents. 

2. What is the goal of the game?
The agents may try to maximize their payoffs, to win a competition,

to  do  better  than  their  neighbors,  to  behave  like  the  majority,  or  may
have any other goal. This is a critical issue. In real-life situations, differ-
ent agents have different goals. It is also possible that the agents simply
react to their and their neighbors’ payoffs without specific goals.

3. What are the agents’ options?
The  agents  must  choose  between  different  available  options.  In  the

simplest case there are only two options, for example, cooperate or de-
fect,  go  to  a  bar  or  stay  at  home,  and  so  forth.  In  real-life  situations,
more  options  are  available  or  the  agents  even  have  to  choose  from  a
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continuous spectrum of options, for example, how much to contribute
to charity.

4. Do the agents act simultaneously or are the actions distributed in time?
There is a huge difference between simultaneous actions and actions

distributed  in  time.  In  the  first  case,  all  agents  see  the  same  environ-
ment  at  the  moment  of  their  simultaneous  actions.  In  most  social  set-
tings,  however,  agents  act  at  different  and  uncorrelated  times.  There-
fore, each agent sees a slightly different world than another agent who
acts  at  a  slightly  different  time  [19].  Simulation  of  this  case  is  a  more
sophisticated task than that of the previous case.

5. What do they know? Can individual agents see and adapt to the actions
of others?

Even if the agents’ actions are distributed in time, they may or may
not have information about the actions of others. You may look out of
the window and see how many cars are on the road before deciding if
you  are  going  to  drive  your  car  or  take  a  bus,  but  you  do  not  know
how many children will be born next year before deciding if you are go-
ing to have another child.

6. Can they talk to each other? Can they form coalitions?
Obviously,  if  they do not know the other participating agents,  they

cannot form coalitions with them. Even if they know one another, it is
not certain that they can communicate, let alone form a coalition. How-
ever, coalitions may drastically change the outcome of the game.

7. Is it a one-shot game or an iterated one? 
The one-shot game is less interesting than an iterated one where the

agents act repeatedly based on their personalities, their neighbors’ situa-
tions, and the payoffs received for their previous actions. 

8. If it is an iterated game, how are the next actions determined?
The next choices are determined by updating schemes that are differ-

ent for different agents.

9. When is an iterated game over?
There  may  be  a  predefined  number  of  iterations  or  the  game  ends

when an important parameter (e.g., the ratio of cooperators) reaches a
constant value or oscillates around such a value. This value is the solu-
tion of the iterated game.

10. How are the agents distributed in space and time? 
The  agents  may  be  distributed  in  space  and  time  in  many  different

ways.

11. Can the agents move?
If there are fewer agents than locations in space or if more than one

agent may occupy one location, then it is possible that the agents move
around in space and their neighborhood constantly changes.

12. Can an agent refuse participation in the game?
The  iterated  game may  considerably  change  if  an  agent  may  refuse

participation  in  some  iteration.  It  is  impossible  in  chess,  but  Kutuzov
beat Napoleon by avoiding battles.

13. How  do  the  agents  react  to  the  reward/penalty  received  for  their
actions?
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When everything else is fixed, the payoff curves determine the game
(see Section 5). There is an infinite variety of payoff curves. In addition,
stochastic  factors  can  be  specified  to  represent  stochastic  responses
from the environment. The stochastic factors determine the thickness of
the payoff curves. Zero stochastic factors mean a deterministic environ-
ment.  Even  in  the  almost-trivial  case  when  both  payoff  curves  are
straight  lines  and the stochastic  factors  are both zero,  four parameters
specify  the  environment.  Attempts  to  describe  it  with  a  single  variable
are  certainly  too  simplistic  [13,  20].  As  shown later,  the  relative  posi-
tion  of  the  two  payoff  curves  with  respect  to  one  another  alone  does
not  always  determine  the  outcome  of  the  game.  Ordinal  preference  is
not enough to represent the payoff functions: the actual amount of re-
ward and punishment may be as  important  as  the relative situation of
the two curves.

The  N-person  game  is  a  compound  game  (it  can  be  reduced  to  a
series of two-person games) if and only if both payoff functions are lin-
ear  [4].  Therefore,  a  dyadic  tournament  where  every  agent  plays  two-
person games against each of the N - 1 other agents [9] represents only
a limited subset of N-person games.

14. Are the payoff functions the same for all agents?
In  this  case,  the  game is  called  uniform,  but  not  all  games  are  uni-

form. This condition is not always guaranteed.

15. What are the personalities of the agents? 
Different  people  react  quite  differently  to  the  same  situations.  The

personalities of the agents are one of the most important characteristics
of the game. Personalities may represent genetic as well as cultural dif-
ferences among them.

The psychological  literature  on the  impact  of  personalities  in  social
dilemmas is summarized in [21]. It is possible but not easy to quantify
personality  profiles  in  the  traditional  psychological  sense.  We  will  use
the  term  “personality”  in  the  sense  of  decision  heuristics  (repeated-
game strategies) in this paper to represent the fact that different agents
react differently to the same stimulus from their environment. This is a
rather primitive approach but it is still much better than the unjustified
assumption of a uniform response.

Personalities  are  usually  neglected in  the  literature.  In  our  research,
different  agents  may  have  quite  different  personalities  in  the  same  ex-
periment. Personalities may be represented in many different ways (see
Section 4).

16. Can the agents change their personalities during the game?
In  the  case  of  adaptive  agents,  they  may  change  their  personalities

by learning from their mistakes during the game or because of the influ-
ences of other agents.

17. How  is  the  total  payoff  to  all  agents  related  to  the  number  of
cooperators?

The  total  payoff  to  all  agents  is  related  to  the  number  of  coopera-
tors, but the maximum collective payoff is usually not at maximum co-
operation. 

18. Do the  agents  interact  with  everyone  else  or  just  with  their  immediate
neighbors?

The agents may interact with everyone else or just with their neigh-
bors. In the latter case, they behave like cellular automata [22].
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19. How is a neighborhood defined?
The  number  of  neighborhood  layers  around  each  agent  and  the

agent’s  location  determine  the  number  of  its  neighbors.  The  depth  of
agent  A’s  neighborhood  is  defined  as  the  maximum  distance,  in  three
orthogonal directions, that agent B can be from agent A and still be in
its neighborhood. An agent at the edge or in the corner of the available
space  has  fewer  neighbors  than  one  in  the  middle.  The  neighborhood
may extend to the entire array of agents.

With so many open questions, it is obviously quite difficult to cre-
ate a general classification scheme for N-person games and there is a
great variety of possible games. They constitute, in fact, a whole fam-
ily of quite different games. Even in the case of a uniform game with
all  other  parameters  fixed,  the  number  of  possible  variations  is  in-
finitely large because of the infinite variety of the payoff curves. 

There are an infinite number of different N-person games!
The first serious investigation of an N-person game was Schelling’s

segregation  model  [23].  He  also  introduced  the  graphical  representa-
tion of the payoff functions [5]. Hamburger [4] gave a thorough math-
ematical  description  of  these  games.  Axelrod’s  tournaments  [9]  con-
tributed to the widespread interest in such games.

The  effects  of  alternative  strategies  on  achieving  consensus  for  ac-
tion were simulated by Feinberg and Johnson [24]. A stochastic learn-
ing  model  was  developed  by  Macy  [25]  to  explain  critical  states
where threshold effects may cause the system to shift from a defective
equilibrium  to  a  cooperative  one.  A  computer  simulation  of  tempo-
rary  gatherings  was  presented  by  McPhail  et  al.  [26].  Glance  and
Huberman  [27]  used  a  thermodynamical  model  to  investigate  out-
breaks  of  cooperation  in  a  social  system.  Nowak  and  May  [13]  and
Lloyd  [14]  wrote  simple  computer  programs  that  demonstrated  the
dynamics  of  deterministic  social  behavior  based on pair-wise  interac-
tions between the participants. 

