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Universality has always played a major role in every branch of science.
Since  the  advent  of  cellular  automata  (CAs),  this  type  of  model  has
been widely applicable to the modeling of physical phenomena. On the
other hand, the way the evolution rules were described lacked a unified
formulation in terms of mathematical functions. In the present paper, a
general formulation that is able to describe every elementary CA is de-
rived.  The  new  representation  is  given  in  terms  of  a  new  function
hereby defined: the iota-delta function. 

1. Introduction

Be it while studying nature’s behavior or analyzing the implementabil-
ity and efficiency of computational algorithms, scholars of the most di-
verse areas of  human knowledge seek universality.  Even though each
area has particular concepts of universality,  the main concern behind
this idea is whether a given system or rule can reproduce/mimic others
of the same kind or even different kinds but also be universal. A few
definitions from different areas of science are briefly shown below.  

In theoretical physics, universality is often related to background in-
dependence [1]. An intrinsic robustness is inherent to physical univer-
sal systems as they may show a given expected behavior even though
other phenomena are concomitantly taking place. 

Different  from  physics,  in  computer  science,  universality  is  dis-
cussed in terms of concepts such as Turing completeness and equiva-
lence  [2].  In  general,  universality  is  a  property  assigned  to  a  system.
For  example,  there  are  universal  Turing  machines,  tag  systems,  and
cellular  automata  (CAs)  [2].  Due  to  the  inherent  temporal  evolutive
characteristic of these systems, they are named dynamical systems. In
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short, the latter consists of a state space SS  and an evolution rule ER.
At each time step t, a system’s state is updated by means of its evolu-
tion rule. 

In mathematics, on the other hand, universality can be assigned to
functions.  One  of  the  most  famous  mathematical  functions,  the
Riemann zeta function zHsL is universal by means of the Voronin uni-
versality theorem [3]. The latter briefly states that, under certain con-
ditions,  any  nonvanishing  analytic  function  can  be  arbitrarily  well
approximated by zHsL. 

By establishing a parallel between mathematical and computational
systems, the main issue to be addressed by this paper is whether uni-
versality  can  be  assigned  to  evolution  rules  of  dynamical  systems.  In
other  words,  let  such  rules  be  functions  whose  domain  is  the  state
space; thus,  the main concern is  if  there is  any general evolution rule
that enables every dynamical system to be emulated. 

It  will  be  shown  that  a  universal  evolution  rule  does  exist  and  is
given in  terms of  a  new function hereby defined:  the  iota-delta  func-
tion. At first, it is shown that the iota-delta function can describe the
evolution  rules  of  every  elementary  CA.  Finally,  since  the  universal
rule 110 [2] is described by means of the Church–Turing thesis [2], ev-
ery Turing-equivalent dynamical system has its evolution rule express-
ible in terms of the iota-delta function. 

2. Evolution Rules of Elementary Cellular Automata

In  the  present  paper,  special  attention  is  given  to  the  evolution  rules
of  CAs  because  it  is  interesting  to  define  this  class  of  dynamical  sys-
tems. First, it is interesting to study elementary CAs. Also, a very im-
portant concept has to be introduced: the CA mesh (Figure 1).  

Position Ø k-1 k k+1

Step !

i

i+1

Figure 1.  CA mesh.

A CA mesh is made of cells C, hereby indexed in space by the sub-

script  k  and time by  the  superscript  i,  as  in  Ck
i .  Following  [2,  4],  an
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elementary CA is  a dynamical  system that consists  of  an infinite row
of cells whose values are either 0 or 1. At each time step, a set of rules
is  applied  to  the  CA  net  in  order  to  update  the  cells’  values.  While
dealing with elementary CAs, the value of a given cell depends on the
values  of  the  cell  itself  and  its  immediate  neighbors  on  the  previous
time step. Mathematically, this definition turns to

(1)Ck
i+1 ! f ACk-1

i , Ck
i , Ck+1

i E.
The binary values 0 and 1 are commonly interpreted as the colors

white and black, respectively. In equation (1), no direct information is
given  about  the  evolution  rule  f .  The  latter  is  given  individually  for
each of the 0–255 elementary CAs.  For instance,  rule 90 has the fol-
lowing evolution rule: 

(2)Ck
i+1 !

