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Describing  complex  phenomena  by  means  of  cellular  automata  (CAs)
has shown to be a very effective approach in pure and applied sciences.
In  fact,  the  number  of  published  papers  concerning  this  topic  has
tremendously increased over the last 20 years. Most of the applications
use CAs to qualitatively describe the phenomena, which is surely a con-
sequence of  the way the automata rules  are  commonly defined.  In this
paper,  a  physical  application  of  a  general  rule  that  describes  each  of
Stephen Wolfram’s CAs is discussed. The new representation is given in
terms of the so-called iota-delta function. The latter function is further
generalized  in  order  to  provide  a  general  rule  for  not  only  Wolfram’s
but also to every CA rule that depends on the sum and products of the
values of  cells  in the automaton mesh.  By means of  a parallel  between
the  finite  difference  method  and  the  iota-delta  function,  a  straight-
forward  physical  interpretation  of  CAs  is  derived.  Such  an  application
regards  advective-diffusive  phenomena  without  a  constant  source.  Fi-
nally,  the relation between CAs and anomalous diffusion is briefly dis-
cussed. 

1. Introduction

It is undeniable that science has evolved to such a stage that almost ev-
ery  situation in  everyday life  has  been,  in  some way,  addressed.  This
can  be  clearly  seen  when,  for  example,  technological  development  is
taken  into  account.  Such  development  provided  people  with  better
conditions to improve and build the society as it is known today. Do
not forget, on the other hand, that knowledge and technology are inti-
mately  related.  The  most  up-to-date  gadgets  employ  state-of-the-art
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concepts  from physics,  mathematics,  and other  basic  sciences.  In  this
way,  the need to keep researching in basic  sciences  is  inherent  to the
development of the so-called applied sciences, such as engineering.  

This rigid segregation of the production and application of knowl-
edge  started  changing  when  the  complexity  of  everyday  problems
increased. Basic and applied sciences had to strengthen their bonds in
order to give satisfactory answers to the problems that appeared. The
atomic  theory  especially  played  a  major  role  in  this  need  of  joint
work. 

At  one point,  notable  physicists  such as  Werner  Heisenberg,  Niels
Bohr,  Max  Planck,  Erwin  Schrödinger,  and  Louis  de  Broglie  noticed
that, even if they correctly applied the established knowledge, no plau-
sible  answer  would  be  found  for  their  questions  about  atomic  struc-
ture. It is worth asking whether the questions of some of the greatest
minds of our era were misformulated, or whether the main issue was
not how questions were formulated, but what kinds of answers were
expected.  Schrödinger  [1]  gave  a  straightforward  explanation  to  this
apparent “anomaly” in science, as shown in [2]: 

“[…] If you envisage the development of physics in the last half-
century, you get the impression that the discontinuous aspect of
nature has been forced upon us very much against our will. We
seemed  to  feel  quite  happy  with  the  continuum.  Max  Planck
was seriously frightened by the idea of a discontinuous exchange
of energy […] Twenty-five years later the inventors of wave me-
chanics indulged for some time in the fond hope that they have
paved  the  way  of  return  to  a  classical  continuous  description,
but  again  the  hope  was  deceptive.  Nature  herself  seemed to  re-
ject continuous description […] The observed facts appear to be
repugnant  to  the  classical  ideal  of  continuous  description  in
space  and  time.  […]  So  the  facts  of  observation  are  irreconcil-
able with a continuous description in space and time […]” 

Also, Fritjof Capra [3] brilliantly stated in his book: 

“[…]  Every  time  the  physicists  asked  nature  a  question  in  an
atomic  experiment,  nature  answered  with  a  paradox,  and  the
more  they  tried  to  clarify  the  situation,  the  sharper  the  para-
doxes  became.  It  took  them a  long  time  to  accept  the  fact  that
these  paradoxes  belong  to  the  intrinsic  structure  of  atomic
physics, and to realize that they arise whenever one attempts to
describe atomic events in the traditional terms of physics. […]” 

Both these  excerpts  can be readily  exemplified by one of  the most
remarkable  and,  in  some  ways,  unintentional  changes  in  scientific
ideas:  the  quantization  of  energy  by  Planck.  While  studying  the  sec-
ond law of thermodynamics, Planck and Ludwig Boltzmann had a se-
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rious rivalry. The former, at first,  did not believe that entropy would
be statistically  described,  while  the latter  firmly defended such an in-
terpretation [4]. 

In order to give a consistent explanation to the increase of entropy
predicted  by  thermodynamics,  Planck  and  his  contemporaries  deeply
analyzed James  Clerk  Maxwell’s  laws  since  these  relations  were  sup-
posed to govern the microscopic oscillators that produced the heat ra-
diation emitted by black bodies [4]. After some time, Planck believed
he  had  justified  the  irreversibility,  and  thus  the  entropy  change,  by
means  of  the  lack  of  symmetry  of  Maxwell’s  equations.  Boltzmann
promptly showed that Planck was wrong, impelling the latter to seek
another way to explain the second law of thermodynamics [4]. 

While studying the black body radiation emission problem, Planck
came  up  with  a  theoretically  justifiable  formula  that  matched  well
with experimental  results.  Sir  Rayleigh and Sir  James Jeans,  at  about
the same time, proposed an energy distribution based on classical me-
chanics, that is, continuum theory. The Rayleigh–Jeans law (R-JL) led
to  a  classical  physical  misinterpretation:  the  ultraviolet  catastrophe.
Following R-JL, the production of energy was proportional to the in-
verse of the fourth power of the wave length; when ultraviolet radia-
tion  is  considered,  as  the  wave  length  decreases,  the  energy  produc-
tion tends to infinity, which is absurd [4]. 