In most of these papers, the simulation is restricted to narrowly de-
fined special cases. For example, in [13] the agents interact with each
other  only  pair-wise,  they  all  have  the  same  predefined  personality,
and  the  environment  is  deterministic  and  defined  through  one  single
parameter.

Epstein  and  Axtell  [28]  demonstrated  that  it  is  possible  to  build
complex artificial  societies  based on simple participating agents.  This
work is still one of the best examples of agent-based modeling.

4. Agent Personalities

We  can  represent  agent  personalities  in  agent-based  modeling  using
different approaches.

1. The model presented in Section 6 includes the following personalities:

(a) Pavlovian (the  probability  of  choosing the  previously  chosen action
again changes by an amount proportional to the reward/penalty for
h  i  i  h  ffi i  f  i li  i  ll d  h
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the  previous  action;  the  coefficient  of  proportionality  is  called  the
learning  rate;  of  course,  the  probabilities  always  remain  in  the
interval  between  0  and  1).  This  personality  is  based  on  Pavlov’s
experiments and Thorndike’s law [29]: if an action is followed by a
satisfactory  state  of  affairs,  then  the  tendency  of  the  agent  to
produce  that  particular  action  is  reinforced.  These  agents  are
primitive enough not to know anything about their rational choices,
but  they  have  enough  “intelligence”  to  learn  a  behavior  according
to  Thorndike’s  law.  Kraines  and  Kraines  [30],  Macy  [31],  Flache
and  Hegselmann  [32],  and  others  used  such  agents  for  the
investigation of iterated two-person games.

(b)Greedy (imitates the neighbor with the highest reward).

(c) Conformist (imitates the action of the majority of its neighbors).

(d)Accountant (acts according to the average payoffs for past actions).

(e) Statistically “predictable” (constant probability p of cooperation):

† Angry agents with short-term rationality always defect (p = 0). 

† Benevolent  agents  ignore  their  short-term  interests  and  always
cooperate (p = 1). 

† Unpredictable agents act randomly (p = 0.5).

(f) Any combination of these in the society of agents.

2. The Big Five approach characterizes personalities by the proportions of
the following characteristics:

† Openness 

† Conscientiousness 

† Extroversion 

† Agreeableness

† Neuroticism

This approach was used in our study of standing ovation [33]. 

3. The Markov chain model uses the following propensities:

† trustworthiness  (probability  of  choosing  cooperation  after  receiv-
ing R),

† forgiveness (probability of choosing cooperation after receiving S),

† repentance  (probability  of  choosing  cooperation  after  receiving  T),
and

† trust (probability of choosing cooperation after receiving P).

4. The most interesting approach is to represent personalities on the basis
of 16 mental disorders. Oldham and Morris [34] believe that a normal
person is  a  combination of  these disorders  (listed in parentheses  in the
following table). The disorders are just extremes of normal human per-
sonality patterns listed in Table 1.
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If every person is a combination of these patterns, it is very easy to
represent personalities by just 16 numbers showing the proportions of
the individual patterns.

Adventurous HAntisocialL Self-Confident HNarcissisticL
Aggressive HSadisticL Self-Sacrificing HSelf-DefeatingL
Conscientious HObsessive-CompulsiveL Sensitive HAvoidantL
Devoted HDependentL Solitary HSchizoidL
Dramatic HHistrionicL Vigilant HParanoidL
Idiosyncratic HSchizotypalL Exuberant HCyclothymiacL
Leisurely HPassive-AggressiveL Serious HDepressiveL
Mercurial HBorderlineL Inventive HCompensatory NarcissisticL

Table 1.  

5. Transition from Two-Person to N-Person Games

As we have seen, any two-person game can be represented by a two-
dimensional  2ä2  matrix.  Accordingly,  a  three-person  game  would
require a three-dimensional 3ä3ä3 matrix, a four-person game a four-
dimensional 4ä4ä4ä4 matrix, and so on. Obviously, this is not a fea-
sible approach to study multi-person games.

To overcome this difficulty, let us replace the two-dimensional Ma-
trix 2 with Figure 1.

Figure 1.
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Now replace the second player choice with the ratio of cooperators
among other players x. As there is only one other player, Figure 2 con-
tains exactly the same information as Figure 1. The only difference is
that we have added two lines: one connects points P and T; the other
connects  points  S  and  R.  The  former  is  called  the  defectors’  payoff
function  DHxL;  the  latter  is  the  cooperators’  payoff  function  CHxL.
These functions do not have to be linear.

Figure 2 can be applied to any number of players. This is the gen-
eral representation of N-person games. If N is a large number, we can
say that x is simply the ratio of cooperators among all players. This is
not exactly true, but for large N the error is hardly noticeable.

Figure 2.

6. The Model

The first task before building a model is to clearly define the object of
the model. In the case of N-person games, we must answer the ques-
tions listed in Section 3.

1. The players are agents.

2. The goal  of  the game is  to find out  its  outcome for  a  large number of
agents.

3. Each of the N agents has a choice between two actions. It is convenient
to  call  these  actions  cooperation  and  defection  (cooperating  with  each
other  for  the  “common  good”  or  defecting  by  following  their  selfish
short-term interests),  but  these  names do not  restrict  the  games to  this
particular example.

210 M. N. Szilagyi

Complex Systems, 21 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.3.201



4. The agents act simultaneously. 

5. They  get  information  about  other  agents’  choices  only  through  their
payoffs.

6. They cannot talk to each other and cannot form coalitions.

7. The game is iterated.

8. The  next  actions  are  decided  by  the  updating  schemes  that  are  depen-
dent on the agents’ personalities.

9. The iterated game is over when a solution is reached (the ratio of coop-
erators reaches a constant value or oscillates around such a value). 

10. The agents are distributed in a two-dimensional array (as cells in a cellu-
lar automaton). 

11. They cannot move.

12. No agent can refuse participation in the game.

14. The payoff functions are the same for all agents (uniform game).

16. The agents cannot change their personalities during the game.

17. The relationship between the total payoff to the number of cooperators
will be discussed later.

We have not answered questions 13, 15, 18, and 19. These will be
the user-defined parameters of the game.

13. The user-defined payoff  functions  determine the  outcome of  the  game.
Each agent receives a reward or punishment (payoff) that is dependent
on its choice as well as everybody else’s (see Figure 2). 

15. The personalities of the agents can be chosen according to the first rep-
resentation of Section 4.

18. The agents can interact with everyone else or with their neighbors of ar-
bitrary depth.

19. The  depth  of  agent  A’s  neighborhood  is  defined  as  the  maximum dis-
tance, in three orthogonal directions, that agent B can be from agent A
and still be in its neighborhood. 

