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Nontrivial  and  functional  behavior  in  register  machines  is  examined.
Register  machines  are  simple  implementations  of  modern  information
and communications technology and provide a computationally simple
vehicle  for  investigating  examples  of  nontrivial  and  functional  behav-
ior.  They  also  provide  opportunities  for  optimizing  information  and
communication  technologies  to  use  fewer  resources  or  perform  func-
tions more quickly.

A  simple  two-register,  four-instruction  register  machine  was  ana-
lyzed using soft and hard analytical techniques. Examples of nontrivial
and functional behavior were identified by observing two-register, four-
instruction register machines with various initial conditions. These reg-
ister  machines  were  identified  by  an  exhaustive  search  of  all  possible
register machine configurations meeting a particular definition. A subse-
quent  investigation  into  the  randomness  in  register  machine  compo-
nents  involved  a  frequency  analysis,  comparing  program  counter  and
register values against the discrete uniform distribution.

It is possible to observe examples of cyclical and conditional behav-
ior,  register-dependent  and  register-independent  behavior,  randomness
in the register machine’s program counter and registers, and foundation
arithmetic functions. Further analysis of this register machine configura-
tion yields  opportunities  for  synthesizing  multiple  functions  into  a  sin-
gle  register  machine  and  optimizing  functional  register  machines  by
brute-force testing all possible register machines.

1. Introduction

Register  machines  are  implementations  of  a  simple  computing  device
that perform operations on a fixed set of data registers. According to
Stephen  Wolfram,  register  machines  are  “specifically  designed  to  be
very simple idealizations of present-day computers” [1, p. 97]. There-
fore,  all  modern  information  and  communication  technologies  use
register machines of various implementations to store, access, and ma-
nipulate  data.  Register  machines  are  comprised of  three  related com-
ponents: a register, a program, and a program counter.
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1.1 Register
A register, or set of registers with a constant width, stores an encoded
value.  The  horizontal  axis  (1  to  8)  indicates  the  value  of  the  register
and the vertical axis (1 to 31) indicates the number of instructions exe-
cuted in the program. Red-colored register values indicate that a value
higher  than  the  register’s  width  is  currently  stored  in  that  register.
This is similar to the concept of “arithmetic overflow,” where the re-
sult  of  a  calculation  is  greater  than  the  register  that  stores  or  repre-
sents the data. Unlike some physical implementations of a register ma-
chine  such  as  a  microcontroller,  microprocessor,  or  other  low-level
hardware devices, exceeding a register’s capacity will not clear the reg-
ister’s  value or halt  the register  machine.  Figure 1 shows an example
of a single register.
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Figure 1. Register example.

1.2 Program
A  program  describes  the  behavior  of  the  register  machine.  Programs
are  a  set  of  instructions  that  operate  on  registers.  There  are  a  wide
variety of implementations of instructions that are available on differ-
ent  hardware platforms.  Wolfram uses a simple implementation with
two instructions [1, p. 97]:

† an increment operation, which increases the value of the register by one
and then executes the next instruction in the program, and 

102 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101



† a decrement-jump operation, which decreases the value of a register by
one and “jumps” to another instruction in the program. If  the register
value  is  0,  then  the  program executes  the  next  instruction.  The  decre-
ment-jump  operation  is  the  main  operation  that  yields  nontrivial
behavior.

In both cases, an instruction contains:

† the current instruction identified as an integer,

† the next instruction to be executed,

† the register that is being manipulated, and

† the  modifier  being  applied  (i.e.,  1  for  an  increment  operation  and  -1
for a decrement operation).

The  author  used  a  Minsky  register  machine  implementation  [2],
which  is  available  via  the  Wolfram Demonstrations  Project  [3].  This
implementation is based on Wolfram’s implementation [1, p. 98] with
the  added  instruction  of  a  “halted  instruction,”  where  a  program
would stop execution when it completed execution. 

A  no-operation  “NOP”  can  be  included  but  is  not  considered
within this study, as “any NOP instruction can be removed from the
formal description of the underlying Minsky register machine without
altering  its  function”  [2].  Therefore,  including  the  halted  instruction
will allow the discovery of any possible arithmetic or logical functions
as the register machine should halt after it has performed its function. 

Unfortunately,  there  are  no  standard  representations  for  register
machines.  Wolfram [1,  p.  98]  used as  a  representation a  sequence of
squares  with  directional  arrowheads,  arrows,  and color  to  define  the
instruction and whether an increment or decrement jump operation is
performed—the  destination  register  for  a  decrement-jump  operation
and the register to be operated on, respectively. The author has used a
Mealy  finite  state  machine  representation  to  describe  these  programs
as described in Figure 2 using the nomenclature in Figures 3 to 6.

1.3 Program Counter
A program counter indicates the instruction that is executed at a par-
ticular  time.  The  horizontal  axis  (1  to  4)  indicates  the  instruction
executed  and  the  vertical  axis  (1  to  21)  indicates  the  number  of  in-
structions  executed  in  the  program.  Figure  7  shows  an  example  of  a
program counter.

An enumeration is used to describe all unique register machine pro-
grams  and  is  described  in  Appendix  A.  All  of  the  register  machines
specified in this paper can be simulated using [3].
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Figure 2. Program example: program number 2984.
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Figure 3. Program nomenclature: an instruction.
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Figure  4. Program nomenclature:  an  increment  instruction  number  2  adds  1
bit to register 2 and then executes instruction 3.
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Figure  5. Program  nomenclature:  a  decrement-jump  instruction  number  4,
where if the value of register 2 is not 0 then 1 bit is subtracted from register 2
and instruction 4 is executed again. Otherwise, if the value of register 2 is 0,
then instruction 5 is executed.
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R:1, 0

5

Figure  6. Program nomenclature:  halted  instructions  are  instructions  used  to
stop  the  register  machine’s  operation  by  repeating  the  halted  instruction
indefinitely.
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Figure 7. Program counter example.

2. Investigation Context

The author investigated the Minsky register machines during the New
Kind  of  Science  Summer  School  2007,  building  on  the  results  pre-
sented in Wolfram’s A New Kind of Science. The initial objective was
to  investigate  examples  of  nontrivial  register  machines  but  was  ex-
tended to include examples of functional behavior due to the frequent
occurrences of functions during the investigation. Wolfram Mathemat-
ica  6  was  used  with  the  Minsky  register  machine  implementation.
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Due to time and hardware limitations,  the  author  only  studied regis-
ter  machines  with  two  registers  with  8  bits  in  width  and  programs
with  four  instructions  with  a  program  execution  time  of  50  instruc-
tions. Fifty instructions was chosen to avoid the halting problem: if a
program  did  not  halt  after  50  instructions,  then  it  was  assumed  to
never halt.

The number of possible register machine programs (similar in con-
cept to “rules” in cellular automata theory) is calculated by HrHi + 1LLi,
where i is the number of instructions and r is the number of registers.
This definition is described in further detail in Appendix A. With this
configuration, there are 10 000 possible programs to study.