At  the  end  of  the  year  1900,  Planck  noticed  that  the  equation  he
proposed was more than a lucky shot and, in order to give it solid the-
oretical  basis,  he  had  to  adopt  some  of  Boltzmann’s  probabilistic
ideas.  By  doing  that,  for  the  first  time  the  Boltzmann  equation  ap-
peared. In short, the latter equation relates entropy to molecular disor-
der. In order to quantify molecular disorder, Planck had to establish a
method  to  count  the  number  of  ways  a  given  energy  can  be  dis-
tributed  among  a  set  of  oscillators.  The  creation  of  the  concept  of
quanta,  discrete  elements  with  finite  portions  of  energy,  was  the  an-
swer to his questions [4]. 

The determinant issue while asking effective questions of nature is
the  dichotomy:  continuum  versus  discrete.  The  continuity  ideas  date
back to ancient times and seem to have found in Parmenides and Aris-
totle  [5]  their  first  defenders.  By  the  modern  age,  Isaac  Newton  and
Gottfried Leibniz established one of the pillars of the continuity princi-
ple:  differential  and integral  calculus.  Everything that  is  currently de-
scribed by means of differential equations has the continuity principle
as  its  background.  Such  a  relation  follows  from the  intrinsic  linkage
between  differentiability  and  continuity  of  functions,  leading  to  the
“continuity”  of  the  phenomena  described.  Scientists  were  so  amazed
by differential calculus that Bernhard Riemann once said [2]: 
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“[…] As is well  known, physics became a science only after the
invention of differential calculus. It was after realizing that natu-
ral  phenomena  are  continuous  that  attempts  to  construct  ab-
stract  models  were  successful.  […]  True  basic  laws  can  only
hold in  the  small  and must  be  formulated as  partial  differential
equations.  Their  integration  provides  the  laws  for  extended
parts of time and space. […]”

By  now,  a  very  important  remark  has  to  be  taken  into  considera-
tion: continuity, in fact, provided mankind with an outstanding devel-
opment. As stated, the field could not have come this far without con-
tinuity and its models. The purpose of this paper is not to depreciate
the  continuum  ideas,  but  to  propose  a  better  approximation  of  na-
ture’s  behavior  since  nature  itself,  in  Schrödinger’s  words,  seems  “to
reject continuous description.” 

Riemann,  maybe  dazzled  by  the  tremendous  success  arising  from
the application of  differential  equations in science,  made a few state-
ments which were, in some ways, trifling. As noticed by Lev Goldfarb
[2],  the  assumption  that  natural  phenomena  were  continuous  seems
to  be  postulated  rather  than  noticed.  An  important  question  is
whether the integration referred to by Riemann always applies. These
questions  have  found  their  answers  in  the  current  scientific  commu-
nity: the growing usage of numerical methods in which finite elements
or  differences  are  taken  into  account  shows  that,  once  again,  what
was once thought to be continuous must be treated in a discrete way. 

The basic idea behind the finite element method is mesh discretiza-
tion  of  some  continuous  domain  into  a  set  of  discrete  sub-domains.
The finite differences method, on the other hand, transforms differen-
tial  equations  into  difference  equations,  the  latter  being  a  discrete
“approximation” of the former. 

If  nature  is  shown  to  behave  discretely,  and  the  way  to  solve  the
governing  equations  of  the  established  continuum theory  is  found  to
be  by  discrete  differences  and  finite  elements,  it  seems  the  scientific
community keeps doubling its work. 

It is remarkable how continuous models fit to circular, rectangular,
square, and, in general, well-defined geometries. But, as the visionary
Benoit Mandelbrot said [6]: 

“[…]  Clouds  are  not  spheres,  mountains  are  not  cones,  coast-
lines are not circles, and bark is not smooth, nor does lightning
travel in a straight line. […]”

Put in another way, the continuous domain works well when ideal-
ized  problems  are  considered,  but  only  discrete  methods  can  answer
complex problems. Complex, on the other hand, does not mean diffi-
cult or unsolvable. Complexity is inherent to nature. Wolfram, in his
paradigm-shifting  book  A New Kind  of  Science,  clearly  showed  that
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simple rules—also referred to by Wolfram as programs—can generate
complexity and intricate patterns [7]. 

At first, by means of a simple binary language, Wolfram proposed
a class of computational experiments over a net of cells. The values of
three  cells  determine how a fourth cell  would be.  Since  each cell  can
have  two possible  states,  there  are  eight  possible  trios.  Each  trio  can
result in two other values for the fourth cell, thus, there are 28 possi-
bilities. Taking advantage of the binary scenario, Wolfram created the
0–255  classification,  in  which  each  combination  receives  a  number
from 0 to 255. This will be further explained in this paper. 

The  generalization  from  binary  to  ternary  was  immediate  and
Wolfram also presented it in his book. A concern shown by Wolfram
was whether a general simple rule that would govern time, space, and
energy  in  a  given  scale  existed  or  not.  In  order  to  address  this  issue,
the  present  paper  shows that  Wolfram’s  cellular  automata (CAs)  can
be  expressed  by  a  single  rule  applied  to  the  whole  cellular  net.  It  is
then conjectured that every CA can be represented by a generalization
of the referred rule. Also, by means of a parallel between the new gen-
eral rule hereby defined and the finite difference method, it is possible
for  the  first  time  to  quantitatively  describe  CAs  and  the  phenomena
modeled by the latter. 

2. Investigating Rules 0–255 of Wolfram’s Cellular Automata    

In  the  second  chapter  of  A  New  Kind  of  Science  [7],  a  simple  yet
tricky  question  is  asked:  “How  do  simple  programs  behave?”  For
sure, answering such a question is extremely difficult if it is attempted
based  merely  on  standard  science.  Prior  to  being  able  to  predict  the
outcome,  feeling,  observing,  and  interacting  are  required.  Computers
provided mankind with the possibility to make contact with multiple
realities, allowing the observation of the interaction between multiple
phenomena at the same time.  

In this way, Wolfram [7] shows that using computers to answer the
previous question is not just a good way to address the issue, but the
only  method  that  can  bring  reliable  results.  Experimental  computa-
tion led to the establishment of CAs, part of the basis of this new kind
of science. 