Thus,  to  make  our  task  manageable,  we  assume  that  the  game  is
uniform  and  iterated,  the  agents  have  no  goals,  they  know  nothing
about  each  other,  and  they  cannot  refuse  participation  in  any  itera-
tion.  They  are  distributed  in  and  fully  occupy  a  finite  two-dimen-
sional  space  and  the  updates  are  simultaneous.  These  restrictions
leave  the  payoff  functions,  the  personalities,  and  the  neighborhood
open  for  investigation.  The  last  two  factors  are  mostly  neglected  in
the literature. In addition, the user has to define the number of agents
and their initial  states.  It  should be noted that even if  only these fac-
tors are considered, there is still an infinite number of different varia-
tions of games because of the infinite variety of payoff functions.
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Agent-based computer simulation is the best way to investigate the
role of the above-mentioned factors on the outcome of the game. We
have developed an agent-based model, Dilemma, for the investigation
of  N-person  games  with  a  large  number  of  agents  operating  in  a
stochastic environment [15]. Our model has three distinctive features:

1. It  is  a  genuine  multi-agent  model  and  not  a  model  for  repeated  two-
person games.

2. It is a general framework for inquiry in which the properties of the envi-
ronment as well as those of the agents are user-defined parameters and
the number of interacting agents is theoretically unlimited.

3. Our agents have various distinct, user-defined personalities. 

The  participating  agents  are  described  as  stochastic  learning  cellu-
lar  automata,  that  is,  as  combinations  of  cellular  automata  [22,  35]
and stochastic learning automata [36, 37]. 

A cellular automaton is  a discrete dynamic unit  whose behavior is
specified in a simple way in terms of its local relation to the behavior
of its neighbors, that is, the behavior of each unit depends on its own
and  its  neighbors’  states.  A  good  example  is  the  Game  of  Life  [38],
which  shows  enormous  complexity  on  the  collective  level  generated
by trivial rules for the participating units. The cellular automaton ap-
proach is  gaining popularity for the simulation of  complex nonlinear
physical,  economic, and social  problems as shown by the appearance
of  popular  articles  in  journals  ranging  from Scientific  American  [39]
to Forbes Magazine [40]. Experiments with various cellular automata
models confirmed that even trivial, deterministic rules can produce ex-
tremely  complicated  and  unforeseeable  collective  behavior  [13].  The
cellular  automaton  format  describes  the  environment  in  which  the
agents  interact.  In  our  model,  this  environment  is  not  limited  to
the agents’ immediate neighbors: the agents may interact with a user-
defined number of other agents simultaneously. 

Stochastic  learning  rules  provide  more  powerful  and  realistic  re-
sults  than  the  deterministic  rules  usually  used  in  cellular  automata.
Stochastic  learning  means  that  behavior  is  not  determined  but  only
shaped  by  its  consequences,  that  is,  an  action  of  the  agent  will  be
more probable but still not certain after a favorable response from the
environment.  A stochastic  learning automaton is  a  unit  characterized
by  probability  distributions  for  a  number  of  possible  actions.  The
units are connected to the stochastic outside environment. A stochas-
tic reward/penalty is the only input that the units receive from the en-
vironment.  The  asymptotic  behavior  of  collectives  of  such  units  can
be established by using the theory of Markov processes. The probabili-
ties of the agents’ actions are updated by the reward/penalty received
from the environment based on their and other agents’  behavior. Ac-
tions  are  taken  according  to  these  probabilities.  The  outputs  of  the
stochastic environment are influenced by the actions of all participat-
ing units  whose existence may not even be known to the other units.
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Behavior  is  learned  by  adjusting  the  action  probabilities  to  the  re-
sponses of the environment. The learning capability alters the agents’
behavior  as  they make repeated decisions.  The aggregate  behavior  of
the society of agents usually converges to a stable or oscillating state.

We will now briefly explain the model’s most important features.
Our simulation environment is a two-dimensional array of the par-

ticipating agents. The size and shape of the environment are also user-
defined  variables.  Its  size  is  limited  only  by  the  computer’s  virtual
memory.  The  behavior  of  a  few  million  interacting  agents  can  easily
be observed on the computer’s screen. A possible special case is a lin-
ear environment that consists of at least two participants. (This limit-
ing case is  important because it  makes the investigation of two-agent
games possible.)

Our model is a new approach to nonlinear stochastic dynamic sys-
tem  modeling.  The  participating  agents  are  combinations  of  the  two
types of automata described above. The size of the neighborhood is a
user-defined  variable.  It  may  be  just  the  immediate  Moore  or  Neu-
mann  neighborhood  or  any  number  of  layers  of  agents  around  the
given agent.  In  the  limiting case,  all  agents  are  considered neighbors,
and  they  collectively  form  the  environment  for  each  participating
agent.

The number of neighbors depends on the definition of the neighbor-
hood but also on the location of the agent:  an agent in the corner of
the  array  has  fewer  neighbors  than  one  in  the  middle.  The  model
would have been made simpler by wrapping the array but we decided
against this. A model with edges makes it possible to simulate cities or
other confined environments.

The payoff (reward/penalty) functions are given as two curves: they
specify  the  reward/penalty  for  a  cooperator  and  a  defector,  respec-
tively,  as  functions  of  the  number  of  cooperators  related  to  the  total
number  of  neighbors  (Figure  2).  Each  curve  may  include  a  constant
stochastic  factor that  is  multiplied by a random number to make the
response  from the  environment  stochastic.  The  stochastic  factors  de-
termine the thickness of the payoff functions (Figure 3). Zero stochas-
tic factor means a deterministic environment. 

The  payoff  (reward/penalty)  functions  are  given  as  two  curves:
CHxL for cooperators and DHxL for defectors. The payoff to each agent
depends on its choice, on the distribution of other players among co-
operators  and  defectors,  and  on  the  properties  of  the  environment.
The payoff curves y are functions of the ratio x of cooperators to the
total  number  of  neighbors.  In  the  original  version  of  the  model,  the
payoff  functions  are  determined  by  quadratic  functions,  but  a  later
version [41] allows any function. The freedom of using arbitrary func-
tions for the determination of the reward/penalty system makes it pos-
sible  to  simulate  a  wide  range  of  N-person  games,  including  those
where the two curves intersect each other [5].
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Figure 3.

In an iterative game the aggregate cooperation proportion changes
in time, that is, over subsequent iterations. The agents take actions ac-
cording  to  probabilities  updated  on  the  basis  of  the  reward/penalty
received for their previous actions and of their personalities. The user-
defined  specific  probability  updating  schemes  depend  on  the  agents’
personalities.  They  specify  the  change  in  the  probability  of  choosing
the previously chosen action based on a number of factors such as the
reward/penalty received for that action,  the history of  rewards/penal-
ties received for all actions, the neighbors’ actions, and so on.

The  updating  scheme  is  different  for  different  agents.  Agents  with
different personalities can interact with each other in the same experi-
ment.  Agents  with various personalities  and various initial  states  and
actions can be placed anywhere in the array. The response of the envi-
ronment is influenced by the actions of all participating agents.

The updated probabilities lead to new decisions by the agents that
are  rewarded/penalized  by  the  environment.  With  each  iteration,  the
software tool draws the array of agents in a window on the comput-
er’s screen, with each agent in the array colored according to its most
recent action. The experimenter can view and record the evolution of
the behavior of any agent and of the society of agents as they change
in time. 

The outcome of the game depends on the values of the parameters
of  the  game.  Dilemma  reads  a  text  configuration  file  when  it  starts.
The  contents  of  this  file  determine  all  the  parameters  of  the
experiment:

† number of rows and columns in the array of agents;
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† size and coloration of the agents;

† depth of the neighborhood for each agent;

† payoff curves for cooperators and defectors;

† personalities of individual agents at various locations in the array;

† initial actions of individual agents at various locations in the array; and

† initial states of individual agents at various locations in the array.

Having  the  experiment  defined  in  a  configuration  file  has  signifi-
cant  benefits  for  the  experimenter.  This  way,  experiments  can  be  re-
run,  shared  with  other  experimenters,  or  archived  and  indexed  in  a
natural  fashion.  This  approach  is  unusual  in  nonlinear  dynamic  sys-
tem simulation.

