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A graph-theoretic analysis of state inference for a class of network syn-
chronization (or diffusive)  processes  is  pursued.  Precisely,  estimation is
studied  for  a  nonrandom  initial  condition  of  a  canonical  synchroniza-
tion  dynamic  defined  on  a  graph,  from  noisy  observations  at  a  single
network node. By characterizing the maximum-likelihood estimation of
the initial condition and the associated Cramer–Rao bound, graph prop-
erties are identified (e.g., symmetries, interconnection strengths, spectral
measures) that determine (1) whether or not estimation is possible and
(2) the quality of the estimate.

Complex Systems, 21 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.4.297



1. Introduction

Synchronization  processes  occur  in  both  natural  and  engineered  net-
works: for instance, groups of fireflies come to flash in unison, reser-
voir water levels reach equilibrium, autonomous vehicles are designed
to  move  in  unison,  generators  in  power  systems  align  in  phase,  and
players in a financial market reach consensus on prices. As such, it is
not  surprising  that  network  synchronization—broadly  defined  as  the
coordinated  operation  of  network  components  and  systems—has
been  very  extensively  studied  in  the  physical  and  biological  sciences,
and  in  several  engineering  disciplines  [1–5].  Across  these  domains,
synchronization phenomena have been characterized for a great diver-
sity of complex-system or complex-network models, ranging from cel-
lular  automata to coupled-oscillator-circuit  models  and computation-
ally  intensive  simulations  of  biological  phenomena;  this  diversity  of
models manifests synchronization in varied ways, which require vary-
ing  formal  definitions  and  specialized  analysis  techniques.  Recently,
motivated by algorithmic and network-engineering concerns, the prob-
lem of imposing or designing synchronization has gained considerable
attention  in  both  the  physics  and  controls  engineering  communities
(e.g., [6–8]).  

As  the  analysis  and  especially  the  design  of  network  synchroniza-
tion  processes  become  increasingly  important,  a  rich  class  of  new
problems are arising that we believe require expertise at the interface
of  the  physical  sciences  and  engineering.  These  include  problems
regarding  state  inference,  network-model  identification,  network  re-
construction,  and  fairness  in  design,  among  many  others.  Here,  we
motivate and study a particular state estimation problem for a class of
network  synchronization  processes,  namely  the  inference  of  the  net-
work’s initial state from noisy, localized temporal observations. 

The  class  of  synchronization  processes  that  we  consider  here  de-
rives from the studies of Chua and co-workers on synchronization in
linear and nonlinear circuits governed by differential-equation models
[2]; see also, for example, [9]. In their work, identical devices with lin-
ear  couplings  specified  by  a  graph  are  shown  to  synchronize,  in  the
sense  that  the  full  network dynamics  have a  stable  manifold wherein
each device’s state trajectory is the same (i.e., the devices move in uni-
son).  A  particular  subcase,  which  was  the  focus  of  some  of  Chua’s
studies  and  much  derivative  work,  is  that  the  devices  reach  a  con-
stant, identical state asymptotically. Of particular interest to us, these
and  other  very  similar  models  have  been  widely  used  in  the  control-
systems engineering community in recent years to model or design syn-
chronization  among  engineered  systems  (e.g.,  satellites,  autonomous-
vehicle  teams,  traffic  in  a  stream)  or  computing  devices  (e.g.,  sensor
fusion,  distributed  gossiping/consensus  in  processor  networks);  see,
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for  example,  [6,  7].  Such  models  are  also  used  to  capture  some  nat-
ural  physical  processes,  for  instance  heat  flow  in  homogeneous  and
inhomogeneous  media  (e.g.,  [10,  11]).  Across  these  application  do-
mains, state- and parameter-estimation problems are increasingly com-
ing  to  the  forefront,  which  motivates  our  study  of  initial-condition
estimation. Here, we study the initial-condition estimation problem, a
particularly simple model  of  this  type,  namely one in which each de-
vice has a scalar state that evolves through interactions with graphical
neighbors. 

A core  property  of  the  differential  equation-based synchronization
models  introduced  in  [2]  and  considered  here  is  that  the  network’s
graph  (interaction  topology)  critically  modulates  its  dynamical  re-
sponses. Research to characterize and design these models has sought
to expose these connections between the graph topology and dynam-
ics.  A key contribution of  our work here is  to expose the role  of  the
network’s graph topology in the structure and performance of the ini-
tial-state  estimate.  We note  that,  by  focusing  on a  model  with  scalar
local states (i.e., with highly simplified local dynamics), we are able to
make  the  connection  between  the  network  topology  and  estimability
particularly prominent. However, many of the graph-theoretic results
can be naturally extended to network models with higher-dimensional
device  models  [12]  and may also be  applicable  to  other  synchroniza-
tion processes (e.g., in automata models). 

Few  studies  have  pursued  inference  of  network  synchronization
processes (i.e., ones defined on graphs). However, a couple of related
efforts  are  worth  noting.  First,  this  study  complements  our  previous
work  on  parameter  inference  (specifically,  mode  estimation)  in  syn-
chronization  dynamics;  see  [13].  Our  initial-condition  estimation
study is also closely related to the study of state estimation in synchro-
nization processes  given in [14],  but  with the core difference that  we
relate  estimator  structure/performance  to  the  network’s  topology
rather than presenting an estimation algorithm. We also note the con-
nection between our studies here and efforts to solve inverse problems
in  thermodynamical  and  automata  models,  wherein  initial  states  are
to be inferred measurements of the dynamics at particular times or lo-
cations [11, 15]. Like these efforts, we also seek to infer state informa-
tion,  but  are  considering  different  dynamical  models,  generic  graph
topologies, and noisy observations. 

The  initial-condition  estimation  study  described  here  is  promising
for  informing several  applications  related to monitoring synchroniza-
tion  processes  in  both  natural  and  engineered  networks.  These  in-
clude: (1) sparse sensor-placement to monitor physical and infrastruc-
tural  networks  (e.g.,  sensing  of  heat  flow  dynamics,  monitoring  of
power-system transients using phasor measurement units); (2) security
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analysis  of  algorithms  and  vehicular  networks  [16,  17],  in  the  case
that  an  adversary  monitors  the  dynamics  of  a  single  computer  or
sensor;  (3)  network  design  to  permit  or  prevent  monitoring;  and
(4)!monitoring  for  a  posteriori  evaluation  of  sensor  networks  and
data-fusion  algorithms.  The  graph-theoretic  characterizations  of  esti-
mator  structure/performance  that  we  obtain  can  yield  tractable  solu-
tions  to  these  tasks.  While  our  focus  is  on  the  core  estimation  prob-
lem, we briefly discuss potential applications of obtained results in the
paper. 

The remainder of the paper is organized as follows. First,  we pose
the initial-condition inference problem as a nonrandom parameter es-
timation problem (Section 2). We invoke classical results on inference
to  obtain  algebraic  expressions  for  the  optimal  estimators  and  their
performance (Section 3.1). Using these algebraic characterizations and
applying  various  algebraic  graph-theory  and  control  theoretic  con-
structs, we then obtain several characterizations of the estimators and
their performance in terms of the network’s spectrum and topological
structure (Sections 3.2 and 3.3). Finally, we highlight some future di-
rections,  focusing  on  generalizations  and  concrete  applications  of
these graphical results (Section 4). 

2. Problem Formulation

We  are  concerned  with  initial-condition  inference  for  a  network
synchronization  process,  that  is,  for  a  synchronizing  or  diffusive  dy-
namic  defined  on  a  graph.  In  this  section,  we  review  the  classical
model for diffusive network dynamics that we use here (see [2, 13] for
background),  and  formally  introduce  the  initial-condition  inference
problem.  

Most  broadly,  we  consider  a  linear  time-invariant  (LTI)  dynamic
specified  by  a  weighted  and  directed  graph  G.  Precisely,  consider  a
graph G ! HV, E:WL,  where the vertex set  V  contains m  elements  la-
beled 1, … , m, the edge set E contains q edges or ordered pairs of dis-
tinct vertices, and each edge Hi, jL in E has associated with it a positive
weight wij  as given in the weight set W. To describe the diffusive net-

work  dynamics,  we  find  it  convenient  to  specify  an  mäm  diffusion
matrix " from the graph G, as follows:

† We set !ij equal to -wji for each ordered pair Hi, jL œ E.

† We set !ij, i ! j equal to 0 otherwise.

† We choose !ii " -⁄j!1, j!i
n !ij.  That is, we choose the diagonal entries

so that each row sums to 0. 
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Now  we  specify  a  network’s  (discrete-time)  dynamics  in  terms  of
the diffusion matrix as given. Specifically, consider a network with m
components  or  nodes  labeled  1, … , m,  which  correspond  to  the  m
vertices  in  the  graph  G.  We  associate  with  each  component  a  state
xi@kD  that evolves in discrete time (for k ! 0, 1, 2, …). To specify the

network  dynamics,  define  a  network  state  x@kD ! @x1@kD… xm@kDDT .
We consider the following evolution of the network state: 

(1)x @k + 1D ! x @kD - d " x @kD,
where  d œ R  scales  the  magnitude  of  the  interactions  among the  net-
work  components  specified  in  "  (and,  for  instance,  may  represent  a
time  step  in  a  discretization  of  a  continuous-time  process).  We  note
that the dynamics in equation (1) describe a process of state-equaliza-
tion  through  balancing  or  flow  between  each  component  and  its
graphical neighbors, and hence can be viewed as a diffusive dynamic.
The  edge  weight  wij  in  the  graph  captures  the  strength  of  impact  of

node i’s current state on node j’s next state, or in other words the ex-
tent of diffusing coupling from i to j.  

