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Substitution  systems,  where  strings  are  rewritten  according  to  local
rules, have many applications. They are used to model the development
of plants, as well as to generate music and architectural designs. Many
substitution  systems  can  generate  highly  complex  patterns  using  only
simple rules. This feature can make substitution systems difficult to an-
alyze  mathematically.  A  different  approach,  pioneered  by  Stephen
Wolfram, is to use computer searches to reveal simple systems with in-
teresting properties. This approach is used to explore a class of systems
we call symmetric sequential substitution systems within which a string
is  repeatedly  updated  by  applying  rewrite  rules  in  a  non-overlapping
way.  In  this  paper  several  simple  examples  of  these  systems are  exhib-
ited  that  produce  complex  behavior.  The  dynamics  of  several  of  these
systems  are  studied  and  a  system  is  exhibited  that  is  computationally
universal. Applications of symmetric sequential substitution systems are
discussed,  such  as  compression  and  the  evaluation  of  numerical  func-
tions. 

1. Introduction

The  idea  behind  substitution  systems  is  to  repeatedly  perform  string
rewrite  operations.  These  systems  have  been  studied  before  under  a
variety of names by different people. Early work focused upon neigh-
borhood independent substitution systems, where each character is re-
placed  in  a  way  that  does  not  dependent  upon  its  surroundings.  For
example, Thue [1] and Marston Morse [2] both studied the neighbor-
hood  independent  substitution  system  with  rules  0 Ø 01,  1 Ø 10.
Later, Astrid Lindenmayer popularized substitution systems by show-
ing how they can be given geometric interpretations and used to study
the development of plants and algae [3, 4].  

Lindenmayer  also  considered  more  general  “neighbor-dependent”
substitutions systems, where the way a substring is rewritten depends
upon  its  surroundings.  These  kinds  of  systems  have  subsequently
found artistic applications such as the generation of music [5],  archi-
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tecture [6], and computer graphics [7]. Their complexity makes many
neighbor-dependent  substitution  systems  difficult  to  analyze  mathe-
matically.  One  fruitful  way  to  study  such  complex  substitution  sys-
tems  is  to  take  an  experimental  approach—using  computer  simula-
tions  to  get  accurate  pictures  of  the  dynamics.  In  [8],  Wolfram  uses
simulations to identify some of  the simplest  substitution systems that
generate complex behavior. 

In  this  paper,  we  take  a  similar  experimental  approach  toward  a
different class  of  substitution systems.  A symmetric  sequential  substi-
tution system  is  specified  by a  set  8a1 Ø b1, a2 Ø b2, … , an Ø bn<  of
replacement  rules,  where  8a1, a2, … , an<  is  a  prefix-free  set  (i.e.,  no
string ai  is a prefix of a string aj  for i ! j). A replacement rule ai Ø bi

converts a string ai to a string bi. A string is updated under such a sys-
tem by applying the replacement rules from the left in a non-overlap-
ping way. 

In  particular,  a  string  x  is  updated  by  scanning  across  it  from left
to right. Whenever a substring ai  is encountered such that ai Ø bi  is a
replacement rule, ai  gets replaced with bi, and the scan then continues
from the  immediate  right  of  the  newly  replaced  substring.  When  the
scan  reaches  the  end  of  the  string,  the  update  is  complete  (see  Fig-
ure!1).

Figure 1. A space-time  plot  showing  the  dynamics  of  the  initial  string  01111
over  the  first  four  time  steps  under  replacement  rules  80 Ø 11, 10 Ø 0,
11 Ø 01<.  The  initial  string  is  shown  at  the  top  and  time  reads  downward.
We  have  used  lines  to  indicate  how  the  strings  generate  one  another;  these
will be omitted in the subsequent figures. 

Using computer searches, we find simple examples of symmetric se-
quential  substitution  systems  that  generate  highly  complex  patterns.
We  also  exhibit  a  relatively  simple  symmetric  sequential  substitution
system that is computationally universal, that is, it is capable of simu-
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lating  any  computer  program.  After  demonstrating  complexity,  we
show  several  symmetric  sequential  substitution  systems  that  can  be
used to perform arithmetic. We also exhibit a class of systems that are
time  reversible  in  a  very  natural  way,  and we discuss  how these  sys-
tems can be used for data compression. 

2. The Behavior of the Simplest Rules  

There  are  216  systems  of  the  form  80 Ø b1, 10 Ø b2, 11 Ø b3<  with
b1, b2, and b3  taking values in 80, 1, 00, 01, 10, 11<. This set of sim-
ple rules is a good starting point for our exploration.  

We examined space-time plots  of  each of  these 216 rules  running,
with  0  as  the  initial  condition.  Several  different  kinds  of  behavior
were  observed.  First,  108  of  the  rules  caused  the  string  to  reach  a
fixed point. Also 21 of the rules caused the string to become periodic
(the  highest  period  was  six).  Thirteen  of  the  rules  cause  the  string
length  to  grow  linearly  with  time  (creating  simple  patterns).  The  re-
maining  74  rules  caused  the  string’s  length  to  grow  exponentially.
Some of these systems have regularities or nested structures that allow
the long-term dynamics to be predicted (e.g., the rule in Figure 2, left;
see Theorem 1).  However,  other systems produce more complex pat-
terns (e.g.,  the rule  in Figure 2,  right).  The rapid growth rates  of  the
strings make it difficult to say whether the patterns produced by these
systems are  truly  complex,  or  whether  some fractal  structure  is  actu-
ally being produced. Let r s  denote the concatenation of strings r  and

s,  and  let  rk  denote  the  string  obtained  by  concatenating  together  k
copies of the string r. 

Figure 2. The  left  rule  shows  a  space-time  plot  of  the  system  with  rules80 Ø 01, 10 Ø 00, 11 Ø 0<  evolving  over  the  first  12  updates,  starting  with
the  initial  condition  0.  The  right  rule  shows  a  space-time  plot  of  the  system
with rules 80 Ø 10, 10 Ø 01, 11 Ø 10< evolving over the first 19 updates.
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Theorem 1.    Let  y HtL  denote  the  binary  string  obtained  by  evolving  a
system with rules 80 Ø 01, 10 Ø 00, 11 Ø 0< (Figure 2, left) for t time
steps, starting with the initial condition y H0L ! 0. Now, for each inte-
ger T ¥ 3 we have that: 

y H4 TL ! 01 a H1L b H1L aH2L bH2L .. aH2 T - 3L bH2 T - 3L 0m HTL
y H4 T + 1L ! 01 a H1L b H1L aH2L bH2L ..

aH2 T - 3L bH2 T - 3L aH2 T - 2L 1 H01Lm HTL-2

y H4 T + 2L ! 01 a H1L b H1L aH2L bH2L ..
aH2 T - 2L bH2 T - 2L 02 m HTL-4 1

y H4 T + 3L ! 01 a H1L b H1L aH2L bH2L ..
aH2 T - 2L bH2 T - 2L aH2 T - 1L H10L2 m HTL-6 11

where aHkL! 02k+1, bHkL! 1 H01L2k-1 and mHTL! I37ä4T+704Më192.
(The proof to Theorem 1 is given in Appendix A.)

We also investigated the dynamics of our 216 rules when the initial

condition is the string 0100, consisting of 100 zeros. Under this initial
condition,  the  system with  rules  80 Ø 10, 10 Ø 01, 11 Ø 1<  produces
particularly complex behavior (Figure 3,  left).  Theorem 2 claims that
when the initial condition is an infinite string of zeros, this system pro-
duces  strings  of  arbitrary  complexity  in  the  sense  that,  given  any  bi-
nary string b, the system may be evolved for a sufficiently long period
of  time,  the  replacement  rules  10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1
may be applied, and b will be contained in the resulting string. 

Figure 3. The left shows a space-time plot of the pattern produced by the sys-
tem  with  rules  80 Ø 10, 10 Ø 01, 11 Ø 1<,  starting  with  a  string  of  zeros
(light  gray  and  black  represent  0  and  1,  respectively).  If  the  substitutions
10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1 are applied to each row of the pattern on
the  left  (excluding  the  top  row),  then  the  pattern  shown  on  the  right  is  ob-
tained. Theorem 2 states that if this process is extended for sufficiently many
time steps, then every binary string will eventually appear within a row of the
pattern on the right.
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Theorem 2.    Let  xHtL  denote  the  binary  string  obtained  by  evolving  a
system with rules 80 Ø 10, 10 Ø 01, 11 Ø 1< for t  time steps, starting
with initial condition xH0L ! 0¶.  Now if b  is any finite binary string,
then there  exists  a  t  such that  b  is  a  substring  of  the  string  obtained
by  taking  xHtL  and  then  applying  the  replacement  rules  10 Ø 0,
110 Ø 0,  101 Ø 1,  01 Ø 1.  (The proof  to  Theorem 2 is  given in  Ap-
pendix B.)