When Dilemma  is run, it displays two windows, labeled “graphics
output” and “status display”. The graphics output window represents
all the agents in the simulation and their most recent actions. The user
can ask for  a  four-color  display,  which shows the  current  and previ-
ous action for each agent, or a black-and-white display, which shows
only the current action for each agent. The status display window pro-
vides  more  detailed  textual  information about  individual  agents.  The
experimenter selects the agent to be examined in detail by pointing at
it  with  the  mouse.  This  information  includes  the  agent’s  coordinates
in the array, the agent’s two most recent actions, the agent’s personal-
ity,  the  last  reward  or  punishment  that  the  agent  received,  and  the
agent’s  current  probability  of  cooperation.  As  the  mouse  pointer
moves  and as  iterations  are  run,  both  windows are  continuously  up-
dated. When the experimenter stops the simulation, the history of ag-
gregate  cooperation  proportions  for  each  iteration  is  presented  as  a
list of numerical values as well as an automatically generated plot.

If the parameters are selected appropriately, the simulation will ex-
hibit  behavior  that  is  close  enough  to  the  behavior  of  real  people
when they are placed in a similar situation (see, e.g., [42]).

This  model  was  later  extended  in  two directions.  The  payoffs  can
now be  represented  by  any  function  [41]  and  a  continuous  model  is
available [43]. In the latter model, continuous attitude states are used
as options for each player instead of just two choices. In addition, de-
grees  of  persuasion  and  propaganda  are  included  as  new  personality
treats.

7. N-Person Prisoners’ Dilemma

Various aspects of the multi-person prisoners’ dilemma have been in-
vestigated  in  the  literature  [2,  4–6,  13,  21,  44–55].  This  game  has
great  practical  importance  because  its  study  may  lead  to  a  better
understanding of the factors stimulating or inhibiting cooperative be-
havior within social systems.
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The  dilemma  can  be  formulated  by  the  following  two  state-
ments![49]:

1. Regardless  of  what  the  other  agents  do,  each  agent  receives  a  higher
payoff for defecting behavior than for cooperating behavior.

2. All agents receive a lower payoff if all defect than if all cooperate.

The  condition  T > R > P > S  satisfies  both  requirements;  therefore,
Figure 2 represents this game. The game has N + 1 distinguishable out-
comes: 0, 1, 2, … , N - 1, or N participants may choose cooperation.

Each  rational  player  will  choose  defection  and,  as  a  result,  every-
one  loses.  Fortunately,  human  beings  are  rarely  rational.  We  do  not
buy  stocks  for  their  value  but  rather  because  other  people  buy  them
or because of a statement by a celebrity. The apparent unpredictabil-
ity  of  people  is  made  up  of  some  random behavior  plus  elements  of
quite  predictable  behavior  because  of  a  variety  of  personalities.
Dilemma makes it possible to get a handle on how to understand the
aggregate behaviors in terms of what we know about personality char-
acteristics,  the  distribution  of  these  characteristics  in  various  popula-
tions,  and  the  effects  of  these  characteristics  on  an  agent’s  desire  to
compete or cooperate. 

The N-person prisoners’ dilemma is very important because it repre-
sents many real-life applications. The tragedy of the commons [8], for
example, clearly shows the dangers of overpopulation. 

We  have  investigated  this  game  for  agents  with  various  person-
alities.

7.1 Pavlovian Agents
Let us assume that the payoff functions are linear and parallel to each
other,  and their  equations  are  DHxL = -0.5 + 2 x  and CHxL = -1 + 2 x
[18].  These  functions  are  shown in  Figure  4.  The  graphics  output  of
Figure 5 represents the initial configuration for the case when the ini-
tial actions of all agents are random and their initial probability of co-
operation is  equal  to  0.5.  We see  an approximately  equal  number of
black  (cooperator)  and  white  (defector)  spots.  Figure  6  shows  the
graphics  output  after  the  100th  iteration  with  fewer  but  well  above
zero cooperators.

The initial state of the system is one of the decisive factors that de-
termine its future state. This can be clearly seen from Figure 7, which
shows the  evolution of  a  society  for  the  case  when the  payoff  curves
are  given  by  Figure  4  and  the  neighborhood  is  the  entire  society  of
agents. The graphs show the proportions of cooperating agents for dif-
ferent  initial  cooperation  probabilities  as  functions  of  the  number  of
iterations. The initial values of the aggregate cooperation probabilities
are shown at the curves.

We can see  that  there  are  two distinctly  different  solutions.  When
the initial values are in the range between 0 and 0.69, all solutions os-
cillate  around 0.18. When the  initial  aggregate  cooperation probabil-
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ity  is  above  0.695,  the  solutions  tend  to  reach  well-defined  constant
values that are dependent on the initial values. These numerical values
exactly satisfy equation (1) (see Section 13).

Figure 4.

Figure 5.
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Figure 6.

Figure 7.

This result certainly satisfies the definition of chaos as sensitive de-
pendence on initial conditions. It means that a perturbation to the ini-
tial state of the system will cause the system to evolve into a different
future  state  within  a  finite  period  of  time.  Thus,  a  very  small  differ-
ence  in  the  initial  cooperation  ratio  around  x = 0.69  leads  to  totally
different solutions.

The solutions are similar but somewhat different for the case when
the neighborhood is only one layer deep (Figure 8).
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Figure 8.

The  following  simulations  take  non-uniform  distributions  of  the
agents  into  account  [55].  Figure  9  shows  the  graphics  output  of  the
initial configuration for the case when the initial actions of all agents
are random but the society is equally divided into two parts: agents in
the upper half initially defect, while those in the lower half initially co-
operate. 

Figure 9.
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If the neighborhood is one layer deep, the upper half will be gradu-
ally infected with cooperators (Figure 10).

Figure 10.

As  the  neighborhood  depth  is  increased,  a  protective  layer  is
formed where no cooperation occurs (Figure 11).  

Figure 11.
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The situation is completely different when the neighborhood is the
entire  society.  In  this  case,  change  starts  in  the  lower  region
(Figure!12) and it spreads into the entire society (Figure 13).

Figure 12.

Figure 13.
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7.2 Accountants
The accountant’s payoff depends on the average reward for its previ-
ous  actions.  If  initially  the  number  of  cooperators  is  approximately
equal  to  the  number of  defectors  for  a  one-layer-deep neighborhood,
the result is universal defection because the defectors’ payoff is always
higher  than  that  of  the  cooperators.  If,  however,  the  initial  distribu-
tion is unequal, clusters will form. Agents situated at the borders of co-
operative clusters will receive smaller and smaller payoffs. As a result,
they will eventually defect; these clusters become smaller and smaller,
and after several thousand iterations universal defection takes over. 

7.3 Greedy Agents
The  greedy  agent  always  imitates  the  behavior  of  the  neighbor  with
the highest reward (this is the case investigated for dyadic interactions
by [13]). If all agents are greedy and the neighborhood extends to the
entire  organization,  they  will  all  defect  immediately  at  the  first  itera-
tion because they will all imitate the defectors who received higher re-
wards  than  the  cooperators  for  their  initial  action.  The  situation  is
not so hopeless  for a one-layer-deep neighborhood: the behavior will
stabilize with a relatively small number of cooperators. 

If we allow a small number of individual defectors to initially ran-
domly distribute among cooperators, they can produce interesting pat-
terns like those shown in Figure 14 for the case of CHxL = 5 x - 1 and
DHxL = 5 x - 0.5.  The  neighborhood is  one  layer  deep.  The  initial  ra-
tio  of  cooperators  is  equal  to  0.90;  the  final  ratio  oscillates  between
0.91 and 0.92.

