
Discovering Nontrivial and Functional
Behavior in Register Machines

Anthony Joseph

Past Student
University of Technology Sydney
anthonyjoseph.nks@gmail.com

Nontrivial and functional behavior in register machines is examined.
Register machines are simple implementations of modern information
and communications technology and provide a computationally simple
vehicle for investigating examples of nontrivial and functional behav-
ior. They also provide opportunities for optimizing information and
communication technologies to use fewer resources or perform func-
tions more quickly.

A simple two-register, four-instruction register machine was ana-
lyzed using soft and hard analytical techniques. Examples of nontrivial
and functional behavior were identified by observing two-register, four-
instruction register machines with various initial conditions. These reg-
ister machines were identified by an exhaustive search of all possible
register machine configurations meeting a particular definition. A subse-
quent investigation into the randomness in register machine compo-
nents involved a frequency analysis, comparing program counter and
register values against the discrete uniform distribution.

It is possible to observe examples of cyclical and conditional behav-
ior, register-dependent and register-independent behavior, randomness
in the register machine’s program counter and registers, and foundation
arithmetic functions. Further analysis of this register machine configura-
tion yields opportunities for synthesizing multiple functions into a sin-
gle register machine and optimizing functional register machines by
brute-force testing all possible register machines.

1. Introduction

Register machines are implementations of a simple computing device
that perform operations on a fixed set of data registers. According to
Stephen Wolfram, register machines are “specifically designed to be
very simple idealizations of present-day computers” [1, p. 97]. There-
fore, all modern information and communication technologies use
register machines of various implementations to store, access, and ma-
nipulate data. Register machines are comprised of three related com-
ponents: a register, a program, and a program counter.

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1.1 Register
A register, or set of registers with a constant width, stores an encoded
value. The horizontal axis (1 to 8) indicates the value of the register
and the vertical axis (1 to 31) indicates the number of instructions exe-
cuted in the program. Red-colored register values indicate that a value
higher than the register’s width is currently stored in that register.
This is similar to the concept of “arithmetic overflow,” where the re-
sult of a calculation is greater than the register that stores or repre-
sents the data. Unlike some physical implementations of a register ma-
chine such as a microcontroller, microprocessor, or other low-level
hardware devices, exceeding a register’s capacity will not clear the reg-
ister’s value or halt the register machine. Figure 1 shows an example
of a single register.

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8

1

10

20

31

register: 2

Figure 1. Register example.

1.2 Program
A program describes the behavior of the register machine. Programs
are a set of instructions that operate on registers. There are a wide
variety of implementations of instructions that are available on differ-
ent hardware platforms. Wolfram uses a simple implementation with
two instructions [1, p. 97]:

† an increment operation, which increases the value of the register by one
and then executes the next instruction in the program, and

102 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

† a decrement-jump operation, which decreases the value of a register by
one and “jumps” to another instruction in the program. If the register
value is 0, then the program executes the next instruction. The decre-
ment-jump operation is the main operation that yields nontrivial
behavior.

In both cases, an instruction contains:

† the current instruction identified as an integer,

† the next instruction to be executed,

† the register that is being manipulated, and

† the modifier being applied (i.e., 1 for an increment operation and -1
for a decrement operation).

The author used a Minsky register machine implementation [2],
which is available via the Wolfram Demonstrations Project [3]. This
implementation is based on Wolfram’s implementation [1, p. 98] with
the added instruction of a “halted instruction,” where a program
would stop execution when it completed execution.

A no-operation “NOP” can be included but is not considered
within this study, as “any NOP instruction can be removed from the
formal description of the underlying Minsky register machine without
altering its function” [2]. Therefore, including the halted instruction
will allow the discovery of any possible arithmetic or logical functions
as the register machine should halt after it has performed its function.

Unfortunately, there are no standard representations for register
machines. Wolfram [1, p. 98] used as a representation a sequence of
squares with directional arrowheads, arrows, and color to define the
instruction and whether an increment or decrement jump operation is
performed—the destination register for a decrement-jump operation
and the register to be operated on, respectively. The author has used a
Mealy finite state machine representation to describe these programs
as described in Figure 2 using the nomenclature in Figures 3 to 6.

1.3 Program Counter
A program counter indicates the instruction that is executed at a par-
ticular time. The horizontal axis (1 to 4) indicates the instruction
executed and the vertical axis (1 to 21) indicates the number of in-
structions executed in the program. Figure 7 shows an example of a
program counter.

An enumeration is used to describe all unique register machine pro-
grams and is described in Appendix A. All of the register machines
specified in this paper can be simulated using [3].

Discovering Nontrivial and Functional Behavior in Register Machines 103

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, 1

R:2, 1

R:1, -1

R:1, 0

1

2

3

4

5

Figure 2. Program example: program number 2984.

2

Figure 3. Program nomenclature: an instruction.

R:2, 1

2

3

Figure 4. Program nomenclature: an increment instruction number 2 adds 1
bit to register 2 and then executes instruction 3.

R:2, -1

45

Figure 5. Program nomenclature: a decrement-jump instruction number 4,
where if the value of register 2 is not 0 then 1 bit is subtracted from register 2
and instruction 4 is executed again. Otherwise, if the value of register 2 is 0,
then instruction 5 is executed.

104 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, 0

5

Figure 6. Program nomenclature: halted instructions are instructions used to
stop the register machine’s operation by repeating the halted instruction
indefinitely.

1 2 3 4

1

5

10

15

21

1 2 3 4

1

5

10

15

21

program
counter

Figure 7. Program counter example.