The  author  observed  every  possible  four-instruction,  two-register
configuration program with various initial program counters and reg-
ister values. For example, if two registers have initial values of 2 and
4  respectively  and  final  values  of  6  and  0  respectively,  then  the  pro-
gram may yield an addition function and would merit further investi-
gation. Similarly, if the registers or program counters yielded nontriv-
ial  behavior,  then  the  program  was  analyzed  further.  A  subsequent,
exhaustive  analysis  of  all  possible  four-instruction,  two-register  ma-
chines  that  assessed  a  register  machine  against  formal  definitions  of
nontrivial  and  functional  behavior  was  performed,  with  the  results
documented in Section 3. It required approximately 24 hours of con-
tinuous  processing  time  on  an  Apple  MacBook,  late-2008  edition
with  a  2.4  GHz  dual-core  processor  and  4GB  of  RAM  running  two
Mathematica 8.0.4 kernels.

3. Observations

The author observed that with the Minsky register machine, 8700 reg-
ister machines (87%) reached a halted state and therefore achieved a
function.  However,  this  does  not  imply  that  nontrivial  behavior  can-
not  be  observed from register  machines  that  do not  halt,  such as  the
example register machine 2985 shown in Figure 8.

Many of the register machines exhibited the following behaviors.

† Nontrivial  behavior  that  included  register-independent  and  register-
dependent behavior, conditional and cyclical behavior, and randomness
in register machine components where:

† Register-dependent register machines halt in at least one instruction
due to at least one register having a zero value for any initial register
value,  while  register-independent  behavior  involves  a  register  ma-
chine not halting for any initial register value.
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Figure  8. Example  of  nontrivial  behavior  from  a  register  machine  (program
number 2985) that does not halt.

† Conditional register machine behavior when its register values deter-
mines  which  instructions  are  evaluated.  Similarly,  cyclical  behavior
is where the register machine does not halt and continually executes
the same instructions in the same order, such as in Figure 8.

† Randomness, which according to Wolfram’s definition as “standard
methods of perception and analysis could not find any short descrip-
tion  from  which  the  thing  could  faithfully  be  reproduced”  [1,
p.!557]  in  a  register  machine’s  individual  register  and  program
counter values.

† Functional  behavior  where  the  register  machine  performed  an  arith-
metic or logical operation, such as adding the value of two registers and
storing the results in one of the registers.

3.1 Nontrivial Behavior
Using  these  definitions  for  all  possible  initial  register  values  for  two-
register,  four-instruction  register  machines,  4092  register  machines
(40.9%) showed register-independent behavior and 5908 register ma-
chines  (59.1%)  showed  register-dependent  behavior.  Only  176  regis-
ter machines (1.8%) exhibited conditional behavior and 1300 register
machines (13%) exhibited cyclical behavior. 

A  simple  frequency  analysis  of  randomness  was  conducted  to
assess the randomness of the behavior of a register machine. This con-
sisted of assessing the fit of the non-halted program counter or regis-
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ter  values  against  the  discrete  uniform  distribution  by  using  a  good-
ness-of-fit  test  with  a  significance  value  of  a = 0.05.  The  statistical
analysis  ignores  register  machines  whose initial  program counter  and
register values halt immediately or cannot be analyzed against the dis-
crete uniform distribution: more specifically, those that only contain a
single unique value. Figure 9 is a plot of the average p-values from the
distribution fit test: comparing the program counter values against the
discrete uniform distribution for all initial program counter values, or-
ganized by initial register values and program numbers.
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p-Value Average

Figure 9. Average p-value of distribution fit  test  of the program counter val-
ues versus the program number, organized by initial register values.

Statistically, only 1804 register machine program counters (18.0%)
exhibited  statistically  significant  (i.e.,  p-value  >  significance  value  of
0.05) randomness for all initial program counter and register values.

Performing a similar  analysis  on the registers  yields  the interesting
plots seen in Figures 10 and 11.

The discrete “lines” in Figures 10 and 11 are explained by a small,
finite set of potential register values a register machine could generate.
In  register  1  and  register  2  respectively,  7616  (76.2%)  and  7524
(75.2%)  register  machine  programs  exhibited  statistically  significant
randomness.  Appendix  B  contains  the  actual  values  and  their  corre-
sponding frequencies. 
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Figure 10. The p-value of a distribution fit test of register 1 values versus the
program number.
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Figure 11. The p-value of a distribution fit test of register 2 values versus the
program number.

3.2 Functional Behavior
A  brute-force  analysis  of  all  possible  four-instruction,  two-register
configuration  programs  was  conducted  to  discover  register  machines
that, given a particular initial program counter value, achieve a partic-
ular  arithmetic  or  logical  function  for  all  possible  initial  register  val-
ues. The following arithmetic and logical functions were discovered:

† Add function: 378 register machines

† Subtract function: 820 register machines
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† Multiplication function: 31 register machines

† Divide function: 48 register machines, of which four performed the di-
vide operation and 44 performed the divide operation and added the re-
sult to an existing register value

† Clear  function:  5168  register  machines  cleared  the  first  register,  5168
registers cleared the second register, and 2330 register machines cleared
both registers

Appendix C contains a list of the register machines that performed
these mathematical functions.

4. Register Machine Examples

4.1 Nontrivial Behavior
4.1.1 Register-Dependent and Register-Independent Behavior

In  the  example  of  nontrivial  behavior  shown  in  Figure  12,  program
number 2681 exhibits  a pattern where register 1’s  value has 1 added
and then 2 subtracted repeatedly until  register 1 is  empty.  The incre-
ment operation in instruction 2 and the decrement-jump operations in
instructions  3  and  4  yield  this  behavior  with  halting  occurring  be-
cause of the decrement operation in instruction 4.
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Figure  12. Program number  2681’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  6  bits,  and register  2’s  initial  value  of
3!bits.
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The  example  shown  in  Figure  13  is  very  similar  to  the  example
shown  in  Figure  12,  except  in  this  case  register  2’s  value  has  2  bits
added and then 1 bit subtracted repeatedly. This example is of signifi-
cance  as  it  is  structurally  similar  to  Figure  12,  but  it  does  not  halt.
This is due to the infinite loop caused by instructions 2 and 4, which
increment  and  decrement  the  same  register  and  never  activate  the
decrement case where register 1 is equal to 0.
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Figure  13. Program number  2881’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  2  bits,  and register  2’s  initial  value  of
4!bits.

The  example  in  Figure  14  shows  a  non-halting  register  machine
that does not cause an overflow in any register.

These programs are of interest as they exhibit register-independent
behavior.  The example  program in Figure  15 exhibits  register-depen-
dent behavior: with an initial program counter value of 1, register 1 is
cleared  and  then  register  2  is  cleared  while  incrementing  and  decre-
menting register 1. However, if the program counter is initialized at 2,
register  2 is  cleared while  incrementing and decrementing register  1’s
value.
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Figure  14. Program number  3691’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
6!bits.
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Figure  15. Program number  3680’s  registers  with  an  initial  program counter
value  of  1,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
6!bits.
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4.1.2 Conditional and Cyclical Behavior

There  are  other  examples  of  register  machines  that  not  only  exhibit
nontrivial  behavior  but  also  exhibit  conditional  behavior,  where  the
register machine’s behavior depends on certain conditions being satis-
fied.  These  conditions  usually  involve  a  register  being  set  to  0  and  a
program using a decrement-jump operation to yield nontrivial behav-
ior.  For  the  program  number  386,  starting  the  program  at  different
initial  program  counter  values  yields  a  variety  of  behaviors  (images
are shown in Appendix D):

† If register 1 has an odd value and the initial program counter value is 1,
then the program clears the value of register 1 and halts without alter-
ing register 2. Similarly, if register 1 has an even number and the initial
program counter value is 4, then the program clears the value of regis-
ter 1 without altering register 2. This is caused by the fact that instruc-
tion 4 is the last instruction to be executed when register 1 is empty, so
the program halts.