Start  with  the  simplest  CA  available  in  [7].  In  short,  the  classical
definition is [7]: 

“The cellular automaton consists of a line of cells, each colored
black or white. At every step there is then a definite rule that de-
termines  the  colour  of  a  given  cell  from  the  colour  of  that  cell
and its immediate left and right neighbors on the step before.” 
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This excerpt can be better visualized by considering Figure 1.

Position Ø k-1 k k+1

Step !

i

i+1

Figure 1.  CA mesh.

As stated by Wolfram, three cells from the last step must be taken
into  account  in  order  to  define  the  color  (or,  as  it  is  commonly  de-
scribed,  the  binary  value  1  or  0)  of  a  cell  in  the  next  step.  In  other
words, the value of a given cell is given as a function of the values of
three other cells. In order to give a mathematical description of this re-
lation, consider the following representation: 

(1)Ck
i+1 ! f ACk-1

i , Ck
i , Ck+1

i E
in which it is considered that the CA mesh is made of cells C, hereby
indexed in space by the subscript k,  and time by the superscript i,  as

in  Ck
i .  Since  there  are  only  two possible  values  for  the  cells,  either  1

(black)  or  0  (white),  there  are  23  possible  combinations  or  trios,  as
seen in Figure 2.  

1 1 1 1 1 1 1 1 1 1 1 1
a7 a6 a5 a4 a3 a2 a1 a0

Figure 2.  The eight possible trios.

Each value aj, j ! 0, 1, … , 7, is equivalent to 1 or 0; this way, a to-

tal  of  28  possible  rules  are  determined  by  the  simple  procedure  we
have described. Wolfram established a naming criteria for all the 256
possible trio combinations known as the 0–255 classification [7]. The
rule is straightforward and relates the decomposition of the rule num-
ber in base 2 to the values of the coefficients aj. For example, rule 30

has the following factorization: 

(2)30 ! 0.27 + 0.26 + 0.25 + 1.24 + 1.23 + 1.22 + 1.21 + 0.20.

The coefficients  aj  are  the  numbers  that  multiply  2j  in  the  factor-

ization process. The set of trios that generate rule 30 are described in
Figure 3.
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1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.  Rule 30.

In  order  to  produce  a  compact  notation,  define  the  rule  number
function (RNF) as

(3)RNFHa0, a1, a2, a3, a4, a5, a6, a7L ! ‚7
j!0

aj 2j.

The  RNF provides  the  rule  number  given  the  values  of  the  coeffi-
cients aj, j ! 0, 1, … , 7. This way, the logic is inverse: the function in-

puts are the coefficients and not the rule number. The latter is, on the
other hand, the output of the transformation. The RNF can be gener-
alized to a base b and a combination of n cells in the previous step as

(4)
RNFIn0, n1, n2, … , nbn-1; bM ! ‚b

n-1

j!0

nj bj;

0 § RNF § bbn-1 - 1.

Given  this  brief  introduction  to  CAs,  consider  another  interesting
rule: rule 90. Its trio representation is given in Figure 4.

1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.  Rule 90.

In [7], the following relation was given to describe the behavior of
rule 90: 

(5)Ck
i+1 ! modACk-1

i + Ck+1
i , 2E

where  mod@o, pD  denotes  the  modulus  operator,  which  gives  the  rest
of the division of o by p if o is greater than p or o itself, otherwise. In
general, p is called the congruence modulus.  

An interesting characteristic of equation (5) is its simplicity. Instead
of  needing  eight  different  rules,  as  shown  in  Figure  4,  just  one  rule
can be applied to the whole net in order to get the desired pattern. Us-
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ing the notation introduced in equation (1), Figure 4 gives

(6)Ck
i+1 !

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 1, 0D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 1D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @1, 0, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 1, 0D

1, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 1D

0, if ACk-1
i , Ck

i , Ck+1
i E ! @0, 0, 0D.

In order to provide simple representations for every elementary CA
(ECA)  as  in  equation  (5),  the  definition  of  a  new  function,  the  iota-
delta function, has been discussed in [8]. Section 3 shows a few defini-
tions concerning this function. 

3. The Iota-Delta Function  

In order to represent every binary automaton,  the iota-delta function
has been defined in [8] as follows:  

(7)

idn
m@xD !
modAmodA…mod@mod@x, pmD, pm-1D, … , pjE, nE,

m ¥ j; m, n œ !+; x œ "; j ! p @nD + 1;

in which m and n are parameters of the iota-delta function, pm  is the

mth  prime  number,  and  p@nD  stands  for  the  prime  counting  function
that  gives  the  number of  primes  less  than or  equal  to  n.  It  is  consid-
ered that p1 ! 2. The value of n determines how many states the au-
tomata  generated  have.  Thus,  for  a  binary  automaton,  n ! 2,  for
ternary ones, n ! 3, for quaternary ones, n ! 4, and so on. Also, the
iota-delta  function  is  taken  to  be  non-negative  and  max@idn

m@xDD Ø n
when  x œ #.  A  Mathematica  code  that  readily  implements  equa-
tion!(7) is [8]:  

iotadelta@m_,n_,x_D := Mod@Fold@Mod,x,Table@Prime@m-jD,8j,0,m-1-PrimePi@nD<DD,nD
It has been proposed in [8] that every ECA is represented by means

of the general formulation

(8)Ck
i+1 ! idn

m Aa1 Ck-1
i + a2 Ck

i + a3 Ck+1
i + a4E.

           
!            
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The  usage  of  equation  (8)  is  fully  justified  by  means  of  equa-
tion!(1). Based on equation (8) and the cyclic property of the modular
operator,  the  number  of  tuples  8a1, a2, a3, a4<  allowed  by  means  of

the iota-delta function representation in equation (8) is pm
4 , as the pos-

sible coefficients are aj ! 8r r § pm - 1; r œ !+<; j ! 1, 2, 3, 4. 

In order to represent every binary CA in the simplest way possible,
in  [8]  it  has  been  shown that  the  smallest  value  of  m  is  m ! 5.  This
corresponds  to  the  case  where  the  iota-delta  function  represents
mod@mod@mod@mod@mod@x, 11D, 7D, 5D, 3D, 2D. 