Our  primary  focus  in  this  paper  is  to  infer  the  unknown  initial
state  x @0D  of  the  dynamics  above from a sequence  of  noisy  measure-
ments  at  a  single  component  j œ 81, … , m<,  and  specifically  to  relate
the  estimator  and  its  performance  to  the  structure  of  the  graph  G.
Specifically,  we  consider  inference  from  a  sequence  of  observations
y @0D, y @1D, … y @nD,  where  the  observation  signal  at  time  step  k

(k ! 0, 1, … , n) is given by 

(2)y @kD ! ej
T x @kD + g @kD,

where ej  is a standard basis vector with the unity entry in the jth com-

ponent, and g @kD is a sample of a scalar Gaussian white noise process

with zero mean and variance s2. We refer to the component j  where
the observation is being made as the observation location/node.  

In the rest of the paper we will  discuss the scenario of initial  state
estimation,  namely  estimating  a  nonrandom  initial  condition
(Section!3), for the diffusive dynamics. We will review the classical al-
gebraic formulas for the estimator and its performance, and then moti-
vate and provide a family of graph-theoretic characterizations. 

Holistically,  we  find  it  convenient  to  refer  to  the  state  dynamics
and observation model described above as a diffusive network model,
and  to  refer  to  the  inference  problem as  the  initial  condition  estima-
tion problem. While many of our graph-theoretic results are for arbi-
trary  diffusive  networks,  we  will  also  at  times  limit  ourselves  to  the
case that the edge weights satisfy wij ! wji  for each i, j (i.e., the graph
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G  is  undirected),  and  so  the  diffusion  matrix  is  symmetric.  The  net-
work  matrix  "  in  this  case  is  known  to  be  a  Laplacian  matrix  (see
[18,  19]  for  many  applications  of  the  Laplacian),  and  so  we  refer  to
the state and observation model as a Laplacian network model in this
case. 

3. Nonrandom Initial Condition Estimation    

In this section, we will consider the initial condition estimation prob-
lem  where  the  initial  condition  x @0D  is  nonrandom,  that  is,  x @0D  is
fixed and unknown with  no a priori  probability  distribution.  In  esti-
mation  theory,  maximum  likelihood  estimation  (MLE)  is  a  classical
and  popular  method  to  estimate  unknown  deterministic  parameters,
which also guarantees  that  the variance of  the estimator achieves the
minimum variance specified by the Cramer–Rao bound (see [13, 20]).
Given  a  sequence  of  the  observations  with  Gaussian  white  noise
added, we will use the MLE method to provide estimates for the non-
random initial condition x @0D.  

To  fully  address  this  nonrandom  estimation  case,  we  will  first  in
Section 3.1 build the maximum likelihood estimator and derive its per-
formance  (i.e.,  the  estimator’s  covariance  matrix).  Our  key  effort,  to
relate the estimator and its performance to the underlying graph struc-
ture,  is  developed later in Sections 3.2 and 3.3. We will  illustrate the
relationship in the following two aspects. First, in Section 3.2, we will
give  graph-theoretic  conditions  for  whether  or  not  the  initial  condi-
tion  can  be  estimated  at  all.  (The  estimability  concept  also  turns  out
to  connect  with  the  control-theoretic  notion  of  observability.)  Then,
in the case where the initial condition can be estimated, we will tie the
estimator’s  structure  and  performance  to  the  underlying  graph  struc-
ture (Section 3.3). Specifically, in Section 3.3.1 we will first study the
estimator’s asymptotic structure in general. Also, we will use the slow-
coherency  theory  to  broadly  identify  graph  structures  that,  while
permitting estimation, are weakly connected and have poor estimator
performance  (Section  3.3.2).  Finally,  we  will  give  some  graph-
theoretic characterizations of estimator performance for more general
graph structures and upon changes to the graph (Section 3.3.3). 

3.1 Algebraic Expressions for the Estimator and Its Performance    
Here,  we  present  algebraic  expressions  for  the  ML estimator  and  its
error covariance for the nonrandom initial-condition estimation prob-
lem.  The  algebraic  characterization  serves  as  a  foundation  for  the
graph-theoretic characterizations that we seek in this paper. We recall
that  the  ML  estimator  is  efficient  in  the  sense  that  it  achieves  mini-
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mum  variance  among  unbiased  estimators,  and  so  our  development
yields  graph-theoretic  characterizations  of  the  best  possible  estimate
of the initial condition.  

To begin, note that each observation y @kD can be viewed as a linear
function  of  the  initial  condition  x @0D,  corrupted  by  an  additive  zero-
mean  (independent)  Gaussian  noise  sample.  Thus,  the  initial  condi-
tion  estimation  problem  resolves  to  that  of  estimating  a  nonrandom
parameter  from  a  sequence  of  independent  Gaussian  random  vari-
ables  whose  means  are  specified  by  that  parameter.  This  problem of
nonrandom  estimation  from  Gaussian  observations  has  been  classi-
cally solved in generality [21, 22],  and we only need apply the result
to  obtain  the  estimator  and  its  covariance  for  our  problem.  To  pre-
sent the estimator, we find it convenient to define some further nota-
tion. Specifically, define a matrix: 

(3)Q !

 ej
T  

 ej
T G 

 ª 

 ej
T Gn 

,

where  G := I - d"  is  the  state  transition  matrix  for  discrete-time
dynamics  and  j  identifies  the  observation  location.  We  introduce  the

notation  x̀ @0D  to  represent  the  ML  estimate  of  the  initial  condition
x @0D.  

Now,  applying  the  standard  condition,  we  observe  that  finite-
variance  estimation  is  possible  (i.e.,  a  maximum-likelihood  estimate
exists)  if  and  only  if  the  matrix  Q  has  full  column  rank.  Under  this
condition, the estimator is given by 

(4)x̀@0D ! IQT QM-1 QT@y@0D… y@nDDT .

Thus, we see that the estimate can be computed as a linear function of
the  observations,  with  the  mapping  given  by  the  estimator  matrix

IQT QM-1 QT .  
The ML estimator of a nonrandom parameter vector achieves mini-

mum  variance  among  unbiased  estimators  for  any  function  of  the
parameters in the vector. Thus, the error covariance matrix of the ML
estimate not only measures the performance of this estimate, but also
bounds the performance of all unbiased estimators of the initial condi-
tion  (see  the  literature  on  the  Cramer–Rao  bound,  e.g.,  [13,  20],  for
details).  Based  on  this  understanding,  we  view  the  error  covariance

matrix C ! EAIx̀@0D - x@0DM Ix̀ @0D - x @0DMTE of the initial-condition esti-
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mate as a key construct in studying the performance of the estimator.
With just a little effort, this error covariance can be shown to be 

(5)C ! E AIx̀ @0D - x @0DM Ix̀ @0D - x @0DMTE ! s2 IQT QM-1.

We also note that several particular performance measures can be de-
fined from the error covariance matrix.  We list  several  relevant mea-
sures and briefly describe the motivations for their use.

† The  trace  of  the  error  covariance,  that  is,  the  sum  of  its  diagonal  en-
tries,  is  commonly  used  as  a  performance  measure  for  numerous  non-
random estimation  tasks  including  optimal  sensor  design  problems  [6,
23]. We note that the trace, which we denote by trHCL, captures the to-
tal expected squared error in the parameter estimates [23]; in our case,
trHCL captures the total expected squared error in estimating the entries
in the initial condition vector. In Section 3.3.2, we will use this measure
to describe estimator performance for slow coherency graph structures. 

† The determinant  of  the  error  covariance  matrix,  det HCL,  is  also  widely
used as a performance measure in nonrandom estimation problems be-
cause  (1)  it  captures  the  volume  of  the  error  ellipsoid  around  the  true
parameter  value  and  (2)  it  measures  mutual  information  between  un-
known parameters and observations in estimation problems [23]. Based
on either interpretation, det HCL is important for us as a measure of the
ability  of  the  observations  to  pin  down  the  initial  condition.  In  Sec-
tion!3,  we  will  derive  explicit  graph  eigenvalue-based  expressions  for
det HCL for arbitrary graphs. 

† Often,  we  may  be  interested  in  the  squared  error  in  the  estimate  of  a
particular linear combination of the initial condition, that is, for our es-

timate  of  wT x H0L  for  some  vector  w.  The  best  estimate  is  seen  to  be

wT x̀ @0D  in  that  case,  and  the  corresponding  estimation  error  is

E AIwT Hx̀ @0D - x @0DLM2E " wT C w.  For  instance,  we  may  be  interested

in  the  estimate  quality  for  the  average  initial  condition  (corresponding
to  w " 1)  or  for  a  particular  entry  in  the  initial  condition  vector
(corresponding to w, which is a basis vector). Of particular importance,
we may be  interested  in  the  minimum and maximum possible  squared
errors among unitary linear combinations of the initial condition. These
can  be  shown to  equal  the  minimum and  maximum eigenvalues  of  C,
respectively. 

As  we  characterize  the  various  performance  measures,  we  will  also
briefly discuss their particular applications in synchronization.  

We have thus given explicit algebraic conditions for whether or not
estimation of the nonrandom initial condition is possible, and for the
estimate  and  its  error  covariance  when  estimation  is  possible.  From
the expressions above as well  as our intuition regarding synchroniza-
tion processes, we recognize that the Laplacian matrix, and hence the
underlying graph structure, plays a critical role in whether or not esti-
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mation is possible and in the form/performance of the estimator. Char-
acterizing  this  relationship  is  potentially  valuable  for  several  reasons,
including  for  permitting  estimator  design  without  full  knowledge  of
the  network  structure,  designing  the  network  structure  to  permit  (or
prevent) estimation, and facilitating sensor placement for controller de-
sign.  With these  goals  in  mind,  we examine the  relationship between
graph structure and estimation in Section 3.2. 