2. Investigation Context

The author investigated the Minsky register machines during the New
Kind of Science Summer School 2007, building on the results pre-
sented in Wolfram’s A New Kind of Science. The initial objective was
to investigate examples of nontrivial register machines but was ex-
tended to include examples of functional behavior due to the frequent
occurrences of functions during the investigation. Wolfram Mathemat-
ica 6 was used with the Minsky register machine implementation.

Discovering Nontrivial and Functional Behavior in Register Machines 105

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 y g p

Due to time and hardware limitations, the author only studied regis-
ter machines with two registers with 8 bits in width and programs
with four instructions with a program execution time of 50 instruc-
tions. Fifty instructions was chosen to avoid the halting problem: if a
program did not halt after 50 instructions, then it was assumed to
never halt.

The number of possible register machine programs (similar in con-
cept to “rules” in cellular automata theory) is calculated by HrHi + 1LLi,
where i is the number of instructions and r is the number of registers.
This definition is described in further detail in Appendix A. With this
configuration, there are 10 000 possible programs to study.

The author observed every possible four-instruction, two-register
configuration program with various initial program counters and reg-
ister values. For example, if two registers have initial values of 2 and
4 respectively and final values of 6 and 0 respectively, then the pro-
gram may yield an addition function and would merit further investi-
gation. Similarly, if the registers or program counters yielded nontriv-
ial behavior, then the program was analyzed further. A subsequent,
exhaustive analysis of all possible four-instruction, two-register ma-
chines that assessed a register machine against formal definitions of
nontrivial and functional behavior was performed, with the results
documented in Section 3. It required approximately 24 hours of con-
tinuous processing time on an Apple MacBook, late-2008 edition
with a 2.4 GHz dual-core processor and 4GB of RAM running two
Mathematica 8.0.4 kernels.

3. Observations

The author observed that with the Minsky register machine, 8700 reg-
ister machines (87%) reached a halted state and therefore achieved a
function. However, this does not imply that nontrivial behavior can-
not be observed from register machines that do not halt, such as the
example register machine 2985 shown in Figure 8.

Many of the register machines exhibited the following behaviors.

† Nontrivial behavior that included register-independent and register-
dependent behavior, conditional and cyclical behavior, and randomness
in register machine components where:

† Register-dependent register machines halt in at least one instruction
due to at least one register having a zero value for any initial register
value, while register-independent behavior involves a register ma-
chine not halting for any initial register value.

106 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4

1

10

20

31

1 2 3 4
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 8. Example of nontrivial behavior from a register machine (program
number 2985) that does not halt.

† Conditional register machine behavior when its register values deter-
mines which instructions are evaluated. Similarly, cyclical behavior
is where the register machine does not halt and continually executes
the same instructions in the same order, such as in Figure 8.

† Randomness, which according to Wolfram’s definition as “standard
methods of perception and analysis could not find any short descrip-
tion from which the thing could faithfully be reproduced” [1,
p.!557] in a register machine’s individual register and program
counter values.

† Functional behavior where the register machine performed an arith-
metic or logical operation, such as adding the value of two registers and
storing the results in one of the registers.

3.1 Nontrivial Behavior
Using these definitions for all possible initial register values for two-
register, four-instruction register machines, 4092 register machines
(40.9%) showed register-independent behavior and 5908 register ma-
chines (59.1%) showed register-dependent behavior. Only 176 regis-
ter machines (1.8%) exhibited conditional behavior and 1300 register
machines (13%) exhibited cyclical behavior.

A simple frequency analysis of randomness was conducted to
assess the randomness of the behavior of a register machine. This con-
sisted of assessing the fit of the non-halted program counter or regis-

Discovering Nontrivial and Functional Behavior in Register Machines 107

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 g p g g

ter values against the discrete uniform distribution by using a good-
ness-of-fit test with a significance value of a = 0.05. The statistical
analysis ignores register machines whose initial program counter and
register values halt immediately or cannot be analyzed against the dis-
crete uniform distribution: more specifically, those that only contain a
single unique value. Figure 9 is a plot of the average p-values from the
distribution fit test: comparing the program counter values against the
discrete uniform distribution for all initial program counter values, or-
ganized by initial register values and program numbers.

2000 4000 6000 8000 10000
Program Number

0.2

0.4

0.6

0.8

p-Value Average

Figure 9. Average p-value of distribution fit test of the program counter val-
ues versus the program number, organized by initial register values.

Statistically, only 1804 register machine program counters (18.0%)
exhibited statistically significant (i.e., p-value > significance value of
0.05) randomness for all initial program counter and register values.

Performing a similar analysis on the registers yields the interesting
plots seen in Figures 10 and 11.

The discrete “lines” in Figures 10 and 11 are explained by a small,
finite set of potential register values a register machine could generate.
In register 1 and register 2 respectively, 7616 (76.2%) and 7524
(75.2%) register machine programs exhibited statistically significant
randomness. Appendix B contains the actual values and their corre-
sponding frequencies.

108 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

2000 4000 6000 8000 10000
Program Number

0.2

0.4

0.6

0.8

1.0

p-Value Average

Figure 10. The p-value of a distribution fit test of register 1 values versus the
program number.

2000 4000 6000 8000 10000
Program Number

0.2

0.4

0.6

0.8

1.0

p-Value Average

Figure 11. The p-value of a distribution fit test of register 2 values versus the
program number.

3.2 Functional Behavior
A brute-force analysis of all possible four-instruction, two-register
configuration programs was conducted to discover register machines
that, given a particular initial program counter value, achieve a partic-
ular arithmetic or logical function for all possible initial register val-
ues. The following arithmetic and logical functions were discovered:

† Add function: 378 register machines

† Subtract function: 820 register machines

Discovering Nontrivial and Functional Behavior in Register Machines 109

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

† Multiplication function: 31 register machines

† Divide function: 48 register machines, of which four performed the di-
vide operation and 44 performed the divide operation and added the re-
sult to an existing register value

† Clear function: 5168 register machines cleared the first register, 5168
registers cleared the second register, and 2330 register machines cleared
both registers

Appendix C contains a list of the register machines that performed
these mathematical functions.