† If the initial program counter value is 2 with an even number stored in
register 2, then the program adds the value of register 2 plus 1 to regis-
ter 1 (i.e., register 1’s value = register 1’s initial value + register 2’s ini-
tial  value  +  1),  then  clears  register  1.  This  is  similar  to  the  previous
case, as instruction 4 is the last instruction to be executed when the reg-
ister machine halts after clearing register 1.

† However, if the last instruction to be executed in the last decrement op-
eration  was  instruction  1,  then  the  register  machine  enters  an  infinite
loop, continuously incrementing and decrementing register 1’s value as
shown in Appendix D. Similar behavior is observed for initializing this
register machine at an initial program counter value of 3 or 4.

Another  example  of  conditional  behavior  is  program  number
5169. This program: 

† subtracts the initial value of register 1 from register 2, 

† clears register 1, and

† oscillates  between  (register  1’s  initial  value  -  register  2’s  initial  value)
and (register 1’s initial value - register 2’s initial value - 1). 

In Figure 16, as register 1’s initial value is 4 and register 2’s initial
value  is  6,  then  register  2’s  final  register  value  oscillates  between  1
and 2.

4.1.3 Randomness in a Register Machine’s Program Counter

Program number 1274 is an example of randomness in a register ma-
chine’s  program  counter;  this  program  subtracts  the  value  of  regis-
ter!2  from  register  1  and  stores  the  result  in  register  1  as  shown  in
Figure!17.
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Figure  16. Program number  5169’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
6!bits.
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Figure  17. Program number  1274’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  6  bits,  and register  2’s  initial  value  of
4!bits.
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However,  under  specific  circumstances,  such  as  register  2’s  initial
value being 1 bit greater than register 1’s value, the program counter
exhibits a different kind of randomness, as shown in Figure 18.
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Figure  18. Program number  1274’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  6  bits,  and register  2’s  initial  value  of
4!bits.

4.1.4 Randomness in a Register Machine’s Registers

Figures 19 and 20 are two examples of randomness in a register ma-
chine’s registers.

† Program number 1825 appears to have two distinct functions:

† If register 2’s value is even, then the value of register 2 is divided by
2, the result is added to register 1, and the program halts.

† If register 2’s value is odd, then the value of register 2 is divided by
2 and the integer component of the result is added to register 1; then
register 1 is cleared and incremented, and then the program halts. 

While the behavior of this register machine can be easily explained,
such a large variance in its behavior warranted its inclusion in a study
on randomness in register machines.

† Program  number  2715  is  a  functionally  simple  register  machine  that
clears both registers. The way it clears registers is not simple. Register 2
clears  3  bits  and  then  clears  1  bit  from  register  1  until  register  2  is
empty,  and  then  register  1  has  1  bit  cleared  after  every  three  instruc-
tions. Figure 21 shows how the register machine performs this behavior
under different initial conditions.
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Figure  19. Program number  1825’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
6!bits.
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Figure  20. Program number  1825’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
3!bits.
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Figure  21. Program number  2715’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  6  bits,  and register  2’s  initial  value  of
8!bits.

4.2 Functional Behavior Examples
Considering register machines are theoretical implementations of prac-
tical information and communications technologies, register machines
would be expected to perform basic arithmetic operations in a similar
manner  to  a  low-level  information  and  communications  technology
device such as a microcontroller or microprocessor. All of the register
machines  that  demonstrate  functional  behavior  halt  after  performing
their intended operation. It is also assumed that the register value rep-
resents a decimal value, so if a register’s value is 5 bits, then it is stor-
ing  a  decimal  value  of  5,  implying  that  this  simple  register  machine
can  only  process  positive,  integral  values.  Let  registerai  be  the  value
of register a at instruction i, so for example register1initial  is the initial
value of register 1 and register2final  is the final value of register 2. Fi-
nal value in this context is the value of a register after a register ma-
chine has halted.

4.2.1 The Addition Function

The  register  machine  in  Figure  22  (program  number  4921)  adds  the
value  of  register  1  to  register  2  and  clears  register  1,  or
register2final = register1initial + register2initial  and  register1final = 0.
However, this register machine can also increment the value of regis-
ter 1 and clear register 1; this can be accomplished by simply starting
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program number 4921 with an initial program counter value of 1. See
Appendix D for examples of other addition functions.
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Figure  22. Program number  4921’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
4!bits.  The result  of adding register 1’s value to register 2 and clearing regis-
ter!1 is that register 1’s final value is 0 and register 2’s final value is 7.

4.2.2 The Subtraction Function

In  program number  4721,  register  2’s  value  is  subtracted from regis-
ter 1 and register 1 is cleared, or 

register2final = Max
register2initial - register1initial

0
and

register1final = 0.

The  maximum function  is  required,  as  this  register  machine  assumes
there is no way to represent negative values (see Figure 23).

Similar behavior can be observed from Figure 22, where setting the
program counter’s initial value to 1 decrements register 2’s value and
clears register 1.

4.2.3 The Multiplication Function

Program number 3882, shown in Figures 24 and 25, represents a reg-
ister machine that doubles the value of register 2 and adds it to regis-
ter  1,  clearing  register  2  in  the  process.  While  multiplication  can  be
performed by repeatedly  adding the  value  of  one  register  to  another,
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this  program  adds  the  value  of  register  2  twice  to  register  1  while
decrementing  register  2,  making  the  multiplier  a  constant  value.  Put
simply, this register machine performs the following operations: 

register1final = register1initial + 2 * register2initial and
register2final = 0.

Furthermore,  initializing  the  program  counter  at  2  results  in  the
program multiplying  one  more  than the  value  of  register  2  by  2  and
adding the result to register 1 while clearing register 2, so

 register1final = register1initial + 2 Iregister2initial + 1M and 
register2final = 0 

(see Figure 26).
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Figure  23. Program number  4721’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
7!bits. The result of subtracting register 1’s value from register 2 and clearing
register 1 is that register 1’s final value is 0 and register 2’s final value is 4.

Discovering Nontrivial and Functional Behavior in Register Machines 119

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101



R:1, -1

R:1, 1

R:1, 1

R:2, -1

R:1, 0

1

2

3

4

5

Figure 24. Program number 3882.
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Figure  25. Program number  3882’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  2  bits,  and register  2’s  initial  value  of
4!bits.  The  result  of  multiplying  register  2’s  value  by  2,  adding  the  result  to
register 1, and clearing register 2 is that register 1’s final value is 8 and regis-
ter 2’s final value is 0.
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Figure  26. Program number  3882’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  0  bits,  and register  2’s  initial  value  of
2!bits. The result of multiplying one more than register 2’s value by 2, adding
the result in register 1, and clearing register 2 is that register 1’s final value is
6 and register 2’s final value is 0.

4.2.4 The Divide Function

Program number 3780 is another example of an implementation of a
nontrivial  mathematical  operation:  the  divide  operation.  This  pro-
gram clears  register  1,  takes  the  integer  component  of  dividing regis-
ter  2’s  initial  value by 2,  increments  it,  and stores  the result  in  regis-
ter!2. Expressed mathematically, this is

register1final = f register2initial

2
v + 1 and register2final = 0. 