Remark 1. Control theorists will notice that the matrix Q is the observ-
ability  matrix  and  that  the  condition  for  whether  or  not  finite-
variance estimation can be achieved is equivalent to the condition for
observability  of  the  initial  condition.  Thus,  our  ensuing  characteriza-
tion of whether or not estimation is possible is also a characterization
of the dynamical network’s observability.  

3.2 Graphical Conditions for Maximum Likelihood Estimation   
In this subsection, we will develop conditions for MLE of the nonran-
dom initial  condition that are phrased in terms of the network struc-
ture.  While  many  of  our  results  will  apply  to  general  diffusive  net-
works,  we  will  also  develop  some  specialized  graph-theoretic  results
for the symmetric (Laplacian network) case.  

In  order  to  develop  the  graphical  results,  we  find  it  convenient  to
invoke  an  eigenvalue-based  condition  for  MLE  that  follows  immedi-
ately from the classical spectral test for observability of linear systems
[24]. Here is the foundational eigenvalue-based lemma. 

Lemma 1. Consider a diffusive network with graph G, and call the dif-

fusion matrix ". Say that we place our observer at the jth  node in the
corresponding network. Then an ML estimate for the nonrandom ini-
tial  condition  exists  if  and  only  if  every  right  eigenvector  of  "  has  a

nonzero jth entry. 

Proof.  From  the  classical  modal  condition  for  observability,  the  LTI

system is observable if and only if ej
T v ! 0 for each right eigenvector

v of G [24]. Since G ! I - d ", the vector v is also the right eigenvec-
tor  of  ".  Thus,  we  immediately  find  that  the  system is  observable  if

and only if the jth  component of each eigenvector of " is nonzero. In-
voking the equivalence of observability and existence of an MLE, we
see that ML estimate is possible if and only if every right eigenvector

of " has a nonzero jth entry. ·

Let us briefly discuss the special case that the diffusive matrix " is
Laplacian. In this case, since " is symmetric, every eigenvalue of " is
simple,  that  is,  all  Jordan  blocks  in  the  spectral  factorization  of  "
have size 1. Thus, for symmetric case, multiple independent eigenvec-
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tors are associated with any repeated eigenvalues, and we can always

construct  a  corresponding  eigenvector  with  zero  jth  entry.  Therefore,
MLE is possible only if the Laplacian " has no repeated eigenvalue.

Before we give explicit graphical conditions for the existence of esti-
mators as well as the structure/performance, we relate the eigenvector
components (and hence the possibility for MLE) to the eigenvalues of
the Laplacian " and certain related matrices in the Laplacian network
case.  This  characterization of  the eigenvector component gives  an in-
teresting  structural  interpretation  to  estimability  and  estimation  per-
formance, and also serves as a stepping-stone toward other graphical
results. We will present the result in the case that the Laplacian " has
m distinct eigenvalues, noting that MLE is necessarily impossible oth-
erwise.  We find it  convenient  to  introduce  some further  notation be-

fore presenting the result. First, we will use "
` HjL to denote the Hm - 1L

by Hm - 1L grounded Laplacian matrix formed by deleting the jth  row

and  the  jth  column  of  ".  We  will  also  use  0 ! l1 < l2 < ! < lm

to  denote  the  m  distinct  eigenvalues  of  "  and  use

0 < m1 § m2 § ! § mm-1  to  denote  the  Hm - 1L  eigenvalues  of  "
` HjL.

Now we present an explicit expression of the eigenvector components
in terms of the eigenvalues when the network has a Laplacian ". 

Theorem 1.  Consider  a  Laplacian  network  for  which  "  has  distinct

eigenvalues, and say we place our observer at the jth  node in the net-

work. Then the jth  component in the eigenvector vi  of ",  vi,j,  can be

computed as  

(6)vi,j !
Pz!1

m-1 Hmz - liL
Pz!1, z!i

m Hlz - liL ,

where i ! 1, 2, … , m.  

Proof.  Our method of proof is similar to that used for Theorem 1 in
[25], and we refer the reader to [25] for a more detailed presentation.
To develop the result,  we consider the following continuous LTI sys-
tem: 

(7)
x° HtL ! "x HtL + ej u HtL,
y HtL ! ej

T x HtL,
where x HtL is the state vector of length m and y HtL is the scalar output.
(Note that this dynamic is not the diffusive network dynamic, but sim-
ply  a  construct  to  characterize  the  eigenvector  component.)  We  will
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compare two expressions for the impulse response of the system to ob-
tain  an  expression  for  the  eigenvector  component.  First,  by  solving
the system based on the Jordan form of ", we obtain that the impulse
response is  

(8)yiHtL ! ‚
i!1

m

vi,j
2 eli t, t ¥ 0.

Meanwhile, we can find an alternate expression for the system dynam-
ics:  

(9)y° HtL ! "jj yHtL + "j xaHtL + uHtL,
(10)x° aHtL ! "

` HjL xaHtL + "j
T yHtL,

where  xa ! Ix1, … , xj-1, xj+1, … , xmM,  "jj  is  the  jth  diagonal  entry

of ",  and row vector "j ! I"j,1, … , "j,Hj-1L, "j,Hj+1L, … , "j,mM.  Thus

the system can be viewed in the feedback form with a first-order dy-
namic  (9)  in  the  forward  path  and  an  order-(m - 1)  dynamic  (10)  in
the feedback path. We see that the forward path transfer function is  

(11)HaHsL !
1

s - "jj

,

and the feedback path transfer function is  

(12)Hf HsL !
r HsL

Pz!1
m-1 Hs - mzL ,

where  r HsL  is  a  polynomial  of  degree  less  than  m - 1.  From  equa-
tions!(11) and (12), we see that the transfer function from the input u
to the output y is  

(13)

H HsL !
Ha HsL

1 - Ha HsLHf HsL !

Pz!1
m-1 Hs - mzL

Is - "jjMPz!1
m-1 Hs - mzL - r HsL .

Note that the system of H HsL has m poles that are the m distinct eigen-
values of ". We thus obtain  

(14)H HsL !
Pz!1

m-1 Hs - mzL
Pi!1

m Hs - liL ! ‚
i!1

m Ai

s - li

,
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where 

Ai !
Pz!1

m-1 Hmz-liL
Pz!1, z!i

m Hlz-liL . 
Hence the impulse response is  

(15)yiHtL ! ‚
i!1

m

Ai eli t, t ¥ 0,

where  Ai  are  as  defined  above.  Comparing  the  two  expressions  for
the impulse response in equations (8) and (15), we thus obtain the re-
sult in the theorem.  ·

We  stress  here  that  Theorem  1  is  not  a  rephrase  of  the  result  in
[25], since here we give an explicit  expression of individual eigenvec-
tor components instead of the differences between eigenvector compo-
nents in [25]. Also, the LTI system in equation (7) that we consider in
the proof is different from that in [25]. Such an analytical expression
is  powerful  in  many  aspects,  and  we  will  address  this  again  in  Sec-
tion!3.3.3. 

We now invoke the eigenstructural results to obtain several graphi-
cal conditions for MLE. 

As  a  most  basic  result,  we  first  formalize  that  nonrandom  initial
condition estimation is not possible in disconnected graphs. This basic
result regarding disconnected graphs serves as a foundation to investi-
gate MLE performance in networks comprising weakly connected sub-
graphs in Section 3.3. 

Lemma 2. Consider the initial condition estimation problem for a diffu-
sive network model. If there is at least one vertex for which there does
not  exist  a  directed  path  to  the  vertex  where  the  observer  is  located,
then MLE of the initial condition is not possible. 

Proof.  Let G ! HV, EL  denote the graph of the diffusive network and
j œ V  denote the vertex where the observer is located. Partition G into
two subgraphs GA ! HVA, EAL  and GB ! HVB, EBL  such that:  VB  con-
tains  all  vertices  that  do not  have  directed paths  to  vertex j,  and VA
contains all  other vertices in V  including vertex j.  Let ",  "A,  "B  de-
note the diffusion matrices of the networks associated with graphs G,
GA,  GB,  respectively. Since no directed path exists from any vertex in
VB  to vertex j,  there are no edges directed to any vertex in VA  from
vertices in VB. Without loss of generality, we can order the vertices in

V  so  that  "  becomes  " ! B "A 0

"AB "B
F,  where  "AB  denotes  the  di-

rected  edge  weights  from vertices  in  GA  to  vertices  in  GB.  Let  vB  de-
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note  an  eigenvector  of  the  diffusion  matrix  "B.  We  see  that  B 0
vB

F  is

an  eigenvector  of  the  diffusion  matrix  ".  Thus  by  Lemma  1,  MLE
is!not  possible.  In  fact,  estimation  is  not  possible  from any  vertex  in
VA.!·

While Lemma 2 illustrated that estimation is impossible for discon-
nected  graphs,  the  next  set  of  results  show  how,  even  in  connected
graphs,  certain  internal  structures  can  make  MLE  impossible  at  spe-
cific locations. In particular, the following set of results show how in-
ternal symmetries in a network can cause multiple subsets of nodes to
identically  impact  neighboring  dynamics,  thus  making  their  own  dy-
namics indistinguishable to the observer. 