Figure 14.
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Beautiful  oscillating  symmetric  fractal  patterns  may  arise  when  a
single defector initially occupies the middle spot in a sea of greedy co-
operators  with  a  one-layer-deep  neighborhood  (Figure  15).  It  is  in-
structional to investigate the emergence of these patterns. As the DHxL
curve  is  always  above  the  CHxL  curve,  a  layer  of  defectors  will  sur-
round the lonely defector after the first iteration. After the second iter-
ation, however, the further development depends on the actual shapes
of  the  payoff  curves.  Accordingly,  the  result  may  be  universal  defec-
tion, a small stable defection pattern around the center, oscillation in
the  same  region,  or  the  symmetric  oscillating  pattern  of  Figure  15.
Here  DHxL = 1.65 x  and  CHxL = x.  The  stochastic  factor  is  zero.  The
initial configuration is a single defector in the middle of 6560 coopera-
tors.  The  picture  shows  the  situation  after  1000  iterations.  In  Fig-
ure!16,  we  can  see  the  wildly  fluctuating  proportion  of  cooperating
agents as a function of the number of iterations.

Figure 15.

7.4 Conformists
The conformist agent does not care about the payoff functions. It sim-
ply  imitates  the  action  of  the  majority.  If  all  agents  are  conformists
and the neighborhood extends to the entire society of agents, then the
outcome depends on the exact relationship between the initial number
of cooperators and defectors: every agent will immediately imitate the
majority  and  stay  there.  The  behavior  becomes  quite  interesting  for
the one-layer-deep neighborhood. In this case, while the proportion of
cooperators will not change substantially, their distribution will. Both
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cooperators (black spots) and defectors (white spots) will form mutu-
ally intertwined clusters (Figure 17).  

Figure 16.

Figure 17.
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7.5 Mixed Personalities
The number of variations is infinitely large. We can change all the pa-
rameters  simultaneously  and  mix  different  personalities  in  arbitrary
ways.  Figure  18  shows  the  evolution  of  the  game  for  the  case  when
the  payoff  curves  are  given  by  CHxL = x  and  DHxL = 1.65 x  and  the
neighborhood is  one layer deep. The graphs show the proportions of
cooperating  agents  as  functions  of  the  number  of  iterations.  The
lower solid curve corresponds to the case when 97% of the agents are
greedy  and  3%  are  Pavlovian.  For  the  middle  dotted  curve  97%  of
the agents are greedy and 3% are conformists.  In the case of the up-
per solid curve, 45% of the agents are greedy, 45% of them are con-
formists,  and  10%  are  Pavlovian.  The  initial  cooperation  ratio  is
equal to 0.9.

Figure 18.

8. N-Person Chicken Dilemma

The chicken game is an interesting social dilemma. When two people
agree  to  drive  their  cars  toward  one  another,  each  has  two  choices:
drive straight ahead or swerve. If both swerve (a mutually cooperative
behavior),  they  both  receive  a  certain  reward  R.  If  both  go  ahead
(mutual defection), they are both severely punished (P). The dilemma
arises from the fact that if one of them swerves (chickens out) but the
other does not, then the cooperator receives a sucker’s payoff S while
the defector gets a high reward for following the temptation T. In this
game P < S < R < T.
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In  the  prisoners’  dilemma game,  defection  dominates  cooperation:
regardless of what the other player does, each player receives a higher
payoff  for  defecting  behavior  (D)  than  for  cooperating  behavior  (C),
in spite of the fact that both players are better off if they both cooper-
ate  than  if  both  defect  (S < P < R < T).  In  the  chicken  game there  is
no domination. The D choice yields a higher payoff than the C choice
if the other person chooses C, but the payoff is less for D than for C if
the other player’s choice is D. Mutual defection is the worst outcome
for both players. Consequently, cooperation is more likely in chicken
than  in  prisoners’  dilemma.  Evidently,  cooperation  grows  with  the
severity  of  punishment  for  mutual  defection.  A  good  example  of  the
chicken dilemma is the Cold War, when mutual defection would have
led to a nuclear catastrophe.

The two-person chicken game has received some attention in the lit-
erature [17, 21, 56] but the N-person game had been neglected prior
to our research [57–59].

The  payoff  curves  are  functions  of  the  ratio  of  cooperators  to  the
total number of agents. Even for linear payoff functions, we have four
free parameters that determine the payoff functions that have the fol-
lowing properties: (1) Both payoff functions increase with the increas-
ing number of  cooperators.  (2)  In the region of  low cooperation,  the
cooperators have a higher reward than the defectors. (3) When the co-
operation rate is  high, there is  a higher payoff  for defecting behavior
than for cooperating behavior. (4) As a consequence, the slope of the
D  function is  greater than that of the C  function and the two payoff
curves intersect each other. (5) All agents receive a lower payoff if all
defect  than  if  all  cooperate.  Typical  payoff  functions  for  the  chicken
game are shown in Figure 19.

8.1 Pavlovian Agents
Naturally, the results of the simulation strongly depend on the values
of  the  parameters.  The  four-dimensional  problem  of  linear  payoff
functions can only be handled by a systematic variation of the parame-
ters. For Pavlovian agents, the actual values of the parameters are im-
portant, not only their relative values.

Let us assume that the total number of agents is 10 000 and the ini-
tial ratio of cooperators is 50% [57].

We  start  with  the  payoff  functions  with  the  parameter  values  as
S = -3,  P = -13,  R = 0,  T = 1.  The  result  of  the  simulation  in  this
case  is  that  after  a  relatively  small  number  of  iterations,  the  ratio  of
cooperators  starts  oscillating  about  the  stable  value  of  76%. The ac-
tual  number  of  iterations  needed  for  the  oscillation  to  start  depends
on the learning rate used in the probability updates. 

Let us first vary one parameter at a time. If we increase the value of
T, the ratio of cooperators steadily decreases because the defectors re-
ceive a higher reward when there are more cooperators.

Increasing the value of R drastically increases the cooperation ratio
because a larger and larger part of the C function is above the D func-
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tion.  At R = 0.4,  we already reach a point  when no one defects  any-
more. 

Changing  the  value  of  S  makes  a  big  difference,  too.  When
S = P = -13,  the  result  is  that  the  ratio  of  cooperators  oscillates
around  48%.  This  is  the  limiting  case  between  the  chicken  dilemma
and  the  prisoners’  dilemma.  In  this  case  the  number  of  cooperators
always  decreases  with  time  and  can  reach  the  original  50%  only  in
the  best  case  when  the  two  payoff  functions  are  very  close  to  each
other.  This  is  in  perfect  agreement  with  the  analytical  study  of  the
multi-agent prisoners’ dilemma game (see Section 13).

As we move the value of S  up from this  limiting case,  the ratio of
cooperators  steadily  grows  and  at  S = 0  (the  unrealistic  case  of  con-
stant payoff for the cooperators) reaches 93%.

If  we move point  P  up,  the situation for the defectors steadily im-
proves  and the  ratio  of  cooperators  decreases  to  43% at  the  limiting
case  of  S = P = -3.  Compare  this  result  with  the  previous  one  when
the two coinciding points were much lower.

Let us now keep P  and S  without change and move both T  and R
but  in  such  a  way  that  their  difference  does  not  change.  We  start  at
R = -1,  T = 0  and  move  both  points  up.  The  ratio  of  cooperators
changes  from  0.70  to  0.83  when  R = 0.35  and  T = 1.35.  A  further
small increase (R = 0.38, T = 1.38) results in total cooperation.