Given  these  few  definitions  of  the  iota-delta  function,  we  proceed
to its generalization in Section 4. 

4. The Capital Iota-Delta Function

Since  the  most  basic  operations  are  addition,  subtraction,  multiplica-
tion, and division, it is expected that CAs can be described by means
of such operations. This way, instead of considering the linear combi-
nation of cells, the situation in which products are also allowed must
be  considered.  Both  subtraction  and  division  follow  from  addition
and  multiplication;  this  way,  let  the  combination  of  powers,  sums,
and  products  of  cells  be  taken  into  account.  The  capital  iota-delta
function can be defined as

(9)

w
g I Dn

m Ck
i

Hb1, m1L, Hb2, m2L, …, Hbw, mwL
AAu1, u2, … , uw, au1, u2, … , uwEE !

idn
m ‚

l=0

l ‚
u1+u2+!+uw=l

au1, u2, … , uw ‰
1§ c§w

JCk+bc

i+mc Nuc

in which the following occur.

1. The  second  summation  is  taken  over  all  combinations  of  non-negative
integer indexes u1 through uw such that the sum of all uj is l. 

2. w  is  the  number  of  terms  that  are  being  combined.  In  other  words,  it
represents  how many  cells  the  value  of  another  given  cell  depends  on.

In equation (8), for example, w ! 3 since the value of Ck
i+1  depends on

the value of three other cells, namely Ck-1
i , Ck

i , and Ck+1
i . 

3. g  is  the  greatest  power  of  any  combined  term.  In  equation  (8),  g ! 1
since there are no terms on the right-hand side that are raised to powers
greater than one. 

4. m and n are the parameters of the iota-delta function. 
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5. The  pairs  Hbc, mcL,  c ! 1, … , w  are  functional  parameters  that  locate

the combined terms with respect to Ck
i . For example, for Ck-1

i , the pair

is H-1, 0L. 
6. au1, u2, … , uw  are the coefficients of the final terms for each set of values

u1, u2, … , uw. In fact, there is a total of Hg + wL ! ê g ! w! of such coeffi-
cients. Besides, their values are au1, u2, … , uw ! 8r r § pm - 1; r œ !+<.
The  notation  @@.DD  stands  for  a  matrix  Hg + wL ! ê g ! w!  by  w + 1  whose
lines  are  correspondent  to  each  set  of  values
u1, u2, … , uw, au1, u2, … , uw .  In  equation  (8),  the  corresponding  lines

are  I0, 0, 0, a0,0,0 ! a4M,  I1, 0, 0, a1,0,0 ! a1M,  I0, 1, 0, a0,1,0 ! a2M,
and  I0, 0, 1, a0,0,1 ! a3M.  Based  on  the  capital  and  the  ordinary  iota-

delta functions, the general equation that represents every binary CA is
given as

(10)
Ck

i+1 ! 3
1 I D2

5 Ck
i

H-1, 0L, H0, 0L H1, 0L
0 0 0 a0,0,0

1 0 0 a1,0,0

0 1 0 a0,1,0

0 0 1 a0,0,1

!

idn
mAa0,0,0 + a1,0,0 Ck-1

i + a0,1,0 Ck
i + a0,0,1 Ck+1

i E.
An interesting special case of the capital iota-delta function is when

au1, u2, … , uw ! g! ê Hu1 ! u2 !… ! uw !L. This way, equation (9) reduces!to

(11)

w
g I Dn

m Ck
i

Hb1, m1L, Hb2, m2L, … , Hbw, mwL
u1, u2, … , uw,

g!

u1 ! u2 !… ! uw !

!

idn
m

⁄c!1
w JCk+bc

i+mc Ng+1
- 1

⁄c!1
w Ck+bc

i+mc - 1
.

In  order  to  prove  equation  (11),  consider  the  multinomial  theo-
rem![9]: 

(12)

Hx1 + x2 +! + xwLl !

‚
u1+u2+!+uw = l

g!

u1 ! u2 !… ! uw !
‰

1§ c§w

HxcLuc .
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Let  xc ! Ck+bc

i+mc ,  c ! 1, … , w.  This  way,  when  au1, u2, … , uw !
g! ê Hu1 ! u2 !… ! uw !L, both equations (9) and (12) provide

(13)

w
g I Dn

m Ck
i

Hb1, m1L, Hb2, m2L, … , Hbw, mwL
u1, u2, … , uw,

g!

u1 ! u2 !… ! uw !

!

idn
m ‚g

l!0

‚w
c!1

Ck+bc

i+mc

l

! idn
m

⁄c!1
w JCk+bc

i+mc Ng+1
- 1

⁄c!1
w Ck+bc

i+mc - 1
.

5. Quantitative Interpretation of Cellular Automata by Means of the 
Iota-Delta Function 

In Section 4 it has been demonstrated that every 0–255 CA can be rep-
resented  in  terms  of  the  iota-delta  function  as  equation  (10).  In  this
section,  a  quantitative  interpretation  of  this  relation  is  deduced  by
comparing equation (10) to the finite difference method (FDM).  

As widely known, FDM is a numerical method that turns differen-
tial  equations  into  difference  equations,  making  possible  the  solution
of the former by solving a system of the latter. The methodology to be
presented is applicable to every partial differential equation (PDE); on
the other hand, in order to better explain the procedure, the advective-
dispersive  equation  that  describes,  for  example,  the  solute  flow  in  a
porous medium is taken into account. This way, let the equation that
describes  the  concentration  c Hx, tL  of  a  given  solute  flowing  in  a
porous medium as [10]

(14)
!c

! t
! Dx

!2 c

!x2
- vx

!c

!x

in which Dx  AL2 ë TE is the hydrodynamic dispersivity of the medium
and vx @L ê TD is the mean velocity of the interstitial fluid.  

