
Exploring the Space of Substitution Systems

Richard Southwell*
Chris Cannings

School of Mathematics and Statistics
University of Sheffield, Hicks Building, Hounsfield Road
Sheffield, S37 RH, United Kingdom
*r.southwell@shef.ac.uk

Substitution systems, where strings are rewritten according to local
rules, have many applications. They are used to model the development
of plants, as well as to generate music and architectural designs. Many
substitution systems can generate highly complex patterns using only
simple rules. This feature can make substitution systems difficult to an-
alyze mathematically. A different approach, pioneered by Stephen
Wolfram, is to use computer searches to reveal simple systems with in-
teresting properties. This approach is used to explore a class of systems
we call symmetric sequential substitution systems within which a string
is repeatedly updated by applying rewrite rules in a non-overlapping
way. In this paper several simple examples of these systems are exhib-
ited that produce complex behavior. The dynamics of several of these
systems are studied and a system is exhibited that is computationally
universal. Applications of symmetric sequential substitution systems are
discussed, such as compression and the evaluation of numerical func-
tions.

1. Introduction

The idea behind substitution systems is to repeatedly perform string
rewrite operations. These systems have been studied before under a
variety of names by different people. Early work focused upon neigh-
borhood independent substitution systems, where each character is re-
placed in a way that does not dependent upon its surroundings. For
example, Thue [1] and Marston Morse [2] both studied the neighbor-
hood independent substitution system with rules 0 Ø 01, 1 Ø 10.
Later, Astrid Lindenmayer popularized substitution systems by show-
ing how they can be given geometric interpretations and used to study
the development of plants and algae [3, 4].

Lindenmayer also considered more general “neighbor-dependent”
substitutions systems, where the way a substring is rewritten depends
upon its surroundings. These kinds of systems have subsequently
found artistic applications such as the generation of music [5], archi-

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 pp g
tecture [6], and computer graphics [7]. Their complexity makes many
neighbor-dependent substitution systems difficult to analyze mathe-
matically. One fruitful way to study such complex substitution sys-
tems is to take an experimental approach—using computer simula-
tions to get accurate pictures of the dynamics. In [8], Wolfram uses
simulations to identify some of the simplest substitution systems that
generate complex behavior.

In this paper, we take a similar experimental approach toward a
different class of substitution systems. A symmetric sequential substi-
tution system is specified by a set 8a1 Ø b1, a2 Ø b2, … , an Ø bn< of
replacement rules, where 8a1, a2, … , an< is a prefix-free set (i.e., no
string ai is a prefix of a string aj for i ! j). A replacement rule ai Ø bi

converts a string ai to a string bi. A string is updated under such a sys-
tem by applying the replacement rules from the left in a non-overlap-
ping way.

In particular, a string x is updated by scanning across it from left
to right. Whenever a substring ai is encountered such that ai Ø bi is a
replacement rule, ai gets replaced with bi, and the scan then continues
from the immediate right of the newly replaced substring. When the
scan reaches the end of the string, the update is complete (see Fig-
ure!1).

Figure 1. A space-time plot showing the dynamics of the initial string 01111
over the first four time steps under replacement rules 80 Ø 11, 10 Ø 0,
11 Ø 01<. The initial string is shown at the top and time reads downward.
We have used lines to indicate how the strings generate one another; these
will be omitted in the subsequent figures.

Using computer searches, we find simple examples of symmetric se-
quential substitution systems that generate highly complex patterns.
We also exhibit a relatively simple symmetric sequential substitution
system that is computationally universal, that is, it is capable of simu-

2 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

y p y p

lating any computer program. After demonstrating complexity, we
show several symmetric sequential substitution systems that can be
used to perform arithmetic. We also exhibit a class of systems that are
time reversible in a very natural way, and we discuss how these sys-
tems can be used for data compression.

2. The Behavior of the Simplest Rules

There are 216 systems of the form 80 Ø b1, 10 Ø b2, 11 Ø b3< with
b1, b2, and b3 taking values in 80, 1, 00, 01, 10, 11<. This set of sim-
ple rules is a good starting point for our exploration.

We examined space-time plots of each of these 216 rules running,
with 0 as the initial condition. Several different kinds of behavior
were observed. First, 108 of the rules caused the string to reach a
fixed point. Also 21 of the rules caused the string to become periodic
(the highest period was six). Thirteen of the rules cause the string
length to grow linearly with time (creating simple patterns). The re-
maining 74 rules caused the string’s length to grow exponentially.
Some of these systems have regularities or nested structures that allow
the long-term dynamics to be predicted (e.g., the rule in Figure 2, left;
see Theorem 1). However, other systems produce more complex pat-
terns (e.g., the rule in Figure 2, right). The rapid growth rates of the
strings make it difficult to say whether the patterns produced by these
systems are truly complex, or whether some fractal structure is actu-
ally being produced. Let r s denote the concatenation of strings r and

s, and let rk denote the string obtained by concatenating together k
copies of the string r.

Figure 2. The left rule shows a space-time plot of the system with rules80 Ø 01, 10 Ø 00, 11 Ø 0< evolving over the first 12 updates, starting with
the initial condition 0. The right rule shows a space-time plot of the system
with rules 80 Ø 10, 10 Ø 01, 11 Ø 10< evolving over the first 19 updates.

Exploring the Space of Substitution Systems 3

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Theorem 1. Let y HtL denote the binary string obtained by evolving a
system with rules 80 Ø 01, 10 Ø 00, 11 Ø 0< (Figure 2, left) for t time
steps, starting with the initial condition y H0L ! 0. Now, for each inte-
ger T ¥ 3 we have that:

y H4 TL ! 01 a H1L b H1L aH2L bH2L .. aH2 T - 3L bH2 T - 3L 0m HTL
y H4 T + 1L ! 01 a H1L b H1L aH2L bH2L ..

aH2 T - 3L bH2 T - 3L aH2 T - 2L 1 H01Lm HTL-2

y H4 T + 2L ! 01 a H1L b H1L aH2L bH2L ..
aH2 T - 2L bH2 T - 2L 02 m HTL-4 1

y H4 T + 3L ! 01 a H1L b H1L aH2L bH2L ..
aH2 T - 2L bH2 T - 2L aH2 T - 1L H10L2 m HTL-6 11

where aHkL! 02k+1, bHkL! 1 H01L2k-1 and mHTL! I37ä4T+704Më192.
(The proof to Theorem 1 is given in Appendix A.)

We also investigated the dynamics of our 216 rules when the initial

condition is the string 0100, consisting of 100 zeros. Under this initial
condition, the system with rules 80 Ø 10, 10 Ø 01, 11 Ø 1< produces
particularly complex behavior (Figure 3, left). Theorem 2 claims that
when the initial condition is an infinite string of zeros, this system pro-
duces strings of arbitrary complexity in the sense that, given any bi-
nary string b, the system may be evolved for a sufficiently long period
of time, the replacement rules 10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1
may be applied, and b will be contained in the resulting string.

Figure 3. The left shows a space-time plot of the pattern produced by the sys-
tem with rules 80 Ø 10, 10 Ø 01, 11 Ø 1<, starting with a string of zeros
(light gray and black represent 0 and 1, respectively). If the substitutions
10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1 are applied to each row of the pattern on
the left (excluding the top row), then the pattern shown on the right is ob-
tained. Theorem 2 states that if this process is extended for sufficiently many
time steps, then every binary string will eventually appear within a row of the
pattern on the right.

4 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Theorem 2. Let xHtL denote the binary string obtained by evolving a
system with rules 80 Ø 10, 10 Ø 01, 11 Ø 1< for t time steps, starting
with initial condition xH0L ! 0¶. Now if b is any finite binary string,
then there exists a t such that b is a substring of the string obtained
by taking xHtL and then applying the replacement rules 10 Ø 0,
110 Ø 0, 101 Ø 1, 01 Ø 1. (The proof to Theorem 2 is given in Ap-
pendix B.)

3. Systems Involving More than Two Symbols

There are many systems using three symbols with complex behavior
(see Figure 4). Some of these produce random-looking patterns, while
others produce more complicated patterns that hold a mixture of
ordered and disordered regions (much like class 4 cellular au-
tomata![9]).

Wolfram’s Principle of Computational Equivalence [8] states that
whenever the pattern produced by a computation is not obviously sim-
ple, that computation will almost always be as complex as any other
computation. This principle suggests that some of the complex sys-
tems we have already discussed (such as those shown in Figure 4)
could be computationally universal (in the sense that they can simu-
late any single-taped Turing machine). Although we have been unable
to prove that any symmetric sequential substitution system with three
or less symbols is computationally universal, we have been able to
construct a symmetric sequential substitution system with nine sym-
bols that is provably computationally universal (shown in Figure 5).