3. Systems Involving More than Two Symbols  

There  are  many  systems  using  three  symbols  with  complex  behavior
(see Figure 4). Some of these produce random-looking patterns, while
others  produce  more  complicated  patterns  that  hold  a  mixture  of
ordered  and  disordered  regions  (much  like  class  4  cellular  au-
tomata![9]).  

Wolfram’s  Principle  of  Computational  Equivalence  [8]  states  that
whenever the pattern produced by a computation is not obviously sim-
ple,  that computation will  almost always be as complex as any other
computation.  This  principle  suggests  that  some  of  the  complex  sys-
tems  we  have  already  discussed  (such  as  those  shown  in  Figure  4)
could  be  computationally  universal  (in  the  sense  that  they  can  simu-
late any single-taped Turing machine). Although we have been unable
to prove that any symmetric sequential substitution system with three
or  less  symbols  is  computationally  universal,  we  have  been  able  to
construct  a  symmetric  sequential  substitution  system  with  nine  sym-
bols that is provably computationally universal (shown in Figure 5). 

Figure 4. Space-time plots of two systems that grow complex patterns from a
single cell. The pattern on the left has a random-looking growth rate. The pat-
tern on the right holds a mixture of ordered and disordered regions.
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Figure 5. A space-time  plot  of  the  simplest  known computationally  universal
Turing machine [10].  The rules  are  shown at  the top.  The middle  shows the
evolution  of  the  system  over  seven  time  steps.  At  the  bottom  is  a  set  of  re-
placement  rules  for  a  symmetric  sequential  substitution system that  emulates
this Turing machine directly. 

Wolfram’s  exploration  of  the  simplest  Turing  machines  led  to  the
conjecture [8] that the 2-state, 3-symbol Turing machine shown at the
top of  Figure 5 is  computationally universal.  In May 2007,  Wolfram
offered a $25,000 prize for a proof or disproof of the universality of
this  Turing  machine.  In  October  2007,  Alex  Smith  won the  prize  by
proving that  the Turing machine is  universal  [10].  Our computation-
ally  universal  symmetric  sequential  substitution  system  was  designed
to emulate the dynamics of this Turing machine directly. 

As Figure 5 depicts, the tape of the Turing machine has three differ-
ent symbols (represented as white, light gray, and dark gray) and the
machine  can  take  two  states  (represented  by  an  arrow  pointing  up
and an arrow pointing down). The rules at the top of Figure 5 show
how this  Turing  machine  rewrites  the  current  symbol,  changes  state,
and moves in response to the current state and tape symbol under the
head. To emulate this Turing machine, we introduced nine characters
to  represent  all  the  possible  state-symbol  combinations  that  could  be
associated with a cell. For example, a white box with an arrow point-
ing upward inside it represents a cell of the tape with the “white” sym-
bol  written upon it,  that  is,  occupied by the head of  Turing machine
in  the  “up” state.  The  symmetric  sequential  substitution system with
nine characters that uses the 18 replacement rules given at the bottom
of Figure 5 will emulate the dynamics of the universal Turing machine
directly.  When  the  system  is  updated,  only  one  of  the  replacement
rules  will  be  applied,  and  this  replacement  will  effectively  move  the
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head  and  alter  the  tape  symbols  in  accordance  with  the  rules  of  the
universal Turing machine. 

4. Performing Multiplication and Other Functions    

The  way  strings  change  under  a  symmetric  sequential  substitution
system  is  similar  to  the  way  that  cells  divide  and  differentiate  in  a
growing  organism.  Many  organisms  are  able  to  regulate  their  size—
growing to a certain limit and then stopping. Many symmetric sequen-
tial substitution systems share this property. In fact, some systems can
effectively  do  arithmetic  in  that  they  cause  a  row  of  n  light  gray
blocks  to  change  into  a  string  of  length  f HnL,  which  subsequently  re-

mains fixed. Figure 6 shows examples with f HnL ! 6 n and f HnL ! 7 n. 

Figure 6. Two systems that  effectively  perform multiplication.  The system on
the  left  causes  each  string  of  n > 1  light  gray  blocks  to  grow  into  a  fixed
string of length 6 n. The system on the right causes each string of n > 1 light
gray blocks to grow into a fixed string of length 7 n. 

The  systems  shown  in  Figure  6  were  found  by  doing  computer
searches  through  millions  of  systems.  The  system  at  the  left  in  Fig-
ure!6  behaves  in  quite  a  simple  way.  The  dynamics  of  the  system  at
the right in Figure 6 are less trivial. This system seems to produce very
complex  patterns  despite  accurately  evaluating  7 n  at  least  up  to
n ! 10 000. It appears very difficult to prove this system evaluates 7 n
for  arbitrary n.  Table  1  shows systems that  can evaluate  many other
functions.  Many  of  these  systems  would  be  very  difficult  to  design,
but they can be found quickly by doing computer searches. 
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f HnL Replacement Rules 

3 n 80 Ø 01, 10 Ø 10, 11 Ø 1< 
4 n 80 Ø 02, 10 Ø 01, 11 Ø 11, 12 Ø 11, 20 Ø 20,

21 Ø 1, 22 Ø 11<
5 n 80 Ø 02, 10 Ø 10, 11 Ø 22, 12 Ø 12, 20 Ø 10,

21 Ø 21, 22 Ø 1<
11 n 80 Ø 01, 10 Ø 12, 11 Ø 2, 12 Ø 20, 20 Ø 12,

21 Ø 01, 22 Ø l<  

n mod 3 80 Ø 1, 10 Ø 20, 11 Ø 20, 12 Ø 2, 20 Ø 01,
21 Ø l, 22 Ø l<   

f n

2
v 80 Ø 1, 10 Ø 10, 11 Ø 02, 12 Ø 1, 20 Ø 02,

21 Ø 2, 22 Ø l<  

Table 1. The  rules  behind  symmetric  sequential  substitution  systems,  which
cause  each  initial  string  of  n  zeros  to  evolve  toward  a  fixed  string  of  length
f HnL. Note that l denotes the empty string; 22 Ø l, for example, is equivalent
to deleting 22.  

5. Reversible Systems  

We say that  a symmetric  sequential  substitution system is  completely
reversible upon a set of strings S when the global update function as-
sociated  with  the  system is  a  one-to-one  mapping  from S  onto  itself.
In such a system, each member of S has a unique predecessor. For ex-
ample, the system shown in Figure 7 is completely reversible upon the
set S ! 80, 1<*ä 82<  of  all  binary strings with a 2 appended. (Here A*

denotes  the  set  of  all  strings  that  can  be  formed  from  elements  of
the set A, and ä denotes the Cartesian product.) The unique predeces-
sor  of  a  string  x  in  S  can  be  found  by  applying  the  inverse800 Ø 0, 1 Ø 10, 01 Ø 11, 02 Ø 12, 2 Ø 2< of the rule. 

A  set  of  replacement  rules  R ! 8a1 Ø b1, a2 Ø b2, … , an Ø bn<
forms  a  symmetric  sequential  substitution  system  provided8a1, a2, … , an<  is  a  prefix-free  set.  We  define  the  inverse  of  R  to  be8b1 Ø a1, b2 Ø a2, … , bn Ø an<.  Now  suppose  that  string  x  is  up-
dated under system R  to become system y.  To guarantee that  the in-
verse of R sends y to x, we need rule R to meet two conditions: 

1. The set 8b1, b2, … , bn< is prefix-free. 

2. The  string  x  can  be  constructed  by  joining  together  substrings  from8a1, a2, … , an<, in some combination. 

8 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.1.1



Figure 7. A  completely  reversible  system.  Any  binary  string  ending  with  a  2
can be evolved forward or backward (by inverting the rule) under this system
in a reversible way. 

Condition 1 is required so that the inverse of R is a well-defined sym-
metric sequential  substitution system. Condition 2 is  required so that
each part of x is operated upon when it is updated. For example, the
rule R£ ! 80 Ø 00, 10 Ø 1, 11 Ø 01< is a symmetric sequential substi-
tution system that satisfies condition 1, but when we update the string
x ! 1 under  R£  we  get  y ! 1,  whereas  when we  update  y ! 1 under
the inverse of R£  we get 10 ! x.  This happens because condition 2 is
not satisfied.  

Consider  the  set  of  rules  of  the  form  80 Ø b1, 10 Ø b2, 11 Ø b3,
12 Ø 02, 2 Ø 2<  such  that  8b1, b2, b3< ! 81, 00, 01<.  Each  of  these
rules  satisfies  conditions  1  and  2  with  respect  to  each  string  in80, 1<* ä 82<.  It  follows  that  each  of  these  six  systems  is  completely
reversible  upon  80, 1<* ä 82<  (the  system  shown  in  Figure  7  is  an  ex-
ample). 

