
On the Iota-Delta Function: Universality in
Cellular Automata’s Representation

Luan C. de S. M. Ozelim*

André L. B. Cavalcante†

Lucas P. de F. Borges‡

Department of Civil and Environmental Engineering, University of Brasília
Brasília, DF, 70910-900, Brazil
*luanoz@gmail.com
†abrasil@unb.br. Full address for mailing: Geotecnia - Departamento de
Engenharia Civil e Ambiental/FT - UnB, 70910-900 - Brasília/DF/Brazil
‡lucaspdfborges@gmail.com

Universality has always played a major role in every branch of science.
Since the advent of cellular automata (CAs), this type of model has
been widely applicable to the modeling of physical phenomena. On the
other hand, the way the evolution rules were described lacked a unified
formulation in terms of mathematical functions. In the present paper, a
general formulation that is able to describe every elementary CA is de-
rived. The new representation is given in terms of a new function
hereby defined: the iota-delta function.

1. Introduction

Be it while studying nature’s behavior or analyzing the implementabil-
ity and efficiency of computational algorithms, scholars of the most di-
verse areas of human knowledge seek universality. Even though each
area has particular concepts of universality, the main concern behind
this idea is whether a given system or rule can reproduce/mimic others
of the same kind or even different kinds but also be universal. A few
definitions from different areas of science are briefly shown below.

In theoretical physics, universality is often related to background in-
dependence [1]. An intrinsic robustness is inherent to physical univer-
sal systems as they may show a given expected behavior even though
other phenomena are concomitantly taking place.

Different from physics, in computer science, universality is dis-
cussed in terms of concepts such as Turing completeness and equiva-
lence [2]. In general, universality is a property assigned to a system.
For example, there are universal Turing machines, tag systems, and
cellular automata (CAs) [2]. Due to the inherent temporal evolutive
characteristic of these systems, they are named dynamical systems. In

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

 y y y y
short, the latter consists of a state space SS and an evolution rule ER.
At each time step t, a system’s state is updated by means of its evolu-
tion rule.

In mathematics, on the other hand, universality can be assigned to
functions. One of the most famous mathematical functions, the
Riemann zeta function zHsL is universal by means of the Voronin uni-
versality theorem [3]. The latter briefly states that, under certain con-
ditions, any nonvanishing analytic function can be arbitrarily well
approximated by zHsL.

By establishing a parallel between mathematical and computational
systems, the main issue to be addressed by this paper is whether uni-
versality can be assigned to evolution rules of dynamical systems. In
other words, let such rules be functions whose domain is the state
space; thus, the main concern is if there is any general evolution rule
that enables every dynamical system to be emulated.

It will be shown that a universal evolution rule does exist and is
given in terms of a new function hereby defined: the iota-delta func-
tion. At first, it is shown that the iota-delta function can describe the
evolution rules of every elementary CA. Finally, since the universal
rule 110 [2] is described by means of the Church–Turing thesis [2], ev-
ery Turing-equivalent dynamical system has its evolution rule express-
ible in terms of the iota-delta function.

2. Evolution Rules of Elementary Cellular Automata

In the present paper, special attention is given to the evolution rules
of CAs because it is interesting to define this class of dynamical sys-
tems. First, it is interesting to study elementary CAs. Also, a very im-
portant concept has to be introduced: the CA mesh (Figure 1).

Position Ø k-1 k k+1

Step !

i

i+1

Figure 1. CA mesh.

A CA mesh is made of cells C, hereby indexed in space by the sub-

script k and time by the superscript i, as in Ck
i . Following [2, 4], an

284 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

elementary CA is a dynamical system that consists of an infinite row
of cells whose values are either 0 or 1. At each time step, a set of rules
is applied to the CA net in order to update the cells’ values. While
dealing with elementary CAs, the value of a given cell depends on the
values of the cell itself and its immediate neighbors on the previous
time step. Mathematically, this definition turns to

(1)Ck
i+1 ! f ACk-1

i , Ck
i , Ck+1

i E.
The binary values 0 and 1 are commonly interpreted as the colors

white and black, respectively. In equation (1), no direct information is
given about the evolution rule f . The latter is given individually for
each of the 0–255 elementary CAs. For instance, rule 90 has the fol-
lowing evolution rule:

(2)Ck
i+1 !