Figure 4. Space-time plots of two systems that grow complex patterns from a
single cell. The pattern on the left has a random-looking growth rate. The pat-
tern on the right holds a mixture of ordered and disordered regions.

Exploring the Space of Substitution Systems 5

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Figure 5. A space-time plot of the simplest known computationally universal
Turing machine [10]. The rules are shown at the top. The middle shows the
evolution of the system over seven time steps. At the bottom is a set of re-
placement rules for a symmetric sequential substitution system that emulates
this Turing machine directly.

Wolfram’s exploration of the simplest Turing machines led to the
conjecture [8] that the 2-state, 3-symbol Turing machine shown at the
top of Figure 5 is computationally universal. In May 2007, Wolfram
offered a $25,000 prize for a proof or disproof of the universality of
this Turing machine. In October 2007, Alex Smith won the prize by
proving that the Turing machine is universal [10]. Our computation-
ally universal symmetric sequential substitution system was designed
to emulate the dynamics of this Turing machine directly.

As Figure 5 depicts, the tape of the Turing machine has three differ-
ent symbols (represented as white, light gray, and dark gray) and the
machine can take two states (represented by an arrow pointing up
and an arrow pointing down). The rules at the top of Figure 5 show
how this Turing machine rewrites the current symbol, changes state,
and moves in response to the current state and tape symbol under the
head. To emulate this Turing machine, we introduced nine characters
to represent all the possible state-symbol combinations that could be
associated with a cell. For example, a white box with an arrow point-
ing upward inside it represents a cell of the tape with the “white” sym-
bol written upon it, that is, occupied by the head of Turing machine
in the “up” state. The symmetric sequential substitution system with
nine characters that uses the 18 replacement rules given at the bottom
of Figure 5 will emulate the dynamics of the universal Turing machine
directly. When the system is updated, only one of the replacement
rules will be applied, and this replacement will effectively move the

6 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 pp p y
head and alter the tape symbols in accordance with the rules of the
universal Turing machine.

4. Performing Multiplication and Other Functions

The way strings change under a symmetric sequential substitution
system is similar to the way that cells divide and differentiate in a
growing organism. Many organisms are able to regulate their size—
growing to a certain limit and then stopping. Many symmetric sequen-
tial substitution systems share this property. In fact, some systems can
effectively do arithmetic in that they cause a row of n light gray
blocks to change into a string of length f HnL, which subsequently re-

mains fixed. Figure 6 shows examples with f HnL ! 6 n and f HnL ! 7 n.

Figure 6. Two systems that effectively perform multiplication. The system on
the left causes each string of n > 1 light gray blocks to grow into a fixed
string of length 6 n. The system on the right causes each string of n > 1 light
gray blocks to grow into a fixed string of length 7 n.

The systems shown in Figure 6 were found by doing computer
searches through millions of systems. The system at the left in Fig-
ure!6 behaves in quite a simple way. The dynamics of the system at
the right in Figure 6 are less trivial. This system seems to produce very
complex patterns despite accurately evaluating 7 n at least up to
n ! 10 000. It appears very difficult to prove this system evaluates 7 n
for arbitrary n. Table 1 shows systems that can evaluate many other
functions. Many of these systems would be very difficult to design,
but they can be found quickly by doing computer searches.

Exploring the Space of Substitution Systems 7

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

f HnL Replacement Rules

3 n 80 Ø 01, 10 Ø 10, 11 Ø 1<
4 n 80 Ø 02, 10 Ø 01, 11 Ø 11, 12 Ø 11, 20 Ø 20,

21 Ø 1, 22 Ø 11<
5 n 80 Ø 02, 10 Ø 10, 11 Ø 22, 12 Ø 12, 20 Ø 10,

21 Ø 21, 22 Ø 1<
11 n 80 Ø 01, 10 Ø 12, 11 Ø 2, 12 Ø 20, 20 Ø 12,

21 Ø 01, 22 Ø l<

n mod 3 80 Ø 1, 10 Ø 20, 11 Ø 20, 12 Ø 2, 20 Ø 01,
21 Ø l, 22 Ø l<

f n

2
v 80 Ø 1, 10 Ø 10, 11 Ø 02, 12 Ø 1, 20 Ø 02,

21 Ø 2, 22 Ø l<

Table 1. The rules behind symmetric sequential substitution systems, which
cause each initial string of n zeros to evolve toward a fixed string of length
f HnL. Note that l denotes the empty string; 22 Ø l, for example, is equivalent
to deleting 22.

5. Reversible Systems

We say that a symmetric sequential substitution system is completely
reversible upon a set of strings S when the global update function as-
sociated with the system is a one-to-one mapping from S onto itself.
In such a system, each member of S has a unique predecessor. For ex-
ample, the system shown in Figure 7 is completely reversible upon the
set S ! 80, 1<*ä 82< of all binary strings with a 2 appended. (Here A*

denotes the set of all strings that can be formed from elements of
the set A, and ä denotes the Cartesian product.) The unique predeces-
sor of a string x in S can be found by applying the inverse800 Ø 0, 1 Ø 10, 01 Ø 11, 02 Ø 12, 2 Ø 2< of the rule.

A set of replacement rules R ! 8a1 Ø b1, a2 Ø b2, … , an Ø bn<
forms a symmetric sequential substitution system provided8a1, a2, … , an< is a prefix-free set. We define the inverse of R to be8b1 Ø a1, b2 Ø a2, … , bn Ø an<. Now suppose that string x is up-
dated under system R to become system y. To guarantee that the in-
verse of R sends y to x, we need rule R to meet two conditions:

1. The set 8b1, b2, … , bn< is prefix-free.

2. The string x can be constructed by joining together substrings from8a1, a2, … , an<, in some combination.

8 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Figure 7. A completely reversible system. Any binary string ending with a 2
can be evolved forward or backward (by inverting the rule) under this system
in a reversible way.

Condition 1 is required so that the inverse of R is a well-defined sym-
metric sequential substitution system. Condition 2 is required so that
each part of x is operated upon when it is updated. For example, the
rule R£ ! 80 Ø 00, 10 Ø 1, 11 Ø 01< is a symmetric sequential substi-
tution system that satisfies condition 1, but when we update the string
x ! 1 under R£ we get y ! 1, whereas when we update y ! 1 under
the inverse of R£ we get 10 ! x. This happens because condition 2 is
not satisfied.

Consider the set of rules of the form 80 Ø b1, 10 Ø b2, 11 Ø b3,
12 Ø 02, 2 Ø 2< such that 8b1, b2, b3< ! 81, 00, 01<. Each of these
rules satisfies conditions 1 and 2 with respect to each string in80, 1<* ä 82<. It follows that each of these six systems is completely
reversible upon 80, 1<* ä 82< (the system shown in Figure 7 is an ex-
ample).

There are many completely reversible systems using more symbols
(see Figure 8). Some of these rules cause the initial strings to enter
high period orbits that include fractal patterns. Other systems cause
the initial string to shrink down until a certain point and then expand
out again so that the space-time plot is shaped like an hourglass
(Figure 8, left). These kinds of rules are interesting because the dynam-
ics often seem to go through a transition from ordered to random-
looking behavior at the point of minimal length.

Exploring the Space of Substitution Systems 9

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Figure 8. Two systems that are completely reversible for any input in80, 1, 2<* ä 83<. The system on the left makes the orderly initial string shrink
down to a small size and then blow up into a more complicated pattern. The
system on the right preserves the length of the initial string and so is periodic.

The completely reversible systems we have defined make a useful
addition to the set of studied models of reversible computation. There
are many reasons to study reversible computation. For example,
according to Landauer’s principle [11], every time an irreversible com-
putation erases a bit of information, there will be an accompanied dis-
sipation of energy in the form of heat. By using reversible computa-
tion, this phenomenon can be avoided. Reversible cellular automaton
models have become popular models of reversible computation that
have found many applications in the modeling of physical systems
[12] and in cryptography [13]. Our completely reversible symmetric
sequential substitution systems are similar to reversible cellular au-
tomata, in the sense that they are reversible models of computation
that are based upon local interactions.