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 0D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 0D.

One  of  the  main  features  of  CAs  is  their  capability  of  describing
complex behavior by means of simple rules. A quick analysis of equa-
tion  (2)  reveals  a  conditional  definition  of  the  evolution  rule.  Even
though the rule itself is simple, this type of definition does not provide
a  straightforward  representation  of  the  evolution,  requiring  tedious
“if” structures in the programming process of CAs. 

In [4], there are different ways of representing rules like the one in
equation (2). Also in [4], the possibility of interpreting CA rules as for-
mulas is deeply discussed. Specifically, two main approaches are con-
sidered: describing CA rules by means of Boolean expressions and by
means of algebraic expressions. 

For  rule  90,  the  Boolean  correspondent  of  equation  (2)  can  be
given as [4]: 

(3)Ck
i+1 ! XorACk-1

i , Ck+1
i E.
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On  the  other  hand,  an  algebraic  equivalent  of  both  equations  (2)
and (3) is easily given as [4]: 

(4)Ck
i+1 ! modACk-1

i + Ck+1
i , 2E,

where  mod@o, pD  denotes  the  modulus  operator,  which  gives  the  rest
of the division of o by p if o is greater than p or o itself, otherwise. In
general, p is called the congruence modulus.  

In [4], a list giving the Boolean expression for every elementary CA
has been given. However, only a few rules have been algebraically de-
scribed. In the present paper, equation (4) will be further investigated
in  order  to  evaluate  the  role  of  the  modulus  operator  in  the  descrip-
tion of elementary CAs. 

3. A Transformation that Relates Elementary Cellular Automata to 
Modular Arithmetic: The Iota-Delta Function 

While  observing  equation  (4),  an  immediate  general  rule  that  would
give  the  representation  of  other  CAs  in  terms  of  the  modulus  opera-
tion would be:  

(5)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i , 2E,
in which aj  are integer coefficients less than the congruence modulus.

In  this  particular  case,  aj ! 80, 1<.  The  application  of  equation  (5)

generates eight different rules, which are summarized in Table 1.  

Coefficients Rule Number

a1 a2 a3 !

0 0 0 0

1 1 0 60

1 0 1 90

0 1 1 102

1 1 1 150

0 0 1 170

0 1 0 204

1 0 0 240

Table 1.  Rules described by the application of equation (5).  

By inspecting Table  1,  not  only rule  90 but  also seven other  cases
are simply defined by means of a single rule applied to the whole CA
net. 
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It is interesting that the formula in equation (5) will never describe
odd  rules  since  in  Wolfram’s  numeration  system,  the  coefficient  that
multiplies  1  in  the  binary  decomposition  of  the  rule  number  com-
mands parity.  The latter  is  the  result  of  the  combination of  three  ze-

ros, that is, when ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 0D. This way, when apply-

ing  equation  (5)  to  any  combination  of  three  zeros,  the  null  value  is
obtained, which implies only even rule numbers. In order to overcome
this issue, a fourth coefficient a4 needs to be inserted inside the modu-
lus operator in equation (5), generating

(6)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 2E.
The new coefficient, like the other ones, is an integer less than the

congruence modulus. This way, the number of rules described by the
application  of  equation  (6)  is  16,  double  that  obtained  by  applying
equation  (5).  Table  2  summarizes  the  rule  numbers  obtained  by  the
addition of the fourth coefficient. 

Coefficients Rule Number

a1  a2  a3  a4  ! 

 0  0  0  0  0 

 1  0  0  1  15 

 0  1  0  1  51 

 1  1  0  0  60 

 0  0  1  1  85 

 1  0  1  0  90 

 0  1  1  0  102 

 1  1  1  1  105 

 1  1  1  0  150 

 0  1  1  1  153 

 1  0  1  1  165 

 0  0  1  0  170 

 1  1  0  1  195 

 0  1  0  0  204 

 1  0  0  0  240 

 0  0  0  1  255 

  

Table 2.  Rules described by the application of equation (6).  