4. Register Machine Examples

4.1 Nontrivial Behavior
4.1.1 Register-Dependent and Register-Independent Behavior

In the example of nontrivial behavior shown in Figure 12, program
number 2681 exhibits a pattern where register 1’s value has 1 added
and then 2 subtracted repeatedly until register 1 is empty. The incre-
ment operation in instruction 2 and the decrement-jump operations in
instructions 3 and 4 yield this behavior with halting occurring be-
cause of the decrement operation in instruction 4.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 12. Program number 2681’s registers with an initial program counter
value of 2, register 1’s initial value of 6 bits, and register 2’s initial value of
3!bits.

110 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

The example shown in Figure 13 is very similar to the example
shown in Figure 12, except in this case register 2’s value has 2 bits
added and then 1 bit subtracted repeatedly. This example is of signifi-
cance as it is structurally similar to Figure 12, but it does not halt.
This is due to the infinite loop caused by instructions 2 and 4, which
increment and decrement the same register and never activate the
decrement case where register 1 is equal to 0.

1 2 3 4

1

5

10

15

20

26

1 2 3 4
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 13. Program number 2881’s registers with an initial program counter
value of 2, register 1’s initial value of 2 bits, and register 2’s initial value of
4!bits.

The example in Figure 14 shows a non-halting register machine
that does not cause an overflow in any register.

These programs are of interest as they exhibit register-independent
behavior. The example program in Figure 15 exhibits register-depen-
dent behavior: with an initial program counter value of 1, register 1 is
cleared and then register 2 is cleared while incrementing and decre-
menting register 1. However, if the program counter is initialized at 2,
register 2 is cleared while incrementing and decrementing register 1’s
value.

Discovering Nontrivial and Functional Behavior in Register Machines 111

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4

1

10

20

31

1 2 3 4
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 14. Program number 3691’s registers with an initial program counter
value of 2, register 1’s initial value of 4 bits, and register 2’s initial value of
6!bits.

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 15. Program number 3680’s registers with an initial program counter
value of 1, register 1’s initial value of 4 bits, and register 2’s initial value of
6!bits.

112 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

4.1.2 Conditional and Cyclical Behavior

There are other examples of register machines that not only exhibit
nontrivial behavior but also exhibit conditional behavior, where the
register machine’s behavior depends on certain conditions being satis-
fied. These conditions usually involve a register being set to 0 and a
program using a decrement-jump operation to yield nontrivial behav-
ior. For the program number 386, starting the program at different
initial program counter values yields a variety of behaviors (images
are shown in Appendix D):

† If register 1 has an odd value and the initial program counter value is 1,
then the program clears the value of register 1 and halts without alter-
ing register 2. Similarly, if register 1 has an even number and the initial
program counter value is 4, then the program clears the value of regis-
ter 1 without altering register 2. This is caused by the fact that instruc-
tion 4 is the last instruction to be executed when register 1 is empty, so
the program halts.

† If the initial program counter value is 2 with an even number stored in
register 2, then the program adds the value of register 2 plus 1 to regis-
ter 1 (i.e., register 1’s value = register 1’s initial value + register 2’s ini-
tial value + 1), then clears register 1. This is similar to the previous
case, as instruction 4 is the last instruction to be executed when the reg-
ister machine halts after clearing register 1.

† However, if the last instruction to be executed in the last decrement op-
eration was instruction 1, then the register machine enters an infinite
loop, continuously incrementing and decrementing register 1’s value as
shown in Appendix D. Similar behavior is observed for initializing this
register machine at an initial program counter value of 3 or 4.

Another example of conditional behavior is program number
5169. This program:

† subtracts the initial value of register 1 from register 2,

† clears register 1, and

† oscillates between (register 1’s initial value - register 2’s initial value)
and (register 1’s initial value - register 2’s initial value - 1).

In Figure 16, as register 1’s initial value is 4 and register 2’s initial
value is 6, then register 2’s final register value oscillates between 1
and 2.

4.1.3 Randomness in a Register Machine’s Program Counter

Program number 1274 is an example of randomness in a register ma-
chine’s program counter; this program subtracts the value of regis-
ter!2 from register 1 and stores the result in register 1 as shown in
Figure!17.

Discovering Nontrivial and Functional Behavior in Register Machines 113

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4

1

5

10

15

20

26

1 2 3 4
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 16. Program number 5169’s registers with an initial program counter
value of 2, register 1’s initial value of 4 bits, and register 2’s initial value of
6!bits.

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 17. Program number 1274’s registers with an initial program counter
value of 4, register 1’s initial value of 6 bits, and register 2’s initial value of
4!bits.

114 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

However, under specific circumstances, such as register 2’s initial
value being 1 bit greater than register 1’s value, the program counter
exhibits a different kind of randomness, as shown in Figure 18.

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 18. Program number 1274’s registers with an initial program counter
value of 4, register 1’s initial value of 6 bits, and register 2’s initial value of
4!bits.

4.1.4 Randomness in a Register Machine’s Registers

Figures 19 and 20 are two examples of randomness in a register ma-
chine’s registers.

† Program number 1825 appears to have two distinct functions:

† If register 2’s value is even, then the value of register 2 is divided by
2, the result is added to register 1, and the program halts.

† If register 2’s value is odd, then the value of register 2 is divided by
2 and the integer component of the result is added to register 1; then
register 1 is cleared and incremented, and then the program halts.