The reader is probably familiar with the concepts behind FDM, so
basic definitions will be omitted. The latter can be further investigated
in  [11].  Use  the  forward  difference  in  space  and  time  for  the  first-
order  derivative.  Also,  the  central  difference  for  the  second-order
derivative in space shall be used. This way, by applying FDM to equa-
tion  (14)  considering  a  structured  mesh  whose  lengths  in  space  and
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 time are D t and D x, respectively, the latter equation turns to

(15)

cHx, t + D tL - cHx, tL
D t

!

Dx
cHx + Dx, tL - 2 cHx, tL + cHx - D x, tL

D x2
-

vx
cHx + Dx, tL - cHx, tL

D x
.

In  order  to  simplify  notation  and  also  clarify  the  link  between
FDM and CAs, let k be the position x in space and i the position t in
time. It is clear that based on the mesh lengths described, the position
k + 1  is  equivalent  to  x + D x  in  the  “real”  space  mesh  and  the  posi-
tion i + 1 is equivalent to t + D t  in the “real” time mesh. Also, let the
following substitutions take place: 

(16)N !
Dx D t

D x2

(17)Cr !
vx D t

D x

in  which N  and Cr  are  the Neumann and Courant  numbers,  respec-
tively. This way, equation (15) turns to

(18)ck
i+1 ! N ck-1

i + H1 - 2 N + CrL ck
i + HN - CrL ck+1

i .

It  has  been  shown  in  [12]  that  the  FDM  scheme  used  in  equa-
tion!(18) is stable if

(19)2 N - Cr § 1.

The  similarity  between  equations  (8)  and  (18)  is  remarkable.  The
main  question  is  how  to  directly  relate  one  to  the  other.  An  imme-
diate alternative is linear scaling of the iota-delta function in order to
obtain equation (18). This way, consider a non-null scaling constant S
multiplied  to  the  right-hand side  of  equation (8).  When S ! 1,  equa-
tion (8) is recovered. The new rule takes the form

(20)
Ck

i+1 !
S idn

mAa0,0,0 + a1,0,0 Ck-1
i + a0,1,0 Ck

i + a0,0,1 Ck+1
i E.

Consider the evolution of equation (20) for a unitary initial condi-
tion presented in  Figure  5.  Note  that  the  evolution is  given from left
to right instead of the traditional up-down convention. 
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0 S id2
5@a0,0,0D S id2

5Aa0,0,0 + S a0,1,0 id25@a0,0,0D +
S a1,0,0 id2

5@a0,0,0D +
S a0,0,1 id2

5@a0,0,0 + a0,0,1DE
0 S id2

5@a0,0,0 + a0,0,1D S id2
5Aa0,0,0 + S a1,0,0 id25@a0,0,0D +
S a0,1,0 id2

5@a0,0,0 + a0,0,1D +
S a0,0,1 id2

5@a0,0,0 + a0,1,0DE
1 S id2

5@a0,0,0 + a0,1,0D S id2
5Aa0,0,0 + S a1,0,0 id25@a0,0,0 + a0,0,1D +
S a0,1,0 id2

5@a0,0,0 + a0,1,0D +
S a0,0,1 id2

5@a0,0,0 + a1,0,0DE
0 S id2

5@a0,0,0 + a1,0,0D S id2
5Aa0,0,0 + S a0,0,1 id25@a0,0,0D +
S a1,0,0 id2

5@a0,0,0 + a0,1,0D +
S a0,1,0 id2

5@a0,0,0 + a1,0,0DE
0 S id2

5@a0,0,0D S id2
5Aa0,0,0 + S a0,0,1 id25@a0,0,0D +
S a0,1,0 id2

5@a0,0,0D +
S a1,0,0 id2

5@a0,0,0 + a1,0,0DE
Figure 5.  Evolution of equation (20).

In  order  to  determine  which  is  the  value  of  S,  compare  the  evolu-
tion  of  equation  (20)  to  the  evolution  of  the  FDM  scheme  in  equa-
tion!(18). Thus, consider the evolution of the FDM scheme as in Fig-
ure 6. 

0 0 H-Cr + NL2
0 -Cr + N 2 H1 + Cr - 2 NL H-Cr + NL
1 1 + Cr - 2 N H1 + Cr - 2 NL2 + 2 N H-Cr + NL
0 N 2 H1 + Cr - 2 NL N
0 0 N2

Figure 6.  Evolution of equation (18).

First  and  foremost,  in  order  to  be  able  to  compare  the  values  of
both  FDM and  CA schemes,  it  is  important  to  notice  that  the  FDM
scheme  adopted  depends  only  on  a  linear  combination  of  the  values
of the variable of interest in a previous step. This way, it is possible to
set a0,0,0 ! 0. 

In  order  to  turn  the  values  concerning  the  CA  approach  indepen-
dent of the iota-delta function, the argument of the iota-delta function
in equation (20) has to be less than 2. This comes from the definition
of  the  modular  operator  in  the  case  of  binary automata.  Specifically,
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   p      y   p y

if the maximum of the argument of the iota-delta function is less than
2, every other argument will also be. Consider the inequality 

(21)
a1,0,0 Ck-1

i + a0,1,0 Ck
i + a0,0,1 Ck+1

i §

SIa1,0,0 + a0,1,0 + a0,0,1M.
In  order  to  find  the  value  of  S,  notice  that  the  coefficients  of  the

FDM scheme in each line always add up to 1. This is due to the con-
servative  behavior  of  the  problem considered.  Consider  that  the  first
line of the CA evolution adds up to W. Thus,

(22)SIidn
mAa1,0,0E + idn

mAa0,1,0E + idn
mAa0,0,1EM ! W.

Assuming that S exists such that each line of the CA will add up to
the same W, in order to normalize the lines obtained from the CA ap-
proach  each  line  must  be  divided  by  such  a  constant.  Finally,  from
equation (22) and Figures 5 and 6, it is possible to obtain the follow-
ing system of equations: 

(23)

N - Cr !
S idn

mAa0,0,1E
W

!
idn

mAa0,0,1E
idn

mAa1,0,0E + idn
mAa0,1,0E + idn

mAa0,0,1E
N !