6. Using Reversible Systems for Compression

Completely reversible symmetric sequential substitution systems pre-
serve information, and so when such rules reduce the length of the
string they are effectively compressing the data [14]. For example,
many inputs to the reversible system in Figure 7 induce hourglass-
shaped space-time plots. It follows that many pieces of data can be
compressed by running the system until the string reaches minimal
length (at which point we have compressed the string as much as pos-
sible under the rule). The compressed data now consists of the resul-
tant string, together with a record of how long the rule has been run

10 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 g g g

for. Given this information, the resultant string may be evolved for
the given time under the inverse of the system to recover the original
data.

In order to implement this kind of scheme, a control algorithm
needs to be specified; this is used to decide how many times the re-
placement rules (or their inverse) should be applied to the string. The
purpose of the control algorithm is to attempt to solve the one-dimen-
sional optimization problem that consists of deciding how long to run
the system (forward or backward in time) in order to minimize the re-
sultant string’s length. A naive control algorithm would consist of
evolving the system until the length of the string stops decreasing, and
then halting. This type of algorithm would work well for the system
shown in Figure 7, but would be inefficient in general. Designing a
control algorithm that works in more general cases is extremely chal-
lenging.

Results from algorithmic information theory [15] imply fundamen-
tal limits upon the performance of this kind of compression scheme.
In algorithmic information theory, the complexity of a string s is the
length of the shortest computer program that generates s (within
some prespecified programming language). A string s is said to be
algorithmically random when its complexity is equal to its length. A
well-known result from algorithmic information theory states that the
majority of strings are algorithmically random. This result implies
that our compression scheme (for any given completely reversible sym-
metric sequential substitution system) will be unable to compress the
majority of strings.

Another result from algorithmic information theory (Chaitin’s in-
completeness theorem [15]) implies that the complexity of most
strings is uncomputable. This implies that in general, there can be no
finite control algorithm that always applies the replacement rules the
correct number of times so as to minimize the length of the output. A
concrete example of a completely reversible symmetric sequential sub-
stitution system for which it is difficult to find an appropriate control
algorithm is shown in Figure 9. In complex scenarios like this,
Wolfram’s Principle of Computational Equivalence [8] implies that
there may be no way to shortcut the evolution of the system and
quickly determine when the length of the string will be minimized.

We wrote a compression procedure based upon completely re-
versible symmetric sequential substitution systems. Since a given re-
versible system can only exploit certain kinds of regularities in the
data, our procedure tests the abilities of many completely reversible
symmetric sequential substitution system to compress the data, and
then outputs the rule that performs best, how long it should be run
for, and the form of the resulting string. When we “test” a given sys-

Exploring the Space of Substitution Systems 11

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Figure 9. A space-time plot of a system that is completely reversible upon80, 1, 2<* ä 83<, where it is difficult to determine how long the system should
be run in order to minimize the length of the string. The initial condition is
21111111111111111111111110222102212223. After 50 updates, the string
is compressed to 0101213. If the system continues to evolve for 50 more time
steps, then the fluctuations in the string length become increasingly rapid. For
example, at time step 150 the string length reaches 1062, at time step 175 the
string length has gone back down to 558, and at time step 250 the string has
length 457 275.

tem, we just evolve the string under the system until its length stops
decreasing; at this point we halt and examine the length of the resul-
tant string. (We use this kind of naive control algorithm because [as
we have already discussed] it is fundamentally difficult to design an
optimal control algorithm.) In order to achieve performance levels
similar to those of popular compression methods such as the Lempel–
Ziv–Welch [16] algorithm, we need to use several thousand reversible
symmetric sequential substitution systems within our procedure. This
makes our procedure too slow for many practical scenarios. More-
over, our procedure can only exploit local patterns within the data,

12 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 p y p p

whereas schemes like Huffman coding [14] are capable of exploiting
non-local patterns.

However, despite its shortcomings there are some areas where our
completely reversible symmetric sequential substitution system-based
scheme has definite applications. When a compression scheme is suc-
cessful, it reveals regularities within the data. This means that com-
pression schemes can be used for data analysis. For example, in [17]
compression-based clustering is used to reveal patterns in genetics, lan-
guages, and astrophysics. Also in [18], Hector Zenil uses a compres-
sion-based method to classify the behavior of cellular automata. To
quote Gregory Chaitin [19], “understanding is compression.” When a
simple completely reversible symmetric sequential substitution system
is found to significantly compress the data, it can be thought of as a
model for that data. Such a model, based upon symmetric sequential
substitution system rules, is attractive because of its simple nature.
Also, the dynamic nature of our compression scheme makes it useful
for analysis. For example, if the same completely reversible symmetric
sequential substitution system is found to compress many data
strings, then you may wish to run the substitution system for different
amounts of time, to extrapolate from the dataset.

7. Conclusion

Our exploration of the space of symmetric sequential substitution sys-
tems has revealed a diverse range of different behavior. We have dis-
cussed applications of these systems such as evaluation of arithmetic
operations and data compression. Our findings are further evidence
that many useful computations can be performed using extremely sim-
ple programs.

One interesting direction for future research is to further study the
dynamics of completely reversible systems and investigate what kinds
of behavior and growth rates completely reversible systems can ex-
hibit. Also, compression schemes based upon completely reversible
systems raise some interesting questions for algorithmic information
theory, because these systems establish a complexity measure similar
to Kolmogorov complexity.

Appendix

A. Proof of Theorem 1

Let FHsL denote the string obtained by updating string s under the re-
placement rules 80 Ø 01, 10 Ø 00, 11 Ø 0<. Now we have yH0L ! 0
and yHtL ! FHy Ht - 1LL, " t ¥ 1. We say that a binary string s œ 80, 1<*

Exploring the Space of Substitution Systems 13

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

is clean when it can be constructed by joining together substrings
from the set 80, 10, 11<, in some combination. The form of a clean
prefix has no effect on the way the remainder of a string gets updated.
In other words, if s is clean, then FHsrL ! FHsLFHrL.

In our case, we have that 01 aH1L ! 01021+1 ! 01 000 !H0L H10L H0L H0L is clean. Moreover, updating this string yields

(A.1)FH01 a H1LL ! FH01 000L ! 01 000 101 ! 01 aH1L bH1L.
Also, " k ¥ 1 we have that the string b HkL a Hk + 1L is clean. Updat-

ing this string yields

(A.2)

FHbHkL aHk + 1LL ! FJH10L2k-1 102k+1+1N !

FJH10L2k
02k+1N ! H00L2k H01L2k+1 !

02k+1+1 H10L2k+1-1 1 ! aHk + 1L bHk + 1L.
Also, " i ¥ 2 " k ¥ 1 we have that the string bHkL 0i is clean, and up-

dating bHkL 0i yields

(A.3)
FIbHkL 0iM ! FJH10L2k-1 10iN ! FJH10L2k

0i-1N !

H00L2k H01Li-1 ! 02k+1 1 H01Li-2 ! aHk + 1L 1 H01Li-2.

We can verify that our result gives the value of yH12L when T ! 3
correctly by computing yH12L directly (also note that yH12L corre-
sponds to the bottom row of the space-time plot shown in Figure 2,
left). Direct computation yields

(A.4)

yH12L !
010 001 010 000 010 101 010 000 000 001 010 101 Ö

010 101 010 000 000 000 000 000 !
yH4ä3L ! 01 aH1L bH1L aH2L bH2L aH3L bH3L 016

(where mH3L ! 16), as required.
So the equation for yH4 TL where T ! 3 holds. Now, we shall use

induction. For T ¥ 3, suppose that our result holds true for yH4 TL
in the sense that yH4 TL ! 01 aH1L bH1L aH2L bH2L .. aH2 T - 3L bH2 T - 3L ÿ
0m HTL. Now in this case we have that

yH4 T + 1L ! FHy H4 TLL ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 4L aH2 T - 3LLFIbH2 T - 3L 0m HTLM !
@01 aH1L bH1LD@aH2L bH2LD@aH3L bH3LD ..

@aH2 T - 3L bH2 T - 3LDAaH2 T - 2L 1 H01Lm HTL-2E !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 3L bH2 T - 3L aH2 T - 2L 1 H01Lm HTL-2

14 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

and so our result holds when yH4 T + 1L. Note that here we make use
of equations (A.1), (A.2), and (A.3) to go from the second line to the
third line. Given that our result holds true for yH4 T + 1L, we have

yH4 T + 2L ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 3L aH2 T - 2LLFI1 H01Lm HTL-2M !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 2L bH2 T - 2L H0L2 m HTL-4 1

and so our result holds when yH4 T + 2L. Given that our result holds
true for yH4 T + 2L, we have

y H4 T + 3L ! F H01 a H1LLF Hb H1L a H2LL
F Hb H2L a H3LL ..F Hb H2 T - 3L a H2 T - 2LLF
Ib H2 T - 2L H0L2 m HTL-4 1M ! 01 a H1L b H1L a H2L b H2L a H3L
b H3L .. a H2 T - 2L b H2 T - 2L a H2 T - 1L H10L2 m HTL-6 11

and so our result holds when yH4 T + 3L. Given that our result holds
true for y H4 T + 3L, we have

yH4 T + 4L ! FH01 aH1LLFHbH1L aH2LLFHbH2L aH3LL ..