The  implementation  of  this  register  machine  program  is  very  similar
to  Figure  26,  except  it  is  interesting  to  observe  that  the  decrement-
jump’s behavior does not yield any nontrivial behavior: it performs a
functional role in this context (see Figures 27 and 28).
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Figure 27. Program number 3780.
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Figure  28. Program number  3780’s  registers  with  an  initial  program counter
value  of  1,  register  1’s  initial  value  of  8  bits,  and register  2’s  initial  value  of
6!bits. The result of clearing register 1, taking the integer component of divid-
ing register 2’s value by 2, incrementing it, and storing the result in register 1
is that register 1’s final value is 4 and register 2’s final value is 0.

Finally,  initializing  the  program counter  at  any  other  value  allows
the register machine to add the integer component of dividing register
2’s initial value by 2 to register 1, which is the most useful implemen-
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tation of  a  “divide by two” register  machine.  The example shown in
Figure 29 initializes  the program counter at  3.  Expressed mathemati-

cally, this is register1final = f register2initial

2
v + register1initial.
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Figure  29. Program number  3780’s  registers  with  an  initial  program counter
value  of  3,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
6!bits.  The  result  of  taking  the  integer  component  of  dividing  register  2’s
value  by  2,  incrementing  it,  and  storing  the  result  in  register  1  is  that  regis-
ter!1’s final value is 6 and register 2’s final value is 0.

4.2.5 The Clear Function

The register machine programs 6420 and 7531 clear various registers.
Program number  6420 shown in  Figure  30 only  clears  register  1’s

initial  value  and  then  halts.  Observing  the  program’s  action  in  Fig-
ure!31, it can be seen that the program only operates on register 1 and
ignores  register  2’s  value,  and  it  is  clear  that  the  initial  program
counter value does not have any practical impact on the functional be-
havior of the register machine except for the time it takes for the regis-
ter machine to halt.
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Figure 30. Program number 6420.
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Figure  31. Program number  6420’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
5!bits. The result of clearing register 1 is that register 1’s final value is 0 and
register 2’s final value is 5.

Program number 7531, shown in Figures 32 and 33, has a similar
behavior to program number 6420, except it  clears register 2 instead
of register 1.
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Figure 32. Functional behavior example: program number 7531’s program.
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Figure  33. Program number  7531’s  registers  with  an  initial  program counter
value  of  4,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
5!bits. The result of clearing register 2 is that register 1’s final value is 3 and
register 2’s final value is 5.

5. Conclusions

5.1 Investigation Results
From  the  results  obtained,  it  is  clear  that  register  machines  with  a
four-instruction,  two-register  configuration  exhibit  nontrivial  and
functional  behavior.  The  set  of  register  machine  programs  yielded
multiple  examples  of  nontrivial  behavior,  so  further  investigation for
examples  of  nontrivial  behavior  with  more  complicated  register  ma-
chine configurations is warranted.

The examples of functional behavior exhibited by the simple four-
instruction,  two-register  configuration is  similar to the behavior typi-
cally seen in embedded platforms, where a “working” register is used
as both an input and an output for a function. For example, an addi-
tion operation would add the contents of a register to the working reg-
ister,  storing  the  result  in  the  working  register.  The  contents  of  the
working  register  would  then  be  copied  to  another  register  for  future
use or used immediately for a subsequent operation. This supports the
notion that  register  machines  are  good theoretical  models  of  modern
microcontroller and microprocessor technology.
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5.2 Program Synthesis
An interesting observation from experimenting with these register ma-
chines  is  that  certain  register  machines  can  perform  different  func-
tions by starting at different initial conditions, especially by starting a
register  machine  with  different  initial  program  counter  values.  In
Section 4, examples of multiplying or dividing register values by a con-
stant  and  by  changing  the  initial  program  counter  value  are  consid-
ered; different functional outputs could be observed from the register
machine. 

Another example is program number 5721, whose program is dis-
played in Figure 34. If the program counter is initialized to 1, then the
register  machine  clears  register  2  and  then  clears  register  1  (see  Fig-
ure!35).  Initializing  the  program  counter  to  2  results  in  the  register
machine  clearing  register  1  before  clearing  register  2  (see  Figure  36).
It is also interesting to note that the program counter’s pattern is very
different from Figure 35.

R:2, -1

R:1, -1

R:2, -1

R:2, -1

R:1, 01 2 3 4 5

Figure 34. Program number 5721.
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Figure  35. Program number  5721’s  registers  with  an  initial  program counter
value  of  1,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
5!bits. The result is that register 1 and register 2’s final values are 0.
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Figure  36. Program number  5721’s  registers  with  an  initial  program counter
value  of  2,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
5!bits. The result is that register 1 and register 2’s final values are 0.

Finally,  initializing the program counter to 3 results in the register
machine clearing only register 2 and then halting without altering the
value of register 1 (see Figure 37).
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Figure  37. Program number  5721’s  registers  with  an  initial  program counter
value  of  3,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
5!bits. The result is that register 1’s final value is 3 and register 2’s final value
is 0.
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While this  behavior has simple implications,  this  does suggest  that
the  creation  can  be  optimized  for  low-level  logic  devices  or  other
Boolean logic using logic gates,  such as complex programmable logic
devices (CPLDs) and field programmable gate arrays (FPGAs) by cre-
ating  these  “super-programs,”  which  exhibit  unique  behavior  by  us-
ing  different  initial  conditions.  Theoretically,  this  is  advantageous  as
this would offer lower overall usage of hardware components such as
logic gates, potentially reducing the cost or size of an end product.

5.3 Optimizing Embedded Software
From  observing  these  simple  examples  of  functional  behavior  from
two-register, four-instruction register machines, it is clear that certain
register machines are quicker than other register machines at perform-
ing  certain  functions.  That  is,  they  execute  fewer  instructions  to
achieve  a  function.  A  trivial  example  involves  clearing  two  registers.
Program  numbers  2551,  2741,  and  6531  all  clear  both  registers  but
require a different number of instructions to perform the task.

Program number  2551 with an initial  program counter  value  of  1
and  an  initial  value  of  5  in  both  registers  requires  25  instructions  to
clear both registers (see Figures 38 and 39). Further analysis suggests
that it  requires 3 i + j + 5 instructions to clear both registers and halt,
where i and j are the initial values of registers 1 and 2, respectively.

R:2, -1

R:2, -1

R:2, -1

R:1, -1

R:1, 0

1

2
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5

Figure 38. Program number 2551.
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Figure  39. Program number  2551’s  registers  with  an  initial  program counter
value of 5 and register 1 and register 2’s initial value of 5 bits. This operation
requires 25 instructions to halt after completing its task.

Program number  2741 with an initial  program counter  value  of  1
and  an  initial  value  of  5  in  both  registers  requires  16  instructions  to
clear both registers (see Figures 40 and 41). This register machine has
a  very  different  structure  from  that  shown  in  Figure  39;  it  requires

3 Jf i

2
v + 1N + j + 2 instructions to clear both registers and halt, where i

is  the  initial  value  of  the  first  register  and j  is  the  initial  value  of  the
second register.