The  application  of  modular  arithmetic  perfectly  fits  the  need  for
simplicity  in  the  description  of  CAs.  On the  other  hand,  the  number
of automata generated by equation (6) is 1 ê 16 of the total number of
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binary automata—also called simple 1D automata in [4]. The number
of automata generated is directly related to how many values the coef-
ficients  can  assume.  While  investigating  equations  (5)  and  (6),  if  the
congruence  modulus  is  2,  the  numbers  0  and 1  are  the  only  possible
coefficients.  Thus,  there  has  to  be  a  way  to  generate  more  combina-
tions of coefficients. 

When congruence modulus n  is considered, a total of n4  combina-
tions  of  four  a  coefficients  is  obtained.  The  possible  coefficients  are
described as: 

(7)aj ! 8r r § n - 1; r œ !+<; j ! 1, 2, 3, 4.

This  way,  when  congruence  modulus  3  is  taken  into  account,  the
possible coefficients are 0, 1, and 2, which ultimately generate a total

of 34  combinations. However, considering binary automata, a modu-
lus  operator  with  congruence  modulus  3  cannot  be  applied  alone  as
the outcomes of such an operation are not only 0 and 1, but also 2. It
is not possible to describe binary automata by a rule of the form 

(8)Ck
i+1 ! modAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 3E.
Thus, the situation is paradoxically summarized as: in order to de-

scribe more CAs by a simple rule that uses the modulus operator, the
possible values of the coefficients must be increased. This growth can
only be obtained by considering the modulus operator with respect to
congruence  moduli  greater  than  2.  Notwithstanding,  if  the  modulus
operator  is  considered  with  respect  to  integer  congruence  moduli
greater  than  2,  binary  automata  cannot  be  described  since  the  out-
comes  of  the  transformation  are  not  only  0  and  1.  At  this  point,  a
very important concept has to be introduced: filtering operators. In or-
der to preserve the number of possible coefficients obtained by consid-
ering the modulus operator with respect to greater integer congruence
moduli and yet obtain only 0 and 1 as the outputs of the transforma-
tion, mod@argument, 2D must be applied to the right-hand side of equa-
tion (8). This process is a filtering processes in which the results from
equation (8) are filtered in order to obtain binary outputs.  This way,
equation (8) becomes 

(9)Ck
i+1 ! modAmodAa1 Ck-1

i + a2 Ck
i + a3 Ck+1

i + a4, 3E, 2E.
The  number  of  combinations  of  the  possible  coefficients  in  equa-

tion (9) are 34 and the outputs of the latter equation are only 0 and 1.
Pay  close  attention  to  the  fact  that  each  automaton  is  not  generated
by a single combination. Due to the cyclic property of the modulus op-
erator,  more  than  one  combination  generates  the  same  automaton.
This can be verified in Table 3, which shows all  the combinations of

         
 

288 L. C. de S. M. Ozelim, A. L. B. Cavalcante, and L. P. de F. Borges

Complex Systems, 21 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.4.283



         

               
           

            
        

            
possible coefficients in equation (9) and the correspondent rules gener-
ated. 

By inspecting Table 3, it can be seen that the 81 combinations gen-
erated only 53 different automata. 

Coefficients      RN Coefficients    RN Coefficients      RN

a1 a2 a3 a4 ! a1 a2 a3 a4 ! a1 a2 a3 a4 !