FHbH2 T - 2L aH2 T - 1LLFIH10L2 m HTL-6 11M !
@01 aH1L bH1LD@aH2L bH2LD@aH3L bH3LD ..

@aH2 T - 1L bH2 T - 1LD 04 mHTL-11 !
01 aH1L bH1L aH2L bH2L aH3L bH3L ..

aH2 T - 1L bH2 T - 1L 0mHT+1L
and so our result holds when yH4 T + 4L ! yH4 HT + 1LL. Here we get
from the second line to the third line using the fact that

mHTL !
37ä4T + 704

192
,

and so 4 mHTL - 11 ! mHT + 1L.
We have shown that the result holds for yH4 TL : T ! 3. We have

also shown that, if T ¥ 3 is such that the result holds for yH4 TL, then
the result holds for yH4 T + 1L, yH4 T + 2L, yH4 T + 3L, and yH4 HT + 1LL.
Our theorem therefore follows by induction with T. ·

B. Proof of Theorem 2

During this proof we shall refer to the symmetric sequential substi-
tution system with replacement rules 80 Ø 10, 10 Ø 01, 11 Ø 1< as

Exploring the Space of Substitution Systems 15

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 y p

system 58 because this is the 58th rule that appears in our enumera-
tion of the rule set.

Let yHsL denote the binary string obtained by applying the replace-
ment rules 80 Ø 10, 10 Ø 01, 11 Ø 1< to binary string s. Now we
shall have that xH0L ! 0¶, and xHtL ! yHxHt - 1LL will be the string ob-
tained by evolving system 58 for t ¥ 1 time steps.

Now we shall define a one-dimensional cellular automaton with
cells indexed with positive integers. The cells take values in81, 2, 3, 4<. We let

Yt ! Y1
t , Y2

t , Y3
t , .. œ 81, 2, 3, 4<¶

denote the state of the cellular automaton at time t ¥ 0. The initial
state is

Y0 ! 14¶ ! 1, 4, 4, 4, ….

The value of cell i ¥ 1 may be determined at time t ¥ 1 using the for-
mula

Yi
t !

f I1, Yi
t-1M if i ! 1

f IYi-1
t-1, Yi

t-1M otherwise,

where the mapping f : 81, 2, 3, 4<2 # 81, 2, 3, 4< is given by the table:

 b

 f Ha, bL 1 2 3 4

 1 4 2 4 1

a 2 4 2 4 1

 3 2 3 2 4

 4 2 3 2 4

From now on we shall refer to this cellular automaton as the
f -cellular automaton. Let us define the mapping g : 81, 2, 3, 4< #80, 1<* such that gH1L ! 10, gH2L ! 110, gH3L ! 101, gH4L ! 01. We
will use g to convert system 58 into the f -cellular automaton. The
way this works is pictured in Figure B1. Lemma 1 states that the
string in system 58 present at time step t + 3 can be obtained by tak-
ing the state of the f -cellular automaton at time t and making the sub-
stitutions 1 Ø 10, 2 Ø 110, 3 Ø 101, 4 Ø 01.

Lemma 1. For each t ¥ 0 we have that

xHt + 3L ! gIY1
t M gIY2

t M gIY3
t M….

16 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Figure B1. An illustration of the relationship between system 58 and the f -cel-
lular automaton. On the left, we show the dynamics of system 58 over the
first seven updates, starting with an initial string of zeros (our initial condi-
tion only holds six zeros in this finite example). At the bottom right of the fig-
ure, we show part of the space-time plot of the f -automaton. Successive rows,

reading downward, correspond to states Y0, Y1, .., Y4 on successive time
steps. The update function f Ha, bL behind this cellular automaton is illustrated
at the top right. In the center, we illustrate the replacement rules that convert
strings from system 58 (generated after three or more updates) to rows of the
space-time plot of the f -cellular automaton. (To do our conversion, we ignore
the bracketed H1L at the end of the third row. This problem does not occur
when 0¶ is our initial condition.)

Proof. For a binary string w œ 80, 1<* of length †w§ > 1, let us define

w- !
w if w†w§ ! 0

w1 w2 .. w†w§-1 if w†w§ ! 1

to be equal to the string obtained by taking w and deleting its last
character, if it is a zero. Also, let us define

we !
l if w†w§ ! 0

1 if w†w§ ! 1

to be equal to the empty string l when w ends in 0, and equal to 1
when w ends in 1. Now clearly, we will have that w is always equal
to the concatenation w ! w- we.

Exploring the Space of Substitution Systems 17

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Let us first consider the case where t ! 0. In this case the states of
system 58 on the first three time steps are:

xH0L ! 0¶

xH1L ! H10L¶
xH2L ! H01L¶ ! 0 H10L¶
xH3L ! 10 H01L¶.

When t ! 0 we have xHt + 3L ! 10 H01L¶ ! gH1L@gH4LD¶ !
gIY1

0M gIY2
0M gIY3

0M… , and so our result holds true when t ! 0. Now
we shall use proof by induction.

Suppose that our result holds for some t ¥ 0, in the sense that

(B.1)xHt + 3L ! gIY1
t M gIY2

t M gIY3
t M…

Now since gIYi
tM ! AgIYi

tME-AgIYi
tMEe, for each i, we shall have that

xHt + 3L ! AgIY1
t ME-AgIY1

t MEeAgIY2
t ME-AgIY2

t MEeAgIY3
t ME-AgIY3

t MEe …

Now " i ¥ 2 let us define the string vHiL œ 80, 1<* such that
vHiL ! AgIYi-1

t MEeAgIYi
tME-. Also, let us define vH1L ! AgIY1

t ME-. Now we
have that

xHt + 3L ! vH1L vH2L vH3L…

is equal to the concatenation of all vHiL.
The important point is that " i we have gIYi

tM œ 810, 110, 101, 01<,
and so AgIYi

tME- has its last character equal to zero.

Now xt+4H0¶L ! yHx Ht + 3LL is equal to the string obtained by ap-
plying the y update operator to xHt + 3L. Now since

xHt + 3L ! vH1L vH2L vH3L…

can be partitioned into parts vHiL that each end with a zero, we have
that

(B.2)xHt + 4L ! yHvH1L v H2L vH3L…L ! yHvH1LL yHvH2LL yHvH3LL….

This is true because each string vHiL can be partitioned into substrings
of the form 0, 10, 11, and so the way vHiL gets updated has no effect
upon the way that vHi + 1L gets updated.

Now we will show that gIYi
t+1M ! yHvHiLL for each i ¥ 1. We will do

this by considering the different forms that vHiL can take.
Let us begin by considering the case where i ¥ 2. In this case, we

have vHiL ! AgIYi-1
t MEeAgIYi

tME-, where

gIYi-1
t M, gIYi

tM œ 810, 110, 101, 01<.

18 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

First, let us consider the case where gIYi-1
t M œ 8101, 01< (in other

words, let us consider the case where Yi-1
t œ 83, 4<). In this case

AgIYi-1
t MEe ! 1. Now we shall verify that, for each possible value of

Yi
t œ 81, 2, 3, 4<, we have that gIYi

t+1M ! yHv HiLL:
1. If Yi

t ! 1 then gHYi
tL ! 10 ! @gHYi

tLD- and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since

Yi-1
t œ 83, 4< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 1L ! f H4, 1L ! 2, and so

gIYi
t+1M ! gH2L ! 110 as required.

2. If Yi
t ! 2 then gHYi

tL ! 110 ! @gHYi
tLD- and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 1110 and so yHvHiLL ! 101. Also, since

Yi-1
t œ 83, 4< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 2L ! f H4, 2L ! 3, and so

gIYi
t+1M ! gH3L ! 101 as required.

3. If Yi
t ! 3 then gHYi

tL ! 101 and @gHYi
tLD- ! 10 and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since

Yi-1
t œ 83, 4< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 3L ! f H4, 3L ! 2, and so

gIYi
t+1M ! gH2L ! 110 as required.