While the behavior of this register machine can be easily explained,
such a large variance in its behavior warranted its inclusion in a study
on randomness in register machines.

† Program number 2715 is a functionally simple register machine that
clears both registers. The way it clears registers is not simple. Register 2
clears 3 bits and then clears 1 bit from register 1 until register 2 is
empty, and then register 1 has 1 bit cleared after every three instruc-
tions. Figure 21 shows how the register machine performs this behavior
under different initial conditions.

Discovering Nontrivial and Functional Behavior in Register Machines 115

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 19. Program number 1825’s registers with an initial program counter
value of 4, register 1’s initial value of 4 bits, and register 2’s initial value of
6!bits.

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 20. Program number 1825’s registers with an initial program counter
value of 4, register 1’s initial value of 4 bits, and register 2’s initial value of
3!bits.

116 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 21. Program number 2715’s registers with an initial program counter
value of 2, register 1’s initial value of 6 bits, and register 2’s initial value of
8!bits.

4.2 Functional Behavior Examples
Considering register machines are theoretical implementations of prac-
tical information and communications technologies, register machines
would be expected to perform basic arithmetic operations in a similar
manner to a low-level information and communications technology
device such as a microcontroller or microprocessor. All of the register
machines that demonstrate functional behavior halt after performing
their intended operation. It is also assumed that the register value rep-
resents a decimal value, so if a register’s value is 5 bits, then it is stor-
ing a decimal value of 5, implying that this simple register machine
can only process positive, integral values. Let registerai be the value
of register a at instruction i, so for example register1initial is the initial
value of register 1 and register2final is the final value of register 2. Fi-
nal value in this context is the value of a register after a register ma-
chine has halted.

4.2.1 The Addition Function

The register machine in Figure 22 (program number 4921) adds the
value of register 1 to register 2 and clears register 1, or
register2final = register1initial + register2initial and register1final = 0.
However, this register machine can also increment the value of regis-
ter 1 and clear register 1; this can be accomplished by simply starting

Discovering Nontrivial and Functional Behavior in Register Machines 117

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 g p y p y g
program number 4921 with an initial program counter value of 1. See
Appendix D for examples of other addition functions.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 22. Program number 4921’s registers with an initial program counter
value of 4, register 1’s initial value of 3 bits, and register 2’s initial value of
4!bits. The result of adding register 1’s value to register 2 and clearing regis-
ter!1 is that register 1’s final value is 0 and register 2’s final value is 7.

4.2.2 The Subtraction Function

In program number 4721, register 2’s value is subtracted from regis-
ter 1 and register 1 is cleared, or

register2final = Max
register2initial - register1initial

0
and

register1final = 0.

The maximum function is required, as this register machine assumes
there is no way to represent negative values (see Figure 23).

Similar behavior can be observed from Figure 22, where setting the
program counter’s initial value to 1 decrements register 2’s value and
clears register 1.

4.2.3 The Multiplication Function

Program number 3882, shown in Figures 24 and 25, represents a reg-
ister machine that doubles the value of register 2 and adds it to regis-
ter 1, clearing register 2 in the process. While multiplication can be
performed by repeatedly adding the value of one register to another,

118 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

p y p y g g
this program adds the value of register 2 twice to register 1 while
decrementing register 2, making the multiplier a constant value. Put
simply, this register machine performs the following operations:

register1final = register1initial + 2 * register2initial and
register2final = 0.

Furthermore, initializing the program counter at 2 results in the
program multiplying one more than the value of register 2 by 2 and
adding the result to register 1 while clearing register 2, so

 register1final = register1initial + 2 Iregister2initial + 1M and
register2final = 0

(see Figure 26).

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 23. Program number 4721’s registers with an initial program counter
value of 4, register 1’s initial value of 3 bits, and register 2’s initial value of
7!bits. The result of subtracting register 1’s value from register 2 and clearing
register 1 is that register 1’s final value is 0 and register 2’s final value is 4.

Discovering Nontrivial and Functional Behavior in Register Machines 119

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, 1

R:1, 1

R:2, -1

R:1, 0

1

2

3

4

5

Figure 24. Program number 3882.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 25. Program number 3882’s registers with an initial program counter
value of 4, register 1’s initial value of 2 bits, and register 2’s initial value of
4!bits. The result of multiplying register 2’s value by 2, adding the result to
register 1, and clearing register 2 is that register 1’s final value is 8 and regis-
ter 2’s final value is 0.

120 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 26. Program number 3882’s registers with an initial program counter
value of 2, register 1’s initial value of 0 bits, and register 2’s initial value of
2!bits. The result of multiplying one more than register 2’s value by 2, adding
the result in register 1, and clearing register 2 is that register 1’s final value is
6 and register 2’s final value is 0.

4.2.4 The Divide Function

Program number 3780 is another example of an implementation of a
nontrivial mathematical operation: the divide operation. This pro-
gram clears register 1, takes the integer component of dividing regis-
ter 2’s initial value by 2, increments it, and stores the result in regis-
ter!2. Expressed mathematically, this is

register1final = f register2initial

2
v + 1 and register2final = 0.

The implementation of this register machine program is very similar
to Figure 26, except it is interesting to observe that the decrement-
jump’s behavior does not yield any nontrivial behavior: it performs a
functional role in this context (see Figures 27 and 28).

Discovering Nontrivial and Functional Behavior in Register Machines 121

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, 1

R:2, -1

R:2, -1

R:1, 0

1

2

3

4

5

Figure 27. Program number 3780.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 28. Program number 3780’s registers with an initial program counter
value of 1, register 1’s initial value of 8 bits, and register 2’s initial value of
6!bits. The result of clearing register 1, taking the integer component of divid-
ing register 2’s value by 2, incrementing it, and storing the result in register 1
is that register 1’s final value is 4 and register 2’s final value is 0.