There  are  many completely  reversible  systems using more  symbols
(see  Figure  8).  Some  of  these  rules  cause  the  initial  strings  to  enter
high  period  orbits  that  include  fractal  patterns.  Other  systems  cause
the initial string to shrink down until a certain point and then expand
out  again  so  that  the  space-time  plot  is  shaped  like  an  hourglass
(Figure 8, left). These kinds of rules are interesting because the dynam-
ics  often  seem  to  go  through  a  transition  from  ordered  to  random-
looking behavior at the point of minimal length. 
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Figure 8. Two  systems  that  are  completely  reversible  for  any  input  in80, 1, 2<* ä 83<.  The  system  on  the  left  makes  the  orderly  initial  string  shrink
down to a small size and then blow up into a more complicated pattern. The
system on the right preserves the length of the initial string and so is periodic.

The  completely  reversible  systems  we  have  defined  make  a  useful
addition to the set of studied models of reversible computation. There
are  many  reasons  to  study  reversible  computation.  For  example,
according to Landauer’s principle [11], every time an irreversible com-
putation erases a bit of information, there will be an accompanied dis-
sipation  of  energy  in  the  form of  heat.  By  using  reversible  computa-
tion, this phenomenon can be avoided. Reversible cellular automaton
models  have  become  popular  models  of  reversible  computation  that
have  found  many  applications  in  the  modeling  of  physical  systems
[12]  and  in  cryptography  [13].  Our  completely  reversible  symmetric
sequential  substitution  systems  are  similar  to  reversible  cellular  au-
tomata,  in  the  sense  that  they  are  reversible  models  of  computation
that are based upon local interactions. 

6. Using Reversible Systems for Compression  

Completely  reversible  symmetric  sequential  substitution  systems  pre-
serve  information,  and  so  when  such  rules  reduce  the  length  of  the
string  they  are  effectively  compressing  the  data  [14].  For  example,
many  inputs  to  the  reversible  system  in  Figure  7  induce  hourglass-
shaped  space-time  plots.  It  follows  that  many  pieces  of  data  can  be
compressed  by  running  the  system  until  the  string  reaches  minimal
length (at which point we have compressed the string as much as pos-
sible under the rule).  The compressed data now consists  of  the resul-
tant string, together with a record of how long the rule has been run
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for.  Given  this  information,  the  resultant  string  may  be  evolved  for
the given time under the inverse of the system to recover the original
data. 

In  order  to  implement  this  kind  of  scheme,  a  control  algorithm
needs  to  be  specified;  this  is  used  to  decide  how  many  times  the  re-
placement rules (or their inverse) should be applied to the string. The
purpose of the control algorithm is to attempt to solve the one-dimen-
sional optimization problem that consists of deciding how long to run
the system (forward or backward in time) in order to minimize the re-
sultant  string’s  length.  A  naive  control  algorithm  would  consist  of
evolving the system until the length of the string stops decreasing, and
then halting.  This  type  of  algorithm would work well  for  the  system
shown  in  Figure  7,  but  would  be  inefficient  in  general.  Designing  a
control algorithm that works in more general cases is extremely chal-
lenging. 

Results from algorithmic information theory [15] imply fundamen-
tal  limits  upon  the  performance  of  this  kind  of  compression  scheme.
In algorithmic information theory,  the complexity  of  a  string s  is  the
length  of  the  shortest  computer  program  that  generates  s  (within
some  prespecified  programming  language).  A  string  s  is  said  to  be
algorithmically  random when  its  complexity  is  equal  to  its  length.  A
well-known result from algorithmic information theory states that the
majority  of  strings  are  algorithmically  random.  This  result  implies
that our compression scheme (for any given completely reversible sym-
metric  sequential  substitution system) will  be  unable  to  compress  the
majority of strings. 

Another  result  from  algorithmic  information  theory  (Chaitin’s  in-
completeness  theorem  [15])  implies  that  the  complexity  of  most
strings is uncomputable. This implies that in general, there can be no
finite  control  algorithm that  always applies  the replacement rules  the
correct number of times so as to minimize the length of the output. A
concrete example of a completely reversible symmetric sequential sub-
stitution system for which it is difficult to find an appropriate control
algorithm  is  shown  in  Figure  9.  In  complex  scenarios  like  this,
Wolfram’s  Principle  of  Computational  Equivalence  [8]  implies  that
there  may  be  no  way  to  shortcut  the  evolution  of  the  system  and
quickly determine when the length of the string will be minimized. 

We  wrote  a  compression  procedure  based  upon  completely  re-
versible  symmetric  sequential  substitution  systems.  Since  a  given  re-
versible  system  can  only  exploit  certain  kinds  of  regularities  in  the
data,  our  procedure  tests  the  abilities  of  many  completely  reversible
symmetric  sequential  substitution  system  to  compress  the  data,  and
then  outputs  the  rule  that  performs  best,  how  long  it  should  be  run
for, and the form of the resulting string. When we “test” a given sys-
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Figure 9. A  space-time  plot  of  a  system  that  is  completely  reversible  upon80, 1, 2<* ä 83<,  where  it  is  difficult  to  determine  how long  the  system should
be  run  in  order  to  minimize  the  length  of  the  string.  The  initial  condition  is
21111111111111111111111110222102212223. After 50 updates,  the string
is compressed to 0101213. If the system continues to evolve for 50 more time
steps, then the fluctuations in the string length become increasingly rapid. For
example, at time step 150 the string length reaches 1062, at time step 175 the
string length has gone back down to 558, and at time step 250 the string has
length 457 275.

tem,  we  just  evolve  the  string  under  the  system until  its  length  stops
decreasing; at this point we halt and examine the length of the resul-
tant  string.  (We  use  this  kind  of  naive  control  algorithm because  [as
we  have  already  discussed]  it  is  fundamentally  difficult  to  design  an
optimal  control  algorithm.)  In  order  to  achieve  performance  levels
similar to those of popular compression methods such as the Lempel–
Ziv–Welch [16] algorithm, we need to use several thousand reversible
symmetric sequential  substitution systems within our procedure.  This
makes  our  procedure  too  slow  for  many  practical  scenarios.  More-
over,  our  procedure  can  only  exploit  local  patterns  within  the  data,
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whereas  schemes  like  Huffman coding  [14]  are  capable  of  exploiting
non-local patterns. 

However, despite its shortcomings there are some areas where our
completely  reversible  symmetric  sequential  substitution  system-based
scheme has definite applications.  When a compression scheme is  suc-
cessful,  it  reveals  regularities  within  the  data.  This  means  that  com-
pression schemes can be used for  data  analysis.  For  example,  in  [17]
compression-based clustering is used to reveal patterns in genetics, lan-
guages,  and astrophysics.  Also  in  [18],  Hector  Zenil  uses  a  compres-
sion-based  method  to  classify  the  behavior  of  cellular  automata.  To
quote Gregory Chaitin [19], “understanding is compression.” When a
simple completely reversible symmetric sequential  substitution system
is  found to significantly  compress  the data,  it  can be thought of  as  a
model  for that  data.  Such a model,  based upon symmetric  sequential
substitution  system  rules,  is  attractive  because  of  its  simple  nature.
Also,  the dynamic nature of  our compression scheme makes it  useful
for analysis. For example, if the same completely reversible symmetric
sequential  substitution  system  is  found  to  compress  many  data
strings, then you may wish to run the substitution system for different
amounts of time, to extrapolate from the dataset. 

7. Conclusion  

Our exploration of the space of symmetric sequential substitution sys-
tems has revealed a diverse range of different behavior.  We have dis-
cussed  applications  of  these  systems  such  as  evaluation  of  arithmetic
operations  and  data  compression.  Our  findings  are  further  evidence
that many useful computations can be performed using extremely sim-
ple programs.  

One interesting direction for future research is to further study the
dynamics of completely reversible systems and investigate what kinds
of  behavior  and  growth  rates  completely  reversible  systems  can  ex-
hibit.  Also,  compression  schemes  based  upon  completely  reversible
systems  raise  some  interesting  questions  for  algorithmic  information
theory,  because  these  systems  establish  a  complexity  measure  similar
to Kolmogorov complexity. 

Appendix

A. Proof of Theorem 1   

Let FHsL  denote the string obtained by updating string s  under the re-
placement  rules  80 Ø 01, 10 Ø 00, 11 Ø 0<.  Now  we  have  yH0L ! 0
and yHtL ! FHy Ht - 1LL,  " t ¥ 1. We say that a binary string s œ 80, 1<*
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is  clean  when  it  can  be  constructed  by  joining  together  substrings
from  the  set  80, 10, 11<,  in  some  combination.  The  form  of  a  clean
prefix has no effect on the way the remainder of a string gets updated.
In other words, if s is clean, then FHsrL ! FHsLFHrL.  