One form of symmetry arises when two nodes connect to the same
neighbors via identical  edge weights.  Our first  symmetry-based result
shows  that  estimating  the  initial  condition  of  the  network  from any-
where  besides  these  two  nodes  is  impossible.  In  particular,  observers
located  anywhere  else  in  the  network  will  find  dynamics  initiated  at
the  two  nodes  to  be  indistinguishable,  since  they  identically  impact
the surrounding dynamics in the network. The result follows.

Lemma 3.  Consider  the  nonrandom  initial  condition  estimation  prob-
lem for  a  diffusive  network model.  Let  G ! HV, EL  be  a  graph and "
the  associated  diffusion  matrix.  Suppose  there  are  two  vertices
r, s œ V  such  that  the  weights  of  edges  Hr, sL  and  Hs, rL  are  equal
(including possibly zero, i.e., there is no edge in either direction). Sup-
pose for every vertex q ! s connected to r, q is also connected to s and
that  the  edge  weights  Hs, qL  and  Hr, qL  are  equal.  Finally,  suppose  the
total edge weight coming into r and coming into s are identical. If the
observer  is  located  at  any  vertex  j œ V, j ! r, s,  then  the  maximum
likelihood  estimate  for  the  nonrandom initial  condition  does  not  ex-
ist. 

Proof.   We  will  take  advantage  of  the  special  network  structure  to

identify an eigenvector whose jth entry is nil. Let ei denote the ith stan-
dard basis vector. We claim that because of the symmetry in the edge
weights  between  the  shared  neighborhood  of  r  and  s,  the  vector
v ! er - es  is an eigenvector of the diffusion matrix " associated with
the graph G. 

To show this, let the ith  row of " be denoted by li
T . For i ! r, s we

get li
T v ! 0 for vertices connected to r, s  because the symmetry leads

to  cancellation.  Note  that  if  the  vertex  j  is  not  connected  to  r, s  the

equation li
T v ! 0 still holds since the rth  and sth  components of li  are

nil. 
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Now for i ! r  we can write lr
T v ! H"rr - "rsL and for j ! s we get

ls
T v ! H"sr - "ssL ! - H"rr - "rsL,  as  the  weights  of  the  edges  Hr, sL

and Hs, rL are equal and the sum of the incoming edges from all q to r
and s and are equal. Thus, v is an eigenvector. Since there is a zero in

the jth position of v, we can apply Lemma 1 and the result follows. ·

We have  several  observations  about  this  result.  First,  we  note  the
symmetry-based  result  does  not  hold  for  diffusive  networks  if  the
edge weights  are not  identical  from r  and s  to their  neighbors.  Thus,
strategic  perturbations  to  a  diffusive  network  with  such  a  symmetry
may  resolve  estimation  failure.  Lemma  3  also  suggests  that  nodes
added  to  a  network  to  enhance  estimator  performance  should  have
edge weights designed to avoid symmetry. 

Our  next  result  generalizes  the  neighbor-symmetry  case  to  larger
sets of vertices (more than just two) exhibiting similar connective sym-
metry. Broadly speaking, Theorem 2 shows that measurement outside
of a Laplacian subnetwork whose nodes are connected to all exterior
nodes in a uniform fashion prevents MLE. 

Theorem 2.  Consider  a  diffusive  network  associated  with  the  graph
G ! HV, EL.  Suppose that G  has a set of vertices A  with the following
properties:  (1)  the  diffusive  matrix  associated  with  the  induced  sub-
graph on A  is  Laplacian and the  subgraph contains  at  least  two ver-
tices;  (2)  the sum of all  edge weights from vertices outside A  to each
vertex in A is identical; (3) if there exists a directed edge from a vertex
in A to a vertex outside of A, then there are directed edges with identi-
cal  edge  weight  from  every  vertex  in  A  to  that  vertex  outside  of  A.
Then  ML  estimation  is  not  possible  if  the  observation  node  j  corre-
sponds to any vertex outside A. 

Proof.   For convenience and without loss of generality, order the ver-
tices as those inside A  followed by those outside of A  (which we call
set B) and partition the diffusive matrix " accordingly. Then " can be
written as follows: 

(16)" !
"A 0

0 "B
+

-a I R

S D

where  "A  is  a  Laplacian  matrix,  "B  is  a  diffusion  matrix  describing
the network dynamics of vertices outside of A, each row in R has iden-
tical sum a, each row in S has identical entries, and D is diagonal. Let
v  be  an eigenvector  of  "A  orthogonal  to  1.  We immediately  see  that

v̀ ! B v
0
F is an eigenvector of " with eigenvalue l" ! lA - a since v is

            
 

310 M. Xue et al.

Complex Systems, 21 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.4.297



           
             
              

            

           

orthogonal  to  each  row  of  S.  Applying  Lemma  1,  the  proof  is  com-
plete. ·

Before further discussing Theorem 2, we present a simple example
(Figure 1) to help illustrate which graphs satisfy the premises of Theo-
rem 2. In this example, we claim that the premises hold when vertices
1 and 2 are considered as the set of vertices A. In particular, the sub-
graph associated with A has two vertices and symmetric edge weights,
hence Premise 1 is met. Meanwhile, the sum of the edge weights from
outside A to each vertex in A is identical (specifically, 4.9; see also the
matrix R), so Premise 2 is met. Finally, the edge weights from Vertices
1 and 2 to Vertex 3 are identical (they have value 1.8) and Vertices 1
and 2 are not connected to Vertex 4 or Vertex 5 (as can also be seen
in the matrix S), so Premise 3 is met. Hence, Theorem 2 holds and esti-
mation is not possible from outside the set of vertices A. 

Figure 1. An example graph that meets Premises (1) to (3) in Theorem 2. We
note  that  the  matrices  on  the  right  specify  parts  of  the  diffusive  matrix  and
clarify that the theorem holds.

Now  we  make  several  observations.  First,  we  note  that  since  any
Laplacian  network  is  diffusive,  the  result  holds  for  Laplacian  net-
works  as  well;  in  this  case,  Premise  3  of  the  theorem statement,  that
is, the equality in interaction strengths, implies the other premises and
hence  directly  yields  unestimability.  The  theorem  also  encompasses
the case that there are no directed edges from vertices outside of A to
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vertices in A. Broader results can be obtained even in the case that the
network induced on A is not Laplacian. However, this result is less in-
tuitive in terms of graph structure, thus we do not give a detailed dis-
cussion. We note that this result can also be generalized to show that
adding more observers in the same subnetwork does not improve our
ability  to  estimate  the  initial  state.  Regardless  of  the  number  of  ob-
servers, the edge weight symmetry destroys our ability to estimate the
nonrandom initial condition. 

Now  we  discuss  one  particular  use  of  the  above  result.  While  it
may  often  be  difficult  to  find  a  subgraph  satisfying  the  premises  of
Theorem 2 in an existing network, it is conceivable that edges can be
designed  to  satisfy  the  premises  (1)  to  (3)  in  Theorem 2  for  a  set  of
vertices  A.  This  design  capability  may  be  useful  when  state  informa-
tion  needs  to  be  hidden  or  secured  in  an  engineered  synchronization
process. 

Lemma 3 and Theorem 2 show that networks whose global dynam-
ics  have  localized  eigenvectors  are  subject  to  estimation  failure.  In
some  sense,  such  dynamics  are  like  those  of  a  disconnected  network
which, as we have seen above, also cannot be estimated. Moreover, a
connection strategy of this type allows for full localization of a partic-
ular mode of the network dynamics. 

Next, we present a theorem concerned with whether or not MLE is
possible,  when  a  component  (node)  is  added  to  a  diffusive  network.
We note  that  such  results  regarding  estimation  upon modification  of
the network may be valuable for a couple of reasons: (1) to permit as-
sembly of networks with desirable estimation properties and (2) to al-
low characterization of estimation in the common circumstance that a
network is altered. The result follows.

Theorem 3. Suppose a new vertex is connected to only one vertex of a
graph,  and  consider  estimation  in  the  diffusive  network  associated
with the new graph. MLE is possible from observation at the new net-
work  node  if  and  only  if  MLE  was  possible  in  the  original  diffusive
network from observation at the node to which the new node is con-
nected. 

Proof.  Denote the diffusion matrix from the original  graph as "  and
the diffusion matrix from the graph with the added vertex as "£.  Let
m  denote  the  vertex  in  the  original  graph  and  Hm + 1L  denote  the
added vertex. Suppose Hm + 1L is connected to m via edges Hm, m + 1L
and Hm + 1, mL with weights -b and -a, respectively. Without loss of
generality,  we  can  assume  the  vertex  m  corresponds  to  the  last  row
and column of ".  The diffusion matrix for the graph with the added
vertex  (upon  appropriate  ordering  of  the  vertices)  can  then  be  writ-
ten!as 
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"£ !
"  0

 0  0
+

 0  !  0  0 

 ª  "  ª  ª 
 0  !  a  -a 

 0  !  -b  b 

.

To prove sufficiency, suppose that MLE is not possible in the original
network when the observer is located at vertex m. Then by Lemma 1,

there exists an eigenvector v of " with mth  entry vm ! 0. It is easy to

see that v£ ! AvT 0ET  is also an eigenvector of "£; by Lemma 1, MLE
from vertex m + 1 is impossible in the new network.  

To  prove  necessity,  suppose  that  MLE  is  not  possible  from  nodeHm + 1L  in the network with the added node. By Lemma 1, "£  has an

eigenvector v£ ! AvT 0ET  for some nonzero vector v.  Let l  denote the

eigenvalue  associated  with  v£.  Again,  let  vm  denote  the  mth  entry  of

vector v and let vm+1
£  denote the Hm + 1Lth entry of vector v£. Since the

eigenvector  equation  "£ v£ ! l v£  holds,  we  have  that
a vm - a vm+1

£ ! l vm  and  -b vm - b vm+1
£ ! l vm+1

£ .  Therefore,  vm  is
zero and since v£  is an eigenvector of "£, v is also an eigenvector of "
as well. Recalling Lemma 1, we obtain the result. ·

We note  that  the  above theorem immediately  implies  that  a  diffu-
sive network associated with a connected line graph can be estimated
from observations at the ends. 