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 0D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 0D.

One of the main features of CAs is their capability of describing
complex behavior by means of simple rules. A quick analysis of equa-
tion (2) reveals a conditional definition of the evolution rule. Even
though the rule itself is simple, this type of definition does not provide
a straightforward representation of the evolution, requiring tedious
“if” structures in the programming process of CAs.

In [4], there are different ways of representing rules like the one in
equation (2). Also in [4], the possibility of interpreting CA rules as for-
mulas is deeply discussed. Specifically, two main approaches are con-
sidered: describing CA rules by means of Boolean expressions and by
means of algebraic expressions.

For rule 90, the Boolean correspondent of equation (2) can be
given as [4]:

(3)Ck
i+1 ! XorACk-1

i , Ck+1
i E.

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 285

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

On the other hand, an algebraic equivalent of both equations (2)
and (3) is easily given as [4]:

(4)Ck
i+1 ! modACk-1

i + Ck+1
i , 2E,

where mod@o, pD denotes the modulus operator, which gives the rest
of the division of o by p if o is greater than p or o itself, otherwise. In
general, p is called the congruence modulus.

In [4], a list giving the Boolean expression for every elementary CA
has been given. However, only a few rules have been algebraically de-
scribed. In the present paper, equation (4) will be further investigated
in order to evaluate the role of the modulus operator in the descrip-
tion of elementary CAs.

3. A Transformation that Relates Elementary Cellular Automata to
Modular Arithmetic: The Iota-Delta Function

While observing equation (4), an immediate general rule that would
give the representation of other CAs in terms of the modulus opera-
tion would be:

(5)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i , 2E,
in which aj are integer coefficients less than the congruence modulus.

In this particular case, aj ! 80, 1<. The application of equation (5)

generates eight different rules, which are summarized in Table 1.

Coefficients Rule Number

a1 a2 a3 !

0 0 0 0

1 1 0 60

1 0 1 90

0 1 1 102

1 1 1 150

0 0 1 170

0 1 0 204

1 0 0 240

Table 1. Rules described by the application of equation (5).

By inspecting Table 1, not only rule 90 but also seven other cases
are simply defined by means of a single rule applied to the whole CA
net.

286 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

It is interesting that the formula in equation (5) will never describe
odd rules since in Wolfram’s numeration system, the coefficient that
multiplies 1 in the binary decomposition of the rule number com-
mands parity. The latter is the result of the combination of three ze-

ros, that is, when ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 0D. This way, when apply-

ing equation (5) to any combination of three zeros, the null value is
obtained, which implies only even rule numbers. In order to overcome
this issue, a fourth coefficient a4 needs to be inserted inside the modu-
lus operator in equation (5), generating

(6)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 2E.
The new coefficient, like the other ones, is an integer less than the

congruence modulus. This way, the number of rules described by the
application of equation (6) is 16, double that obtained by applying
equation (5). Table 2 summarizes the rule numbers obtained by the
addition of the fourth coefficient.

Coefficients Rule Number

a1 a2 a3 a4 !

 0 0 0 0 0

 1 0 0 1 15

 0 1 0 1 51

 1 1 0 0 60

 0 0 1 1 85

 1 0 1 0 90

 0 1 1 0 102

 1 1 1 1 105

 1 1 1 0 150

 0 1 1 1 153

 1 0 1 1 165

 0 0 1 0 170

 1 1 0 1 195

 0 1 0 0 204

 1 0 0 0 240

 0 0 0 1 255

Table 2. Rules described by the application of equation (6).

The application of modular arithmetic perfectly fits the need for
simplicity in the description of CAs. On the other hand, the number
of automata generated by equation (6) is 1 ê 16 of the total number of

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 287

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

 g y q
binary automata—also called simple 1D automata in [4]. The number
of automata generated is directly related to how many values the coef-
ficients can assume. While investigating equations (5) and (6), if the
congruence modulus is 2, the numbers 0 and 1 are the only possible
coefficients. Thus, there has to be a way to generate more combina-
tions of coefficients.

When congruence modulus n is considered, a total of n4 combina-
tions of four a coefficients is obtained. The possible coefficients are
described as:

(7)aj ! 8r r § n - 1; r œ !+<; j ! 1, 2, 3, 4.