In  our  case,  we  have  that  01 aH1L ! 01021+1 ! 01 000 !H0L H10L H0L H0L is clean. Moreover, updating this string yields 

(A.1)FH01 a H1LL ! FH01 000L ! 01 000 101 ! 01 aH1L bH1L.
Also, " k ¥ 1 we have that the string b HkL a Hk + 1L is clean. Updat-

ing this string yields 

(A.2)

FHbHkL aHk + 1LL ! FJH10L2k-1 102k+1+1N !

FJH10L2k
02k+1N ! H00L2k H01L2k+1 !

02k+1+1 H10L2k+1-1 1 ! aHk + 1L bHk + 1L.
Also, " i ¥ 2 " k ¥ 1 we have that the string bHkL 0i is clean, and up-

dating bHkL 0i yields 

(A.3)
FIbHkL 0iM ! FJH10L2k-1 10iN ! FJH10L2k

0i-1N !

H00L2k H01Li-1 ! 02k+1 1 H01Li-2 ! aHk + 1L 1 H01Li-2.

We can verify that our result  gives the value of yH12L  when T ! 3
correctly  by  computing  yH12L  directly  (also  note  that  yH12L  corre-
sponds  to  the  bottom row of  the  space-time  plot  shown in  Figure  2,
left). Direct computation yields 

(A.4)

yH12L !
010 001 010 000 010 101 010 000 000 001 010 101 Ö

010 101 010 000 000 000 000 000 !
yH4ä3L ! 01 aH1L bH1L aH2L bH2L aH3L bH3L 016

(where mH3L ! 16), as required.  
So  the  equation  for  yH4 TL  where  T ! 3 holds.  Now,  we  shall  use

induction.  For  T ¥ 3,  suppose  that  our  result  holds  true  for  yH4 TL
in  the  sense  that  yH4 TL ! 01 aH1L bH1L aH2L bH2L .. aH2 T - 3L bH2 T - 3L ÿ
0m HTL. Now in this case we have that 

yH4 T + 1L ! FHy H4 TLL ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 4L aH2 T - 3LLFIbH2 T - 3L 0m HTLM !
@01 aH1L bH1LD@aH2L bH2LD@aH3L bH3LD ..

@aH2 T - 3L bH2 T - 3LDAaH2 T - 2L 1 H01Lm HTL-2E !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 3L bH2 T - 3L aH2 T - 2L 1 H01Lm HTL-2
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and so our result holds when yH4 T + 1L. Note that here we make use
of equations (A.1), (A.2), and (A.3) to go from the second line to the
third line. Given that our result holds true for yH4 T + 1L, we have  

yH4 T + 2L ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 3L aH2 T - 2LLFI1 H01Lm HTL-2M !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 2L bH2 T - 2L H0L2 m HTL-4 1

and  so  our  result  holds  when  yH4 T + 2L.  Given  that  our  result  holds
true for yH4 T + 2L, we have  

y H4 T + 3L ! F H01 a H1LLF Hb H1L a H2LL
F Hb H2L a H3LL ..F Hb H2 T - 3L a H2 T - 2LLF
Ib H2 T - 2L H0L2 m HTL-4 1M ! 01 a H1L b H1L a H2L b H2L a H3L
b H3L .. a H2 T - 2L b H2 T - 2L a H2 T - 1L H10L2 m HTL-6 11

and  so  our  result  holds  when  yH4 T + 3L.  Given  that  our  result  holds
true for y H4 T + 3L, we have  

yH4 T + 4L ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 2L aH2 T - 1LLFIH10L2 m HTL-6 11M !
@01 aH1L bH1LD@aH2L bH2LD@aH3L bH3LD ..

@aH2 T - 1L bH2 T - 1LD 04 mHTL-11 !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 1L bH2 T - 1L 0mHT+1L
and  so  our  result  holds  when  yH4 T + 4L ! yH4 HT + 1LL.  Here  we  get
from the second line to the third line using the fact that  

mHTL !
37ä4T + 704

192
,

and so 4 mHTL - 11 ! mHT + 1L.  
We  have  shown  that  the  result  holds  for  yH4 TL : T ! 3.  We  have

also shown that, if T ¥ 3 is such that the result holds for yH4 TL, then
the result  holds for  yH4 T + 1L,  yH4 T + 2L,  yH4 T + 3L,  and yH4 HT + 1LL.
Our theorem therefore follows by induction with T. ·

B. Proof of Theorem 2  

During  this  proof  we  shall  refer  to  the  symmetric  sequential  substi-
tution  system  with  replacement  rules  80 Ø 10, 10 Ø 01, 11 Ø 1<  as
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system 58  because this  is  the 58th rule  that  appears  in our enumera-
tion of the rule set.  

Let yHsL  denote the binary string obtained by applying the replace-
ment  rules  80 Ø 10, 10 Ø 01, 11 Ø 1<  to  binary  string  s.  Now  we
shall have that xH0L ! 0¶, and xHtL ! yHxHt - 1LL will be the string ob-
tained by evolving system 58 for t ¥ 1 time steps. 

Now  we  shall  define  a  one-dimensional  cellular  automaton  with
cells  indexed  with  positive  integers.  The  cells  take  values  in81, 2, 3, 4<. We let 

Yt ! Y1
t , Y2

t , Y3
t , .. œ 81, 2, 3, 4<¶

denote  the  state  of  the  cellular  automaton  at  time  t ¥ 0.  The  initial
state is  

Y0 ! 14¶ ! 1, 4, 4, 4, ….

The value of cell i ¥ 1 may be determined at time t ¥ 1 using the for-
mula  

Yi
t !

f I1, Yi
t-1M if i ! 1

f IYi-1
t-1, Yi

t-1M otherwise,

where the mapping f : 81, 2, 3, 4<2 # 81, 2, 3, 4< is given by the table:  

      b     

  f Ha, bL 1 2 3 4 

  1 4 2 4 1 

a 2 4 2 4 1 

  3 2 3 2 4 

  4 2 3 2 4 

From  now  on  we  shall  refer  to  this  cellular  automaton  as  the
f -cellular  automaton.  Let  us  define  the  mapping  g : 81, 2, 3, 4< #80, 1<*  such  that  gH1L ! 10,  gH2L ! 110,  gH3L ! 101,  gH4L ! 01.  We
will  use  g  to  convert  system  58  into  the  f -cellular  automaton.  The
way  this  works  is  pictured  in  Figure  B1.  Lemma  1  states  that  the
string in system 58 present at time step t + 3 can be obtained by tak-
ing the state of the f -cellular automaton at time t and making the sub-
stitutions 1 Ø 10, 2 Ø 110, 3 Ø 101, 4 Ø 01. 

Lemma 1.   For each t ¥ 0 we have that 

xHt + 3L ! gIY1
t M gIY2

t M gIY3
t M….
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Figure B1. An illustration of the relationship between system 58 and the f -cel-
lular  automaton.  On  the  left,  we  show  the  dynamics  of  system  58  over  the
first  seven  updates,  starting  with  an  initial  string  of  zeros  (our  initial  condi-
tion only holds six zeros in this finite example). At the bottom right of the fig-
ure, we show part of the space-time plot of the f -automaton. Successive rows,

reading  downward,  correspond  to  states  Y0, Y1, .., Y4  on  successive  time
steps. The update function f Ha, bL behind this cellular automaton is illustrated
at the top right. In the center, we illustrate the replacement rules that convert
strings from system 58 (generated after three or more updates) to rows of the
space-time plot of the f -cellular automaton. (To do our conversion, we ignore
the  bracketed  H1L  at  the  end  of  the  third  row.  This  problem  does  not  occur
when 0¶ is our initial condition.)

Proof.  For a binary string w œ 80, 1<* of length †w§ > 1, let us define 

w- !
w if w†w§ ! 0

w1 w2 .. w†w§-1 if w†w§ ! 1

to  be  equal  to  the  string  obtained  by  taking  w  and  deleting  its  last
character, if it is a zero. Also, let us define  

we !
l if w†w§ ! 0

1 if w†w§ ! 1

to  be  equal  to  the  empty  string  l  when  w  ends  in  0,  and  equal  to  1
when w  ends in 1.  Now clearly,  we will  have that w  is  always equal
to the concatenation w ! w- we.  
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Let us first consider the case where t ! 0. In this case the states of
system 58 on the first three time steps are: 

xH0L ! 0¶

xH1L ! H10L¶
xH2L ! H01L¶ ! 0 H10L¶
xH3L ! 10 H01L¶.

When  t ! 0  we  have  xHt + 3L ! 10 H01L¶ ! gH1L@gH4LD¶ !
gIY1

0M gIY2
0M gIY3

0M… ,  and  so  our  result  holds  true  when  t ! 0.  Now
we shall use proof by induction.  