S idn
mAa1,0,0E
W

!
idn

mAa1,0,0E
idn

mAa1,0,0E + idn
mAa0,1,0E + idn

mAa0,0,1E
which can be readily solved as

(24)

Cr !
idn

mAa1,0,0E - idn
mAa0,0,1E

idn
mAa1,0,0E + idn

mAa0,1,0E + idn
mAa0,0,1E

N !
idn

mAa1,0,0E
idn

mAa1,0,0E + idn
mAa0,1,0E + idn

mAa0,0,1E .

By  means  of  equation  (24)  and  the  stability  conditions  in  equa-
tion!(19),  it  is  possible  to  analyze  the  stability  of  CA  schemes  repre-
senting advective-dispersive phenomena. This way,

(25)2 N - Cr !
idn

mAa1,0,0E + idn
mAa0,0,1E

idn
mAa1,0,0E + idn

mAa0,1,0E + idn
mAa0,0,1E § 1.

Equation  (25)  shows  that  CA  schemes  representing  advective-
dispersive phenomena are always stable, as expected from CA theory. 

Finally, if the right-hand side of equation (21) must be less than 2,
the  left-hand  side  also  must  be.  It  can  be  shown that  only  when  the
right-hand  side  of  equation  (21)  is  equal  to  1  is  the  condition  that
each line of the CA adds up to W satisfied. The latter proof consists of
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      p      p   

equating the sum of the terms in the second and third columns in Fig-
ure 5. For simplicity, the proof is omitted. This way, S can be readily
obtained as

(26)S !
1

a1,0,0 + a0,1,0 + a0,0,1

.

By means of these formulas, CA schemes prove their value as con-
vergent  explicit  methods  to  describe  systems  once  only  described  by
means  of  PDEs.  Also,  it  is  interesting  to  explore  the  diffusive  case,
when the Courant number is  0.  In this  case,  note that FDM schemes
demand  the  coefficients  in  equation  (18)  be  symmetric,  that  is,  both
the first  and last  are  equal  to N.  On the other  hand,  the CA scheme
only  requires  that  the  iota-delta  of  the  coefficients  to  be  symmetric.
This  way,  a  very interesting feature  of  the  CA scheme shows up:  the
possibility of dealing with normal and anomalous diffusion by means
of a single formulation. This will be better explained in Section 6. 

6. Normal Diffusion and Anomalous Diffusion by Means of Cellular 
Automata  

As  stated  in  Section  5,  for  an  FDM  scheme,  normal  diffusion  is  ob-
tained  when the  coefficients  are  symmetric  with  respect  to  the  initial
condition  space  row.  On  the  other  hand,  when  the  iota-delta  func-
tions of the coefficients that define the automaton rule are symmetric
with respect to the initial condition space row, not only normal diffu-
sion  but  also  anomalous  behavior  is  easily  seen.  At  first,  a  question
that  demands  an  answer  is  whether  the  CA  approach  for  describing
diffusive problems gives the same answer as the FDM scheme. In or-
der to address this issue, we must take into account two conditions.

6.1 Condition 1
Are the coefficients of the CA methodology symmetric with respect to
the initial condition line? In order to address this first condition, con-
sider the coefficients in the first and last lines of the last column in Fig-
ure 5. Based on this observation, in order to have symmetry with re-
spect to the initial condition line, we must have

(27)
S idn

mAa1,0,0 S idn
mAa1,0,0EE

W
!

S idn
mAa0,0,1 S idn

mAa0,0,1EE
W

.

In  the diffusive  case,  from equation (24),  idn
mAa1,0,0E ! idn

mAa0,0,1E.
Thus, both iota-delta functions are either 0 or 1, following the binary
characterization.  When  they  are  0,  it  is  clear  that  equation  (27)  is
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  y        q   

fully satisfied. On the other hand, when they are both 1, the argument
of the outer iota-delta function becomes less  than 2 since S  is  the in-
verse of the sum of the three coefficients, which finally takes the argu-
ment out of the iota-delta function and leads to a1,0,0 ! a0,0,1. It has

been proved that  in order to obtain symmetric  diffusion with respect
to  the  initial  condition  position,  both  the  coefficients  and  their  iota-
delta functions have to be equal. Now we must investigate the second
and most important condition.

6.2 Condition 2
Are the outer coefficients of the CA methodology related to the ones
in the previous step? If yes, what is the relation? 

It  is  clear  from  Figure  6  that  the  outer  coefficients  of  the  FDM
scheme are related to the ones in the previous steps by a power func-
tion. In order to better develop this part of the paper, Neumann num-
bers  will  also  be  indexed  in  space  and  time;  thus,  the  FDM  shows
that, for a diffusive case,

(28)N-i
i ! IN-1

1 Mi; Ni
i ! IN1

1Mi i ¥ 1.

From  equation  (24),  the  corresponding  Neumann  numbers  in  the

CA scheme are N-1
1 ! N1

1 ! S ëW. CA methodology provides, on the
other hand,

(29)
N-i

i !
S idn

mAa0,0,1 WN-i+1
i-1 E

W
;

Ni
i !

S idn
mAa1,0,0 WNi-1

i-1E
W

i ¥ 2.

Equation (29) easily implies

(30)N-i
i !

SiIa0,0,1Mi-1

W
; Ni

i !
SiIa1,0,0Mi-1

W
i ¥ 1.

There are three situations concerning equations (28) and (30).

6.2.1 Two-Sided Lighter-Tailed Anomalous Diffusion

Two-sided lighter-tailed anomalous diffusion occurs when

(31)

N-i
i !

SiIa0,0,1Mi-1

W
<

Si

Wi
;

Ni
i !