So  far  we  have  developed  several  graph-based  conditions  under
which MLE is not possible. We stress that these conditions are by no
means  exhaustive  (and  also  are  not  necessarily  easy  to  find  in  a
graph); however, they do capture several typical connection structures
that  may  be  found  or  designed  in  networks  that  prevent  estimation.
We conclude the discussion of unestimability by giving detailed graph-
theoretic conditions for the canonical case of an unweighted and undi-
rected line graph. This example serves to illustrate that quite detailed
characterizations  of  circumstances  preventing  estimation  are  possible
in some simple examples, and also to illustrate that estimation may be
impossible  even  when  the  graph-theoretic  conditions  above  do  not
hold. 

3.2.1 Examples

Consider an unweighted and undirected line graph of m vertices, that
is,  a graph G  such that two vertices i  and j  are connected by an edge
and that edge has weight 1, if and only if †i - j§ ! 1. We shall consider
nonrandom  initial  condition  estimation  in  the  associated  Laplacian
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network (henceforth called the Laplacian line network) from observa-
tions  at  various  nodes  j.  We  obtain  the  following  results  regarding
unestimability.  These  lemmas  follow  immediately  from  simple  con-
structions  of  an  eigenvector  followed  by  application  of  the  spectral
test. The first result is a direct result of symmetry when the number of
vertices is odd. 

Lemma 4.  For a Laplacian line network with m ! 2 j + 1 nodes, j œ !,

estimation from the Hj + 1Lth node is not possible. 

Next,  we use  the  following idea:  embedded within  line  graphs  are
smaller  line  graphs  that  exhibit  their  own  internal  symmetry.  Thus,
large  Laplacian  line  networks  contain  levels  of  symmetry  that  play  a
role  in  judicious  observation placement.  Lemma 5 demonstrates  how
a Laplacian line network with size divisible by 3 can be regarded as a
composition  of  3-node  line  graphs,  each  with  a  center  spot  that  is  a
poor location for state estimation. 

Lemma 5.  Consider  a  Laplacian  line  network  with  m ! 3 s  nodes,
s œ !.  MLE  is  not  possible  from  observations  at  nodes  3 j + 2,
j ! 0, 1, 2, … , s - 1. 

We note that, for both these simple line graph results, MLE is im-
possible  even  though  the  premises  for  Lemma  3  and  Theorem  2  do
not hold. 

So far,  we have presented graphical  conditions for  nonestimability
for  some  special  graph  structures  and  measurement  locations.  These
graphical results are essentially developed from the classical Lemma!1:
a right eigenvector with a zero entry at the observation location is con-
structed  for  these  special  graph  structures,  thus  showing  violation  of
the estimability condition in Lemma 1. Unfortunately, Lemma 1 does
not  easily  translate  to  necessary  and  sufficient  graphical  conditions
for estimability. To provide some further graphical insight into estima-
bility  in  the  general  case—albeit  short  of  an explicit  graphical  condi-
tion—invoke  Theorem  1,  which  builds  an  analytical  relationship
(equation (6)) between eigenvector components of the original Lapla-
cian  matrix  and  eigenvalues  of  both  a  reduced  grounded  Laplacian
matrix and the original one. From both Lemma 1 and Theorem 1, we
thus obtain the following condition for MLE.

Theorem 4.  Consider  a  Laplacian  network  where  the  corresponding
Laplacian  matrix  "  has  m  eigenvalues,  0 ! l1 § ! § lm,  and  say

that the observer is placed at the jth  node in the network. We form a

grounded  Laplacian  matrix  "
` HjL  by  deleting  the  jth  row  and  the  jth

column of ",  and use 0 < m1 § ! § mm-1  to denote the m - 1 eigen-
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values of "
` HjL. Then, there exists an MLE at the jth node if and only if

li ! mz, for all i ! 1, … , m and z ! 1, … , m - 1. 

The  proof  of  the  theorem  can  be  obtained  directly  from  equa-
tion!(6)  and  Lemma  1.  Moreover,  the  Cauchy  interlacing  theorem
(see![26]) tells us that li § mi § li+1 for i ! 1, … , m - 1. In fact, if the

ML  estimate  exists  (i.e.,  QT Q  is  invertible),  then  we  have
li < mi < li+1  for  i ! 1, 2, … , m - 1  (or  0 ! l1 < m1 < l2 <
! < lm-1 < mm-1 < lm).  Otherwise,  if  there  exists  a  mi  which  is

equal  to  either  li  or  li+1,  QT Q  will  lose  rank  and  hence  is  not  in-
vertible. 

Since  Theorem 4  provides  a  necessary  and sufficient  condition  for
the existence of an MLE for a general Laplacian case, it is valuable to
relate  the  condition  to  the  network  topology  and  hence  underlying
graph  structure  of  the  network.  To  capture  the  relationship  from  a
graphical  viewpoint,  we  develop  a  new  concept  that  we  call  a  sub-
Laplacian network first. To do so, consider an observer located at the

jth  node in the original  Laplacian network.  We simply form the sub-
Laplacian  network  by  deleting  this  observation  node  and  all  its  con-
nections  to  the  other  nodes  from the network,  or  in  other  words  en-
force  that  this  node  (1)  has  state  value  fixed  at  zero  and  (2)  has  no
impact  on  the  other  nodes’  dynamics.  Our  definition  of  the  sub-

Laplacian network is such that the grounded Laplacian matrix "
` HjL is

the state matrix for this sub-Laplacian network’s dynamics. Thus, we
see that Theorem 4 can equivalently be phrased in terms of the dynam-
ics (and hence the graph structures) of the original Laplacian network
and the sub-Laplacian network. That is, if the sub-Laplacian network
has  a  certain  special  structure,  or  the  node  j  connects  to  the  sub-
Laplacian network in a special way, the eigenvalue equivalence condi-
tion in Theorem 4 does not hold and hence an MLE does not exist for
measurements  at  node  j.  The  results  for  nonestimability  obtained  in
the  theorems  and  lemmas  prior  to  Theorem  4  capture  special  cases
where the Laplacian and sub-Laplacian network structure lead to non-
estimability.  We  note  that  these  graphical  results  on  nonestimability
can also be easily proved for the Laplacian case based on Theorem 4
(as  an  alternative  to  the  first-principles  arguments  based  on  Lem-
ma!1); we omit the details. 

3.3 Estimator Structure and Performance    
We  have  thus  far  developed  various  conditions  for  whether  or  not
MLE is  possible.  In the case that  estimation is  possible,  the structure
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of  the  estimator  as  well  as  its  performance should also be  dependent
on the diffusive network’s topological structure. In this subsection, we
refine  the  graph-theoretic  analysis  of  nonrandom  initial  condition
MLE by giving graph-theoretic characterizations of the estimator and
its  performance.  We begin by characterizing the  asymptotic  structure
of the estimator.  

3.3.1 Asymptotic Structure of the Estimator    

As a first effort on characterizing estimator structure/performance, we
describe how the number of samples affects the estimator matrix struc-
ture, and clarify the form of the estimator matrix’s later columns (the
ones  that  incorporate  observation  data  from large  time  steps,  hence-
forth called the estimator’s asymptotic structure).  The results that we
obtain are  valid  for  any graph structure,  as  long as  MLE is  possible.
Thus,  our  results  provide  a  quite  general  characterization  of  asymp-
totic  estimator  structure,  which  arises  generally  from  the  diffusive
characteristic  of  the  model.  As  such,  these  results  are  also  useful  in
building estimators for networks where the state transition matrix of
the diffusive network is unknown or only partially known. 

We begin with a couple of technical lemmas. These characterize the

final column in QT  and an eigenvector of QT Q.  Finally,  Theorem 5
elucidates the contribution of all the later measurements to the initial
condition  estimate  x̀ @0D;  the  later  measurements  asymptotically  have
an equal contribution to the estimate that is inversely proportional to
the number of samples n. Thus, we see that the estimator averages the
measured data asymptotically. 

Lemma 6.  Consider  a  diffusive  network  for  which  MLE  is  possible  if
the  observer  is  located  at  vertex  j.  As  the  sample  size  n  grows  large,

the  final  column of  QT  converges  to  w,  where  w  is  the  strictly  posi-
tive  left  eigenvector  of  "  associated  with  the  nonrepeated  0  eigen-
value. 

Proof.  Consider the eigenvalue decomposition G ! V LW. Since esti-
mation is possible, there is a path from every node to the observation
vertex. It then follows automatically from non-negative matrix theory
that " HGL has a single zero (unity) eigenvalue and right eigenvector 1
and left eigenvector w > 0 [27]. Using the fact that the other eigenval-

ues  of  G  are  in  the  unit  circle,  we see  that  Gn Ø 1 wT  as  n  becomes

large. We thus see that the last column of QT  is IGTMn ej ! w. ·

Lemma 7.  QT Q  has  an eigenvector  that  approaches  w  as  the  number
of time steps, n, becomes large. 
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Proof.   Using the asymptotic  structure of  QT Q  proved in Lemma 6,

we decompose Q as Q ! 1n+1äwT + F, where 1n+1  is a n + 1-dimen-

sional column vector of ones and FT  is a O H1L matrix such that its fi-
nal columns approach a zero vector exponentially. Then 

QT Q ! IFT + w 1n+1
T M I1n+1 wT + FM !