Suppose that our result holds for some t ¥ 0, in the sense that 

(B.1)xHt + 3L ! gIY1
t M gIY2

t M gIY3
t M…

Now since gIYi
tM ! AgIYi

tME-AgIYi
tMEe, for each i, we shall have that 

xHt + 3L ! AgIY1
t ME-AgIY1

t MEeAgIY2
t ME-AgIY2

t MEeAgIY3
t ME-AgIY3

t MEe …

Now  " i ¥ 2  let  us  define  the  string  vHiL œ 80, 1<*  such  that
vHiL ! AgIYi-1

t MEeAgIYi
tME-.  Also,  let  us  define  vH1L ! AgIY1

t ME-.  Now we
have that 

xHt + 3L ! vH1L vH2L vH3L…

is equal to the concatenation of all vHiL.  
The important point is that " i we have gIYi

tM œ 810, 110, 101, 01<,
and so AgIYi

tME- has its last character equal to zero. 

Now xt+4H0¶L ! yHx Ht + 3LL  is  equal  to  the  string  obtained  by  ap-
plying the y update operator to xHt + 3L. Now since 

xHt + 3L ! vH1L vH2L vH3L…

can be partitioned into parts  vHiL  that  each end with a zero,  we have
that  

(B.2)xHt + 4L ! yHvH1L v H2L vH3L…L ! yHvH1LL yHvH2LL yHvH3LL….

This is true because each string vHiL can be partitioned into substrings
of the form 0, 10, 11, and so the way vHiL  gets  updated has no effect
upon the way that vHi + 1L gets updated.  

Now we will show that gIYi
t+1M ! yHvHiLL for each i ¥ 1. We will do

this by considering the different forms that vHiL can take. 
Let us begin by considering the case where i ¥ 2. In this case, we 

have vHiL ! AgIYi-1
t MEeAgIYi

tME-, where 

gIYi-1
t M, gIYi

tM œ 810, 110, 101, 01<. 
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First,  let  us  consider  the  case  where  gIYi-1
t M œ 8101, 01<  (in  other

words,  let  us  consider  the  case  where  Yi-1
t œ 83, 4<).  In  this  case

AgIYi-1
t MEe ! 1.  Now  we  shall  verify  that,  for  each  possible  value  of

Yi
t œ 81, 2, 3, 4<, we have that gIYi

t+1M ! yHv HiLL: 
1. If Yi

t ! 1 then gHYi
tL ! 10 ! @gHYi

tLD- and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since 

Yi-1
t œ 83, 4< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 1L ! f H4, 1L ! 2, and so 

gIYi
t+1M ! gH2L ! 110 as required. 

2. If Yi
t ! 2 then gHYi

tL ! 110 ! @gHYi
tLD- and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 1110 and so yHvHiLL ! 101. Also, since 

Yi-1
t œ 83, 4< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 2L ! f H4, 2L ! 3, and so 

gIYi
t+1M ! gH3L ! 101 as required. 

3. If Yi
t ! 3 then gHYi

tL ! 101 and @gHYi
tLD- ! 10 and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since 

Yi-1
t œ 83, 4< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 3L ! f H4, 3L ! 2, and so 

gIYi
t+1M ! gH2L ! 110 as required. 

4. If Yi
t ! 4 then gHYi

tL ! 01 and @gHYi
tLD- ! 0 and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since 

Yi-1
t œ 83, 4< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 4L ! f H4, 4L ! 4, and so 

gIYi
t+1M ! gH4L ! 01 as required. 

So  we  have  proved  that  the  result  holds  whenever  i ¥ 2  and
Yi-1

t œ 83, 4<.  Now  let  us  consider  the  case  where  i ¥ 2  and

Yi-1
t œ 81, 2<. Once again we shall verify that, for each possible value

of Yi
t œ 81, 2, 3, 4<, we have gIYi

t+1M ! yHvHiLL:  
1. If Yi

t ! 1 then gHYi
tL ! 10 ! @gHYi

tLD- and so 

vHiL ! @gHYi-1
t LDe@gHHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since 

Yi-1
t œ 81, 2< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 1L ! f H2, 1L ! 4, and so 

gIYi
t+1M ! gH4L ! 01 as required. 
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2. If Yi
t ! 2 then gHYi

tL ! 110 ! @gHYi
tLD- and so 

vHiL ! @gHYi-1
t LDe @g HYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since 

Yi-1
t œ 81, 2< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 2L ! f H2, 2L ! 2, and so 

gIYi
t+1M ! gH2L ! 110 as required. 

3. If Yi
t ! 3 then gHYi

tL ! 101 and @gHYi
tLD- ! 10 and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since 

Yi-1
t œ 81, 2< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 3L ! f H2, 3L ! 4, and so 

gIYi
t+1M ! gH4L ! 01 as required. 

4. If Yi
t ! 4 then gHYi

tL ! 01 and @gHYi
tLD- ! 0 and so 

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 0 and so yHvHiLL ! 10. Also, since 

Yi-1
t œ 81, 2< we shall have that 

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 4L ! f H2, 4L ! 1, and so 

gIYi
t+1M ! gH1L ! 10 as required. 

So we have proved that the result holds whenever i ¥ 2. The proof for
the  case  with  i ! 1  is  the  same,  because  when  i ! 1  we  have

" Yi
t œ 81, 2, 3, 4< that Yi

t+1 ! f I1, Yi
tM and vHiL ! AgIYi

tME-.  
Hence  we  have  shown  that,  when  equation  (B.1)  holds  true  for

some t, we shall have that gIYi
t+1M ! yHvHiLL is true " i ¥ 1, and so, by

equation (B.2), we have that equation (B.1) will also be true for t + 1.
Now  since  equation  (B.1)  is  true  when  t ! 0,  we  can  use  induction
with t to show that equation (B.1) is true for every t ¥ 0. ·

An  equivalent  way  to  state  Lemma  1  is  to  say  that  the  string
xHt + 3L from system 58 can be converted into the state Yt  of the f -cel-
lular  automaton  by  applying  the  replacement  rules  10 Ø 1,  110 Ø 2,
101 Ø 3,  01 Ø 4  (in  a  non-overlapping  way).  Our  next  main  objec-

tive will be to show that, given any binary string b, a state YT  may be
found of the f -cellular automaton, such that b is contained within the
binary  string  obtained  by  applying  the  replacement  rules  1 Ø 0,

2 Ø 0, 3 Ø 1, 4 Ø 1 to YT . (Note that making these replacements has

the  same effect  as  applying  the  function f ÿ

3
v.)  Once  we have  shown

this,  we  have  effectively  proved  our  theorem  because  we  have  that

xHT + 3L  can be  converted into YT  by  applying the  replacement  rules
10 Ø 1,  110 Ø 2,  101 Ø 3,  01 Ø 4.  It  follows  that,  if  xHT + 3L  is
taken  and  the  replacement  rules  10 Ø 0,  110 Ø 0,  101 Ø 1,  01 Ø 1
are  applied  then  the  resulting  binary  string  will  contain  b  as  a  sub-
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string.  (This  is  because  applying  the  replacement  rules  10 Ø 1,
110 Ø 2,  101 Ø 3,  01 Ø 4  followed  by  the  replacement  rules  1 Ø 0,
2 Ø 0,  3 Ø 1,  4 Ø 1 has  the  same effect  as  applying  the  replacement
rules 10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1.)

B.1 Analysis of the Diagonals    
Consider the space-time plot of the f -cellular automaton. The top row
of this  space-time plot  is  the  initial  condition of  the  cellular  automa-

ton pattern, which is Y0 ! Y1
0 Y2

0 Y3
0 … ! 14¶.  The subsequent rows

Y1, Y2 .. of this space-time plot show the states of the cellular automa-
ton on the subsequent time steps.  

For  each  n ! 1  let  us  define  the  nth  diagonal
DHnL ! DHnL1 DHnL2 DHnL3 … to  be  such  that  for  each  i ¥ 1,  we  have

DHnLi ! Yi
n+i-2. Essentially DHnL  is  the infinite sequence of characters

from the  space-time  plot  that  is  encountered  by  starting  at  cell  Y1
n-1

and moving diagonally downward and to the right (see Figure B2). 

Figure B2. An illustration of the mapping GbHaL that can be used to determine
diagonals  from  previous  diagonals.  The  vertices  represent  characters  in81, 2, 3, 4<;  the  edges  are  also  labeled  with  characters  in  81, 2, 3, 4<.  Note
that  the  edges  with  one  end in  81, 2<  and  the  other  end in  83, 4<  are  labeled
with both 1 and 3. It can be shown that DHn + 1Li  is the vertex of this graph
arrived  at  by  starting  at  vertex  DHn + 1L1  and  then  traversing  edges  with  la-
bels DHnL2, DHnL3, .., DHnLi in sequence. 