0 0 0 0 0 2 1 2 0 36 1 1 1 1 129

0 0 0 2 0 1 1 2 1 41 2 2 2 1 129

0 0 1 2 0 2 2 1 1 41 1 2 2 2 134

0 0 2 0 0 1 2 0 0 48 2 1 1 0 134

0 1 0 2 0 2 1 0 2 48 0 1 1 2 136

0 2 0 0 0 0 1 0 1 51 0 2 2 0 136

1 0 0 2 0 0 2 0 1 51 1 2 1 0 146

2 0 0 0 0 1 1 0 0 60 2 1 2 2 146

1 1 0 1 3 2 2 0 2 60 1 1 2 0 148

2 2 0 1 3 1 1 2 2 66 2 2 1 2 148

1 0 1 1 5 2 2 1 0 66 0 1 2 1 153

2 0 2 1 5 0 1 2 0 68 0 2 1 1 153

1 0 2 2 10 0 2 1 2 68 1 0 1 2 160

2 0 1 0 10 1 2 1 1 73 2 0 2 0 160

1 2 0 2 12 2 1 2 1 73 1 0 2 1 165

2 1 0 0 12 1 0 2 0 80 2 0 1 1 165

1 0 0 1 15 2 0 1 2 80 0 0 1 0 170

2 0 0 1 15 0 0 1 1 85 0 0 2 2 170

0 1 1 1 17 0 0 2 1 85 1 1 0 2 192

0 2 2 1 17 1 0 1 0 90 2 2 0 0 192

1 1 1 0 22 2 0 2 2 90 1 2 0 1 195

2 2 2 2 22 1 2 2 1 97 2 1 0 1 195

1 2 2 0 24 2 1 1 1 97 0 1 0 0 204

2 1 1 2 24 0 1 1 0 102 0 2 0 2 204

0 1 2 2 34 0 2 2 2 102 1 0 0 0 240

0 2 1 0 34 1 1 1 2 104 2 0 0 2 240

1 2 1 2 36 2 2 2 0 104 0 0 0 1 255

Table 3.  Rules described by the application of equation (9).  

The  filtering  process  consists  of  a  repetitive  composition  of  the
modulus operator in order to obtain more possible values of the coef-
ficients, and yet get as the output of such a transformation the values
necessary  to  define  the  automata  being  studied.  This  way,  for  exam-
ple, in order to get ternary CAs, the last composition needs to be with
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respect to congruence modulus 3, instead of 2 as for the binary case.
Special  care has to be taken while  applying the filtering process.  The
modulus operation composition has to be taken with respect to prime
numbers.  The  final  filter—which  determines  the  possible  outputs  of
the  transformation—must  be  situated  regarding  the  prime  numbers
greater  than  such  a  number.  By  doing  this,  the  chance  of  getting  a
multiple of the modulus of congruence is diminished. 

In  order  to  represent  every  binary  automaton,  since  the  combina-
tions  of  the  coefficients  do  not  uniquely  define  each  rule,  a  compact
notation has to be introduced to better represent the filtering process.
Let the iota-delta function be defined as follows: 

(10)

idn
m@xD !
modAmodA… mod@mod@x, pmD, pm-1D, … , pjE, nE,

m ¥ j; m, n œ !+; x œ "; j ! p @nD + 1,

in which m and n are parameters of the iota-delta function, pm  is the

mth  prime  number,  and  p@nD  stands  for  the  prime  counting  function
that gives the number of primes less than or equal to n. Note that it is
considered  that  p1 ! 2.  The  value  of  n  determines  how  many  states
the  automata  generated  have.  Thus,  for  a  binary  automaton,  n ! 2;
for ternary ones, n ! 3; for quaternary ones, n ! 4; and so on. Also,
the  iota-delta  function  is  taken  to  be  non-negative  and
max@idn

m@xDD Ø n when x œ #. A Mathematica code that readily imple-
ments equation (10) is:  

iotadelta@m_,n_,x_D := Mod@Fold@Mod,x,Table@Prime@m-jD,8j,0,m-1-PrimePi@nD<DD,nD
Based  on  equation  (7),  the  number  of  combinations  allowed  by

means of the iota-delta function is pm
4  and the possible coefficients are

aj ! 8r r § pm - 1; r œ !+<; j ! 1, 2, 3, 4. 