SiIa1,0,0Mi-1

W
<

Si

Wi
i ¥ 1.
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By  lighter  tailed,  we  consider  the  comparison  with  the  standard
diffusion  hereby  represented  by  the  FDM approach.  Note  that  equa-
tion!(31) physically suggests that the last values of the CA scheme are
lower  than  the  ones  of  the  FDM  scheme,  which  implies  a  lighter-
tailed distribution of concentrations in the former compared to the lat-
ter. From equation (31), we get

(32)
a0,0,1 idn

mAa0,1,0E < a1,0,0 + a0,1,0 - a0,0,1;

a1,0,0 idn
mAa0,1,0E < a0,0,1 + a0,1,0 - a1,0,0.

Pay close attention to the fact that equation (32) gives the relation
between  the  coefficients  in  order  to  be  configured  as  a  two-sided
lighter-tailed  anomalous  diffusion.  The  one-sided  case  takes  place
when only one of the inequalities in equation (32) is satisfied. For the
symmetric case, when a1,0,0 ! a0,0,1, equation (32) turns into

(33)a0,0,1 idn
mAa0,1,0E < a0,1,0; a1,0,0 idn

mAa0,1,0E < a0,1,0.

As an example, consider rule 150. Its capital iota-delta representa-
tion is

(34)Ck
i+1 ! 3

1 I D2
5 Ck

i

H-1, 0L, H0, 0L H1, 0L
0 0 0 0

1 0 0 1

0 1 0 4

0 0 1 1

.

Also,  equation  (24)  provides  N ! 1 ê 3.  For  the  rule  in  equa-
tion!(34),  both inequalities in equation (33) are satisfied, which char-
acterizes  a  two-sided  lighter-tailed  concentration  distribution,  as  can
be seen in Figure 7 in which a corresponding FDM with N ! 1 ê 3 is

0-50 50
Position0.00

0.01

0.02

0.03

0.04
Concentration

Figure 7.  Comparison between the CA methodology for rule 150 (solid) and
the corresponding FDM scheme (dashed) after 300 time steps.
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also plotted. Since the relation between the discretized time and space
and the real ones is t ! iD t and to x ! kD x, respectively, the lengths
of the mesh are just scale factors. In this way, Figure 7 has been plot-
ted  with  the  initial  condition  in  the  position  i ! k ! 0 and the  mesh
lengths were taken as the unit. 

By means of equations (28) and (30), it  is clear that the Neumann
number changes as the time steps evolve. In equation (16) the physical
meaning of the Neumann number has been given, which implies veri-
fying  which  physical  parameter  is  changing  over  time.  Considering
that the mesh is not changing in time, from equations (16), (28), and
(30) we find that the diffusivity of  the medium for a symmetric two-
sided lighter-tailed diffusion is given as

(35)Dx ! S
D x2

D t

Ia0,0,1MHi-1Lêi
W

i
.

The  discretization  of  the  cellular  net  led  to  t ! iD t;  thus  equa-
tion!(35) becomes

(36)Dx ! S
D x2

D t

Ia0,0,1MHt-D tLêt
WHD tLêt ; t ¥ D t.

An amazing feature of equation (36) is the fact that the diffusivity
varies  following  a  power-law  relation,  which  is  the  base  of  scaling
properties in fractal  structures.  The comparison between the diffusiv-
ity of a CA and FDM schemes is given in Figure 8. The same consider-
ations concerning the mesh lengths used to interpret Figure 7 are also
applicable to Figure 8. 

5 10 15 20 25 30
Time Steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Diffusivity

Figure 8.  Comparison between the  diffusivity  of  a  CA methodology for  rule
150 (solid) and the corresponding FDM scheme (dashed).
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From  equation  (35),  when  i  is  big  enough  and  by  means  of  stan-
dard limit application rules, it is easy to get

(37)Dx
steady ! S

D x2 a0,0,1

D t
.

Note that using the limit in equation (35) in which a given value is
taken  to  tend  to  infinity  does  not  invalidate  the  discreetness  of  the
approach,  since  this  type  of  limit  only  considers  a  large  number  of
times steps, which is physically acceptable. The index steady has been
added to the diffusivity D in order to show that this value is obtained
for  large  times.  It  is  very  interesting  to  observe  that  even  if  the
CA  scheme  has  constant  coefficients  in  its  generating  rule,  a  time-
dependent behavior is seen for the diffusivity. 

6.2.2 Two-Sided Light-Tailed Normal Diffusion

The two-sided light-tailed normal diffusion, or FDM approach, is the
case  when  both  the  CA  methodology  and  the  FDM  scheme  give  the
same results. This way,

(38)

N-i
i !

SiIa0,0,1Mi-1

W
!

Si

Wi
;

Ni
i !

SiIa1,0,0Mi-1

W
!

Si

Wi
i ¥ 1.

Following  an  argument  similar  to  the  one  employed  in  Section
6.2.1,  the  following  hold  for  the  case  when  CA  and  FDM  give  the
same results: 

(39)
a0,0,1 idn

mAa0,1,0E ! a1,0,0 + a0,1,0 - a0,0,1;

a1,0,0 idn
mAa0,1,0E ! a0,0,1 + a0,1,0 - a1,0,0.

For the symmetric case,

(40)
a0,0,1 idn

mAa0,1,0E ! a0,1,0;

a1,0,0 idn
mAa0,1,0E ! a0,1,0.

Also from equations (16) and (38), the diffusivity is given as 

(41)Dx ! S
D x2 a0,0,1

D t

which is  compatible with the normal diffusion situation in which the
diffusivity  is  constant  over  time.  Consider  rule  22.  Its  capital  iota-
delta function representation can be readily identified as
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(42)Ck
i+1 ! 3

1 I D2
5 Ck

i

H-1, 0L, H0, 0L H1, 0L
0 0 0 0

1 0 0 1

0 1 0 1

0 0 1 1

which  also  gives  N ! 1 ê 3.  Even  Neumann  numbers  of  the  corre-
sponding  FDM schemes  are  the  same for  rules  150 and 22;  only  the
latter  is  the  corresponding  FDM  method  itself,  since  equations  (38)
through  (40)  are  satisfied  by  the  latter.  There  is  no  special  physical
meaning for the case in Section 6.2.2, thus no figures will be shown.  