4. If Yi
t ! 4 then gHYi

tL ! 01 and @gHYi
tLD- ! 0 and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since

Yi-1
t œ 83, 4< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H3, 4L ! f H4, 4L ! 4, and so

gIYi
t+1M ! gH4L ! 01 as required.

So we have proved that the result holds whenever i ¥ 2 and
Yi-1

t œ 83, 4<. Now let us consider the case where i ¥ 2 and

Yi-1
t œ 81, 2<. Once again we shall verify that, for each possible value

of Yi
t œ 81, 2, 3, 4<, we have gIYi

t+1M ! yHvHiLL:
1. If Yi

t ! 1 then gHYi
tL ! 10 ! @gHYi

tLD- and so

vHiL ! @gHYi-1
t LDe@gHHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since

Yi-1
t œ 81, 2< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 1L ! f H2, 1L ! 4, and so

gIYi
t+1M ! gH4L ! 01 as required.

Exploring the Space of Substitution Systems 19

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

2. If Yi
t ! 2 then gHYi

tL ! 110 ! @gHYi
tLD- and so

vHiL ! @gHYi-1
t LDe @g HYi

tLD- ! 110 and so yHvHiLL ! 110. Also, since

Yi-1
t œ 81, 2< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 2L ! f H2, 2L ! 2, and so

gIYi
t+1M ! gH2L ! 110 as required.

3. If Yi
t ! 3 then gHYi

tL ! 101 and @gHYi
tLD- ! 10 and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 10 and so yHvHiLL ! 01. Also, since

Yi-1
t œ 81, 2< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 3L ! f H2, 3L ! 4, and so

gIYi
t+1M ! gH4L ! 01 as required.

4. If Yi
t ! 4 then gHYi

tL ! 01 and @gHYi
tLD- ! 0 and so

vHiL ! @gHYi-1
t LDe@gHYi

tLD- ! 0 and so yHvHiLL ! 10. Also, since

Yi-1
t œ 81, 2< we shall have that

Yi
t+1 ! f HYi-1

t , Yi
tL ! f H1, 4L ! f H2, 4L ! 1, and so

gIYi
t+1M ! gH1L ! 10 as required.

So we have proved that the result holds whenever i ¥ 2. The proof for
the case with i ! 1 is the same, because when i ! 1 we have

" Yi
t œ 81, 2, 3, 4< that Yi

t+1 ! f I1, Yi
tM and vHiL ! AgIYi

tME-.
Hence we have shown that, when equation (B.1) holds true for

some t, we shall have that gIYi
t+1M ! yHvHiLL is true " i ¥ 1, and so, by

equation (B.2), we have that equation (B.1) will also be true for t + 1.
Now since equation (B.1) is true when t ! 0, we can use induction
with t to show that equation (B.1) is true for every t ¥ 0. ·

An equivalent way to state Lemma 1 is to say that the string
xHt + 3L from system 58 can be converted into the state Yt of the f -cel-
lular automaton by applying the replacement rules 10 Ø 1, 110 Ø 2,
101 Ø 3, 01 Ø 4 (in a non-overlapping way). Our next main objec-

tive will be to show that, given any binary string b, a state YT may be
found of the f -cellular automaton, such that b is contained within the
binary string obtained by applying the replacement rules 1 Ø 0,

2 Ø 0, 3 Ø 1, 4 Ø 1 to YT . (Note that making these replacements has

the same effect as applying the function f ÿ

3
v.) Once we have shown

this, we have effectively proved our theorem because we have that

xHT + 3L can be converted into YT by applying the replacement rules
10 Ø 1, 110 Ø 2, 101 Ø 3, 01 Ø 4. It follows that, if xHT + 3L is
taken and the replacement rules 10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1
are applied then the resulting binary string will contain b as a sub-

20 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

 pp g y g b

string. (This is because applying the replacement rules 10 Ø 1,
110 Ø 2, 101 Ø 3, 01 Ø 4 followed by the replacement rules 1 Ø 0,
2 Ø 0, 3 Ø 1, 4 Ø 1 has the same effect as applying the replacement
rules 10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1.)

B.1 Analysis of the Diagonals
Consider the space-time plot of the f -cellular automaton. The top row
of this space-time plot is the initial condition of the cellular automa-

ton pattern, which is Y0 ! Y1
0 Y2

0 Y3
0 … ! 14¶. The subsequent rows

Y1, Y2 .. of this space-time plot show the states of the cellular automa-
ton on the subsequent time steps.

For each n ! 1 let us define the nth diagonal
DHnL ! DHnL1 DHnL2 DHnL3 … to be such that for each i ¥ 1, we have

DHnLi ! Yi
n+i-2. Essentially DHnL is the infinite sequence of characters

from the space-time plot that is encountered by starting at cell Y1
n-1

and moving diagonally downward and to the right (see Figure B2).

Figure B2. An illustration of the mapping GbHaL that can be used to determine
diagonals from previous diagonals. The vertices represent characters in81, 2, 3, 4<; the edges are also labeled with characters in 81, 2, 3, 4<. Note
that the edges with one end in 81, 2< and the other end in 83, 4< are labeled
with both 1 and 3. It can be shown that DHn + 1Li is the vertex of this graph
arrived at by starting at vertex DHn + 1L1 and then traversing edges with la-
bels DHnL2, DHnL3, .., DHnLi in sequence.

Now we shall describe how DHn + 1L can be computed from DHnL.
In particular, we have

(B.3)
DHn + 1Li+1 ! Yi+1

n+i ! f IYi
n+i-1, Yi+1

n+i-1M !
f HDHn + 1Li, DHnLi+1L ! GDHnLi+1

HDHn + 1LiL

Exploring the Space of Substitution Systems 21

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

where we define GbHaL := f Ha, bL, " a, b œ 81, 2, 3, 4<. Here GbHaL is
the vertex of the network shown in Figure B2, which is arrived at by
starting at vertex a and then traveling along an outwardly pointing
edge with label b.

For an element a œ 81, 2, 3, 4<, we use the notation f a

3
v as short-

hand to denote the result of applying the replacement rules 1 Ø 0,
2 Ø 0, 3 Ø 1, 4 Ø 1 to a. This makes sense because

a

3
!

0 if a œ 81, 2<
1 if a œ 83, 4<.

In Lemma 2 we shall describe how the diagonals DHnL are periodic
sequences with special properties (see Figure B3).

Figure B3. An illustration of how Lemma 2 describes the diagonals of the
space-time plot of the f -cellular automaton. The underlined characters show
the repeating parts of the diagonals. Note that the fourth diagonal onward

has the property that gDHnL
i+2n-3

3
w ! 1 - fDHnLi

3
v. We have illustrated this using

gray lines to pair up entries that get mapped to different values under the f
3
v

operation.

Lemma 2. For each n ¥ 4 we have that the nth diagonal DHnL of the f -
cellular automata space-time plot satisfies the following three condi-
tions:

1. For each i ¥ 1 we have DHnLi ! DHnLi+2 hHnL, where hHnL ! 2n-3 is equal

to half of the period of DHnL.

22 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

2. For each i ¥ 1 we have fDHnLi
3

v ! 1 - gDHnLi+hHnL
3

w.
3. There is an odd number of indices i œ 81, 2, .., 2 hHnL< such that

DHnLi œ 81, 3< and there is an odd number of indices
i œ 81, 2, .., 2 hHnL< such that DHnLi œ 82, 4<. (Essentially this condition
says that the repeating part of DHnL holds an odd number of values in81, 3< and an odd number of values in 82, 4<.)

Proof. We start by showing that the lemma holds true when n ! 4.
First, note that DH1L ! 1¶. This can easily be seen by examining Fig-

ure B2 and noting that " i ¥ 1 we have that the ith column,

Yi
0, Yi

1, Yi
2, .. of the space-time plot has prefix 4i-1 1. (This can be

proved by induction using the facts that AYi
t ! 4, Yi+1

t ! 4E fl
Yi+1

t+1 ! 4 and AYi
t ! 1, Yi+1

t ! 4E fl Yi+1
t+1 ! 1.)