This way, when congruence modulus 3 is taken into account, the
possible coefficients are 0, 1, and 2, which ultimately generate a total

of 34 combinations. However, considering binary automata, a modu-
lus operator with congruence modulus 3 cannot be applied alone as
the outcomes of such an operation are not only 0 and 1, but also 2. It
is not possible to describe binary automata by a rule of the form

(8)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 3E.
Thus, the situation is paradoxically summarized as: in order to de-

scribe more CAs by a simple rule that uses the modulus operator, the
possible values of the coefficients must be increased. This growth can
only be obtained by considering the modulus operator with respect to
congruence moduli greater than 2. Notwithstanding, if the modulus
operator is considered with respect to integer congruence moduli
greater than 2, binary automata cannot be described since the out-
comes of the transformation are not only 0 and 1. At this point, a
very important concept has to be introduced: filtering operators. In or-
der to preserve the number of possible coefficients obtained by consid-
ering the modulus operator with respect to greater integer congruence
moduli and yet obtain only 0 and 1 as the outputs of the transforma-
tion, mod@argument, 2D must be applied to the right-hand side of equa-
tion (8). This process is a filtering processes in which the results from
equation (8) are filtered in order to obtain binary outputs. This way,
equation (8) becomes

(9)Ck
i+1 ! modAmodAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 3E, 2E.
The number of combinations of the possible coefficients in equa-

tion (9) are 34 and the outputs of the latter equation are only 0 and 1.
Pay close attention to the fact that each automaton is not generated
by a single combination. Due to the cyclic property of the modulus op-
erator, more than one combination generates the same automaton.
This can be verified in Table 3, which shows all the combinations of

288 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

possible coefficients in equation (9) and the correspondent rules gener-
ated.

By inspecting Table 3, it can be seen that the 81 combinations gen-
erated only 53 different automata.

Coefficients RN Coefficients RN Coefficients RN

a1 a2 a3 a4 ! a1 a2 a3 a4 ! a1 a2 a3 a4 !

0 0 0 0 0 2 1 2 0 36 1 1 1 1 129

0 0 0 2 0 1 1 2 1 41 2 2 2 1 129

0 0 1 2 0 2 2 1 1 41 1 2 2 2 134

0 0 2 0 0 1 2 0 0 48 2 1 1 0 134

0 1 0 2 0 2 1 0 2 48 0 1 1 2 136

0 2 0 0 0 0 1 0 1 51 0 2 2 0 136

1 0 0 2 0 0 2 0 1 51 1 2 1 0 146

2 0 0 0 0 1 1 0 0 60 2 1 2 2 146

1 1 0 1 3 2 2 0 2 60 1 1 2 0 148

2 2 0 1 3 1 1 2 2 66 2 2 1 2 148

1 0 1 1 5 2 2 1 0 66 0 1 2 1 153

2 0 2 1 5 0 1 2 0 68 0 2 1 1 153

1 0 2 2 10 0 2 1 2 68 1 0 1 2 160

2 0 1 0 10 1 2 1 1 73 2 0 2 0 160

1 2 0 2 12 2 1 2 1 73 1 0 2 1 165

2 1 0 0 12 1 0 2 0 80 2 0 1 1 165

1 0 0 1 15 2 0 1 2 80 0 0 1 0 170

2 0 0 1 15 0 0 1 1 85 0 0 2 2 170

0 1 1 1 17 0 0 2 1 85 1 1 0 2 192

0 2 2 1 17 1 0 1 0 90 2 2 0 0 192

1 1 1 0 22 2 0 2 2 90 1 2 0 1 195

2 2 2 2 22 1 2 2 1 97 2 1 0 1 195

1 2 2 0 24 2 1 1 1 97 0 1 0 0 204

2 1 1 2 24 0 1 1 0 102 0 2 0 2 204

0 1 2 2 34 0 2 2 2 102 1 0 0 0 240

0 2 1 0 34 1 1 1 2 104 2 0 0 2 240

1 2 1 2 36 2 2 2 0 104 0 0 0 1 255

Table 3. Rules described by the application of equation (9).