If we keep R and T  without change and move both S and P up so
that  their  difference  does  not  change,  the  ratio  of  cooperators  in-
creases again and reaches 91% at the limiting case of S = 0, P = -10.

Finally,  if  we  move  P  up  so  that  the  slope  of  the  D  function  re-
mains constant (that moves point T  up as well), the ratio of coopera-
tors  will  decrease drastically  and reaches 18% in the limiting case of
P = -3,  T = 11.  Compare  this  with  the  result  above  when  the  value
of T remained 1.

For  rational  players,  the  intersection  point  (x*)  of  the  two  payoff
functions is a Nash equilibrium. Indeed, when x < x*, the cooperators
get  a  higher  payoff  than  the  defectors;  therefore,  their  number  in-
creases. When x > x*,  the defectors get a higher payoff and the num-
ber of cooperators decreases.  This is,  however,  not true for the more
realistic Pavlovian agents. In this case, the relative situation of the two
payoff curves with respect to one another does not determine the out-
come  of  the  dilemma.  It  is  equally  important  to  know  the  actual
values of the payoffs.  For example, in case of payoff functions deter-
mined  by  parameter  values  of  S = -3,  P = -13,  R = 0,  T = 1,  the
solution is 76% cooperation while x* = 91% for this case.

If  we  shift  the  horizontal  axis  up  and  down,  then  x*  does  not
change but the solutions do. The following cases are possible:  
(a) Both curves are positive for any value of x. In this case, the cooperators

and  the  defectors  are  all  always  rewarded  for  their  previous  actions;
therefore  they  are  likely  to  repeat  those  actions.  As  a  result,  little
change occurs in the cooperation ratio, especially when the rewards are
large. The number of cooperators remains approximately equal to that
of the defectors.
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(b) The CHxL curve is entirely positive, but DHxL changes sign from negative
to  positive  as  the  value  of  x  grows.  In  this  case,  the  cooperation  ratio
changes from 0.5 to almost 1 as we shift the horizontal axis up, that is,
for smaller rewards, the cooperation ratio is larger. 

(c) When both CHxL  and DHxL  change signs,  the  cooperation ratio  changes
from  near  1  to  0.76  as  we  shift  the  horizontal  axis  up,  that  is,  for
smaller  rewards,  the  cooperation  ratio  is  smaller.  Maximum  coopera-
tion occurs when S = 0, that is, the environment is neutral to coopera-
tors during maximum defection. 

(d) The CHxL curve is entirely negative but DHxL changes sign from negative
to positive as the value of x grows. The solution oscillates around a sta-
ble equilibrium that grows with the rewards.

(e) Both CHxL and DHxL are negative for all values of x (punishment for any
action). The solution oscillates around a stable equilibrium. As the pun-
ishments grow, all actions tend to change at each iteration and the solu-
tion approaches 50%.

If  we change more than one parameter  at  the same time,  different
solutions will appear but the basic trends remain the same.

A  perturbation  to  the  initial  state  may  cause  the  system to  evolve
into a different future state within a finite period of time or cause no
effect at all. In case of the last example above, the result is the same if
we start with 10%, 50%, or 90% cooperators.

8.2 Greedy Agents
In this case, only the relative payoffs count; therefore, a systematic in-
vestigation is much easier.  We assumed that the neighborhood is one
layer deep [59].

Our  four-dimensional  problem  is  reduced  to  a  two-dimensional
one by assuming DHxL = x (P = 0 and T = 1). The remaining two free
parameters R and S satisfy the P < S < R < T  condition if and only if
0 § R § 1 and 0 § S § R for each R. Writing the equation of the coop-
erator’s  payoff  function  in  the  form  of  CHxL = a + b x,  we  see  that
S = a and R = a + b. 

We have performed a systematic investigation of the game for hun-
dreds of values of these two variables in their entire range. The global
ratio XHtL  of  the total  number of  cooperators in the entire array as a
function of time (iterations) was observed for each pair of the parame-
ter values. (Note that X is different from x, which refers to an agent’s
immediate  neighbors  only.)  The  final  ratio  of  cooperators  Xfinal
around which XHtL oscillates represents the solution of the game.

Figure  19  shows  the  case  when  DHxL = x  and  CHxL = 0.6 + 0.14 x.
The broken lines  represent  the  fact  that  the  values  CH0L  and DH1L  do
not exist by definition.

The results show that the solutions have predictable tendencies but
they  are  nontrivial  and  represent  quite  irregular  emergent  behavior.
The  solutions  show  drastic  changes  in  the  parameter  ranges
0.6 § R § 0.65 for all values of S and 0 § S § 0.2 when R < 0.6.
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Figure 19.

Let  us  fix  the  value  of  xcross = 0.7  (it  means  that  the  values  of  R
and  S  must  change  simultaneously).  In  this  case,  0.7 § R § 1  and
0 § S § 0.7  while  a  higher  value  of  R  means  a  lower  value  of  S
(Figure 20). The solution of the game Xfinal  as a function of S is given
in  Figure  21.  In  this  case,  we  expect  a  decreasing  dependence  on  S,
which  is  indeed  the  case,  but  for  this  value  of  xcross  the  cooperation
ratio is relatively high (0.78 § Xfinal § 0.92) for the entire range. The
function is quite irregular. 

Figure 20.
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Figure 21.

For rational  players  the intersection point  xcross  of  the two payoff
functions  is  a  Nash  equilibrium  (see  above).  This  is  not  true  for  the
greedy simpletons, either, because x refers to the immediate neighbors
only while the final ratio of cooperators Xfinal  represents the ratio of
the total number of cooperators in the entire array. In the case of the
payoff  functions  presented  in  Figure  19,  for  example,  the  solution  is
Xfinal = 0.775 while xcross = 0.7 in this case.

9. N-Person Battle of the Sexes Game

In this game T > S > P > R; therefore, the payoff functions are cross-
ing each other again.  Even in the two-person case,  there are 16 deci-
sion  combinations.  The  N-person  game  is  not  a  simple  extension  of
the  two-person  game  in  this  case  [60].  Defection  and  cooperation
have  deeper  meanings  here  than  in  any  other  game.  We  cannot  say
that the preferences are conflicting for all pairs of players. It causes ad-
ditional difficulties that were resolved by agent-based simulation [61].

10. N-Person Games with Crossing Payoff Functions

There  are  12 different  orderings  of  the  values  of  P,  R,  S,  and T  that
lead to crossing payoff lines. Each of them represents a different type
of  game. We  have  systematically  investigated  uniform  N-person
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games with crossing payoff functions for the case when the agents are
all greedy [62].

The results show nontrivial and in some cases quite irregular emer-
gent  solutions. They  show  drastic  changes  in  the  case  of  the  leader
game in the narrow parameter range of 1.72 < P < 1.75. This behav-
ior is  similar  to that  observed for the N-person chicken game. Emer-
gent solutions were found also for the reversed stag hunt game.

For  example,  let  us  investigate  the  role  of  the  relative  angle  be-
tween  the  two  payoff  lines.  We  fixed  the  CHxL  function  as
CHxL = 2.9 - x,  the  intersection  point  of  the  two  lines  at  xcross = 0.7,
ycross = 2.2,  and  rotated  the  DHxL  function  around  this  point.  As  we
rotate DHxL, its end points change: -10.0 < P < 2.9, R = 1.9, S = 2.9,
and T = P + H2.2 - PL ê 0.7 (7.43 > T > 1.9).