Now we shall  describe how DHn + 1L  can be computed from DHnL.
In particular, we have 

(B.3)
DHn + 1Li+1 ! Yi+1

n+i ! f IYi
n+i-1, Yi+1

n+i-1M !
f HDHn + 1Li, DHnLi+1L ! GDHnLi+1

HDHn + 1LiL
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where  we  define  GbHaL := f Ha, bL,  " a, b œ 81, 2, 3, 4<.  Here  GbHaL  is
the vertex of the network shown in Figure B2, which is arrived at by
starting  at  vertex  a  and  then  traveling  along  an  outwardly  pointing
edge with label b.  

For  an  element  a œ 81, 2, 3, 4<,  we  use  the  notation  f a

3
v  as  short-

hand  to  denote  the  result  of  applying  the  replacement  rules  1 Ø 0,
2 Ø 0, 3 Ø 1, 4 Ø 1 to a. This makes sense because 

a

3
!

0 if a œ 81, 2<
1 if a œ 83, 4<.

In Lemma 2 we shall describe how the diagonals DHnL are periodic
sequences with special properties (see Figure B3). 

Figure B3. An  illustration  of  how  Lemma  2  describes  the  diagonals  of  the
space-time  plot  of  the  f -cellular  automaton.  The  underlined  characters  show
the  repeating  parts  of  the  diagonals.  Note  that  the  fourth  diagonal  onward

has the property that gDHnL
i+2n-3

3
w ! 1 - fDHnLi

3
v. We have illustrated this using

gray lines to pair up entries that get mapped to different values under the f
3
v

operation.

Lemma 2. For each n ¥ 4 we have that the nth  diagonal DHnL of the f -
cellular  automata  space-time  plot  satisfies  the  following  three  condi-
tions:  

1. For each i ¥ 1 we have DHnLi ! DHnLi+2 hHnL, where hHnL ! 2n-3 is equal

to half of the period of DHnL. 
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2. For each i ¥ 1 we have fDHnLi
3

v ! 1 - gDHnLi+hHnL
3

w. 
3. There  is  an  odd  number  of  indices  i œ 81, 2, .., 2 hHnL<  such  that

DHnLi œ 81, 3<  and  there  is  an  odd  number  of  indices
i œ 81, 2, .., 2 hHnL<  such that  DHnLi œ 82, 4<.  (Essentially  this  condition
says  that  the repeating part  of  DHnL  holds  an odd number of  values  in81, 3< and an odd number of values in 82, 4<.)

Proof.   We start  by  showing that  the  lemma holds  true  when n ! 4.
First, note that DH1L ! 1¶. This can easily be seen by examining Fig-

ure  B2  and  noting  that  " i ¥ 1  we  have  that  the  ith  column,

Yi
0, Yi

1, Yi
2, ..  of  the  space-time  plot  has  prefix  4i-1 1.  (This  can  be

proved  by  induction  using  the  facts  that  AYi
t ! 4, Yi+1

t ! 4E fl
Yi+1

t+1 ! 4 and AYi
t ! 1, Yi+1

t ! 4E fl Yi+1
t+1 ! 1.)

Now  that  we  have  DH1L ! DH1L1 DH1L2 DH1L3 … ! Y1
0 Y2

1 Y3
2

.. ! 1¶,  we  can  go  on  to  compute  the  next  diagonals.  The  first  col-
umn  of  the  space-time  plot  has  the  form

Y1
0 Y1

1 Y1
2 .. ! H14L¶ ! DH1L1 DH2L1 DH3L1 .. and so we have that if n is

odd then DHnL1 ! 1 and if n is even then DHnL1 ! 4. 
Now  let  us  compute  DH2L.  We  know  DH2L1 ! 4,  and  from  equa-

tion!(B.3)  we have that  DH2L2 ! GDH1L2 HDH2L1L ! G1H4L ! 2. Also we

get  DH2L3 ! GDH1L3 HDH2L2L ! G1H2L ! 4.  By continuing in this  way it

can easily be seen that DH2L ! H42L¶. Now let us compute DH3L. First,
DH3L1 ! 1.  Now  DH3L2 ! GDH2L2 HDH3L1L ! G2H1L ! 2.  Also

DH3L3 ! GDH2L3 HDH3L2L ! G4H2L ! 1.  Clearly  the  subsequent  charac-

ters of DH3L will be specified by DH2L in a similar way, and since DH2L
has period two we shall have that DH3L ! H12L¶. In a similar way, the
value of DH3L may be used to show that DH4L ! H4322L¶. 

Now we can see  that  n ! 4 satisfies  the  conditions  of  our  lemma.
To see that DH4L satisfies condition 1, note that DH4L ! H4322L¶  has a
period of 4 ! 2 hH4L.  To see that DH4L  satisfies condition 2, note that
DH4L1, DH4L2 œ 83, 4< and DH4L3, DH4L4 œ 81, 2<. To see that DH4L sat-
isfies condition 3, note that the repeating part, 4322, of DH4L contains
an  odd  number  of  entries  in  81, 3<  and  an  odd  number  of  entries  in82, 4<. 

So now that we have established that the result holds for n ! 4, we
can  continue  with  the  proof  by  induction.  Suppose  that  our  lemma
holds true for some n ¥ 4. We shall prove that our lemma also holds
true for n + 1. 

We shall start by showing that DHn + 1L satisfies condition 2. 
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We are assuming that DHnL satisfies condition 1. This means we are

assuming that 2n-2 ! 2 hHnL ! hHn + 1L is equal to the period of DHnL.
It  follows  that  DHnL  is  of  the  form  DHnL ! r¶  where

r œ 81, 2, 3, 4<2 hHnL  is  the  repeating  part  of  DHnL.  Now,  since  we  are
also  supposing  that  DHnL  satisfies  condition  3,  we  have  that  the  se-
quence  DHnL1 DHnL2 .. DHnL2 hHnL  (which  is  equal  to  r1 r2 .. r2 hHnL)  has
an  odd  number  of  entries  in  81, 3<  and  an  odd  number  of  entries  in82, 4<. 

Recall  that  DHn + 1Li+1 ! GDHnLi+1
HDHn + 1LiL.  Now,  by  using  this

fact repeatedly we can get that 

(B.4)
DHn + 1Li+hHn+1L ! GDHnLi+hHn+1L ÈGDHnLi+hHn+1L-1

È ..

ÈGDHnLi+1
HDHn + 1LiL,

where È denotes functional composition.  
Recall that GeHvL is the vertex of the digraph in Figure B2, which is

arrived at by starting at vertex v, and then moving along an edge with
label e. Now this implies that equation (B.4) may be interpreted as de-
scribing  a  graph  walk.  In  particular,  equation  (B.4)  says  that
DHn + 1Li+hHn+1L  is the vertex which is arrived at by starting from ver-
tex DHn + 1Li  (within the graph shown in Figure B2), and then travel-
ing  across  the  edges  with  labels  DHnLi+1,  DHnLi+2, .., DHnLi+hHn+1L
where hHn + 1L := 2Hn+1L-3 ! 2n-2. 

The sequence 

DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L ! DHnLi+1,
DHnLi+2, .., DHnLi+2 hHnL

will be some rotation of the repeating part r  of DHnL.  Hence we have
that sequence DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L  has an odd number of
entries  in  81, 3<  (since  this  sequence  is  a  rotation  of  r,  and  r  has  an
odd number of entries in 81, 3< by our assumption that n satisfies con-
dition 3).  

Recall that DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L  is the sequence of tra-
versed  edges  within  a  walk  W  from  DHn + 1Li  to  DHn + 1Li+hHn+1L,  in
the graph shown in Figure B2. Now since this sequence holds an odd
number  of  entries  in  81, 3<,  we  have  that  the  walk  from DHn + 1Li  to
DHn + 1Li+hHn+1L  involves  crossing  an  odd  number  of  edges  labeled  1
or 3 of the graph shown in Figure B2. However, as seen by examining
Figure B2, a directed edge e of the graph has one end in 81, 2< and the
other end in 83, 4< if and only if we have that e is labeled with 1 or 3.
In other words, " v œ 81, 2, 3, 4< and " e œ 81, 2, 3, 4< we have that 

24 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.1.1



v

3
!

GeHvL
3

ñ e œ 81, 3<.
It follows that 

DHn + 1Li
3

! 1 -
1

3
DHn + 1Li+hHn+1L ,

because DHn + 1Li+hHn+1L  is obtained by taking DHn + 1Li  and doing an
odd number of traversals of edges labeled with 1 or 3 (each such edge

traversal  toggles  the value of  f v

3
v œ 80, 1<  associated with the current

vertex v). Hence we have shown that DHn + 1L satisfies condition 2.  
Now  we  will  show  that  DHn + 1L  satisfies  condition  1.  To  show

this, we will use the key fact: 

(B.5)
v

3
!

v£

3
fl GeHvL ! GeHv£L, " v, v£, e œ 81, 2, 3, 4<.

In other words, the key fact is that if we have a pair of vertices of the
graph shown in Figure B2, which are either both in 81, 2< or else both
in  83, 4<,  then  walking  along  an  edge  labeled  e,  starting  from  either
vertex shall lead to the same destination. This can be seen from exam-
ining Figure B2.  