Hn + 1Lw wT + w 1n+1
T F + FT 1n+1 wT + FT F.

The  entries  of  1n+1
T F,  FT 1Hn+1L  and  FT F  do  not  increase  substan-

tially as n increases since the entries of each column of F decrease ex-

ponentially and its rows approach 0T . Also, w is fixed for all n. Thus
the  second,  third,  and  fourth  terms  (together  called  e  hereafter)  are

matrices with nearly fixed O H1L entries. Hence, the matrix 1
n+1

QT Q

can  be  thought  of  as  the  matrix  w wT  with  an  O J 1

n
N  perturbation

added. Since the matrix w wT  has distinct eigenvalue 1 and eigenvec-

tor  w,  the  perturbation  of  order  1
n

 implies  that  QT Q  has  an  eigen-

value within order  1 of  Hn + 1L  and an eigenvector  within order  1

n
 of

w. Therefore as n gets large, the eigenvector approaches w. ·

Theorem 5.  Given  the  estimator  matrix  IQT QM-1 QT ,  as  the  sample
size n grows large, each row of the estimator converges to a (generally
different) number. Moreover, the limit point of each of the estimator
matrix rows is inversely proportional to n. 

Proof.   We  note  that  the  symmetric  matrix  IQT QM-1  has  an  eigen-

value near 1

n
 with corresponding eigenvector within O J 1

n
N of w, while

its  remaining  eigenvalues  are  O H1L  and  the  corresponding  eigen-

vectors  v̀  are  nearly  orthogonal  to  w  (specifically,  v̀T w  is  O J 1

n
N).

Thus,  we  immediately  see  that  IQT QM-1 w  is  on  the  order  of  1

n
;  we

can  write  IQT QM-1 w ! 1

Hn+1LwT w
w - 1

Hn+1LwT w
IQT QM-1 ew.  The

entries  in  the  final  column of  the  estimator  matrix  are  inversely  pro-

portional  to  n  for  large  n.  Since  the  columns  of  QT  approach  w  for

sufficiently  large  n,  each  row  of  IQT QM-1 QT  also  approaches  the

particular value in its final column. Thus, the result is proved. ·
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3.3.2 Estimator Performance for Slow-Coherent Graph Structures   

Many  modern  large-scale  dynamical  networks,  including  electric
power  networks  and  various  biological  networks,  turn  out  to  com-
prise multiple subnetworks that are strongly linked internally but only
weakly coupled to each other. Diffusive or synchronizing dynamics in
networks with such structure have been extensively studied under the
label  of  slow-coherency  theory,  and  are  well-known  to  display
(1)!global  but  synchronous  slow  responses  and  (2)  highly  localized
fast dynamics (see [28] for an overview). Here, we study MLE for net-
works  with  weakly  connected  subnetworks,  or  in  other  words,  ones
that display slow-coherent dynamics. Intuitively we might expect that
measurement in one subnetwork would not permit high-quality MLE,
since the fast dynamics of the other subnetwork are almost unobserv-
able  upon  measurement.  More  precisely,  we  might  expect  that  the
slow and local-fast dynamics can be estimated well, while the remain-
ing aspects of the dynamics are difficult to estimate. The following the-
orem makes this intuition precise.  

Theorem 6.  Consider  the  initial  condition  estimation  problem  for  a
Laplacian  network  model.  Suppose  that  the  network’s  graph  can  be
partitioned  into  two  subgraphs  that  are  connected  via  small  edge
weights, that is, ones that are at most e ` 1. Now consider the covari-

ance  matrix  s2 IQT QM-1  of  the  estimate,  partitioned  in  accordance
with the network’s partition. Then the entries in each block of the ma-

trix are at least of the following order: 
OH1L OJ 1

e
N

OJ 1
e
N OJ 1

e2
N . 

Proof.   Let  A  and  B  represent  the  two  subgraphs,  and  say  that  they
have mA and mB vertices respectively (mA + mB ! m). As per the theo-
rem statement,  the  edge weights  between the  vertices  in  A  and B  are
at most e for some e ` 1. For convenience, in this proof we will spec-
ify the dimension of each ones vector 1 (or zeros vector 0) with a sub-
script;  for  example,  1n  is  a  n-dimensional  column  vector  with  all
unity entries. 

We  will  take  the  following  approach  to  characterize  MLE for  the
weakly linked network: we will use the classical spectral characteriza-
tion of the state transition matrix for such systems to infer the struc-

ture  and  spectrum  of  QT Q,  and  hence  characterize  its  inverse.  We

can write  the state  transition matrix G  as  G ! B GA 0

0 GB
F + F  where

F is a Laplacian perturbation matrix of order e. It is well known that
G has an eigenvalue decomposition with the following structure: 
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G ! AS FA FB E
 D0  0  0 

 0  DA  0 

 0  0  DB 

 ST  

 FA
T  

 FB
T  

,

where  

FA ! W@e1D œ "mäHmA-1L,

FB !
 @e2D 
 V  

œ "mäHmB-1L,

S !

 
1

m
1mA

  
mB

mmA

1mA
 

 
1

m
1mB

  -
mA

mmB

1mB
 

+ @e3D œ "mä2,

D0 !
 1  0 

 0  m2 
,

and m2  is O HeL  away from 1; DA  and DB  are diagonal matrices with
diagonal entries O H1L  away from 1 (and in the unit circle);  @e1D,  @e2D,
and @e3D  are matrices  of  O HeL;  and W , V  are matrices  of  O H1L.  Note
the first column of @e3D is zero since F is Laplacian. Using this special
structure, we will characterize each row of Q  and thus determine the

order  of  the  entries  in  QT Q.  This  will  in  turn  allow  us  to  demon-

strate  that  the  covariance  matrix  IQT QM-1  has  blocks  of  the  order
given in the theorem statement.  

Now for an integer k, 

Gk ! A S FA FB E
 D0

k  0  0 

 0  DA
k   0 

 0  0  DB
k  

 ST  

 FA
T  

 FB
T  

!

SD0
k ST +

 W   @e1D 
@e2D  V  

 DA
k   0 

 0  DB
k  

 WT   @e2DT  

@e1]T   VT  
!
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1

m
1mA

  
mB

mmA

1mA
 

 
1

m
1mB

  -
mA

mmB

1mB
 

+ @e3D  1k  0 

 0  mk 

 
1

m
1mA

T   
1

m
1mB

T  

 
mB

mmA

1mA
T   -

mA

mmB

1mB
T  

+ @e3DT +

 W DA
k WT + @e1DDB

k @e2DT   W DA
k @e1DT + @e1DDB

k VT  

@e2] DA
k WT + V DB

k @e2DT   V DB
k VT + @e2DDA

k @e1DT  
.

From this form, we immediately find that the ith  row of Q  can be
written as 

ej
T Gi ! Ac1HiL 1mA

T + kHiL c2HiL 1mB
T E + @e4D,

where c1 HiL and c2 HiL are scalars of order 1 for each i, k HiL is a vector
whose norm is decreased exponentially with i (at a rate that has order
1)  and  has  order  1,  and  @e4D  is  a  vector  of  order  e.  Noticing  that

QT Q ! ⁄i!0
n Iej

T GiMT Iej
T GiM,  we  immediately  recover  that  QT Q

can be approximated by the matrix

 QA A + aA A 11T   eQA B + aA B Z 1T  

 eQA B
T + aA B 1 ZT   e2 QB B + eB B 11T  

,

where the matrices QAA, QAB, QBB, and vector Z are all of order 1,
and all other perturbations are of lower order. To characterize the er-

ror  covariance  matrix  IQT QM-1,  apply  the  block-matrix  inverse  for-
mula.  Specifically,  assuming  that  each  partition  has  at  least  two  ver-
tices, we immediately obtain the following:  

1. IQA A + aA A 11T M-1 is of order 1; 
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2. Ie2 QBB + aBB 11T -

IeQAB
T + aAB 1 ZT M IQAA + aAA 11T M-1 IeQAB

T + aAB 1 ZT MM-1

 

is at least of order 
1

e2
. 

From the above two facts and the block matrix inversion formula,
we immediately infer the result of the theorem. ·

3.3.3 Characterizations of Performance: General Case   

We conclude our study of the structure and performance of Laplacian
network  estimators  by  pursuing  spectral  and  graphical  characteriza-
tions  of  estimator  performance  measures  for  some  more  general
classes of graphs (ones that may not have weak-link structures). Begin
with a characterization of the performance measure detHCL for Lapla-
cian networks, which we recall captures the volume of the error ellip-
soid around the true initial conditions and also is a measure of infor-
mation content. Specifically, we give a formula for the determinant in
terms  of  the  eigenvalues  of  the  Laplacian  and  associated  grounded
Laplacian matrices. This expression constitutes an interesting represen-
tation  of  estimator  performance  in  terms  of  graph  eigenvalues,  and
also  serves  as  a  starting  point  for  graph-theoretic  characterizations
since  much  is  known  about  matrix  spectra.  Subsequently,  we  also
study performance in estimating linear combinations of the initial con-
dition, again giving spectral and graphical characterizations.  

To  obtain  the  result,  we  progress  as  follows.  We  know  that  the

eigen-decomposition of Laplacian "  is " ! V LV-1, where each col-
umn of V  is an eigenvector of ". Since G ! I - d ", the eigenvalues of
G are hi ! 1 - dli, i ! 1, … , m. We note that h1 ! 1 while the other
eigenvalues  lie  within  H-1, 1L  for  small  d.  We  shall  again  limit  our
analysis to the case that the eigenvalues are distinct.  In this notation,

G ! V LG V-1,  where  LG ! diag 8hi<i!1
m .  Then  the  matrix  Q  can  be

written as 

Q !

 ej
T  

 ej
T G 

 ª 

 ej
T Gn 

!

 ej
T  

 ej
T V LG V-1 

 ª 

 ej
T V LG

n V-1 

!
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 ej
T V 

 ej
T V LG 

 ª 

 ej
T V LG

n  

V-1 !