The upper limit of P  is  chosen as S  to maintain the condition that
at  x < xcross,  the  cooperators  get  a  higher  payoff  than  the  defectors
and at  x > xcross,  the defectors get  a higher payoff  than the coopera-
tors. Under these conditions for -10.0 < P < 0.56 we have the benev-
olent  chicken  game,  for  0.56 < P < 1.9  it  is  the  leader  game,  for
1.9 < P < 2.2 we have the reversed benevolent chicken game, and for
2.2 < P < 2.9 it is the reversed stag hunt game. P = 0.56, P = 1.9, and
P = 2.2 are borderline cases in between two games. The transitions be-
tween games are quite smooth. 

We present the result of the simulation Xfinal  as a function of P in
Figure 22. For the region -10.0 < P < -0.6,  the result  is  nearly con-
stant around the value of  Xfinal = 0.82.  Therefore,  we only show the
result for -1.0 < P < 2.9. Several remarkable features can be immedi-
ately  noticed.  First,  neither  the  benevolent  chicken  nor  the  reversed
benevolent  chicken  games  are  sensitive  to  the  rotation  of  the  DHxL
function.  However,  the  leader  and  the  reversed  stag  hunt  games  be-
have quite strangely. 

The  behavior  of  the  reversed  stag  hunt  game  is  quite  remarkable.
At P = 2.275, Xfinal  suddenly jumps from 0.66 to 0.80, then rises to
0.83,  then at  P = 2.394 has  a  dip  down to 0.76,  rises  again  to  0.81,
then  at  P = 2.4  jumps  down  to  0.65,  rises  again,  and  finally  at
P = 2.525 suddenly changes from 0.63 to 0.23; at P = 2.65 it reaches
its final value of 0.11. The character of the XHtL  function also drasti-
cally  changes  at  these  points.  The  XHtL  function  for  P = 2.24  wildly
fluctuates in between 0.40 and 0.91 so that Xfinal = 0.65. In the case
of  P = 2.41,  Xfinal = 0.65 again,  but  there  are  practically  no fluctua-
tions. The graphics outputs are also different.

The  leader  game  behaves  even  more  strangely.  There  are  several
wild fluctuations in between Xfinal = 0.64 and Xfinal = 0.90 in the nar-
row region of 1.72 < P < 1.75. 

Investigation of N-Person Games by Agent-Based Modeling 231

Complex Systems, 21 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.3.201



Figure 22.

11. N-Person Game of Life

This  new  game  is  an  extension  of  Conway’s  Game  of  Life  in  which
having a small  or a large number of neighbors is  equally disadvanta-
geous.  Accordingly,  in  this  game  the  payoff  functions  have  the  same
tendency for both small and large number of cooperators [63]. The C
curve of Figure 23 corresponds to the Game of Life: this choice is pun-
ished when too few or too many agents choose it and is rewarded for
a mediocre behavior. The D curve is the mirror image of the C curve
and  it  represents  the  daylight  saving  problem  [5].  If  everyone  is  on
daylight saving or everyone is on standard time, there is no problem.
However,  if  some  prefer  the  former  and  others  the  latter,  the  result
will be chaos.

There  are  six  possible  cases  of  the  mutual  positions  of  parabolic
payoff  functions  crossing  each  other  at  two  points:  x = 0.3  and  0.7.
(The role of parabolic payoff functions was investigated in [64].)  We
simulated  all  of  them  for  Pavlovian,  greedy,  and  conformist  agents.
The  solutions  have  predictable  tendencies only  when  the  neighbor-
hood  is  the  entire  array  of  greedy  or  conformist  agents.  In  all  other
cases, unexpected properties emerge.
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Figure 23.

12. Transitions between Different N-Person Games

The classification of  games according to the  mutual  relationships  be-
tween the R,  S,  T,  and P  parameters ignores the cases when some of
these  parameters  are  equal  to  each  other.  With  the  exception  of  the
simulations  reported  in  Section  10,  these  cases  are  not  considered  in
the previous sections. We have investigated these transitional cases as
well.  The  results  are  very  interesting  but  their  explanation  would  re-
quire much more space than what is  available here.  The reader is  re-
ferred to the original publication [65].

13. Analytical Solutions of N-Person Games

It  is  possible  to  replace  simulation  with  an  algorithm that  accurately
predicts  the  final  aggregate  outcome  for  any  combination  of  Pavlo-
vian  agents  and  any  payoff  functions  [54].  The  predictions  are  exact
for an infinite number of agents, but the experimental results of simu-
lations approximate these predictions very closely even for a few hun-
dred agents. The algorithm was further improved in [41]. However, it
is very desirable to find analytical solutions for N-person games.

In many cases, it is possible for Pavlovian agents to use an analyti-
cal formula for the prediction of the solutions. Let us assume that in a
society  of  N  Pavlovian  agents,  the  neighborhood  is  the  entire  collec-
tive of agents, the ratio of cooperators is x, and the ratio of defectors
is H1 - xL at a certain time. We have shown [54, 66] that when the co-
operators receive the same total payoff as the defectors, that is,

(1)x CHxL = H1 - xLDHxL,
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an  equilibrium  occurs.  This  may  happen  if  CHxL  and  DHxL  are  either
both  negative  or  both  positive.  In  the  first  case,  a  stable  equilibrium
was observed. In the second case, an unstable equilibrium occurs.

In  the  case  of  linear  payoff  functions,  the  equilibrium  equation  is
quadratic.  If  its  solutions  are  real,  they  are  x1  (stable  attractor)  and
x2 (unstable repulsor). When the initial cooperation ratio is below x2,
the solution of the game converges toward x1  as an oscillation while
it stabilizes exactly when the initial cooperation ratio is above x2. The
latter  case  does  not  result  in  the  aggregate  cooperation  proportion
converging to 1, as would be expected. This is because, for an individ-
ual  agent  that  started  as  a  defector,  there  is  always  some  likelihood
that  the  agent  will  continue  to  defect.  This  probability  is  initially
small but continues to increase if the agent is always rewarded for de-
fecting. If the number of agents is sufficiently large, then there will be
some agents that continue to defect until their cooperation probability
reaches  zero  due  to  the  successive  rewards  they  have  received,  and
these agents will defect forever. In the case of complex solutions, equa-
tion (1) does not give any information about the game.

We  have  performed  numerous  experiments  with  our  simulation
tool  for  N-person  games.  When  the  agents  have  Pavlovian  personal-
ities,  the  following  cases  are  possible  for  the  application  of
equation!(1):
(a) Both payoff curves are positive for any value of x. In this case, only the

unstable equilibrium exists and the solution of the game depends on the
value of this  equilibrium and on the initial  ratio of cooperators.  When
the  initial  cooperation  ratio  is  below x2,  the  solution  of  the  game sta-
bilizes at a lower value between 0 and x2. When the initial cooperation
ratio  is  above  x2,  the  final  stable  ratio  has  a  higher  value  between  x2
and 1.

(b) Both  CHxL  and  DHxL  are  negative  for  all  values  of  x.  In  this  case,  only
the  stable  equilibrium exists  and the  solution of  the  game always  con-
verges to x1.

(c) The CHxL curve is entirely positive but DHxL changes sign from negative
to positive as the value of x grows or the DHxL curve is entirely positive
and CHxL changes sign. The situation is similar to case (a). The only dif-
ference is that in this case the region where both CHxL and DHxL are posi-
tive may be too narrow to produce a solution according to equation (1).

(d) The CHxL curve is entirely negative but DHxL changes sign from negative
to positive as the value of x grows or the DHxL curve is entirely negative
but CHxL changes sign. The situation is similar to case (b). However, the
region  where  both  CHxL  and  DHxL  are  negative  may  be  too  narrow  to
produce a solution according to equation (1).