Now we can use equation (B.5) to prove that DHn + 1L satisfies con-
dition 1 as follows. 

Since DHn + 1L satisfies condition 2, we have " j that 

DHn + 1Lj
3

! 1 -
1

3
DHn + 1Lj+hHn+1L !

1 - 1 -
1

3
DHn + 1Lj+2 hHn+1L .

This implies  

(B.6)
DHn + 1Lj

3
!

1

3
DHn + 1Lj+2 hHn+1L .

Now, note that  

(B.7)DHn + 1Lj+1 ! GDHnLj+1
IDHn + 1LjM.

In a similar way, we also have  

(B.8)DHn + 1Lj+2 hHn+1L+1 ! GDHnLj+2 hHn+1L+1
IDHn + 1Lj+2 hHn+1LM.
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Now  since  DHnL  satisfies  condition  1  (by  assumption),  we  have  that
DHnL  has  period  hHn + 1L ! 2 hHnL  and  so  we  have
DHnLj+2 hHn+1L+1 ! DHnLj+1.  We  can  use  this  fact  to  rewrite  equa-

tion!(B.8) as  

(B.9)DHn + 1Lj+2 hHn+1L+1 ! GDHnLj+1
IDHn + 1Lj+2 hHn+1LM.

Now, since equation (B.6) gives us that 

DHn + 1Lj
3

!
1

3
DHn + 1Lj+2 hHn+1L ,

we  may  use  equation  (B.5)  to  imply  that  GDHnLj+1
IDHn + 1LjM !

GDHnLj+1
IDHn + 1Lj+2 hHn+1LM.  Now  we  can  make  substitutions  using

equations  (B.7)  and  (B.8)  to  obtain  that  DHn + 1Lj+1 !
DHn + 1Lj+1+2 hHn+1L, which is our desired result. Since this result holds

for  any  j,  we  have  essentially  proved  that  DHn + 1L  satisfies  condi-
tion!1.  

Now we  will  show that  DHn + 1L  satisfies  condition  3.  For  an  ele-
ment  e œ 81, 2, 3, 4<  let  us  define  SHeL ! 8geHvL : v œ 81, 2, 3, 4<<  to  be
the set of all  different destinations in Figure B2 which can be arrived
at by starting at some vertex v and then traveling along an edge with
label  e.  For  example,  SH1L ! 82, 4<  because  G1H1L ! G1H2L ! 4  and
G1H3L ! G1H4L ! 2.  Now it  can  easily  be  checked  that  we  also  have
SH2L ! 82, 3<, SH3L ! 82, 4<, and SH4L ! 81, 4<. 

Now  notice  that  " e œ 81, 2, 3, 4<  we  have  that  SHeL  has  two  ele-
ments,  one  of  which  is  in  81, 2<,  and  the  other  of  which  is  in  83, 4<.
The repeating part of DHn + 1L has the form: 

DHn + 1L1 DHn + 1L2 … DHn + 1LhHn+1L DHn + 1LhHn+1L1 ..

DHn + 1L2 hHn+1L.
Now, for each i œ 81, 2, .., hHn + 1L< we have that 

(B.10)DHn + 1Li ! GDHnLi HDHn + 1Li-1L,
by equation (B.3). Also, since DHnL has period hHn + 1L we have  

(B.11)
DHn + 1LhHn+1L+i ! GDHnLhHn+1L+i

IDHn + 1LhHn+1L+i-1M !
GDHnLi IDHn + 1LhHn+1L+i-1M.

Now  it  follows  from  equations  (B.10)  and  (B.11)  that
DHn + 1Li œ SHD HnLiL  and  DHn + 1LhHn+1L+i œ SHDHnLiL.  Moreover,  since
DHn + 1L  satisfies  condition  2,  we  have  DHn + 1Li ! DHn + 1LhHn+1L+i.
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Since SHeL holds precisely two elements, for each e œ 81, 2, 3, 4< it fol-
lows that SHDHnLiL ! 9DHn + 1Li, DHn + 1LhHn+1L+i=. 

We  have  shown  that  DHnLi  generates  the  pair

SHDHnLiL ! 9DHn + 1Li, DHn + 1LhHn+1L+i=  of  values  within  the  repeating
part of DHn + 1L.  Note that the sets SHaL : a œ 81, 2, 3, 4<  have the fol-
lowing properties:  

1. If a œ 81, 3< then both entries of SHaL are in 82, 4<. 
2. If a œ 82, 4< then one of the entries of SHaL is in 81, 3< and the other en-

try of SHaL is in 82, 4<. 
Now let Ln denote the number of entries in 81, 3< that occur within

the repeating part of DHnL, and let Mn  denote the number of entries in82, 4< that occur within the repeating part of DHnL. Since each entry a
in the repeating part of DHnL generates both entries of SHaL within the
repeating  part  of  DHn + 1L,  we  have  that  statements  1  and  2  give  us
the following equations: 

Ln+1 ! Mn

Mn+1 ! Ln + Mn

Since we are  assuming that  DHnL  satisfies  condition 3,  we are  assum-
ing  that  Ln  and  Mn  are  odd.  It  hence  follows  from  the  given  equa-
tions  that  Mn+1  and  Ln+1  are  odd,  and  so  this  shows  that  DHn + 1L
also satisfies condition 3, as required. And so we have shown that, if
DHnL satisfies the lemma then DHn + 1L satisfies the lemma. The result
can thus be proved by induction with n. ·

B.2 Shifting Along Diagonals
Our  main  objective  is  to  find  a  substring  of  a  row of  the  space-time
plot of our f -cellular automaton that transforms into our arbitrary bi-
nary  string  b  when  we  apply  the  substitution  rules  1 Ø 0,  2 Ø 0,
3 Ø 1, 4 Ø 1. Lemma 3 is crucial in this regard because it shows how
the properties of the diagonals can be used to move around the space-
time plot and find different substrings that yield different outputs un-
der the 1 Ø 0, 2 Ø 0, 3 Ø 1, 4 Ø 1 operations.  

Each substring Yi
t Yi+1

t .. Yj
t generates a substring 

Yi
t

3

Yi+1
t

3
..

Yj
t

3

when  the  1 Ø 0,  2 Ø 0,  3 Ø 1,  4 Ø 1  substitutions  are  applied.
Lemma  3  allows  us  to  take  such  a  substring  Yi

t Yi+1
t .. Yj

t,  and  con-
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struct another substring Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD. The last k - 1 char-

acters of this new string are equal to those of the original string. How-
ever,   

Yk+S @kDt+S @kD
3

! 1 -
Yk

t

3
.

By  repeatedly  using  this  construction  a  substring  may  be  built  that

gets  converted  into  our  arbitrary  binary  string  b  by  the  f ÿ

3
v  opera-

tion.  The  idea  is  to  keep  constructing  new strings  and increasing  the
length of the run of rightmost characters that agree with b  when the

f ÿ

3
v operation is applied.  

Lemma 3.  Let  Yi
t Yi+1

t .. Yj
t  be  a  substring  of  a  row  of  the  space-time

plot  of  the  f -cellular  automaton,  with  t ¥ j + 2.  Now  suppose

k œ 8i, i + 1, .., j<.  Consider  the substring Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD  of

a  row  of  the  space-time  plot,  which  is  obtained  by  moving

S@kD := 2t-k-1 places toward the bottom right. Now we have   

Yk+S @kDt+S @kD
3

! 1 -
Yk

t

3

and  

Ym+S@kDt+S@kD ! Ym
t , " m œ 8k + 1, k + 2, .., j<.

Proof. Recall that DHnLj ! Yj
n+j-2. It follows that the cell Yj

t  lies upon

the diagonal DHnL where n + j - 2 ! t, and so n ! 2 + t - j. Since 

(B.12)t ¥ j + 2,

we have that n ¥ 4. Now, for each k œ 8i, i + 1, .., j< we have that the

cell  Yk
t  is  part  of  the  diagonal  N@kD := 2 + t - k.  Since  k § j  we  shall

have that equation (B.12) implies N@kD ¥ n + j - 2 ¥ 4.  