Finally, initializing the program counter at any other value allows
the register machine to add the integer component of dividing register
2’s initial value by 2 to register 1, which is the most useful implemen-

122 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 y g p

tation of a “divide by two” register machine. The example shown in
Figure 29 initializes the program counter at 3. Expressed mathemati-

cally, this is register1final = f register2initial

2
v + register1initial.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 29. Program number 3780’s registers with an initial program counter
value of 3, register 1’s initial value of 3 bits, and register 2’s initial value of
6!bits. The result of taking the integer component of dividing register 2’s
value by 2, incrementing it, and storing the result in register 1 is that regis-
ter!1’s final value is 6 and register 2’s final value is 0.

4.2.5 The Clear Function

The register machine programs 6420 and 7531 clear various registers.
Program number 6420 shown in Figure 30 only clears register 1’s

initial value and then halts. Observing the program’s action in Fig-
ure!31, it can be seen that the program only operates on register 1 and
ignores register 2’s value, and it is clear that the initial program
counter value does not have any practical impact on the functional be-
havior of the register machine except for the time it takes for the regis-
ter machine to halt.

Discovering Nontrivial and Functional Behavior in Register Machines 123

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, -1

R:1, -1

R:1, -1

R:1, 01 2 3 4 5

Figure 30. Program number 6420.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 31. Program number 6420’s registers with an initial program counter
value of 4, register 1’s initial value of 3 bits, and register 2’s initial value of
5!bits. The result of clearing register 1 is that register 1’s final value is 0 and
register 2’s final value is 5.

Program number 7531, shown in Figures 32 and 33, has a similar
behavior to program number 6420, except it clears register 2 instead
of register 1.

R:2, -1

R:2, -1

R:2, -1

R:2, -1

R:1, 01 2 3 4 5

Figure 32. Functional behavior example: program number 7531’s program.

124 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 33. Program number 7531’s registers with an initial program counter
value of 4, register 1’s initial value of 3 bits, and register 2’s initial value of
5!bits. The result of clearing register 2 is that register 1’s final value is 3 and
register 2’s final value is 5.

5. Conclusions

5.1 Investigation Results
From the results obtained, it is clear that register machines with a
four-instruction, two-register configuration exhibit nontrivial and
functional behavior. The set of register machine programs yielded
multiple examples of nontrivial behavior, so further investigation for
examples of nontrivial behavior with more complicated register ma-
chine configurations is warranted.

The examples of functional behavior exhibited by the simple four-
instruction, two-register configuration is similar to the behavior typi-
cally seen in embedded platforms, where a “working” register is used
as both an input and an output for a function. For example, an addi-
tion operation would add the contents of a register to the working reg-
ister, storing the result in the working register. The contents of the
working register would then be copied to another register for future
use or used immediately for a subsequent operation. This supports the
notion that register machines are good theoretical models of modern
microcontroller and microprocessor technology.

Discovering Nontrivial and Functional Behavior in Register Machines 125

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

5.2 Program Synthesis
An interesting observation from experimenting with these register ma-
chines is that certain register machines can perform different func-
tions by starting at different initial conditions, especially by starting a
register machine with different initial program counter values. In
Section 4, examples of multiplying or dividing register values by a con-
stant and by changing the initial program counter value are consid-
ered; different functional outputs could be observed from the register
machine.

Another example is program number 5721, whose program is dis-
played in Figure 34. If the program counter is initialized to 1, then the
register machine clears register 2 and then clears register 1 (see Fig-
ure!35). Initializing the program counter to 2 results in the register
machine clearing register 1 before clearing register 2 (see Figure 36).
It is also interesting to note that the program counter’s pattern is very
different from Figure 35.

R:2, -1

R:1, -1

R:2, -1

R:2, -1

R:1, 01 2 3 4 5

Figure 34. Program number 5721.

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 35. Program number 5721’s registers with an initial program counter
value of 1, register 1’s initial value of 3 bits, and register 2’s initial value of
5!bits. The result is that register 1 and register 2’s final values are 0.

126 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 36. Program number 5721’s registers with an initial program counter
value of 2, register 1’s initial value of 3 bits, and register 2’s initial value of
5!bits. The result is that register 1 and register 2’s final values are 0.

Finally, initializing the program counter to 3 results in the register
machine clearing only register 2 and then halting without altering the
value of register 1 (see Figure 37).

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure 37. Program number 5721’s registers with an initial program counter
value of 3, register 1’s initial value of 3 bits, and register 2’s initial value of
5!bits. The result is that register 1’s final value is 3 and register 2’s final value
is 0.

Discovering Nontrivial and Functional Behavior in Register Machines 127

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

While this behavior has simple implications, this does suggest that
the creation can be optimized for low-level logic devices or other
Boolean logic using logic gates, such as complex programmable logic
devices (CPLDs) and field programmable gate arrays (FPGAs) by cre-
ating these “super-programs,” which exhibit unique behavior by us-
ing different initial conditions. Theoretically, this is advantageous as
this would offer lower overall usage of hardware components such as
logic gates, potentially reducing the cost or size of an end product.

5.3 Optimizing Embedded Software
From observing these simple examples of functional behavior from
two-register, four-instruction register machines, it is clear that certain
register machines are quicker than other register machines at perform-
ing certain functions. That is, they execute fewer instructions to
achieve a function. A trivial example involves clearing two registers.
Program numbers 2551, 2741, and 6531 all clear both registers but
require a different number of instructions to perform the task.