By  means  of  the  iota-delta  function,  the  filtering  process  is  better
represented.  For  example,  equation  (9)  can  be  written  in  a  compact
way as: 

(11)Ck
i+1 ! id2

2Aa1 Ck-1
i + a2 Ck

i + a3 Ck+1
i + a4E.

In order to represent every binary CA in the simplest way possible,
it  must  be  determined which is  the  smallest  value  of  m  such that  for
n ! 2,  every  binary  rule  is  expressed.  By  means  of  experimentation,
when  m ! 5,  that  is,  mod@mod@mod@mod@mod@x, 11D, 7D, 5D, 3D, 2D,
every binary CA is described. By means of the iota-delta function, ev-
ery binary CA is represented by a single algebraic rule applied to the
whole  cellular  net.  Table  4  gives  the  first  combination,  that  is,  the
smaller m, which generates each of Wolfram’s rules 0–255. 
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RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

0 2 2 0 0 0 0 128 3 2 2 2 2 3

1 3 2 2 2 2 1 129 2 2 1 1 1 1

2 3 2 2 2 3 3 130 5 2 1 1 6 9

3 2 2 1 1 0 1 131 3 2 1 1 3 1

4 3 2 2 3 2 3 132 5 2 1 2 7 2

5 2 2 1 0 1 1 133 3 2 1 3 1 1

6 5 2 1 2 6 2 134 2 2 1 2 2 2

7 3 2 1 3 3 1 135 3 2 1 2 2 4

8 3 2 2 3 3 0 136 2 2 0 1 1 2

9 5 2 1 2 2 8 137 3 2 2 4 4 1

10 2 2 1 0 2 2 138 3 2 2 3 1 0

11 3 2 1 3 2 4 139 5 2 2 3 4 8

12 2 2 1 2 0 2 140 3 2 2 1 3 0

13 3 2 1 2 3 4 141 5 2 2 4 3 8

14 3 2 1 2 2 2 142 3 2 2 3 3 3

15 2 2 1 0 0 1 143 4 2 3 2 2 4

16 3 2 2 3 3 2 144 5 2 1 2 2 7

17 2 2 0 1 1 1 145 3 2 2 4 4 4

18 5 2 1 2 1 7 146 2 2 1 2 1 0

19 3 2 2 4 2 4 147 3 2 2 1 2 4

20 5 2 1 1 2 7 148 2 2 1 1 2 0

21 3 2 2 2 4 4 149 3 2 2 2 1 4

22 2 2 1 1 1 0 150 3 2 1 1 1 3

23 3 2 2 2 2 4 151 5 2 2 2 2 6

24 2 2 1 2 2 0 152 3 2 2 1 1 2

25 3 2 2 1 1 4 153 2 2 0 1 2 1

26 3 2 1 2 4 0 154 3 2 2 3 4 2

27 5 2 2 7 8 4 155 4 2 2 3 4 4

28 3 2 1 4 2 0 156 3 2 2 4 3 2

29 5 2 2 8 7 4 157 4 2 2 4 3 4

30 3 2 1 3 3 3 158 5 2 2 9 9 10

31 4 2 3 5 5 1 159 5 2 4 2 2 4

32 3 2 2 3 2 0 160 2 2 1 0 1 2

33 5 2 1 2 3 8 161 3 2 1 3 1 4

34 2 2 0 1 2 2 162 3 2 2 3 4 0

35 3 2 2 4 3 1 163 5 2 2 4 5 1

Table 4.  (continues).
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RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