Program number  6531 with an initial  program counter  value  of  3
and both registers having an initial value of 5 requires 12 instructions
to clear  both registers  (see Figures  42 and 43).  A similar,  subsequent
analysis suggests that it takes i + j + 5 instructions to clear both regis-
ters and halt.
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Figure 40. Program number 2741’s program.
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Figure  41. Program number  2741’s  registers  with  an  initial  program counter
value of 1 and register 1 and register 2’s initial value of 5 bits. This operation
requires 16 instructions to halt after completing its task.
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Figure 42. Program number 6531.
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Figure  43. Program number  6531’s  registers  with  an  initial  program counter
value of 1 and register 1 and register 2’s initial value of 5 bits. This operation
requires 15 instructions to halt after completing its task.

Plotting the functions that  calculate the number of  instructions re-
quired to clear all registers generates the plot in Figure 44 with the as-
sociated contour plots in Figure 45.

Graphically,  program  6531  has  the  best  performance  out  of  the
three functions tested for this set of two-register, four-instruction reg-
ister machines. This raises an interesting concept: is it possible to test
all possible programs to discover optimal programs that meet a partic-
ular  required  output?  Current  computer  program  optimization  tech-
niques  involve  recognizing  patterns  in  inefficient  programs and alter-
ing the instructions within these programs for a more efficient code. A
simple example of such an optimization routine would involve remov-
ing  redundant  or  unused  instructions  in  a  program.  While  being  ini-
tially  computationally  expensive,   a  “mathematically  optimal”  pro-
gram  could  be  found  through  brute-force  testing  of  all  possible
programs  to  find  the  program  that  performs  the  intended  function
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while being optimized for a particular goal, such as finding the fastest
or smallest program. 

Figure  44. Three-dimensional  plot  of  functions  that  calculate  time  to  halt:
program  2552  halts  in  3 i + j + 5  instructions,  program  2742  halts  in

3 Jf i

2
v + 1N + j + 2  instructions,  and  program  6531  halts  in  i + j + 5

instructions.

Figure  45. Contour  plots  of  functions  that  calculate  time  to  halt:  program

2552 halts in 3 i + j + 5 instructions, program 2742 halts in 3 Jf i

2
v + 1N + j + 2

instructions, and program 6531 halts in i + j + 5 instructions.

After  discussions  with  Wolfram  and  Todd  Rowland,  the  author
was introduced to the concept of superoptimizing as coined by Alexia
(Henry) Massalin: a process if “given an instruction set, the superopti-
mizer finds the shortest program to compute a function” [4]. Unfortu-
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nately,  Massalin’s  superoptimizer  originally  required several  hours  to
explore programs of 12 instructions on a 16MHz computer [4]. How-
ever,  given  the  rapid  performance,  reliability,  and  capacity  improve-
ments in modern hardware, could superoptimization be used as a de-
sign tool for firmware and embedded software developers to optimize
performance  or  resource-intensive  routines  against  a  set  of  goals—
optimizing for performance, energy use, or other metrics besides code
size? These results could be adapted into a set of existing “rules” for
optimization—peephole  optimization—similar  to  the  concept  pro-
posed  by  Sorav  Bansal  and  Alex  Aiken  [5]  where  a  database  of  out-
puts  is  created  and  desired  outputs  are  searched  for  with  the  addi-
tional capability of optimizing for other design goals.

6. Future Research Directions

6.1 Register Machines
Future  research  into  register  machines  would  involve  exploring  more
sophisticated  register  machines  with  more  instructions  and  registers
and  larger  register  widths.  From  studying  these  simple  register  ma-
chines,  examples of nontrivial  behavior can be observed. In addition,
the following basic mathematical and logic functions were identified:

† add the contents of a register to another register,

† subtract the contents of a register from another register,

† multiply the contents of a register by a constant value,

† divide the contents of a register by a constant value, and

† clear a register’s contents.

Given  the  computational  simplicity  of  the  register  machine,  if  a
more precise definition of nontrivial behavior is used it would be pos-
sible  to  automatically  discover  further  examples  of  nontrivial  behav-
ior by testing all possible register machine configurations with various
initial conditions. Joost Joosten et al. conduct a highly detailed analy-
sis  of  the  complexity  associated  with  Turing  machines,  in  particular
by  considering  another  measure  of  descriptional  complexity,  where
they define a Turing machine as being nontrivial (in this paper’s con-
text)  “if  its  shortest  description  [where  the  description  is  the  Turing
machine and its  input]  cannot be much more shorter  than the length
of the string [the Turing machine’s output] itself” [6]. More sophisti-
cated  pattern  recognition  techniques  could  assist  in  detecting  exam-
ples of randomness beyond the frequency analysis conducted. In addi-
tion, this paper assumed that the data stored in a register was stored
in  a  1:1  ratio;  that  is,  a  value  of  5  was  represented  by  5  bits.  Other
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data representation systems could also be investigated, such as binary,
octal, or binary-coded decimals, to discover further examples of func-
tional behavior in a similar way to the representations considered for
Turing machines in [6].

6.2 Practical Superoptimization
From  the  results  in  Section  5.3,  the  following  set  of  circumstances
now make superoptimization a viable and deterministic method of op-
timizing embedded software programs:

† cheaper, more accessible, and powerful computing infrastructure includ-
ing  grid-  and  cloud-computing  systems  using  modern  service  models
like platform as a service (PaaS) through providers such as Google App
Engine and Windows Azure;

† improved support for embedded software development such as simula-
tors, emulators, and profilers; and

† a  need  to  be  able  to  optimize  software  programs  running  on  off-the-
shelf hardware to meet a variety of non-functional requirements.

Therefore,  future  superoptimizer  studies  could  study  applications
of superoptimizing in other programming languages or investigate dif-
ferent  scenario  types  relevant  to  contemporary  software  engineering,
such  as  reducing  energy  consumption  or  heat  generated.  In  addition,
complex  programmable  logic  devices  (CPLDs)  often  use  proprietary
programming languages such as the very high speed integrated circuit
(VHSIC)  hardware  description  language  (VHDL)  as  defined  in  IEEE
Standard 1076-2008, which would be amenable to superoptimization
given the large industry adoption of the language, availability of emu-
lation tools, and current access to high-performance computing infras-
tructure. Potential superoptimization scenarios could include optimiz-
ing  a  program  for  reduced  execution  time,  smaller  code  size,  fewer
logic  gates  used,  reducing  heat  emissions,  or  reducing  energy
consumption.
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Appendix

A. Register Machine Functions

The  following  algorithms  are  implemented  in  Mathematica  and  are
used  in  the  “Register  Machine”  Demonstration  available  on  the
Wolfram Demonstrations site [3].