Now that we have DH1L ! DH1L1 DH1L2 DH1L3 … ! Y1
0 Y2

1 Y3
2

.. ! 1¶, we can go on to compute the next diagonals. The first col-
umn of the space-time plot has the form

Y1
0 Y1

1 Y1
2 .. ! H14L¶ ! DH1L1 DH2L1 DH3L1 .. and so we have that if n is

odd then DHnL1 ! 1 and if n is even then DHnL1 ! 4.
Now let us compute DH2L. We know DH2L1 ! 4, and from equa-

tion!(B.3) we have that DH2L2 ! GDH1L2 HDH2L1L ! G1H4L ! 2. Also we

get DH2L3 ! GDH1L3 HDH2L2L ! G1H2L ! 4. By continuing in this way it

can easily be seen that DH2L ! H42L¶. Now let us compute DH3L. First,
DH3L1 ! 1. Now DH3L2 ! GDH2L2 HDH3L1L ! G2H1L ! 2. Also

DH3L3 ! GDH2L3 HDH3L2L ! G4H2L ! 1. Clearly the subsequent charac-

ters of DH3L will be specified by DH2L in a similar way, and since DH2L
has period two we shall have that DH3L ! H12L¶. In a similar way, the
value of DH3L may be used to show that DH4L ! H4322L¶.

Now we can see that n ! 4 satisfies the conditions of our lemma.
To see that DH4L satisfies condition 1, note that DH4L ! H4322L¶ has a
period of 4 ! 2 hH4L. To see that DH4L satisfies condition 2, note that
DH4L1, DH4L2 œ 83, 4< and DH4L3, DH4L4 œ 81, 2<. To see that DH4L sat-
isfies condition 3, note that the repeating part, 4322, of DH4L contains
an odd number of entries in 81, 3< and an odd number of entries in82, 4<.

So now that we have established that the result holds for n ! 4, we
can continue with the proof by induction. Suppose that our lemma
holds true for some n ¥ 4. We shall prove that our lemma also holds
true for n + 1.

We shall start by showing that DHn + 1L satisfies condition 2.

Exploring the Space of Substitution Systems 23

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

We are assuming that DHnL satisfies condition 1. This means we are

assuming that 2n-2 ! 2 hHnL ! hHn + 1L is equal to the period of DHnL.
It follows that DHnL is of the form DHnL ! r¶ where

r œ 81, 2, 3, 4<2 hHnL is the repeating part of DHnL. Now, since we are
also supposing that DHnL satisfies condition 3, we have that the se-
quence DHnL1 DHnL2 .. DHnL2 hHnL (which is equal to r1 r2 .. r2 hHnL) has
an odd number of entries in 81, 3< and an odd number of entries in82, 4<.

Recall that DHn + 1Li+1 ! GDHnLi+1
HDHn + 1LiL. Now, by using this

fact repeatedly we can get that

(B.4)
DHn + 1Li+hHn+1L ! GDHnLi+hHn+1L ÈGDHnLi+hHn+1L-1

È ..

ÈGDHnLi+1
HDHn + 1LiL,

where È denotes functional composition.
Recall that GeHvL is the vertex of the digraph in Figure B2, which is

arrived at by starting at vertex v, and then moving along an edge with
label e. Now this implies that equation (B.4) may be interpreted as de-
scribing a graph walk. In particular, equation (B.4) says that
DHn + 1Li+hHn+1L is the vertex which is arrived at by starting from ver-
tex DHn + 1Li (within the graph shown in Figure B2), and then travel-
ing across the edges with labels DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L
where hHn + 1L := 2Hn+1L-3 ! 2n-2.

The sequence

DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L ! DHnLi+1,
DHnLi+2, .., DHnLi+2 hHnL

will be some rotation of the repeating part r of DHnL. Hence we have
that sequence DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L has an odd number of
entries in 81, 3< (since this sequence is a rotation of r, and r has an
odd number of entries in 81, 3< by our assumption that n satisfies con-
dition 3).

Recall that DHnLi+1, DHnLi+2, .., DHnLi+hHn+1L is the sequence of tra-
versed edges within a walk W from DHn + 1Li to DHn + 1Li+hHn+1L, in
the graph shown in Figure B2. Now since this sequence holds an odd
number of entries in 81, 3<, we have that the walk from DHn + 1Li to
DHn + 1Li+hHn+1L involves crossing an odd number of edges labeled 1
or 3 of the graph shown in Figure B2. However, as seen by examining
Figure B2, a directed edge e of the graph has one end in 81, 2< and the
other end in 83, 4< if and only if we have that e is labeled with 1 or 3.
In other words, " v œ 81, 2, 3, 4< and " e œ 81, 2, 3, 4< we have that

24 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

v

3
!

GeHvL
3

ñ e œ 81, 3<.
It follows that

DHn + 1Li
3

! 1 -
1

3
DHn + 1Li+hHn+1L ,

because DHn + 1Li+hHn+1L is obtained by taking DHn + 1Li and doing an
odd number of traversals of edges labeled with 1 or 3 (each such edge

traversal toggles the value of f v

3
v œ 80, 1< associated with the current

vertex v). Hence we have shown that DHn + 1L satisfies condition 2.
Now we will show that DHn + 1L satisfies condition 1. To show

this, we will use the key fact:

(B.5)
v

3
!

v£

3
fl GeHvL ! GeHv£L, " v, v£, e œ 81, 2, 3, 4<.

In other words, the key fact is that if we have a pair of vertices of the
graph shown in Figure B2, which are either both in 81, 2< or else both
in 83, 4<, then walking along an edge labeled e, starting from either
vertex shall lead to the same destination. This can be seen from exam-
ining Figure B2.

Now we can use equation (B.5) to prove that DHn + 1L satisfies con-
dition 1 as follows.

Since DHn + 1L satisfies condition 2, we have " j that

DHn + 1Lj
3

! 1 -
1

3
DHn + 1Lj+hHn+1L !

1 - 1 -
1

3
DHn + 1Lj+2 hHn+1L .

This implies

(B.6)
DHn + 1Lj

3
!

1

3
DHn + 1Lj+2 hHn+1L .

Now, note that

(B.7)DHn + 1Lj+1 ! GDHnLj+1
IDHn + 1LjM.

In a similar way, we also have

(B.8)DHn + 1Lj+2 hHn+1L+1 ! GDHnLj+2 hHn+1L+1
IDHn + 1Lj+2 hHn+1LM.

Exploring the Space of Substitution Systems 25

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Now since DHnL satisfies condition 1 (by assumption), we have that
DHnL has period hHn + 1L ! 2 hHnL and so we have
DHnLj+2 hHn+1L+1 ! DHnLj+1. We can use this fact to rewrite equa-

tion!(B.8) as

(B.9)DHn + 1Lj+2 hHn+1L+1 ! GDHnLj+1
IDHn + 1Lj+2 hHn+1LM.

Now, since equation (B.6) gives us that

DHn + 1Lj
3

!
1

3
DHn + 1Lj+2 hHn+1L ,

we may use equation (B.5) to imply that GDHnLj+1
IDHn + 1LjM !

GDHnLj+1
IDHn + 1Lj+2 hHn+1LM. Now we can make substitutions using

equations (B.7) and (B.8) to obtain that DHn + 1Lj+1 !
DHn + 1Lj+1+2 hHn+1L, which is our desired result. Since this result holds

for any j, we have essentially proved that DHn + 1L satisfies condi-
tion!1.

Now we will show that DHn + 1L satisfies condition 3. For an ele-
ment e œ 81, 2, 3, 4< let us define SHeL ! 8geHvL : v œ 81, 2, 3, 4<< to be
the set of all different destinations in Figure B2 which can be arrived
at by starting at some vertex v and then traveling along an edge with
label e. For example, SH1L ! 82, 4< because G1H1L ! G1H2L ! 4 and
G1H3L ! G1H4L ! 2. Now it can easily be checked that we also have
SH2L ! 82, 3<, SH3L ! 82, 4<, and SH4L ! 81, 4<.

Now notice that " e œ 81, 2, 3, 4< we have that SHeL has two ele-
ments, one of which is in 81, 2<, and the other of which is in 83, 4<.
The repeating part of DHn + 1L has the form:

DHn + 1L1 DHn + 1L2 … DHn + 1LhHn+1L DHn + 1LhHn+1L1 ..

DHn + 1L2 hHn+1L.
Now, for each i œ 81, 2, .., hHn + 1L< we have that

(B.10)DHn + 1Li ! GDHnLi HDHn + 1Li-1L,
by equation (B.3). Also, since DHnL has period hHn + 1L we have

(B.11)
DHn + 1LhHn+1L+i ! GDHnLhHn+1L+i

IDHn + 1LhHn+1L+i-1M !
GDHnLi IDHn + 1LhHn+1L+i-1M.