36 2 2 1 2 1 2 164 3 2 1 2 1 2

37 3 2 1 2 1 4 165 2 2 1 0 2 1

38 3 2 2 1 4 0 166 3 2 2 3 1 3

39 5 2 2 7 3 1 167 4 2 3 2 4 4

40 5 2 1 1 2 9 168 3 2 2 2 4 3

41 2 2 1 1 2 1 169 3 2 2 2 1 1

42 3 2 2 2 1 3 170 2 2 0 0 1 0

43 3 2 2 2 3 1 171 4 2 2 2 3 1

44 3 2 1 4 3 2 172 5 2 2 5 3 7

45 3 2 1 3 2 1 173 4 2 3 5 4 6

46 5 2 2 8 4 0 174 4 2 2 5 3 3

47 4 2 3 5 2 6 175 3 2 2 0 3 1

48 2 2 1 2 0 0 176 3 2 1 2 3 0

49 3 2 2 1 3 4 177 5 2 2 3 4 6

50 3 2 2 1 2 2 178 3 2 2 3 2 2

51 2 2 0 1 0 1 179 4 2 2 3 2 4

52 3 2 1 4 3 0 180 3 2 1 3 2 3

53 5 2 2 4 6 4 181 4 2 3 5 4 1

54 3 2 2 4 2 2 182 5 2 2 6 2 2

55 4 2 2 4 2 4 183 5 2 2 4 2 4

56 3 2 1 4 2 3 184 5 2 2 4 3 10

57 3 2 2 4 3 4 185 4 2 2 4 3 6

58 5 2 2 4 5 10 186 4 2 2 5 4 2

59 4 2 2 4 5 6 187 3 2 0 2 3 1

60 2 2 1 1 0 0 188 4 2 3 3 2 3

61 4 2 3 3 2 1 189 3 2 2 2 3 4

62 4 2 3 3 5 3 190 5 2 2 2 5 10

63 3 2 2 2 0 4 191 4 2 2 2 5 6

64 3 2 2 2 3 0 192 2 2 1 1 0 2

65 5 2 1 1 3 6 193 3 2 1 1 3 4

66 2 2 1 1 2 2 194 3 2 1 1 2 2

67 3 2 1 1 2 4 195 2 2 1 2 0 1

68 2 2 0 1 2 0 196 3 2 2 4 3 0

69 3 2 2 3 4 1 197 5 2 2 3 6 1

70 3 2 2 4 1 0 198 3 2 2 1 3 3

71 5 2 2 3 7 1 199 4 2 3 4 2 4

Table 4.  (continues).
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RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