 1  1  !  1 

 h1  h2  !  hm 

 ª  ª    ª 

 h1
n  h2

n  !  hm
n  

 v1,j       

   v2,j     

     "   

       vm,j 

V-1.

For convenience, let   

M !Û

 1  1  !  1 

 h1  h2  !  hm 

 ª  ª    ª 

 h1
n  h2

n  !  hm
n  

.

As n becomes large, we have that  

MT M !

‚
k=0
n

h1
2 k  ‚

k=0
n Hh1 h2Lk  !  ‚

k=0
n Hh1 hmLk 

 ‚
k=0
n Hh1 h2Lk  ‚

k=0
n

h2
2 k  !  ‚

k=0
n Hh2 hmLk 

   ª     

 ‚
k=0
n Hh1 hmLk  ‚

k=0
n Hh2 hmLk  !  ‚

k=0
n

hm
2 k 

!

 
1 - h1

2 Hn+1L
1 - h1

2
  

1 - Hh1 h2Ln+1

1 - h1 h2

  !  
1 - Hh1 hmLn+1

1 - h1 hm
 

 
1 - Hh1 h2Ln+1

1 - h1 h2

  
1 - h2

2 Hn+1L
1 - h2

2
  !  

1 - Hh2 hmLn+1

1 - h2 hm
 

   ª     

 
1 - Hh1 hmLn+1

1 - h1 hm
  

1 - Hh2 hmLn+1

1 - h2 hm
  !  

1 - hm
2 Hn+1L

1 - hm
2

 

Ø

322 M. Xue et al.

Complex Systems, 21 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.4.297



 
1

1 - h1
2

  
1

1 - h1 h2

  !  
1

1 - h1 hm
 

 
1

1 - h1 h2

  
1

1 - h2
2

  !  
1

1 - h2 hm
 

   ª     

 
1

1 - h1 hm
  

1

1 - h2 hm
  !  

1

1 - hm
2

 

!

 
1

h1

     

   "   

     
1

hm
 

 
1

1
h1

- h1

  
1

1
h1

- h2

  !  
1

1
h1

- hm

 

 
1

1
h2

- h1

  
1

1
h2

- h2

  !  
1

1
h2

- hm

 

   ª     

 
1

1
hm

- h1

  
1

1
hm

- h2

  !  
1

1
hm

- hm

 

.

The right  matrix  in  the  above expression is  in  fact  a  Cauchy matrix,
and its determinant (known as Cauchy determinant) is well character-
ized (see [29]). Hence, for the limiting case, we obtain the following:  

(19)

det IMT MM !
1

€ i!1
m hi

€ i!2
m € l!1

i-1 K 1
hi
- 1

hl
O Hhl - hiL

€ i!1
m € l!1

m K 1
hi
- hlO

!

1

€ i!1
m hi

€ i!2
m € l!1

i-1 Hhi - hlL2
€ i!1

m hi
m-1

€ i!1
m hi

m

€ i!1
m € l!1

m H1 - hi hlL !
€ i!2

m € l!1
i-1 Hhi - hlL2

€ i!1
m € l!1

m H1 - hi hlL .
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Next, consider the expression for det IQT QM when n is sufficiently
large. Combining the above expression (19) and Theorem 1, we have 

(20)

det IQT QM ! detIMT MM‰
i!1

m

vi,j
2 !

€ i!2
m € l!1

i-1 Hhi - hlL2
€ i!1

m € l!1
m H1 - hi hlL ‰i!1

m €z!1
m-1 Hmz - liL

€z!1,z!i
m Hlz - liL !

dm Hm-1L € i!2
m € l!1

i-1 Hli - llL2
€ i!1

m € l!1
m H1 - hi hlL

€ i!1
m €z!1

m-1 Hmz - liL
€ i!1

m €z!1,z!i
m Hlz - liL !

dm Hm-1L € i!1
m €z!1

m-1 mz - li

€ i!1
m € l!1

m H1 - hi hlL .

We now can present the explicit expression for the determinant of
the error covariance matrix. 

Theorem 7.  Consider  the Laplacian network with Laplacian matrix ".
For  sufficiently  large  n,  the  determinant  of  the  error  covariance  ma-
trix approaches 

(21)det HCL !
s2 m € i!1

m € l!1
m H1 - hi hlL

dm Hm-1L € i!1
m €z!1

m-1 mz - li

.

Proof.    We  note  that  the  error  covariance  matrix  C  is  C !
s2 IQT QM-1.  Then  the  result  in  the  theorem  automatically  follows

equation (20). ·
From the above theorem, we see that when the scalar d is decreased

(i.e.,  the  interactions  among  the  network  components  are  weak),  the
performance becomes worse. We also see that the performance of the
estimator  can  be  improved  by  spreading  out  the  eigenvalues  li  and
placing the eigenvalues mz  as far from the li  as possible (through de-
sign of the network topology and observation location). 

Finally,  characterize  performance  measures  defined  from estimates
of linear combinations of the initial condition. In particular, we recall

that  the  error  in  the  MMSE  estimate  of  wT x H0L  is  given  by

E BIwTIx̀@0D - x @0DMM2F ! wT C w.  Two  particularly  interesting  per-

      
!         
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formance  measures  defined  for  such  linear-combination  estimates
are!the  maximum  and  minimum  error  variances  for  unitary  linear

combinations,  namely  smin ! minw s.t. ˛w˛2!1 wT C w  and  smax !
maxw s.t. ˛w˛2!1 wT C w.  These  maximum  and  minimum  error  vari-

ances are a measure of how easy or difficult it may be to obtain initial-
condition statistics, and the vectors achieving the minimum and maxi-
mum indicate which statistics are easy or hard to obtain. We note in
particular that estimates of and lower bounds on smax provide an in-
dication of  how difficult  estimation of  some initial-condition statistic
may be, and hence are an indication of the level of security of the full
state;  meanwhile,  estimates  of  and  upper  bounds  on  smin  indicate
how  easy  estimation  of  some  initial  condition  statistic  may  be,  and
hence  indicate  the  vulnerability  of  the  network  to  inference  of  some
initial-condition  statistic.  Here,  we  provide  several  characterizations
of  these  performance measures  in  terms of  properties  of  the  network
matrix G (and hence in terms of its associated graph). 

Begin  by  characterizing  the  minimum  error  variance  smin.  Based
on  our  asymptotic  characterization  of  the  minimum  eigenvalue  and
corresponding  eigenvector  of  the  error  covariance  matrix  C,  we  can
also  characterize  smin  in  the  asymptotic  case.  The  results  are  in  the
following theorem.

Theorem 8. As the number of observations n is increased, the minimum
possible  error  variance  for  an  initial-condition  statistic’s  estimate,  or

smin,  approaches  s
2

n
.  Furthermore,  the  vector  w  that  achieves  the

minimum  approaches  the  left  eigenvector  of  G  associated  with  its
unity  eigenvalue.  Thus,  the  initial-condition statistic  that  is  easiest  to
approximate in the limit  of  large n  is  the synchronization value,  that
is,  the weighted linear combination of the agents’ initial states that is
achieved by each agent asymptotically. 

The  result  given  in  the  above  theorem is  not  surprising,  given  the
asymptotic  characteristic  of  synchronization  processes.  After  suffi-
cient time has passed, the observation will simply be a noisy measure-
ment of the synchronization value, with any other information about
the initial condition suppressed in the measurement. Thus, it is no sur-
prise  that  the  synchronization  value  becomes  the  initial-condition
statistic  that  is  easiest  to  estimate,  with  the  estimator  performance
replicating  that  of  scalar  estimation  from  a  set  of  independent  noisy
measurements. 

In Theorems 9 and 10, we provide lower bounds on the maximum
possible error variance when an initial-condition statistic is estimated.
We phrase these bounds in terms of the spectrum of the network ma-

            
         

        
          

!             
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 p        p     
trix G. After the theorems are presented, we will discuss how the spec-
tral representations of the bounds can be translated to graph-theoretic
representations.  For  convenience  of  presentation,  we assume that  the
variance  of  the  scalar  Gaussian  white  noise  process  g @kD  in  equa-

tion!(2)  is  unit,  that  is,  s2 ! 1.  Here  is  the  first  result,  which  shows
that estimation will necessarily be poor if G (1) has an eigenvalue far
inside the unit circle or (2) has an eigenvector whose entry at the mea-
surement component is small.

Theorem 9. Consider the initial-condition estimation problem with mea-
surement made at  node j  for  an arbitrary duration and unit  variance

of noise g @kD  (i.e.,  s2 ! 1 in equation (2)),  assume that estimation is
possible,  and  assume  that  the  eigenvalues  of  G  are  real  and  simple.
Consider  the  maximum  error  variance  smax  in  estimating  a  unitary
linear statistic of the network’s initial condition. The maximum error

variance is bounded as follows: smax ¥ maxi
1-hi

2

vij
2

, where hi  is the ith

eigenvalue of matrix G, and vij is the jth entry of the ith right eigenvec-

tor vi of G. 

Proof. By definition, we have that

 smax ! maxw s.t.˛w˛!1 wT IQT QM-1 w. 