The filtering process consists of a repetitive composition of the
modulus operator in order to obtain more possible values of the coef-
ficients, and yet get as the output of such a transformation the values
necessary to define the automata being studied. This way, for exam-
ple, in order to get ternary CAs, the last composition needs to be with

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 289

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

p g y p
respect to congruence modulus 3, instead of 2 as for the binary case.
Special care has to be taken while applying the filtering process. The
modulus operation composition has to be taken with respect to prime
numbers. The final filter—which determines the possible outputs of
the transformation—must be situated regarding the prime numbers
greater than such a number. By doing this, the chance of getting a
multiple of the modulus of congruence is diminished.

In order to represent every binary automaton, since the combina-
tions of the coefficients do not uniquely define each rule, a compact
notation has to be introduced to better represent the filtering process.
Let the iota-delta function be defined as follows:

(10)

idn
m@xD !
modAmodA… mod@mod@x, pmD, pm-1D, … , pjE, nE,

m ¥ j; m, n œ !+; x œ "; j ! p @nD + 1,

in which m and n are parameters of the iota-delta function, pm is the

mth prime number, and p@nD stands for the prime counting function
that gives the number of primes less than or equal to n. Note that it is
considered that p1 ! 2. The value of n determines how many states
the automata generated have. Thus, for a binary automaton, n ! 2;
for ternary ones, n ! 3; for quaternary ones, n ! 4; and so on. Also,
the iota-delta function is taken to be non-negative and
max@idn

m@xDD Ø n when x œ #. A Mathematica code that readily imple-
ments equation (10) is:

iotadelta@m_,n_,x_D := Mod@Fold@Mod,x,Table@Prime@m-jD,8j,0,m-1-PrimePi@nD<DD,nD
Based on equation (7), the number of combinations allowed by

means of the iota-delta function is pm
4 and the possible coefficients are

aj ! 8r r § pm - 1; r œ !+<; j ! 1, 2, 3, 4.

By means of the iota-delta function, the filtering process is better
represented. For example, equation (9) can be written in a compact
way as:

(11)Ck
i+1 ! id2

2Aa1 Ck-1
i + a2 Ck

i + a3 Ck+1
i + a4E.

In order to represent every binary CA in the simplest way possible,
it must be determined which is the smallest value of m such that for
n ! 2, every binary rule is expressed. By means of experimentation,
when m ! 5, that is, mod@mod@mod@mod@mod@x, 11D, 7D, 5D, 3D, 2D,
every binary CA is described. By means of the iota-delta function, ev-
ery binary CA is represented by a single algebraic rule applied to the
whole cellular net. Table 4 gives the first combination, that is, the
smaller m, which generates each of Wolfram’s rules 0–255.