Program number 2551 with an initial program counter value of 1
and an initial value of 5 in both registers requires 25 instructions to
clear both registers (see Figures 38 and 39). Further analysis suggests
that it requires 3 i + j + 5 instructions to clear both registers and halt,
where i and j are the initial values of registers 1 and 2, respectively.

R:2, -1

R:2, -1

R:2, -1

R:1, -1

R:1, 0

1

2

3

4

5

Figure 38. Program number 2551.

128 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 39. Program number 2551’s registers with an initial program counter
value of 5 and register 1 and register 2’s initial value of 5 bits. This operation
requires 25 instructions to halt after completing its task.

Program number 2741 with an initial program counter value of 1
and an initial value of 5 in both registers requires 16 instructions to
clear both registers (see Figures 40 and 41). This register machine has
a very different structure from that shown in Figure 39; it requires

3 Jf i

2
v + 1N + j + 2 instructions to clear both registers and halt, where i

is the initial value of the first register and j is the initial value of the
second register.

Program number 6531 with an initial program counter value of 3
and both registers having an initial value of 5 requires 12 instructions
to clear both registers (see Figures 42 and 43). A similar, subsequent
analysis suggests that it takes i + j + 5 instructions to clear both regis-
ters and halt.

Discovering Nontrivial and Functional Behavior in Register Machines 129

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:2, -1

R:1, -1

R:2, -1

R:1, -1

R:1, 0

1

2

3

4

5

Figure 40. Program number 2741’s program.

1 2 3 4 5

1

10

20

31

1 2 3 4 5
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure 41. Program number 2741’s registers with an initial program counter
value of 1 and register 1 and register 2’s initial value of 5 bits. This operation
requires 16 instructions to halt after completing its task.

130 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:2, -1

R:2, -1

R:2, -1

R:1, -1

R:1, 01 2 3 4 5

Figure 42. Program number 6531.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure 43. Program number 6531’s registers with an initial program counter
value of 1 and register 1 and register 2’s initial value of 5 bits. This operation
requires 15 instructions to halt after completing its task.

Plotting the functions that calculate the number of instructions re-
quired to clear all registers generates the plot in Figure 44 with the as-
sociated contour plots in Figure 45.

Graphically, program 6531 has the best performance out of the
three functions tested for this set of two-register, four-instruction reg-
ister machines. This raises an interesting concept: is it possible to test
all possible programs to discover optimal programs that meet a partic-
ular required output? Current computer program optimization tech-
niques involve recognizing patterns in inefficient programs and alter-
ing the instructions within these programs for a more efficient code. A
simple example of such an optimization routine would involve remov-
ing redundant or unused instructions in a program. While being ini-
tially computationally expensive, a “mathematically optimal” pro-
gram could be found through brute-force testing of all possible
programs to find the program that performs the intended function

Discovering Nontrivial and Functional Behavior in Register Machines 131

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

p g p g p
while being optimized for a particular goal, such as finding the fastest
or smallest program.

Figure 44. Three-dimensional plot of functions that calculate time to halt:
program 2552 halts in 3 i + j + 5 instructions, program 2742 halts in

3 Jf i

2
v + 1N + j + 2 instructions, and program 6531 halts in i + j + 5

instructions.

Figure 45. Contour plots of functions that calculate time to halt: program

2552 halts in 3 i + j + 5 instructions, program 2742 halts in 3 Jf i

2
v + 1N + j + 2

instructions, and program 6531 halts in i + j + 5 instructions.

After discussions with Wolfram and Todd Rowland, the author
was introduced to the concept of superoptimizing as coined by Alexia
(Henry) Massalin: a process if “given an instruction set, the superopti-
mizer finds the shortest program to compute a function” [4]. Unfortu-

132 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 p g p

nately, Massalin’s superoptimizer originally required several hours to
explore programs of 12 instructions on a 16MHz computer [4]. How-
ever, given the rapid performance, reliability, and capacity improve-
ments in modern hardware, could superoptimization be used as a de-
sign tool for firmware and embedded software developers to optimize
performance or resource-intensive routines against a set of goals—
optimizing for performance, energy use, or other metrics besides code
size? These results could be adapted into a set of existing “rules” for
optimization—peephole optimization—similar to the concept pro-
posed by Sorav Bansal and Alex Aiken [5] where a database of out-
puts is created and desired outputs are searched for with the addi-
tional capability of optimizing for other design goals.

6. Future Research Directions

6.1 Register Machines
Future research into register machines would involve exploring more
sophisticated register machines with more instructions and registers
and larger register widths. From studying these simple register ma-
chines, examples of nontrivial behavior can be observed. In addition,
the following basic mathematical and logic functions were identified:

† add the contents of a register to another register,

† subtract the contents of a register from another register,

† multiply the contents of a register by a constant value,

† divide the contents of a register by a constant value, and

† clear a register’s contents.

Given the computational simplicity of the register machine, if a
more precise definition of nontrivial behavior is used it would be pos-
sible to automatically discover further examples of nontrivial behav-
ior by testing all possible register machine configurations with various
initial conditions. Joost Joosten et al. conduct a highly detailed analy-
sis of the complexity associated with Turing machines, in particular
by considering another measure of descriptional complexity, where
they define a Turing machine as being nontrivial (in this paper’s con-
text) “if its shortest description [where the description is the Turing
machine and its input] cannot be much more shorter than the length
of the string [the Turing machine’s output] itself” [6]. More sophisti-
cated pattern recognition techniques could assist in detecting exam-
ples of randomness beyond the frequency analysis conducted. In addi-
tion, this paper assumed that the data stored in a register was stored
in a 1:1 ratio; that is, a value of 5 was represented by 5 bits. Other

Discovering Nontrivial and Functional Behavior in Register Machines 133

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 p y
data representation systems could also be investigated, such as binary,
octal, or binary-coded decimals, to discover further examples of func-
tional behavior in a similar way to the representations considered for
Turing machines in [6].