Now it follows from equations (B.10) and (B.11) that
DHn + 1Li œ SHD HnLiL and DHn + 1LhHn+1L+i œ SHDHnLiL. Moreover, since
DHn + 1L satisfies condition 2, we have DHn + 1Li ! DHn + 1LhHn+1L+i.

26 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Since SHeL holds precisely two elements, for each e œ 81, 2, 3, 4< it fol-
lows that SHDHnLiL ! 9DHn + 1Li, DHn + 1LhHn+1L+i=.

We have shown that DHnLi generates the pair

SHDHnLiL ! 9DHn + 1Li, DHn + 1LhHn+1L+i= of values within the repeating
part of DHn + 1L. Note that the sets SHaL : a œ 81, 2, 3, 4< have the fol-
lowing properties:

1. If a œ 81, 3< then both entries of SHaL are in 82, 4<.
2. If a œ 82, 4< then one of the entries of SHaL is in 81, 3< and the other en-

try of SHaL is in 82, 4<.
Now let Ln denote the number of entries in 81, 3< that occur within

the repeating part of DHnL, and let Mn denote the number of entries in82, 4< that occur within the repeating part of DHnL. Since each entry a
in the repeating part of DHnL generates both entries of SHaL within the
repeating part of DHn + 1L, we have that statements 1 and 2 give us
the following equations:

Ln+1 ! Mn

Mn+1 ! Ln + Mn

Since we are assuming that DHnL satisfies condition 3, we are assum-
ing that Ln and Mn are odd. It hence follows from the given equa-
tions that Mn+1 and Ln+1 are odd, and so this shows that DHn + 1L
also satisfies condition 3, as required. And so we have shown that, if
DHnL satisfies the lemma then DHn + 1L satisfies the lemma. The result
can thus be proved by induction with n. ·

B.2 Shifting Along Diagonals
Our main objective is to find a substring of a row of the space-time
plot of our f -cellular automaton that transforms into our arbitrary bi-
nary string b when we apply the substitution rules 1 Ø 0, 2 Ø 0,
3 Ø 1, 4 Ø 1. Lemma 3 is crucial in this regard because it shows how
the properties of the diagonals can be used to move around the space-
time plot and find different substrings that yield different outputs un-
der the 1 Ø 0, 2 Ø 0, 3 Ø 1, 4 Ø 1 operations.

Each substring Yi
t Yi+1

t .. Yj
t generates a substring

Yi
t

3

Yi+1
t

3
..

Yj
t

3

when the 1 Ø 0, 2 Ø 0, 3 Ø 1, 4 Ø 1 substitutions are applied.
Lemma 3 allows us to take such a substring Yi

t Yi+1
t .. Yj

t, and con-

Exploring the Space of Substitution Systems 27

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

struct another substring Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD. The last k - 1 char-

acters of this new string are equal to those of the original string. How-
ever,

Yk+S @kDt+S @kD
3

! 1 -
Yk

t

3
.

By repeatedly using this construction a substring may be built that

gets converted into our arbitrary binary string b by the f ÿ

3
v opera-

tion. The idea is to keep constructing new strings and increasing the
length of the run of rightmost characters that agree with b when the

f ÿ

3
v operation is applied.

Lemma 3. Let Yi
t Yi+1

t .. Yj
t be a substring of a row of the space-time

plot of the f -cellular automaton, with t ¥ j + 2. Now suppose

k œ 8i, i + 1, .., j<. Consider the substring Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD of

a row of the space-time plot, which is obtained by moving

S@kD := 2t-k-1 places toward the bottom right. Now we have

Yk+S @kDt+S @kD
3

! 1 -
Yk

t

3

and

Ym+S@kDt+S@kD ! Ym
t , " m œ 8k + 1, k + 2, .., j<.

Proof. Recall that DHnLj ! Yj
n+j-2. It follows that the cell Yj

t lies upon

the diagonal DHnL where n + j - 2 ! t, and so n ! 2 + t - j. Since

(B.12)t ¥ j + 2,

we have that n ¥ 4. Now, for each k œ 8i, i + 1, .., j< we have that the

cell Yk
t is part of the diagonal N@kD := 2 + t - k. Since k § j we shall

have that equation (B.12) implies N@kD ¥ n + j - 2 ¥ 4.

According to Lemma 2 we have that the diagonal DHN@kDL, which

Yk
t is part of, has half-period h@N@kDD ! 2N@kD-3 ! 2t-k-1. So now we

let S@kD ! h@N@kDD ! 2t-k-1 and Lemma 2 gives us that

Yk+S@kDt+S@kD
3

!
DHN@kDLk+h@N@kDD

3
! 1 -

DHN@kDLk
3

! 1 -
Yk

t

3
.

28 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Moreover, " m œ 8k + 1, k + 2, .., j< we shall have that Ym
t lies

upon the diagonal DHN@mDL where 4 § N@mD ! 2 + t - m < N@kD.
Now it follows (from Lemma 2) that the diagonal DHN@mDL has pe-

riod 2 h@N@mDD ! 2ä2N@mD-3 ! 2N@mD-2 ! 2t-m. Since m > k and

S@kD ! 2t-Hk+1L, we have that the period 2 h@N@mDD of DHN@mDL will be
a multiple of S@kD. So we have that moving S@kD places to the bottom
right, starting from Ym

t , will correspond to moving along the diagonal

that Ym
t lies upon, a number of places that is a multiple of the period

of this diagonal. It follows that this movement will effectively leave
the value of the cell unchanged. In other words, we can write
S@kD ! q 2 h@N@mDD, for some positive integer q. We then have that

Ym+S@kDt+S@kD ! DHN@mDLm+q2h@N@mDD ! DHN@mDLm ! Ym
t . ·

B.3 Completing the Proof
We shall describe how to construct a sequence wH0L, wH1L, .., wHLL of
substrings of the space-time plot of our f -cellular automaton. The fi-
nal string wHLL has the property that

wHLL1
3

! b1,
wHLL2

3
! b2, ..,

wHLLL
3

! bL.

Once we have constructed this wHLL we can complete our proof be-
cause Lemma 7 implies that there is a substring xHt£La x Ht£La+1 .. x Ht£Lb
of system 58 that corresponds to wHLL, and this substring is trans-
formed into b by the replacement rules 10 Ø 0, 110 Ø 0, 101 Ø 1,
01 Ø 1. Before we discuss how to construct this sequence of strings
wHmL, let us make some definitions.

For a nonempty string s œ 81, 2, 3, 4<L, we say that s is repre-
sentable when there exists i, j, t such that t ¥ j + 2 ¥ i + 2 and

s ! Yi
t Yi+1

t .. Yj
t. Essentially, we say that s is representable when it cor-

responds to a substring of a row of the space-time plot of the f -cellu-
lar automaton. The additional condition that t ¥ j + 2 ¥ i + 2 ensures
that each part of this substring is contained within a diagonal DHnL
for n ¥ 4.

Also, for m œ 80, 1, .., L< we say that such a string s ! s1 s2, .. sL
is m-matching with b when we have that

sL-m+1

3
! bL-m+1,

sL-m+2

3
! bL-m+2, ..,

sL

3
! bL.

Exploring the Space of Substitution Systems 29

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

Essentially we say that s is m-matching with b when the m last charac-

ters of s are converted to the last m characters of b by the f ÿ

3
v opera-

tion.
Our goal is to construct a string wHLL that is representable and

L-matching with b. If we can achieve this then we have essentially
completed our proof, because wHLL will correspond with a substring
of a row of the space-time plot of the f -cellular automata, and wHLL
will be converted to b when we apply the f ÿ

3
v operation to each of its

characters.
Now let us describe how we construct our sequence

wH0L, wH1L, .., wHLL of strings. Our initial string is defined as

wH0L ! Y1
2+L Y2

2+L .. YL
2+L. It is easy to see that wH0L is representable

because, letting i ! 1, j ! L, and t ! 2 + L, we have

wH0L ! Yi
t Yi+1

t .. Yj
t, where t ¥ j + 2 ¥ i + 2.

We can also say (somewhat vacuously) that wH0L is 0-matching
with b. What this means is that the final zero characters of wH0L are

converted to the final zero characters of b by the f ÿ

3
v operation. Any

string is 0-matching with b, and so this statement is not really mean-
ingful, but it serves as a base for induction.

Suppose that m œ 80, 1, .., L - 1< and wHmL, are such that wHmL is
representable and m-matching with b. Now we will show how to con-
struct a string wHm + 1L that is representable and Hm + 1L-matching
with b. We construct wHm + 1L from wHmL as follows: if

(B.13)
wHmLL-m

3
! bL-m

then we simply let wHm + 1L ! wHmL. In this case wHm + 1L clearly is
representable and Hm + 1L-matching.