290 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

0 2 2 0 0 0 0 128 3 2 2 2 2 3

1 3 2 2 2 2 1 129 2 2 1 1 1 1

2 3 2 2 2 3 3 130 5 2 1 1 6 9

3 2 2 1 1 0 1 131 3 2 1 1 3 1

4 3 2 2 3 2 3 132 5 2 1 2 7 2

5 2 2 1 0 1 1 133 3 2 1 3 1 1

6 5 2 1 2 6 2 134 2 2 1 2 2 2

7 3 2 1 3 3 1 135 3 2 1 2 2 4

8 3 2 2 3 3 0 136 2 2 0 1 1 2

9 5 2 1 2 2 8 137 3 2 2 4 4 1

10 2 2 1 0 2 2 138 3 2 2 3 1 0

11 3 2 1 3 2 4 139 5 2 2 3 4 8

12 2 2 1 2 0 2 140 3 2 2 1 3 0

13 3 2 1 2 3 4 141 5 2 2 4 3 8

14 3 2 1 2 2 2 142 3 2 2 3 3 3

15 2 2 1 0 0 1 143 4 2 3 2 2 4

16 3 2 2 3 3 2 144 5 2 1 2 2 7

17 2 2 0 1 1 1 145 3 2 2 4 4 4

18 5 2 1 2 1 7 146 2 2 1 2 1 0

19 3 2 2 4 2 4 147 3 2 2 1 2 4

20 5 2 1 1 2 7 148 2 2 1 1 2 0

21 3 2 2 2 4 4 149 3 2 2 2 1 4

22 2 2 1 1 1 0 150 3 2 1 1 1 3

23 3 2 2 2 2 4 151 5 2 2 2 2 6

24 2 2 1 2 2 0 152 3 2 2 1 1 2

25 3 2 2 1 1 4 153 2 2 0 1 2 1

26 3 2 1 2 4 0 154 3 2 2 3 4 2

27 5 2 2 7 8 4 155 4 2 2 3 4 4

28 3 2 1 4 2 0 156 3 2 2 4 3 2

29 5 2 2 8 7 4 157 4 2 2 4 3 4

30 3 2 1 3 3 3 158 5 2 2 9 9 10

31 4 2 3 5 5 1 159 5 2 4 2 2 4

32 3 2 2 3 2 0 160 2 2 1 0 1 2

33 5 2 1 2 3 8 161 3 2 1 3 1 4

34 2 2 0 1 2 2 162 3 2 2 3 4 0

35 3 2 2 4 3 1 163 5 2 2 4 5 1

Table 4. (continues).

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 291

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

36 2 2 1 2 1 2 164 3 2 1 2 1 2

37 3 2 1 2 1 4 165 2 2 1 0 2 1

38 3 2 2 1 4 0 166 3 2 2 3 1 3

39 5 2 2 7 3 1 167 4 2 3 2 4 4

40 5 2 1 1 2 9 168 3 2 2 2 4 3

41 2 2 1 1 2 1 169 3 2 2 2 1 1

42 3 2 2 2 1 3 170 2 2 0 0 1 0

43 3 2 2 2 3 1 171 4 2 2 2 3 1

44 3 2 1 4 3 2 172 5 2 2 5 3 7

45 3 2 1 3 2 1 173 4 2 3 5 4 6

46 5 2 2 8 4 0 174 4 2 2 5 3 3

47 4 2 3 5 2 6 175 3 2 2 0 3 1

48 2 2 1 2 0 0 176 3 2 1 2 3 0

49 3 2 2 1 3 4 177 5 2 2 3 4 6

50 3 2 2 1 2 2 178 3 2 2 3 2 2

51 2 2 0 1 0 1 179 4 2 2 3 2 4

52 3 2 1 4 3 0 180 3 2 1 3 2 3

53 5 2 2 4 6 4 181 4 2 3 5 4 1

54 3 2 2 4 2 2 182 5 2 2 6 2 2

55 4 2 2 4 2 4 183 5 2 2 4 2 4

56 3 2 1 4 2 3 184 5 2 2 4 3 10

57 3 2 2 4 3 4 185 4 2 2 4 3 6

58 5 2 2 4 5 10 186 4 2 2 5 4 2

59 4 2 2 4 5 6 187 3 2 0 2 3 1

60 2 2 1 1 0 0 188 4 2 3 3 2 3

61 4 2 3 3 2 1 189 3 2 2 2 3 4

62 4 2 3 3 5 3 190 5 2 2 2 5 10

63 3 2 2 2 0 4 191 4 2 2 2 5 6

64 3 2 2 2 3 0 192 2 2 1 1 0 2

65 5 2 1 1 3 6 193 3 2 1 1 3 4

66 2 2 1 1 2 2 194 3 2 1 1 2 2

67 3 2 1 1 2 4 195 2 2 1 2 0 1

68 2 2 0 1 2 0 196 3 2 2 4 3 0

69 3 2 2 3 4 1 197 5 2 2 3 6 1

70 3 2 2 4 1 0 198 3 2 2 1 3 3

71 5 2 2 3 7 1 199 4 2 3 4 2 4

Table 4. (continues).