A.1 Register Machine Enumeration
The  following  algorithm  is  used  to  decode  an  enumeration,  ranging
from  zero  to  the  total  number  of  register  machine  programs  as
defined.

convertEnumerationToState@value_,
numberOfInstructions_, numberOfRegisters_D := Module@8currentState, nextState, registerNumber, increment<,

currentState = Quotient@value - 1,HHnumberOfInstructions + 1L*numberOfRegistersLD + 1;

nextState = If@Mod@value - 1, HnumberOfInstructions + 1L*
numberOfRegistersD >= numberOfInstructions*

numberOfRegisters, Mod@Quotient@value - 1,HnumberOfInstructions + 1L*numberOfRegistersD,HnumberOfInstructions + 1L*numberOfRegistersD + 2,

Quotient@Mod@value - 1, HnumberOfInstructions + 1L*
numberOfRegistersD, numberOfRegistersD + 1D;

registerNumber = Mod@value - 1, numberOfRegistersD + 1;

increment = If@Mod@value - 1,HnumberOfInstructions + 1L*numberOfRegistersD >=
numberOfInstructions*numberOfRegisters, 1, -1D;

currentState -> 8nextState, registerNumber, increment<D;
A.2 Total Register Machine Program Algorithm 

Definition 1. The total number of register machine programs can be cal-
culated  by  the  function  HrHi + 1LLi,  where  i  is  the  number  of  instruc-
tions and r is the number of registers. 

Consider  an  individual  instruction:  if  there  are  i  instructions  in  a
register,  then  there  must  be  i+1  possible  instructions  including  the
halted state. 
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Consider that any register machine instruction has: 

† a current instruction itself,

† the next instruction to be executed, and

† the register that is being manipulated.

Then there are: 1 possible current instruction, i +1 possible next in-
structions  (considering  the  halted  instruction  as  a  possible  instruc-
tion),  and  r  possible  registers.  Therefore  there  are  r(i+1)  possible
instructions.

Now  select  i  instructions  with  replacement,  which  suggests  there
are Hr Hi + 1LLi possible programs to select from. 

Therefore,  the  total  number  of  programs  can  be  expressed  asHr Hi + 1LLi.
For  example,  consider  a  one-register,  two-instruction  register  ma-

chine. Using this function, there are nine possible programs. The possi-
ble register machine programs are shown in Figures A1 through A9.

R:1, -1
R:1, -1

R:1, 01 2 3

Figure A1. Program 1 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, -1

R:1, -1

R:1, 01 2 3

Figure A2. Program 2 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, 1

R:1, -1

R:1, 01 2 3

Figure A3. Program 3 of nine possible programs with 1 register and 2 possi-
ble instructions.
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R:1, -1

R:1, -1

R:1, 01 2 3

Figure A4. Program 4 of  nine possible  programs with 1 register  and 2 possi-
ble instructions.

R:1, -1

R:1, -1

R:1, 01 2 3

Figure A5. Program 5 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, 1

R:1, -1

R:1, 01 2 3

Figure A6. Program 6 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, -1 R:1, 1 R:1, 01 2 3

Figure A7. Program 7 of nine possible programs with 1 register and 2 possi-
ble instructions.
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R:1, -1

R:1, 1 R:1, 01 2 3

Figure A8. Program 8 of  nine possible  programs with 1 register  and 2 possi-
ble instructions.

R:1, 1 R:1, 1 R:1, 01 2 3

Figure A9. Program 9 of nine possible programs with 1 register and 2 possi-
ble instructions.

B. Raw p-Values of Frequency Analysis of Randomness in 
Register Values

The p-values  and the  respective  counts  for  the  distribution  fit  test  of
register  1’s  value  against  the  discrete  uniform distribution are  shown
at the left of Table B1.

The  p-values  and  the  respective  counts  for  the  distribution  fit  test
of  register  2’s  value  against  the  discrete  uniform  distribution  are
shown at the right of Table B1. 
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 p-Value Count

0.00485213 338 328

0.0178312 4348

0.0556449 4960

0.144973 5396

0.310289 6262

0.317311 176 640

0.449329 161 520

0.539749 8446

0.563703 192 800

0.564718 156 860

0.572407 162 454

0.606531 151 138

0.702359 117 994

0.74768 167 496

0.753004 143 906

0.765857 10 938

0.808363 65 380

0.855695 92 488

0.873007 73 172

0.884549 50 114

0.914033 12 792

0.924313 59 818

0.939992 54 978

0.952577 24 124

0.963099 40 644

0.97244 20 522

0.97314 17 220

0.97365 31 916

0.974754 15 346

1. 192 000

p-Value Count

0.0000310387 338 328

0.000454396 4348

0.00477391 4960

0.0344301 5396

0.161964 6262

0.472102 8446

0.563703 192 800

0.778801 176 640

0.818731 161 520

0.835225 10 938

0.881015 151 138

0.930627 156 860

0.945023 162 454

0.955375 167 496

0.973735 143 906

0.97874 117 994

0.984748 92 488

0.988102 12 792

0.992123 73 172

0.993373 65 380

0.996969 59 818

0.997839 54 978

0.998178 50 114

0.99896 17 220

0.999319 40 644

0.999923 31 916

0.999934 24 124

0.99999 15 346

1. 20 522

Table B1.  
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C. Arithmetic Function Program List

Sections C.1 through C.4 list the programs that for at least one initial
program  counter  value  performed  a  particular  arithmetic  function.
These program numbers correspond to the enumeration defined in Ap-
pendix A and can be used in the Wolfram Demonstrations Project [3].

C.1 Addition Programs
The following 189 register machines add register 2’s contents to regis-
ter 1, expressed mathematically as

 register1final = register1initial + register2initial :

119, 319, 519, 719, 1119, 1319, 1381, 1382, 1383, 1384, 1385, 1386,
1387, 1388, 1389, 1390, 1519, 1619, 1689, 1719, 1790, 1799, 1849,
1860, 3119, 3319, 3381, 3382, 3383, 3384, 3385, 3386, 3387, 3388,
3389, 3390, 3519, 3619, 3719, 3819, 3919, 5119, 5319, 5381, 5382,
5383, 5384, 5385, 5386, 5387, 5388, 5389, 5390, 5519, 5619, 5719,
5801, 5802, 5803, 5804, 5805, 5806, 5807, 5808, 5809, 5810, 5811,
5812, 5813, 5814, 5815, 5816, 5817, 5818, 5819, 5820, 5821, 5822,
5823, 5824, 5825, 5826, 5827, 5828, 5829, 5830, 5831, 5832, 5833,
5834, 5835, 5836, 5837, 5838, 5839, 5840, 5841, 5842, 5843, 5844,
5845, 5846, 5847, 5848, 5849, 5850, 5851, 5852, 5853, 5854, 5855,
5856, 5857, 5858, 5859, 5860, 5861, 5862, 5863, 5864, 5865, 5866,
5867, 5868, 5869, 5870, 5871, 5872, 5873, 5874, 5875, 5876, 5877,
5878, 5879, 5880, 5881, 5882, 5883, 5884, 5885, 5886, 5887, 5888,
5889, 5890, 5891, 5892, 5893, 5894, 5895, 5896, 5897, 5898, 5899,
5900, 5919, 7119, 7319, 7381, 7382, 7383, 7384, 7385, 7386, 7387,
7388, 7389, 7390, 7519, 7619, 7719, 7919, 9119, 9319, 9381, 9382,
9383, 9384, 9385, 9386, 9387, 9388, 9389, 9390, 9519, 9619, 9719,
and 9919.