On the other hand, if

wHmLL-m

3
! bL-m,

then we must have

(B.14)1 -
wHmLL-m

3
! bL-m,

and in this case our construction of wHm + 1L is more elaborate.
In particular, since wHmL is representable, we can write

wHmL ! wHmL1 wHmL2 .. wHmLL ! Yi
t Yi+1

t .. Yj
t,

30 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

where t ¥ j + 2 ¥ i + 2. Note that Yp-1+i
t corresponds to wHmLp for

any p. Now let us define k ! L - m - 1 + i. Clearly Yk
t ! YL-m-1+i

t

corresponds to wHmLL-m.

Now since Yi
t Yi+1

t .. Yj
t is such that t ¥ j + 2 and k œ 8i, i + 1, .., j<,

we may apply Lemma 3 and define wHm + 1L as wHm + 1L !
Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD, where S@kD ! 2t-k-1.

Now we will show that wHm + 1L (defined in this way) is Hm + 1L-
matching with b. According to Lemma 3, we shall have that

(B.15)
Yk+S@kDt+S@kD

3
! 1 -

Yk
t

3

and

(B.16)Yk+1
t Yk+2

t .. YL
t ! Yk+1+S@kDt+S@kD Yk+2+S@kDt+S@kD .. YL+S@kDt+S@kD .

Since Yk
t corresponds to wHmLL-m and Yk+S@kDt+S@kD corresponds to

wHm + 1LL-m, we have that equations (B.14) and (B.15) imply

(B.17)

wHm + 1LL-m

3
!

Yk+S@kDt+S@kD
3

!

1 -
Yk

t

3
! 1 -

wHmLL-m

3
! bL-m.

Moreover, since w HmL is m-matching with b we have

(B.18)

bL-m+1 bL-m+2 .. bL !
wHmLL-m+1

3

wHmLL-m+2

3
..

wHmLL
3

!
Yk+1

t

3

Yk+2
t

3
..

YL
t

3
!

Yk+1+S@kDt+S@kD
3

Yk+2+S@kDt+S@kD
3

..
YL+S@kDt+S@kD

3
!

wHm + 1LL-m+1

3

wHm + 1LL-m+2

3
..

wHm + 1LL
3

,

Exploring the Space of Substitution Systems 31

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

where we use equation (B.16) to go from the third line to the fourth
line. Together equations (B.17) and (B.18) imply that wHm + 1L isHm + 1L-matching with b.

To see that wHm + 1L ! Yi+S@kDt+S@kD Yi+1+S@kDt+S@kD .. Yj+S@kDt+S@kD is representable,

note that we can define t£ ! t + S@kD, i£ ! i + S@kD, and j£ ! j + S@kD.
Now clearly wHm + 1L ! Yi£

t£ Yi£+1
t£ .. Yj£

t£ , where t£ ¥ j£ + 2 ¥ i£ + 2

(because t ¥ j + 2 ¥ i + 2). This shows that wHm + 1L is representable.
So now we have shown that wH0L is representable and 0-matching

with b. Also, we have shown that " m œ 80, 1, .., L - 1< we have that
if wHmL is representable and m-matching with b then we can construct
a string wHm + 1L that is representable and Hm + 1L-matching with b. It
therefore follows, by induction with m, that we can construct a string

wHLL œ 81, 2, 3, 4<L that is representable and L-matching with b.
Since wHLL is representable, it corresponds to a substring of a row

of the space-time plot of our f -cellular automaton, in the sense that

there exist i*, j*, and t* such that wHLL ! Yi*
t* Yi*+1

t* .. Yj*
t* . According to

Lemma 1, there is a substring xHt* + 3La xHt* + 3La+1 .. xHt* + 3Lb of
xHt* + 3L that is converted into wHLL by applying the replacement rules
10 Ø 1, 110 Ø 2, 101 Ø 3, 01 Ø 4. Moreover, since wHLL is L-match-
ing with b we have that wHLL gets converted into b by the substitution
operations 1 Ø 0, 2 Ø 0, 3 Ø 1, 4 Ø 1. It follows that the substring
xHt* + 3La xHt* + 3La+1 .. xHt* + 3Lb is transformed directly into b by the
replacement rules 10 Ø 0, 110 Ø 0, 101 Ø 1, 01 Ø 1, which com-
pletes the proof. ·

Acknowledgments

We gratefully acknowledge support from EPSRC Grant EP/D003105.

References

[1] N. Dershowitz and J. Jouannaud, “Rewrite Systems,” in Handbook of
Theoretical Computer Science, Vol. B: Formal Methods and Semantics
(J. Van Leeuwen, ed.), Universitè Paris-Sud, Centre d’Orsay, Labora-
toire de recherche en Informatique, 1989.

[2] M. Morse and G. Hedlund, “Unending Chess, Symbolic Dynamics and
a Problem in Semigroups,” Duke Mathematical Journal, 11(1), 1944
pp.!1–7. doi:10.1215/S0012-7094-44-01101-4.

32 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

[3] A. Lindenmayer, “Mathematical Models for Cellular Interaction in De-
velopment,” Journal of Theoretical Biology, 18, 1968 pp. 280–315.

[4] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants, New York: Springer-Verlag, 1991.

[5] P. Worth and S. Stepney, “Growing Music: Musical Interpretations of
L-Systems,” in Applications of Evolutionary Computing, Vol. 3449
(F. Rothlauf et al., eds.), Berlin: Springer-Verlag, 2005 pp. 545–550.
doi:0.1007/978-3-540-32003-6_56.

[6] S. Goel and I. Rozehnal, “Some Non-biological Applications of L-Sys-
tems,” International Journal of General Systems, 18(4), 1991 pp. 321–
405. doi:10.1080/03081079108935155.

[7] G. S. Hornby and J. B. Pollack, “Evolving L-Systems to Generate Vir-
tual Creatures,” Computers & Graphics, 25(6), 2001 pp. 1041–1048.
doi:10.1016/S0097-8493(01)00157-1.

[8] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[9] S. Wolfram, “Universality and Complexity in Cellular Automata,”
Physica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[10] A. Smith. “Universality of Wolfram’s 2, 3 Turing Machine.” Submitted
for the Wolfram 2, 3 Turing Machine Research Prize, 2007.
http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf.

[11] C. Bennet and R. Landauer, “The Fundamental Physical Limits of Com-
putation,” Scientific American, 253, 1985 pp. 48–56.
http://www.scientificamerican.com/article.cfm?id=the-fundamental-
physical-limits-of-computation.

[12] K. Jarkko, “Reversible Cellular Automata,” in Developments in Lan-
guage Theory: Proceedings of the 9th International Conference
(DLT05), Palermo, Italy (C. De Felice and A. Restivo, eds.), Berlin:
Springer, 2005 pp. 57–68.

[13] M. Seredynski and B. Pascal, “Block Cipher Based on Reversible Cellu-
lar Automata,” New Generation Computing, 23(3), 2005 pp. 245–258.
doi:10.1007/BF03037658.

[14] M. Nelson, Data Compression Book, Redwood City, CA: M&T Books,
1991.

[15] C. Chaitin, “Algorithmic Information Theory,” IBM Journal of Re-
search and Development, 21, 1977 pp. 350–359.
http://www.cs.auckland.ac.nz/~chaitin/ibm.pdf.

[16] J. Ziv and A. Lempel, “Compression of Individual Sequences via
Variable-Rate Coding,” IEEE Transactions on Information Theory,
24(5), 1978 pp. 530–536. doi:10.1109/TIT.1978.1055934.

Exploring the Space of Substitution Systems 33

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

http://www.scientificamerican.com/article.cfm?id=the-fundamental-physical-limits-of-computation
http://www.scientificamerican.com/article.cfm?id=the-fundamental-physical-limits-of-computation

[17] R. Cilibrasi and P. M. B. Vitanyi, “Clustering by Compression,” IEEE
Transactions on Information Theory, 51(4), 2005 pp. 1523–1545.
doi:10.1109/TIT.2005.844059.

[18] H. Zenil, “Compression-Based Investigation of the Dynamical Proper-
ties of Cellular Automata and Other Systems,” Complex Systems, 19(1),
2010 pp. 1–28. http://www.complex-systems.com/pdf/19-1-1.pdf.

[19] G. Chaitin, Meta Math! The Quest for Omega, New York: Pantheon
Books, 2005.

34 R. Southwell and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.1.1

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