However, since IQT QM-1, the Courant–Fisher theorem holds, and so

smax  can be rewritten as smax ! hmax JIQT QM-1N,  that is,  it  is  equal

to the largest eigenvalue of IQT QM-1. Using the relationship between
eigenvalues  of  a  matrix  and  its  inverse  and  then  the  Courant–Fisher
theorem, we then recover that

 smax ! 1

hmin IQT QM ! 1

minw s.t.˛w˛!1 wT IQT QMw
. 

For convenience, noting that we have assumed the eigenvalues of G to
be simple, we express the vector w in the expression above in terms of
the right eigenvectors of G, that is, as w ! ⁄i!1

m ai vi, where vi  are the
right eigenvectors of G normalized to unit length. Substituting, we ob-
tain the following expression: 

smax ! 1

mina1, …, am I⁄i!1
m ai Q viMT I⁄i!1

m ai Q viM , 
where  a1

2 +! + am
2  is  constrained  to  equal  1.  Invoking  equation  (3)
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for Q and using the fact that the vi are eigenvectors, we readily obtain

 smax ! 1

mina1, …, am I⁄iai vijM2+I⁄iai hi vijM2+!+I⁄iai hi
n vijM2 , 

where  the  condition  on  the  ai  remains,  vij  is  the  jth  entry  of  vi,  and

measurements have been made from time 0 to n.  Noting that perfor-
mance only improves with increasing data, we then see that

 smax ¥ 1

mina1, …, am I⁄iai vijM2+I⁄iai hi vijM2+! , 

where the denominator summation is an infinite sum in this case. Fi-
nally, we use the fact that the quantity on the right in the previous ex-
pression  is  lower-bounded  when  any  particular  set  of  a1, … , am
(subject  to  the  constraint)  is  used  in  place  of  the  minimum.  Thus,
choosing ai ! 1 and ar ! 0 for r ! i, we obtain that

 smax ¥ 1

vij
2I1+hi

2+hi
4+!M  

for  any  i.  Evaluating  the  infinite  sum  and  choosing  the  best  bound
with respect to i, we obtain the result of the theorem. ·

We  now  briefly  interpret  the  result  given  in  the  theorem.  Noting
that the eigenvector entries vij are always less than 1 in magnitude, we

see  that  smax  is  always  lower-bounded  by  1 - hi
2.  Thus,  if  even  one

eigenvalue  of  G  is  far  from  the  unit  circle,  we  see  that  some  linear
combination of the initial condition becomes difficult to estimate. Sim-
ilarly, if any eigenvector has a small-magnitude component at the mea-
surement  vertex,  the  estimation  of  some  initial-condition  statistic  is
necessarily  poor.  Recall  that  numerous  results  in  the  algebraic  graph
theory community relate eigenvalues and eigenvector components to a
corresponding  graph’s  topological  structure:  these  relationships  per-
mit  us  to  translate  the  above  spectral  bound  on  smax  to  graphical
bounds. We kindly ask the reader to see, for example, [18] for the de-
tails of such relationships. 

Next,  give  a  second  lower  bound  on  the  maximum possible  error
variance  in  estimating  unitary  statistics,  which  clarifies  that  not  only
the  eigenvalue  locations  but  also  the  distances  between  the  eigenval-
ues modulate estimation performance. Here is the result.

Theorem 10.  Consider  the  initial-condition  estimation  problem  with
measurement made at node j  for an arbitrary duration and unit vari-

ance of noise g @kD (i.e., s2 ! 1 in equation (2)), and assume that esti-
mation  is  possible.  Also,  assume  that  the  eigenvalues  of  G  are  real
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and simple. Consider the maximum error variance smax in estimating
a unitary linear statistic of the network’s initial  condition. The maxi-
mum error variance is bounded as follows:

 smax ¥ maxi,r
I1-hi

2M3 Jvij
2+vrj

2 N
vij

2 vr j
2 Hhi-hrL2 . 

Proof. From the proof of Theorem 9, we recall that the following in-
equality holds: 

smax ¥ 1

mina1, …, an I⁄iai vijM2+I⁄iai hi vijM2+! , 

where  the  ai  are  subject  to  the  constraint  a1
2 +! + an

2 ! 1.  To  con-
tinue, we evaluate the argument of the minimization expression for

 ai !
vrj

Jvij
2+vrj

2 N1ê2 , ar !
vij

Jvij
2+vr j

2 N1ê2 , 

and aq ! 0 otherwise, for each possible i and r. The result of the theo-

rem follows with some algebra. ·
Again,  take  a  moment  to  interpret  Theorem  10.  One  key  insight

gained  from  the  theorem  is  that,  if  G  has  two  eigenvalues  that  are
bounded  away  from  unity  that  are  moved  close  to  each  other,  then
the maximum error variance becomes increasingly large. The increas-
ing difficulty in estimation as two eigenvalues approach each other is
not  surprising,  since  the  dynamics  become unestimable  if  two simple
eigenvalues of G are collocated. This theorem further clarifies that the
lower bound on maximum error variance is inversely proportional to
the square of the difference between the eigenvalues: thus, estimation
rapidly  becomes  difficult  as  two  eigenvalues  are  made  close  to  each
other. 

4. Future Work

We  have  sought  to  identify  the  relationship  between  a  network’s
topological  structure  and  the  estimability  of  its  dynamics  for  a  very
specific class of network synchronization processes and limited estima-
tion goal (of the initial state). Although we have focused on this class
of  network  models,  the  research  indicates  a  broader  connection  be-
tween  network  topologies  and  estimation/identification  of  network
dynamics.  These  connections  between a network’s  topology and esti-
mation  of  its  dynamics/structure  may  inform  concrete  tool  develop-
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ment in several directions (e.g., sensor placement for a range of appli-
cation  domains).  We  expect  future  work  to  focus  on  (1)  studying  a
broader  class  of  networks,  (2)  developing  graphical  results  for  other
network  estimation/identification  problems,  and  (3)  pursuing  tool-
development for particular applications.  

A  Broader  Class  of  Networks.  Synchronization  phenomena  occur
in  a  wide  family  of  network  models.  State  estimation  problems  may
be of interest for many of these network models, both as a means for
gaining foundational understanding of the models’ underlying dynam-
ics  and  observability,  and  for  tool  development  (e.g.,  for  monitoring
or  security  evaluation  of  the  dynamics).  We  expect  to  study  initial-
state estimation for a broader class of network synchronization or co-
ordination dynamics  in  future  work,  with  the  broad aim of  tying  es-
timability  to (1)  the network’s  topological  structure and (2)  the local
interaction  rules  that  yield  synchronization.  In  particular,  we  expect
to study state estimation in the broader class of linear coupling-based
models introduced by Chua [2];  see our initial  effort [30],  which dis-
tinguishes  the  role  of  local  and  global  structure  in  observability.  We
also  expect  to  study  observability  and  estimation  in  stochastic  au-
tomata models that display synchronization. These include the “firing
squad” automata developed by Moore and enhanced to a six-step so-
lution  by  Mazoyer  [31,  32],  various  one-dimensional  cellular  au-
tomata  rules  that  lead  to  synchronization  (e.g.,  Wolfram’s  rules  57
and  84)  [33],  and  the  influence  model  [34],  among  others.  Noting
some analogies between these models and linear differential equation-
based  models  (e.g.,  circuit  and  heat-flow  models  [11,  34]),  we  posit
that  the  linear  network  model-based  estimators  considered  here  and
attendant  graph-theoretic  characterizations  may  provide  useful  ap-
proximations for the automata models. Also, we will explore the con-
nection between estimability of initial states and reversibility of the au-
tomaton. 

Other  Network  Estimation/Identification  Problems.  Although  our
focus  in  this  paper  is  specifically  on  inferring  the  initial  state  of  syn-
chronization  processes,  we  view this  work  as  a  component  in  an  en-
compassing  study  of  network-dynamics  inference.  The  case  that  we
pursue here serves as a prototype for various network dynamics, and
hence potentially provides a starting point for dynamics-estimation in
such  diverse  applications  as  virus-spreading  control,  sensor  network-
ing,  and  air  traffic  management.  More  broadly,  we  recall  that  the
characterization  of  observability/controllability  in  networks  and  the
estimation of state information from local observations plays a crucial
role  in  several  decentralized  controls  methods,  for  example,  [35–37];
our efforts here can thus possibly give insight into decentralized con-
trol methods, albeit (for now) in a limited class of models. 

       
          

      
       

         
        

        
         

        
         

        
         

          
      

          
        

          
      

Initial-Condition Estimation in Network Synchronization Processes 329

Complex Systems, 21 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.21.4.297



Tool  Development  for  Applications.  The  graph-theoretic  study  of
network state estimation that we have pursued here has myriad possi-
ble  applications,  including  achieving  security/privacy  analysis  of
sensor-network algorithms, solving inverse problems for physical sys-
tems (e.g., recovering initial temperature profiles of surfaces from local-
ized measurements over time [11]),  and developing smart  monitoring
schemes for infrastructures [16], among other domains. The potential
application in solving inverse problems for heat-flow dynamics is par-
ticularly  interesting,  in  that  both  differential  equation-based  and  au-
tomaton-based models have been used to capture evolution of temper-
ature  profiles,  allowing  comparison  of  the  methods  developed  here
and  existing  inversion  techniques.  With  this  range  of  applications  in
mind,  we  plan  to  pursue  method  and  tool  development  to  facilitate
monitoring/estimation  of  large-scale  networks  using  the  characteriza-
tions obtained here. For instance, we will pursue tool development for
efficient  and  effective  sensor  placement  in  large-scale  networks,  and
for resource allocation to prevent violation by an adversary, using the
spectral and graphical results obtained here. 
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