The following 189 register machines add register 1’s contents to regis-
ter 2, expressed mathematically as

 register2final = register1initial + register2initial :

10, 210, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 410, 610,
690,  699,  710,  800,  949,  960,  1010,  1210,  1410,  1610,  2010,  2210,
2291, 2292, 2293, 2294, 2295, 2296, 2297, 2298, 2299, 2300, 2410,
2610, 2710, 2810, 2910, 4010, 4210, 4291, 4292, 4293, 4294, 4295,
4296, 4297, 4298, 4299, 4300, 4410, 4610, 4710, 4810, 4901, 4902,
4903, 4904, 4905, 4906, 4907, 4908, 4909, 4910, 4911, 4912, 4913,
4914, 4915, 4916, 4917, 4918, 4919, 4920, 4921, 4922, 4923, 4924,
4925, 4926, 4927, 4928, 4929, 4930, 4931, 4932, 4933, 4934, 4935,
4936, 4937, 4938, 4939, 4940, 4941, 4942, 4943, 4944, 4945, 4946,
4947, 4948, 4949, 4950, 4951, 4952, 4953, 4954, 4955, 4956, 4957,
4958, 4959, 4960, 4961, 4962, 4963, 4964, 4965, 4966, 4967, 4968,
4969, 4970, 4971, 4972, 4973, 4974, 4975, 4976, 4977, 4978, 4979,
4980, 4981, 4982, 4983, 4984, 4985, 4986, 4987, 4988, 4989, 4990,
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4991, 4992, 4993, 4994, 4995, 4996, 4997, 4998, 4999, 5000, 6010,
6210, 6291, 6292, 6293, 6294, 6295, 6296, 6297, 6298, 6299, 6300,
6410, 6610, 6710, 6810, 8010, 8210, 8291, 8292, 8293, 8294, 8295,
8296, 8297, 8298, 8299, 8300, 8410, 8610, 8710, and 8810.

C.2 Subtraction Programs
The  following  415  register  machines  subtract  register  2’s  contents
from register 1, expressed mathematically as

 register1final = Max
register1initial - register2initial

0
:

198,  398,  818,  838,  858,  878,  1007,  1017,  1027,  1037,  1047,  1057,
1066, 1067, 1077, 1097, 1105, 1107, 1113, 1115, 1117, 1125, 1127,
1135, 1137, 1145, 1147, 1155, 1157, 1165, 1167, 1175, 1177, 1195,
1197, 1207, 1217, 1227, 1237, 1247, 1257, 1266, 1267, 1277, 1287,
1297, 1307, 1313, 1317, 1327, 1337, 1341, 1342, 1343, 1344, 1345,
1346, 1347, 1348, 1349, 1350, 1357, 1365, 1367, 1377, 1397, 1407,
1417, 1427, 1437, 1447, 1457, 1467, 1477, 1497, 1507, 1513, 1517,
1527, 1537, 1547, 1557, 1567, 1577, 1597, 1607, 1617, 1627, 1637,
1647, 1649, 1657, 1660, 1667, 1677, 1683, 1687, 1697, 1707, 1713,
1717, 1727, 1737, 1747, 1750, 1757, 1767, 1777, 1793, 1797, 1907,
1917, 1927, 1937, 1947, 1957, 1967, 1977, 1997, 2198, 3061, 3062,
3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070, 3098, 3105, 3113,
3115, 3125, 3135, 3145, 3147, 3155, 3161, 3162, 3163, 3164, 3165,
3166, 3167, 3168, 3169, 3170, 3175, 3195, 3197, 3261, 3262, 3263,
3264, 3265, 3266, 3267, 3268, 3269, 3270, 3313, 3341, 3342, 3343,
3344, 3345, 3346, 3347, 3348, 3349, 3350, 3361, 3362, 3363, 3364,
3365, 3366, 3367, 3368, 3369, 3370, 3461, 3462, 3463, 3464, 3465,
3466, 3467, 3468, 3469, 3470, 3513, 3561, 3562, 3563, 3564, 3565,
3566, 3567, 3568, 3569, 3570, 3613, 3615, 3661, 3662, 3663, 3664,
3665, 3666, 3667, 3668, 3669, 3670, 3713, 3761, 3762, 3763, 3764,
3765, 3766, 3767, 3768, 3769, 3770, 3913, 3915, 3961, 3962, 3963,
3964, 3965, 3966, 3967, 3968, 3969, 3970, 5069, 5080, 5105, 5113,
5115, 5125, 5135, 5145, 5155, 5165, 5170, 5175, 5195, 5313, 5341,
5342, 5343, 5344, 5345, 5346, 5347, 5348, 5349, 5350, 5513, 5601,
5602, 5603, 5604, 5605, 5606, 5607, 5608, 5609, 5610, 5611, 5612,
5613, 5614, 5615, 5616, 5617, 5618, 5619, 5620, 5621, 5622, 5623,
5624, 5625, 5626, 5627, 5628, 5629, 5630, 5631, 5632, 5633, 5634,
5635, 5636, 5637, 5638, 5639, 5640, 5641, 5642, 5643, 5644, 5645,
5646, 5647, 5648, 5649, 5650, 5651, 5652, 5653, 5654, 5655, 5656,
5657, 5658, 5659, 5660, 5661, 5662, 5663, 5664, 5665, 5666, 5667,
5668, 5669, 5670, 5671, 5672, 5673, 5674, 5675, 5676, 5677, 5678,
5679, 5680, 5681, 5682, 5683, 5684, 5685, 5686, 5687, 5688, 5689,
5690, 5691, 5692, 5693, 5694, 5695, 5696, 5697, 5698, 5699, 5700,
5713, 5913, 7105, 7113, 7115, 7125, 7135, 7145, 7155, 7165, 7175,
7195, 7313, 7341, 7342, 7343, 7344, 7345, 7346, 7347, 7348, 7349,
7350, 7513, 7713, 7913, 8195, 9105, 9113, 9115, 9125, 9135, 9145,
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9155, 9165, 9175, 9195, 9313, 9341, 9342, 9343, 9344, 9345, 9346,
9347, 9348, 9349, 9350, 9513, 9713, and 9913.

The  following  415  register  machines  subtract  register  1’s  contents
from register 2, expressed mathematically as

 register2final = Max
register2initial - register1initial

0
:

4, 6, 8, 16, 18, 26, 28, 36, 38, 46, 48, 56, 58, 66, 68, 76, 78, 86, 88,
108, 118, 128, 138, 148, 158, 168, 175, 178, 188, 204, 208, 218, 228,
238, 248, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 268, 276,
278, 288, 308, 318, 328, 338, 348, 358, 368, 375, 378, 388, 398, 404,
408, 418, 428, 438, 448, 458, 468, 478, 488, 508, 518, 528, 538, 548,
558, 568, 578, 588, 604, 608, 618, 628, 638, 648, 658, 659, 668, 678,
684, 688, 708, 718, 728, 738, 748, 749, 758, 760, 768, 778, 788, 794,
798, 808, 818, 828, 838, 848, 858, 868, 878, 888, 1087, 1287, 1907,
1927, 1947, 1967, 2004, 2006, 2016, 2026, 2036, 2046, 2056, 2058,
2066, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079, 2080,
2086, 2088, 2171, 2172, 2173, 2174, 2175, 2176, 2177, 2178, 2179,
2180, 2187, 2204, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258,
2259, 2260, 2271, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279,
2280, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380,
2404, 2471, 2472, 2473, 2474, 2475, 2476, 2477, 2478, 2479, 2480,
2571, 2572, 2573, 2574, 2575, 2576, 2577, 2578, 2579, 2580, 2604,
2671, 2672, 2673, 2674, 2675, 2676, 2677, 2678, 2679, 2680, 2704,
2706, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 2780,
2804, 2806, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 2879,
2880, 3087, 4004, 4006, 4016, 4026, 4036, 4046, 4056, 4066, 4076,
4079, 4086, 4169, 4180, 4204, 4251, 4252, 4253, 4254, 4255, 4256,
4257, 4258, 4259, 4260, 4404, 4604, 4701, 4702, 4703, 4704, 4705,
4706, 4707, 4708, 4709, 4710, 4711, 4712, 4713, 4714, 4715, 4716,
4717, 4718, 4719, 4720, 4721, 4722, 4723, 4724, 4725, 4726, 4727,
4728, 4729, 4730, 4731, 4732, 4733, 4734, 4735, 4736, 4737, 4738,
4739, 4740, 4741, 4742, 4743, 4744, 4745, 4746, 4747, 4748, 4749,
4750, 4751, 4752, 4753, 4754, 4755, 4756, 4757, 4758, 4759, 4760,
4761, 4762, 4763, 4764, 4765, 4766, 4767, 4768, 4769, 4770, 4771,
4772, 4773, 4774, 4775, 4776, 4777, 4778, 4779, 4780, 4781, 4782,
4783, 4784, 4785, 4786, 4787, 4788, 4789, 4790, 4791, 4792, 4793,
4794, 4795, 4796, 4797, 4798, 4799, 4800, 4804, 6004, 6006, 6016,
6026, 6036, 6046, 6056, 6066, 6076, 6086, 6204, 6251, 6252, 6253,
6254, 6255, 6256, 6257, 6258, 6259, 6260, 6404, 6604, 6804, 8004,
8006, 8016, 8026, 8036, 8046, 8056, 8066, 8076, 8086, 8204, 8251,
8252, 8253, 8254, 8255, 8256, 8257, 8258, 8259, 8260, 8404, 8604,
8804, and 9086.

C.3 Multiplication Programs
The following 16 register machines multiply register 1’s contents by 2
and  then  add  this  value  to  register  2,  expressed  mathematically  as
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      g   p  y  

register1final = register1initial + 2 * register2initial:

1189, 2189, 3189, 3881, 3882, 3883, 3884, 3885, 3886, 3887, 3888,
3890, 5189, 7189, and 9189.

The  following  16  register  machines  multiply  register  1’s  contents
by  2  and then  add this  value  to  register  2,  expressed  mathematically
as register2final = register2initial + 2 * register1initial:

100,  2100,  2991,  2992,  2993,  2994,  2995,  2996,  2997,  2998,  2999,
3000, 3100, 4100, 6100, and 8100.

C.4 Division Programs
Register  machines  3780  and  3851  take  the  integral  part  of  dividing
register  2’s  value by 2,  incrementing the value,  and storing the result
in register 1, otherwise expressed mathematically as

 register1final = f register2initial

2
v + 1. 

Register machines 2692 and 2942 similarly take the integral part of di-
viding register 1’s value by 2, incrementing the value, and storing the
result in register 2, otherwise expressed mathematically as

 register2final = f register1initial

2
v + 1. 

Much like the other arithmetic register machines mentioned in Sec-
tion  4.2,  the  following  22  register  machines  take  the  integral  part  of
dividing register 2’s value by 2 and adding the result to register 1, ex-
pressed mathematically as

 register1final = register1initial + f register2initial

2
v:

1079, 1159, 1179, 1379, 1579, 1679, 1779, 3159, 3780, 3782, 3783,
3784,  3785,  3786,  3787,  3788,  3789,  3790,  5159,  5184,  7159,  and
9159.

The following 22 register machines take the integral  part  of divid-
ing  register  1’s  value  by  2  and  adding  the  result  to  register  2,  ex-
pressed mathematically as

 register2final = register2initial + f register1initial

2
v:

50, 70, 170, 270, 470, 670, 770, 2050, 2691, 2692, 2693, 2694, 2695,
2696, 2697, 2698, 2699, 2700, 4050, 4093, 6050, and 8050.
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D. Other Register Machine Examples

D.1 Complex Register Machines
The  register  machine  outputs  of  program  386  (Figure  D1)  in  Fig-
ures!D2  and  D3  show  how  register  machines  can  be  observed  to  ei-
ther halt or run indefinitely after register 1’s contents is cleared.

R:1, -1

R:1, 1 R:1, -1

R:2, -1

R:1, 012 43 5

Figure D1. Program number 386.
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Figure  D2. Program  number  386’s  registers  with  an  initial  program  counter
value  of  2,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
4!bits.

D.2 Functional Register Machines
D.2.1 The Addition Operation

The register machine shown in Figures D4 and D5 increments the con-
tents  of  the  second  register  before  halting,  a  specific  implementation
of the addition function.
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Figure  D3. Program  number  386’s  registers  with  an  initial  program  counter
value  of  2,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
3!bits.
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Figure D4. Program number 4920’s  registers  with an initial  program counter
value  of  1,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
4!bits.  The  result  of  incrementing  register  2’s  value  and clearing  register  1  is
that register 1’s final value is 0 and register 2’s final value is 5.
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R:1, -1

R:1, -1

R:2, 1

R:1, -1
R:1, 01 2 3 4 5

Figure D5. Program number 4920.

D.2.2 The Subtraction Operation

Similarly,  the  register  machine  shown  in  Figures  D6  and  D7  decre-
ments  the  contents  of  the  second  register  prior  to  halting;  the  incre-
ment operation is replaced by a decrement-jump operation at instruc-
tion 3.

R:1, -1

R:1, -1

R:2, -1

R:1, -1

R:1, 01 2 3 4 5

Figure D6. Program number 4720.
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Figure  D7. Functional  behavior  example:  program  number  4720’s  registers
with an initial program counter value of 1, register 1’s initial value of 3 bits,
and register 2’s initial  value of 7 bits.  The result of decrementing register 2’s
value and clearing register 1 is that register 1’s final value is 0 and register 2’s
final value is 6.
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D.2.3 The Multiplication Operation

Figures  D8  and  D9  are  examples  of  register  machines  that  perform
multiplication operations on register  2 by storing the results  in regis-
ter 1.

The value of register 1 can also be incremented twice by initializing
the program counter to 1 instead of 4 (see Figure D10).
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Figure D8. Program number 3881’s  registers  with an initial  program counter
value  of  2,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
1!bit. The result of multiplying 1 more than register 2’s value by 2, adding the
result  in  register  1,  and clearing register  2  is  that  register  1’s  final  value  is  5
and register 2’s final value is 0.
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Figure D9. Program number 3881’s  registers  with an initial  program counter
value  of  4,  register  1’s  initial  value  of  3  bits,  and register  2’s  initial  value  of
2!bits.  The  result  of  multiplying  register  2’s  value  by  2,  adding  the  result  to
register 1, and clearing register 2 is that register 1’s final value is 7 and regis-
ter 2’s final value is 0.
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Figure D10. Program number 3881’s registers with an initial program counter
value  of  1,  register  1’s  initial  value  of  4  bits,  and register  2’s  initial  value  of
8!bits. The result of incrementing register 1’s value twice, adding the result to
register 1, and clearing register 2 is that register 1’s final value is 6 and regis-
ter 2’s final value is 0.
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