6.2 Practical Superoptimization
From the results in Section 5.3, the following set of circumstances
now make superoptimization a viable and deterministic method of op-
timizing embedded software programs:

† cheaper, more accessible, and powerful computing infrastructure includ-
ing grid- and cloud-computing systems using modern service models
like platform as a service (PaaS) through providers such as Google App
Engine and Windows Azure;

† improved support for embedded software development such as simula-
tors, emulators, and profilers; and

† a need to be able to optimize software programs running on off-the-
shelf hardware to meet a variety of non-functional requirements.

Therefore, future superoptimizer studies could study applications
of superoptimizing in other programming languages or investigate dif-
ferent scenario types relevant to contemporary software engineering,
such as reducing energy consumption or heat generated. In addition,
complex programmable logic devices (CPLDs) often use proprietary
programming languages such as the very high speed integrated circuit
(VHSIC) hardware description language (VHDL) as defined in IEEE
Standard 1076-2008, which would be amenable to superoptimization
given the large industry adoption of the language, availability of emu-
lation tools, and current access to high-performance computing infras-
tructure. Potential superoptimization scenarios could include optimiz-
ing a program for reduced execution time, smaller code size, fewer
logic gates used, reducing heat emissions, or reducing energy
consumption.

Acknowledgments

This paper is based on work the author did during the New Kind of
Science Summer School 2007. The author is very grateful for the assis-
tance and guidance provided by Dr. Stephen Wolfram, Dr. Todd Row-
land, Dr. Eric Rowland, and the other administrators, tutors,
Wolfram Research, Inc. personnel, and fellow students at the summer
school.

134 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

The author would also like to thank his friend Mr. Deon Poncini
and supervisors who provided valuable feedback as well as family,
friends, and colleagues who provided advice, feedback, and support.

Wolfram Mathematica, Apple MacBook, Google App Engine, and
Windows Azure are trademarks of their respective owners.

Appendix

A. Register Machine Functions

The following algorithms are implemented in Mathematica and are
used in the “Register Machine” Demonstration available on the
Wolfram Demonstrations site [3].

A.1 Register Machine Enumeration
The following algorithm is used to decode an enumeration, ranging
from zero to the total number of register machine programs as
defined.

convertEnumerationToState@value_,
numberOfInstructions_, numberOfRegisters_D := Module@8currentState, nextState, registerNumber, increment<,

currentState = Quotient@value - 1,HHnumberOfInstructions + 1L*numberOfRegistersLD + 1;

nextState = If@Mod@value - 1, HnumberOfInstructions + 1L*
numberOfRegistersD >= numberOfInstructions*

numberOfRegisters, Mod@Quotient@value - 1,HnumberOfInstructions + 1L*numberOfRegistersD,HnumberOfInstructions + 1L*numberOfRegistersD + 2,

Quotient@Mod@value - 1, HnumberOfInstructions + 1L*
numberOfRegistersD, numberOfRegistersD + 1D;

registerNumber = Mod@value - 1, numberOfRegistersD + 1;

increment = If@Mod@value - 1,HnumberOfInstructions + 1L*numberOfRegistersD >=
numberOfInstructions*numberOfRegisters, 1, -1D;

currentState -> 8nextState, registerNumber, increment<D;
A.2 Total Register Machine Program Algorithm

Definition 1. The total number of register machine programs can be cal-
culated by the function HrHi + 1LLi, where i is the number of instruc-
tions and r is the number of registers.

Consider an individual instruction: if there are i instructions in a
register, then there must be i+1 possible instructions including the
halted state.

Discovering Nontrivial and Functional Behavior in Register Machines 135

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

Consider that any register machine instruction has:

† a current instruction itself,

† the next instruction to be executed, and

† the register that is being manipulated.

Then there are: 1 possible current instruction, i +1 possible next in-
structions (considering the halted instruction as a possible instruc-
tion), and r possible registers. Therefore there are r(i+1) possible
instructions.

Now select i instructions with replacement, which suggests there
are Hr Hi + 1LLi possible programs to select from.

Therefore, the total number of programs can be expressed asHr Hi + 1LLi.
For example, consider a one-register, two-instruction register ma-

chine. Using this function, there are nine possible programs. The possi-
ble register machine programs are shown in Figures A1 through A9.

R:1, -1
R:1, -1

R:1, 01 2 3

Figure A1. Program 1 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, -1

R:1, -1

R:1, 01 2 3

Figure A2. Program 2 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, 1

R:1, -1

R:1, 01 2 3

Figure A3. Program 3 of nine possible programs with 1 register and 2 possi-
ble instructions.

136 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, -1

R:1, 01 2 3

Figure A4. Program 4 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, -1

R:1, -1

R:1, 01 2 3

Figure A5. Program 5 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, 1

R:1, -1

R:1, 01 2 3

Figure A6. Program 6 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, -1 R:1, 1 R:1, 01 2 3

Figure A7. Program 7 of nine possible programs with 1 register and 2 possi-
ble instructions.

Discovering Nontrivial and Functional Behavior in Register Machines 137

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, 1 R:1, 01 2 3

Figure A8. Program 8 of nine possible programs with 1 register and 2 possi-
ble instructions.

R:1, 1 R:1, 1 R:1, 01 2 3

Figure A9. Program 9 of nine possible programs with 1 register and 2 possi-
ble instructions.