72 5 2 1 2 1 9 200 3 2 2 4 2 3

73 2 2 1 2 1 1 201 3 2 2 1 2 1

74 3 2 1 3 4 2 202 5 2 2 3 5 7

75 3 2 1 2 3 1 203 4 2 3 4 5 6

76 3 2 2 1 2 3 204 2 2 0 1 0 0

77 3 2 2 3 2 1 205 4 2 2 3 2 1

78 5 2 2 4 8 0 206 4 2 2 3 5 3

79 4 2 3 2 5 6 207 3 2 2 3 0 1

80 2 2 1 0 2 0 208 3 2 1 3 2 0

81 3 2 2 3 1 4 209 5 2 2 4 3 6

82 3 2 1 3 4 0 210 3 2 1 2 3 3

83 5 2 2 4 6 6 211 4 2 3 4 5 1

84 3 2 2 2 1 2 212 3 2 2 2 3 2

85 2 2 0 0 1 1 213 4 2 2 2 3 4

86 3 2 2 2 4 2 214 5 2 2 2 6 2

87 4 2 2 2 4 4 215 5 2 2 2 4 4

88 3 2 1 2 4 3 216 5 2 2 3 4 10

89 3 2 2 3 4 4 217 4 2 2 3 4 6

90 2 2 1 0 1 0 218 4 2 3 2 3 3

91 4 2 3 2 3 1 219 3 2 2 3 2 4

92 5 2 2 5 4 10 220 4 2 2 4 5 2

93 4 2 2 5 4 6 221 3 2 0 2 3 4

94 4 2 3 5 3 3 222 5 2 2 5 2 10

95 3 2 2 0 2 4 223 4 2 2 5 2 6

96 5 2 1 2 2 9 224 3 2 1 3 3 2

97 2 2 1 2 2 1 225 3 2 1 2 2 1

98 3 2 2 4 1 3 226 5 2 2 4 8 9

99 3 2 2 1 3 1 227 4 2 3 4 2 6

100 3 2 2 1 4 3 228 5 2 2 3 7 3

101 3 2 2 3 1 1 229 4 2 3 2 4 6

102 2 2 0 1 1 0 230 4 2 2 3 3 3

103 4 2 2 3 3 1 231 3 2 2 3 3 1

104 2 2 1 1 1 2 232 3 2 2 2 2 0

105 3 2 1 1 1 4 233 5 2 2 2 5 8

106 3 2 2 2 4 0 234 4 2 2 2 4 0

107 5 2 2 2 9 8 235 5 2 2 2 7 8

Table 4.  (continues).
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RN m n Coefficients RN m n Coefficients

! ! ! a1 a2 a3 a4 ! ! ! a1 a2 a3 a4

108 3 2 2 4 2 0 236 4 2 2 4 2 0

109 5 2 2 9 2 8 237 5 2 2 5 9 1

110 4 2 2 4 4 0 238 3 2 0 2 2 2

111 5 2 4 2 9 6 239 4 2 2 5 5 1

112 3 2 1 2 2 3 240 2 2 1 0 0 0

113 3 2 2 3 3 4 241 4 2 3 2 2 1

114 5 2 2 3 5 10 242 4 2 3 2 5 3

115 4 2 2 3 5 6 243 3 2 2 3 0 4

116 5 2 2 4 8 2 244 4 2 3 5 2 3

117 4 2 2 5 3 6 245 3 2 2 0 3 4

118 4 2 2 4 4 2 246 5 2 2 4 4 2

119 3 2 0 2 2 4 247 4 2 2 5 5 6

120 3 2 1 3 3 0 248 4 2 3 5 5 5

121 5 2 2 6 9 4 249 5 2 2 4 7 6

122 4 2 3 5 3 5 250 3 2 2 0 2 2

123 5 2 2 4 9 6 251 4 2 2 5 2 4

124 4 2 3 3 5 5 252 3 2 2 2 0 2

125 5 2 2 2 6 4 253 4 2 2 2 5 4

126 3 2 2 2 2 2 254 4 2 2 2 2 2

127 4 2 2 2 2 4 255 2 2 0 0 0 1

Table 4.  Rules 0–255 and their coefficients.  

Every elementary CA can be represented in terms of the iota-delta
function. This leads to the understanding that this function is CA uni-
versal in the sense that it can be used in the definition of every elemen-
tary CA. 

By  defining  the  evolution  rules  as  functions  whose  domain  is  the
CA mesh  by  means  of  the  Church–Turing  thesis,  since  the  iota-delta
function can be used to represent rule 110 (which has been proved to
be universal), it is possible to say that this new function is also Turing
universal.  Finally,  still  based  on  the  Church–Turing  thesis,  every  dy-
namical  system  that  is  Turing  equivalent  to  rule  110  is  also  repre-
sentable by means of the iota-delta function. 

A  direct  physical  application  of  the  iota-delta  function  has  been
given in [5]. 
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4. Conclusions

In the present paper,  a general  transformation that can be applied to
the whole cellular net is developed. By means of such transformation,
every binary, that is, 0–255 cellular automata (CAs) are described. In
addition, in order to provide a compact version of the transformation
developed,  a  new  function  has  been  introduced:  the  iota-delta  func-
tion. This new function is closely related to prime numbers and to the
prime  number  theorem  by  means  of  the  prime  counting  function,
which reinforces the importance of this kind of number in science.  

By  drawing  a  parallel  between  the  mathematical  and  computa-
tional  notions  of  universality,  it  is  possible  to  say  that  the  iota-delta
function is universal in the sense that it can be used to represent every
dynamical system that is Turing equivalent to rule 110. 

The  simplicity  of  the  iota-delta  function  and  the  way  it  has  been
used  to  describe  elementary  CAs  requires  further  investigation.  One
interesting topic that would demand attention is how to prove the uni-
versality of rule 110 by means of this new function. 
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