292 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

72 5 2 1 2 1 9 200 3 2 2 4 2 3

73 2 2 1 2 1 1 201 3 2 2 1 2 1

74 3 2 1 3 4 2 202 5 2 2 3 5 7

75 3 2 1 2 3 1 203 4 2 3 4 5 6

76 3 2 2 1 2 3 204 2 2 0 1 0 0

77 3 2 2 3 2 1 205 4 2 2 3 2 1

78 5 2 2 4 8 0 206 4 2 2 3 5 3

79 4 2 3 2 5 6 207 3 2 2 3 0 1

80 2 2 1 0 2 0 208 3 2 1 3 2 0

81 3 2 2 3 1 4 209 5 2 2 4 3 6

82 3 2 1 3 4 0 210 3 2 1 2 3 3

83 5 2 2 4 6 6 211 4 2 3 4 5 1

84 3 2 2 2 1 2 212 3 2 2 2 3 2

85 2 2 0 0 1 1 213 4 2 2 2 3 4

86 3 2 2 2 4 2 214 5 2 2 2 6 2

87 4 2 2 2 4 4 215 5 2 2 2 4 4

88 3 2 1 2 4 3 216 5 2 2 3 4 10

89 3 2 2 3 4 4 217 4 2 2 3 4 6

90 2 2 1 0 1 0 218 4 2 3 2 3 3

91 4 2 3 2 3 1 219 3 2 2 3 2 4

92 5 2 2 5 4 10 220 4 2 2 4 5 2

93 4 2 2 5 4 6 221 3 2 0 2 3 4

94 4 2 3 5 3 3 222 5 2 2 5 2 10

95 3 2 2 0 2 4 223 4 2 2 5 2 6

96 5 2 1 2 2 9 224 3 2 1 3 3 2

97 2 2 1 2 2 1 225 3 2 1 2 2 1

98 3 2 2 4 1 3 226 5 2 2 4 8 9

99 3 2 2 1 3 1 227 4 2 3 4 2 6

100 3 2 2 1 4 3 228 5 2 2 3 7 3

101 3 2 2 3 1 1 229 4 2 3 2 4 6

102 2 2 0 1 1 0 230 4 2 2 3 3 3

103 4 2 2 3 3 1 231 3 2 2 3 3 1

104 2 2 1 1 1 2 232 3 2 2 2 2 0

105 3 2 1 1 1 4 233 5 2 2 2 5 8

106 3 2 2 2 4 0 234 4 2 2 2 4 0

107 5 2 2 2 9 8 235 5 2 2 2 7 8

Table 4. (continues).

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 293

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

108 3 2 2 4 2 0 236 4 2 2 4 2 0

109 5 2 2 9 2 8 237 5 2 2 5 9 1

110 4 2 2 4 4 0 238 3 2 0 2 2 2

111 5 2 4 2 9 6 239 4 2 2 5 5 1

112 3 2 1 2 2 3 240 2 2 1 0 0 0

113 3 2 2 3 3 4 241 4 2 3 2 2 1

114 5 2 2 3 5 10 242 4 2 3 2 5 3

115 4 2 2 3 5 6 243 3 2 2 3 0 4

116 5 2 2 4 8 2 244 4 2 3 5 2 3

117 4 2 2 5 3 6 245 3 2 2 0 3 4

118 4 2 2 4 4 2 246 5 2 2 4 4 2

119 3 2 0 2 2 4 247 4 2 2 5 5 6

120 3 2 1 3 3 0 248 4 2 3 5 5 5

121 5 2 2 6 9 4 249 5 2 2 4 7 6

122 4 2 3 5 3 5 250 3 2 2 0 2 2

123 5 2 2 4 9 6 251 4 2 2 5 2 4

124 4 2 3 3 5 5 252 3 2 2 2 0 2

125 5 2 2 2 6 4 253 4 2 2 2 5 4

126 3 2 2 2 2 2 254 4 2 2 2 2 2

127 4 2 2 2 2 4 255 2 2 0 0 0 1

Table 4. Rules 0–255 and their coefficients.

Every elementary CA can be represented in terms of the iota-delta
function. This leads to the understanding that this function is CA uni-
versal in the sense that it can be used in the definition of every elemen-
tary CA.

By defining the evolution rules as functions whose domain is the
CA mesh by means of the Church–Turing thesis, since the iota-delta
function can be used to represent rule 110 (which has been proved to
be universal), it is possible to say that this new function is also Turing
universal. Finally, still based on the Church–Turing thesis, every dy-
namical system that is Turing equivalent to rule 110 is also repre-
sentable by means of the iota-delta function.

A direct physical application of the iota-delta function has been
given in [5].