According to Lemma 2 we have that  the diagonal  DHN@kDL,  which

Yk
t  is part of, has half-period h@N@kDD ! 2N@kD-3 ! 2t-k-1. So now we

let S@kD ! h@N@kDD ! 2t-k-1 and Lemma 2 gives us that 

Yk+S@kDt+S@kD
3

!
DHN@kDLk+h@N@kDD

3
! 1 -

DHN@kDLk
3

! 1 -
Yk

t

3
.
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Moreover,  " m œ 8k + 1, k + 2, .., j<  we  shall  have  that  Ym
t  lies

upon  the  diagonal  DHN@mDL  where  4 § N@mD ! 2 + t - m < N@kD.
Now  it  follows  (from  Lemma  2)  that  the  diagonal  DHN@mDL  has  pe-

riod  2 h@N@mDD ! 2ä2N@mD-3 ! 2N@mD-2 ! 2t-m.  Since  m > k  and

S@kD ! 2t-Hk+1L, we have that the period 2 h@N@mDD of DHN@mDL will be
a multiple of S@kD.  So we have that moving S@kD  places to the bottom
right, starting from Ym

t , will correspond to moving along the diagonal

that Ym
t  lies upon, a number of places that is a multiple of the period

of  this  diagonal.  It  follows  that  this  movement  will  effectively  leave
the  value  of  the  cell  unchanged.  In  other  words,  we  can  write
S@kD ! q 2 h@N@mDD,  for  some  positive  integer  q.  We  then  have  that

Ym+S@kDt+S@kD ! DHN@mDLm+q2h@N@mDD ! DHN@mDLm ! Ym
t . ·

B.3 Completing the Proof    
We shall describe how to construct a sequence wH0L, wH1L, .., wHLL of
substrings of  the space-time plot  of  our f -cellular automaton. The fi-
nal string wHLL has the property that  

wHLL1
3

! b1,
wHLL2

3
! b2, ..,

wHLLL
3

! bL.

Once  we  have  constructed  this  wHLL  we  can  complete  our  proof  be-
cause Lemma 7 implies that there is a substring xHt£La x Ht£La+1 .. x Ht£Lb
of  system  58  that  corresponds  to  wHLL,  and  this  substring  is  trans-
formed  into  b  by  the  replacement  rules  10 Ø 0,  110 Ø 0,  101 Ø 1,
01 Ø 1.  Before  we  discuss  how  to  construct  this  sequence  of  strings
wHmL, let us make some definitions.  

For  a  nonempty  string  s œ 81, 2, 3, 4<L,  we  say  that  s  is  repre-
sentable  when  there  exists  i, j, t  such  that  t ¥ j + 2 ¥ i + 2  and

s ! Yi
t Yi+1

t .. Yj
t. Essentially, we say that s is representable when it cor-

responds to a substring of a row of the space-time plot of the f -cellu-
lar  automaton.  The additional  condition that  t ¥ j + 2 ¥ i + 2 ensures
that  each  part  of  this  substring  is  contained  within  a  diagonal  DHnL
for n ¥ 4. 

Also, for m œ 80, 1, .., L< we say that such a string s ! s1 s2, .. sL
is m-matching with b when we have that 

sL-m+1

3
! bL-m+1,

sL-m+2

3
! bL-m+2, ..,

sL

3
! bL.
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Essentially we say that s is m-matching with b when the m last charac-

ters of s are converted to the last m characters of b by the f ÿ

3
v opera-

tion.  
Our  goal  is  to  construct  a  string  wHLL  that  is  representable  and

L-matching  with  b.  If  we  can  achieve  this  then  we  have  essentially
completed  our  proof,  because  wHLL  will  correspond  with  a  substring
of  a  row of  the  space-time plot  of  the  f -cellular  automata,  and wHLL
will be converted to b when we apply the f ÿ

3
v operation to each of its

characters. 
Now  let  us  describe  how  we  construct  our  sequence

wH0L, wH1L, .., wHLL  of  strings.  Our  initial  string  is  defined  as

wH0L ! Y1
2+L Y2

2+L .. YL
2+L.  It  is  easy  to  see  that  wH0L  is  representable

because,  letting  i ! 1,  j ! L,  and  t ! 2 + L,  we  have

wH0L ! Yi
t Yi+1

t .. Yj
t, where t ¥ j + 2 ¥ i + 2. 

We  can  also  say  (somewhat  vacuously)  that  wH0L  is  0-matching
with b.  What  this  means is  that  the final  zero characters  of  wH0L  are

converted to the final zero characters of b by the f ÿ

3
v operation. Any

string is 0-matching with b, and so this statement is not really mean-
ingful, but it serves as a base for induction. 

Suppose that m œ 80, 1, .., L - 1<  and wHmL,  are such that wHmL  is
representable and m-matching with b. Now we will show how to con-
struct  a  string  wHm + 1L  that  is  representable  and  Hm + 1L-matching
with b. We construct wHm + 1L from wHmL as follows: if

(B.13)
wHmLL-m

3
! bL-m

then  we  simply  let  wHm + 1L ! wHmL.  In  this  case  wHm + 1L  clearly  is
representable and Hm + 1L-matching.  

On the other hand, if 

wHmLL-m

3
! bL-m,

then we must have  

(B.14)1 -
wHmLL-m

3
! bL-m,

and in this case our construction of wHm + 1L is more elaborate.  
In particular, since wHmL is representable, we can write 

wHmL ! wHmL1 wHmL2 .. wHmLL ! Yi
t Yi+1

t .. Yj
t,

        

        
    

30 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.1.1



where  t ¥ j + 2 ¥ i + 2.  Note  that  Yp-1+i
t  corresponds  to  wHmLp  for

any  p.  Now  let  us  define  k ! L - m - 1 + i.  Clearly  Yk
t ! YL-m-1+i

t

corresponds to wHmLL-m.  

Now since Yi
t Yi+1

t .. Yj
t  is such that t ¥ j + 2 and k œ 8i, i + 1, .., j<,

we  may  apply  Lemma  3  and  define  wHm + 1L  as  wHm + 1L !
Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD, where S@kD ! 2t-k-1. 

Now we  will  show that  wHm + 1L  (defined  in  this  way)  is  Hm + 1L-
matching with b. According to Lemma 3, we shall have that 

(B.15)
Yk+S@kDt+S@kD

3
! 1 -

Yk
t

3

and  

(B.16)Yk+1
t Yk+2

t .. YL
t ! Yk+1+S@kDt+S@kD Yk+2+S@kDt+S@kD .. YL+S@kDt+S@kD .

Since  Yk
t  corresponds  to  wHmLL-m  and  Yk+S@kDt+S@kD  corresponds  to

wHm + 1LL-m, we have that equations (B.14) and (B.15) imply

(B.17)

wHm + 1LL-m

3
!

Yk+S@kDt+S@kD
3

!

1 -
Yk

t

3
! 1 -

wHmLL-m

3
! bL-m.

Moreover, since w HmL is m-matching with b we have 

(B.18)

bL-m+1 bL-m+2 .. bL !
wHmLL-m+1

3

wHmLL-m+2

3
..

wHmLL
3

!
Yk+1

t

3

Yk+2
t

3
..

YL
t

3
!

Yk+1+S@kDt+S@kD
3

Yk+2+S@kDt+S@kD
3

..
YL+S@kDt+S@kD

3
!

wHm + 1LL-m+1

3

wHm + 1LL-m+2

3
..

wHm + 1LL
3

,
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where we use equation (B.16) to go from the third line to the fourth
line.  Together  equations  (B.17)  and  (B.18)  imply  that  wHm + 1L  isHm + 1L-matching with b.  

To  see  that  wHm + 1L ! Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD  is  representable,

note  that  we  can  define  t£ ! t + S@kD,  i£ ! i + S@kD,  and  j£ ! j + S@kD.
Now  clearly  wHm + 1L ! Yi£

t£ Yi£+1
t£ .. Yj£

t£ ,  where  t£ ¥ j£ + 2 ¥ i£ + 2

(because t ¥ j + 2 ¥ i + 2). This shows that wHm + 1L is representable. 
So now we have shown that wH0L  is  representable and 0-matching

with b. Also, we have shown that " m œ 80, 1, .., L - 1< we have that
if wHmL is representable and m-matching with b then we can construct
a string wHm + 1L that is representable and Hm + 1L-matching with b. It
therefore follows, by induction with m, that we can construct a string

wHLL œ 81, 2, 3, 4<L that is representable and L-matching with b. 
Since wHLL  is  representable,  it  corresponds to a substring of a row

of  the  space-time  plot  of  our  f -cellular  automaton,  in  the  sense  that

there exist i*, j*, and t* such that wHLL ! Yi*
t* Yi*+1

t* .. Yj*
t* . According to

Lemma  1,  there  is  a  substring  xHt* + 3La xHt* + 3La+1 .. xHt* + 3Lb  of
xHt* + 3L that is converted into wHLL by applying the replacement rules
10 Ø 1, 110 Ø 2, 101 Ø 3, 01 Ø 4. Moreover, since wHLL is L-match-
ing with b we have that wHLL gets converted into b by the substitution
operations  1 Ø 0,  2 Ø 0,  3 Ø 1,  4 Ø 1.  It  follows  that  the  substring
xHt* + 3La xHt* + 3La+1 .. xHt* + 3Lb  is transformed directly into b by the
replacement  rules  10 Ø 0,  110 Ø 0,  101 Ø 1,  01 Ø 1,  which  com-
pletes the proof. ·
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