6.2.3 Two-Sided Heavier-Tailed Anomalous Diffusion

The two-sided heavier-tailed anomalous diffusion is now discussed.
The  term heavier  tailed  is,  as  in  Section  6.2.1,  with  respect  to  the

ordinary FDM scheme. By means of an approach similar to that used
in Sections 6.2.1 and 6.2.2, a two-sided heavier-tailed anomalous dif-
fusion takes place when

(43)

N-i
i !

SiIa0,0,1Mi-1

W
>

Si

Wi
;

Ni
i !

SiIa1,0,0Mi-1

W
>

Si

Wi
i ¥ 1.

Also,

(44)
a0,0,1 idn

mAa0,1,0E > a1,0,0 + a0,1,0 - a0,0,1;

a1,0,0 idn
mAa0,1,0E > a0,0,1 + a0,1,0 - a1,0,0.

For the symmetric case,

(45)
a0,0,1 idn

mAa0,1,0E > a0,1,0;

a1,0,0 idn
mAa0,1,0E > a0,1,0.

Note  that  equations  (35)  through (37)  are  also  valid  for  this  case.
As an example,  take rule  54 and its  capital  iota-delta  representation,
which is
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(46)Ck
i+1 ! 3

1 I D2
5 Ck

i

H-1, 0L, H0, 0L H1, 0L
0 0 0 0

1 0 0 4

0 1 0 1

0 0 1 4

which  provides  N ! 1 ê 3.  Figures  9  and  10  show  the  behavior  of
rule!54  compared  to  the  corresponding  FDM  scheme,  based  on  the
same premises used to investigate Figures 7 and 8.  

0-50 50
Position0.00

0.01

0.02

0.03

0.04
Concentration

Figure 9.  Comparison  between  the  CA  methodology  for  rule  54  (solid)  and
the corresponding FDM scheme (dashed) after 300 time steps.

5 10 15 20 25 30
Time Steps

0.1

0.2

0.3

0.4

0.5

Diffusivity

Figure 10.  Comparison between the diffusivity of a CA methodology for rule
54 (solid) and the corresponding FDM scheme (dashed).

In the case where heavier-tailed behavior is  seen,  diffusivity  grows
in time, achieving its steady-state value given in equation (37). 

An  outstanding  behavior  can  be  seen  by  noticing  that  the  steady-
state diffusivity is the diffusivity of another FDM scheme with differ-
ent parameters,  as the comparison of equations (37) and (41) shows.
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 p    p   q     
This is a physically justified behavior since after a long period of time,
the differences between anomalous and normal diffusion tend to 0 as
the concentration tends to be equally distributed all over the domain. 

Another  interesting  behavior  can  be  seen  when  asymmetric  diffu-
sive rules are taken into account. In order to investigate this behavior,
consider, for example, rule 146. Its capital iota-delta representation is

(47)Ck
i+1 ! 3

1 I D2
5 Ck

i

H-1, 0L, H0, 0L H1, 0L
0 0 0 0

1 0 0 1

0 1 0 2

0 0 1 1

which provides N ! 0.5. On the other hand, rule 26 has a capital iota-
delta representation readily identified as

(48)Ck
i+1 ! 3

1 I D2
5 Ck

i

H-1, 0L, H0, 0L H1, 0L
0 0 0 0

1 0 0 1

0 1 0 2

0 0 1 4

which  also  gives  N ! 0.5.  Even  the  Neumann numbers  are  the  same
and both CA schemes are representative of pure diffusion. The behav-
ior described is radically different as can be seen in Figures 11 and 12. 

Figure 11.  Log10 of the concentration (left) and evolution (right) for the ECA
146 scheme.
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Figure 12.  Log10 of the concentration (left) and evolution (right) for the ECA
26 scheme.

Figure  11  shows  a  symmetric  diffusion  while  Figure  12  shows  an
asymmetric distribution whose peak is constantly moving. It is undeni-
able  that  anomalous  diffusion  takes  place  in  the  latter  figure.  This
leads  to  a  new  understanding  of  how  normal  and  anomalous  diffu-
sion are correlated.  It  can be said that normal diffusive processes are
doubly symmetric while anomalous diffusion is  only symmetric once.
Correlating CAs and physical processes described by them to symme-
try shows once more how valuable the latter is in science. 

7. Conclusions

Nature seems to be discrete; notwithstanding, the current scientific so-
ciety  is  still  dominated  by  the  continuum idea.  In  order  to  empower
the discrete notion, scientists have to develop methods to quali-quanti-
tatively  describe  nature’s  behavior  taking  into  account  the  discrete-
ness in the latter. Cellular automata (CAs) have shown to be an accu-
rate description of some complex phenomena. In this paper, a general
transformation  that  can  be  applied  to  the  whole  cellular  net  is  dis-
cussed.  By  means  of  such  a  transformation,  every  binary,  that  is,
0–255 CAs are described.  

In order to provide a compact version of the transformation devel-
oped, the iota-delta function has been used. The iota-delta function is
further generalized in order to describe every CA. Such generalization
is the capital iota-delta function, which is related to set partition and
the multinomial theorem. 

By means  of  a  correlation between the  iota-delta  function and the
finite difference method, 0–255 CAs could be described as advective-
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dispersive processes. A new intuition has been brought up concerning
normal and anomalous diffusion. It is worth noting that such an intu-
ition could not have been deduced from partial  differential  equations
(PDEs) and continuum theory since CA modeling of nature was funda-
mental  in  obtaining  it.  This  paper  intends  to  bring  to  discussion  the
iota-delta  function  and  how  the  latter  can  be  successfully  applied  to
quantitatively  describe  CAs.  Besides,  the  new  intuition  introduced
seems  to  have  interesting  physical  features  that  were  not  present  in
the previous definition of CAs. Also, some questions concerning CAs
such as universality may be better analyzed by means of the iota-delta
function. 
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