294 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

4. Conclusions

In the present paper, a general transformation that can be applied to
the whole cellular net is developed. By means of such transformation,
every binary, that is, 0–255 cellular automata (CAs) are described. In
addition, in order to provide a compact version of the transformation
developed, a new function has been introduced: the iota-delta func-
tion. This new function is closely related to prime numbers and to the
prime number theorem by means of the prime counting function,
which reinforces the importance of this kind of number in science.

By drawing a parallel between the mathematical and computa-
tional notions of universality, it is possible to say that the iota-delta
function is universal in the sense that it can be used to represent every
dynamical system that is Turing equivalent to rule 110.

The simplicity of the iota-delta function and the way it has been
used to describe elementary CAs requires further investigation. One
interesting topic that would demand attention is how to prove the uni-
versality of rule 110 by means of this new function.

Acknowledgments

The authors would like to deeply thank Dr. Todd Rowland from
Wolfram Research, Inc., for his contributions to the development of
the ideas hereby presented. The authors would also like to thank the
Brazilian National Research Council (CNPq), the Coordination for
the Improvement of Higher Level Personnel (CAPES), and the Univer-
sity of Brasília (UnB) for funding this research.

References

[1] L. Smolin, “The Case for Background Independence.”
http://arxiv.org/abs/hep-th/0507235.

[2] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40.
http://www.complex-systems.com/pdf/15-1-1.pdf.

[3] S. M. Voronin, “Theorem on the Universality of the Riemann Zeta Func-
tion,” Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya, 39,
1975 pp. 475–486. Reprinted in Mathematics of the USSR Izvestiya,
9(3), 1975 pp. 443–445. doi:10.1070/IM1975v009n03ABEH001485.

[4] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

On the Iota-Delta Function: Universality in Cellular Automata’s Representation 295

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

[5] L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges,
“Continuum versus Discrete: A Physically Interpretable General Rule
for Cellular Automata by Means of Modular Arithmetic.”
http://arxiv.org/abs/1206.2556.

296 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.283

<<
 /ASCII85EncodePages false
 /AllowPSXObjects false
 /AllowTransparency false
 /AlwaysEmbed [
 true
]
 /AntiAliasColorImages false
 /AntiAliasGrayImages false
 /AntiAliasMonoImages false
 /AutoFilterColorImages true
 /AutoFilterGrayImages true
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CheckCompliance [
 /None
]
 /ColorACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorConversionStrategy /LeaveColorUnchanged
 /ColorImageAutoFilterStrategy /JPEG
 /ColorImageDepth -1
 /ColorImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorImageDownsampleThreshold 1.50000
 /ColorImageDownsampleType /Bicubic
 /ColorImageFilter /DCTEncode
 /ColorImageMinDownsampleDepth 1
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /ColorImageResolution 300
 /ColorSettingsFile ()
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /CreateJDFFile false
 /CreateJobTicket false
 /CropColorImages false
 /CropGrayImages false
 /CropMonoImages false
 /DSCReportingLevel 0
 /DefaultRenderingIntent /Default
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /DetectBlends true
 /DetectCurves 0
 /DoThumbnails false
 /DownsampleColorImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /EmbedOpenType false
 /EmitDSCWarnings false
 /EncodeColorImages true
 /EncodeGrayImages true
 /EncodeMonoImages true
 /EndPage -1
 /GrayACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageAutoFilterStrategy /JPEG
 /GrayImageDepth -1
 /GrayImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageDownsampleThreshold 1.50000
 /GrayImageDownsampleType /Bicubic
 /GrayImageFilter /DCTEncode
 /GrayImageMinDownsampleDepth 2
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /GrayImageResolution 300
 /ImageMemory 1048576
 /JPEG2000ColorACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000ColorImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /LockDistillerParams false
 /MaxSubsetPct 100
 /MonoImageDepth -1
 /MonoImageDict <<
 /K -1
 >>
 /MonoImageDownsampleThreshold 1.50000
 /MonoImageDownsampleType /Bicubic
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /MonoImageResolution 1200
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /NeverEmbed [
 true
]
 /OPM 1
 /Optimize true
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.25000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXOutputCondition ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputIntentProfile ()
 /PDFXRegistryName ()
 /PDFXSetBleedBoxToMediaBox true
 /PDFXTrapped /False
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /ParseICCProfilesInComments true
 /PassThroughJPEGImages true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