(e) The  most  interesting  case  is  when  both  CHxL  and  DHxL  change  sign.  In
this case, both equilibria exist and equation (1) always works.

An  investigation  of  equation  (1)  by  linear  programming  showed
that  for  linear  payoff  functions  in  the  N-person  prisoners’  dilemma
game, if the initial cooperation rate is small, a maximum 50% cooper-
ation rate can be achieved. This limit can only be increased if the ini-
tial cooperation rate is above 50% [67].
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14. Practical Applications

There are numerous practical applications of N-person games in vari-
ous fields. A few of them include: the evolution of cooperation in soci-
eties,  the  behavior  of  economic  systems,  various  problems  of  social
psychology, the development of social norms, the fight against terror-
ism, artificial life and societies, social experiments without the involve-
ment of people, and public policy.

We have investigated the following problems.

14.1 The Tragedy of the Commons
As was  mentioned  in  Section  7,  the  famous  tragedy  of  the  commons
[8]  is  an  N-person  prisoners’  dilemma.  Accordingly,  any  agent-based
model of this game is also a model for the tragedy of the commons.

14.2 Segregation
Section 7.4 deals with the simulation of conformist agents. This is ba-
sically  Schelling’s  segregation  simulation  [23]  for  the  case  when  all
agents  follow  the  behavior  of  their  neighbors.  A  typical  result  is
shown in Figure 17.

14.3 Mass Transportation
Today’s economy is based on the automobile. Every day, hundreds of
millions of people use their cars to visit a remote place or just to go to
a  supermarket  nearby.  Trillions  of  dollars  have  been  spent  on  build-
ing highways. This is a tremendous waste, let alone air pollution and
dependence on foreign oil.  In most  cars  one person uses  hundreds of
horsepower. Can we do better?

The answer to this  question is  public  transportation.  If  there were
no  cars  but  reliable  trains  and  buses,  everyone  could  get  anywhere
quickly and without traffic jams. The individual agents in this exam-
ple may cooperate with each other for the collective interest by using
public transportation or may defect, that is, pursue their selfish inter-
ests by driving their cars.

Let  us  consider  the payoffs  for  both choices  in  two extreme situa-
tions. If everyone is using a car, the roads will be clogged and no one
can move. If some agents choose the bus, they are in a slightly better
situation because in many large cities there are special lanes for buses,
but  in  most  cases  these  lanes  are  also  filled  with  cars.  Both  the  car
drivers and the bus riders are punished for the behavior of the major-
ity.  On  the  other  hand,  if  everyone  uses  a  bus,  the  buses  will  be
crowded,  but  they  can  freely  move  on  the  empty  streets.  All  agents
can get relatively quickly to their destinations, which corresponds to a
reward. If some agents yield to the temptation and choose to use their
cars  anyway,  they  get  an  even  larger  reward  because  they  can  move
even faster and avoid the crowd in the bus. This is a typical N-person
chicken dilemma (see Figure 19).
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Our simulation results show that it is quite possible to achieve a sit-
uation  when  the  majority  of  people  would  prefer  using  mass  trans-
portation  to  driving  cars  [58].  The  best  solutions  appear  when  the
DHxL  function  changes  sign  with  increasing  x,  that  is,  when  the  car
drivers are rewarded when there are few of them and punished when
there are many of them.

14.4 A Simple Market
We have investigated an agent-based model of a simple market based
on  trade  and  price  satisfaction functions  for  both  buyers  and  sellers.
A rather long paper [68] describes the simulation, which is also based
on the chicken dilemma. The price satisfaction dominates trade satis-
faction in most cases.

14.5 Public Radio Membership Campaigns
We assumed that each possible contributor is a mixture of eight moti-
vation  types:  benefitting  from  the  radio  programs,  reaching  short-
term  goals,  feeling  guilty  if  no  contribution  is  made,  valuing  reputa-
tion,  feeling  good  for  participating,  matching  contributions  from
others, fulfilling promises, and giving gifts to contributors. Our simu-
lations show how campaigns depend on these motivations, on manipu-
lations  of  the  organizers,  on  the  wealth  of  the  community,  and  on
other model parameters [69].

14.6 Standing Ovation
It  was  mentioned  in  Section  4  that  we  used  the  Big  Five  personality
representation  in  our  study  of  standing  ovation  [33].  This  is  a  com-
plex phenomenon and we proved that different personality types par-
ticipate in it in different ways.

14.7 Collective Action
We  have  shown  that  there  is  a  direct  quantitative  relationship  be-
tween the production function of collective action and the payoff func-
tions of the N-person prisoners’ dilemma game [70].

14.8 The El Farol Bar Problem
The famous El Farol Bar problem is an excellent demonstration of the
self-referential expectation formation. As such, it serves also as a sim-
ple model of financial markets.

Arthur [71] has shown by using computer simulation based on a so-
phisticated  reasoning  that  the  bar  attendance  fluctuates  rather  wildly
around the  capacity  level  L  of  the  bar.  This  result  was  arrived  at  by
many other papers as well [72–74].

The El  Farol  problem has  been extended to  the  so-called minority
game  [75].  The  players  must  choose  between  two  options  and  those
in the minority side win. Many variants of this game have been devel-
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oped,  a  large  number  of  papers  have  been  published  [76–79],  and
even books have been written about it [80–82].

We found a much simpler approach [42]. Considering the problem
as  an  N-person  battle  of  the  sexes  or  leader  game  and  using  equa-
tion!(1), we showed that the solutions xfinal  of our games will always
converge to xfinal = L, that is, they indeed fluctuate around the capac-
ity level of the bar.

Our  computer  simulations  confirmed  these  solutions  and  showed
that  the  amplitude  of  fluctuations  around this  value  is  inversely  pro-
portional to the number of participating agents.

15. Additional Literature

This paper reviewed only games that are played on a lattice. Other as-
pects of agent-based modeling are reviewed in [83, 84]. 

As we mentioned in Section 1, there is a huge amount of literature
about series of two-person games among N  participants. A review of
these  papers  can  be  found  in  [85].  Even  a  NetLogo  program  [86]  is
available  to  play  such  games.  We,  however,  believe  that  the  partici-
pants of a genuine N-person game should play with all the other play-
ers  at  the  same  time.  As  Anatol  Rapoport  noted  [87],  the
“tournaments  demonstrated  neither  evolution  nor  learning  because
nothing evolved and nothing was learned.”

16. Conclusion

This review clearly demonstrates the usefulness of agent-based model-
ing  in  the  investigation  of  N-person  games.  Agent-based  modeling
also advances the state of the art in simulating nonlinear dynamic sys-
tems in general.

It is now possible to:

† develop collective behavioral models for finding the best sets of parame-
ters and rules that accurately predict group behavior of a large number
of participants in realistic situations;

† simulate real-life  social  phenomena,  especially  collective action and so-
cial  dilemmas  involving  choices  of  conflict  versus  cooperation,  as  well
as situations of long-term social change;

† investigate  how  decision-making  actions  of  the  participants  can  be
influenced;

† investigate  what  personality  characteristics  govern  the  propagation  of
cooperative and competitive behavior; and

† demonstrate potential applications to human decision support.
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In  future  work,  the  simulation  of  the  following  problems  is  espe-
cially promising:

† Propagation of cooperation from a small group of originators.

† The  dependence  of  crowd  reactions  on  the  location  of  instigators  and
the density of social ties.

† The role of group size in the evolution of cooperation.

† The emergence of social norms.
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