B. Raw p-Values of Frequency Analysis of Randomness in
Register Values

The p-values and the respective counts for the distribution fit test of
register 1’s value against the discrete uniform distribution are shown
at the left of Table B1.

The p-values and the respective counts for the distribution fit test
of register 2’s value against the discrete uniform distribution are
shown at the right of Table B1.

138 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 p-Value Count

0.00485213 338 328

0.0178312 4348

0.0556449 4960

0.144973 5396

0.310289 6262

0.317311 176 640

0.449329 161 520

0.539749 8446

0.563703 192 800

0.564718 156 860

0.572407 162 454

0.606531 151 138

0.702359 117 994

0.74768 167 496

0.753004 143 906

0.765857 10 938

0.808363 65 380

0.855695 92 488

0.873007 73 172

0.884549 50 114

0.914033 12 792

0.924313 59 818

0.939992 54 978

0.952577 24 124

0.963099 40 644

0.97244 20 522

0.97314 17 220

0.97365 31 916

0.974754 15 346

1. 192 000

p-Value Count

0.0000310387 338 328

0.000454396 4348

0.00477391 4960

0.0344301 5396

0.161964 6262

0.472102 8446

0.563703 192 800

0.778801 176 640

0.818731 161 520

0.835225 10 938

0.881015 151 138

0.930627 156 860

0.945023 162 454

0.955375 167 496

0.973735 143 906

0.97874 117 994

0.984748 92 488

0.988102 12 792

0.992123 73 172

0.993373 65 380

0.996969 59 818

0.997839 54 978

0.998178 50 114

0.99896 17 220

0.999319 40 644

0.999923 31 916

0.999934 24 124

0.99999 15 346

1. 20 522

Table B1.

Discovering Nontrivial and Functional Behavior in Register Machines 139

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

C. Arithmetic Function Program List

Sections C.1 through C.4 list the programs that for at least one initial
program counter value performed a particular arithmetic function.
These program numbers correspond to the enumeration defined in Ap-
pendix A and can be used in the Wolfram Demonstrations Project [3].

C.1 Addition Programs
The following 189 register machines add register 2’s contents to regis-
ter 1, expressed mathematically as

 register1final = register1initial + register2initial :

119, 319, 519, 719, 1119, 1319, 1381, 1382, 1383, 1384, 1385, 1386,
1387, 1388, 1389, 1390, 1519, 1619, 1689, 1719, 1790, 1799, 1849,
1860, 3119, 3319, 3381, 3382, 3383, 3384, 3385, 3386, 3387, 3388,
3389, 3390, 3519, 3619, 3719, 3819, 3919, 5119, 5319, 5381, 5382,
5383, 5384, 5385, 5386, 5387, 5388, 5389, 5390, 5519, 5619, 5719,
5801, 5802, 5803, 5804, 5805, 5806, 5807, 5808, 5809, 5810, 5811,
5812, 5813, 5814, 5815, 5816, 5817, 5818, 5819, 5820, 5821, 5822,
5823, 5824, 5825, 5826, 5827, 5828, 5829, 5830, 5831, 5832, 5833,
5834, 5835, 5836, 5837, 5838, 5839, 5840, 5841, 5842, 5843, 5844,
5845, 5846, 5847, 5848, 5849, 5850, 5851, 5852, 5853, 5854, 5855,
5856, 5857, 5858, 5859, 5860, 5861, 5862, 5863, 5864, 5865, 5866,
5867, 5868, 5869, 5870, 5871, 5872, 5873, 5874, 5875, 5876, 5877,
5878, 5879, 5880, 5881, 5882, 5883, 5884, 5885, 5886, 5887, 5888,
5889, 5890, 5891, 5892, 5893, 5894, 5895, 5896, 5897, 5898, 5899,
5900, 5919, 7119, 7319, 7381, 7382, 7383, 7384, 7385, 7386, 7387,
7388, 7389, 7390, 7519, 7619, 7719, 7919, 9119, 9319, 9381, 9382,
9383, 9384, 9385, 9386, 9387, 9388, 9389, 9390, 9519, 9619, 9719,
and 9919.

The following 189 register machines add register 1’s contents to regis-
ter 2, expressed mathematically as

 register2final = register1initial + register2initial :

10, 210, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 410, 610,
690, 699, 710, 800, 949, 960, 1010, 1210, 1410, 1610, 2010, 2210,
2291, 2292, 2293, 2294, 2295, 2296, 2297, 2298, 2299, 2300, 2410,
2610, 2710, 2810, 2910, 4010, 4210, 4291, 4292, 4293, 4294, 4295,
4296, 4297, 4298, 4299, 4300, 4410, 4610, 4710, 4810, 4901, 4902,
4903, 4904, 4905, 4906, 4907, 4908, 4909, 4910, 4911, 4912, 4913,
4914, 4915, 4916, 4917, 4918, 4919, 4920, 4921, 4922, 4923, 4924,
4925, 4926, 4927, 4928, 4929, 4930, 4931, 4932, 4933, 4934, 4935,
4936, 4937, 4938, 4939, 4940, 4941, 4942, 4943, 4944, 4945, 4946,
4947, 4948, 4949, 4950, 4951, 4952, 4953, 4954, 4955, 4956, 4957,
4958, 4959, 4960, 4961, 4962, 4963, 4964, 4965, 4966, 4967, 4968,
4969, 4970, 4971, 4972, 4973, 4974, 4975, 4976, 4977, 4978, 4979,
4980, 4981, 4982, 4983, 4984, 4985, 4986, 4987, 4988, 4989, 4990,

140 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

4991, 4992, 4993, 4994, 4995, 4996, 4997, 4998, 4999, 5000, 6010,
6210, 6291, 6292, 6293, 6294, 6295, 6296, 6297, 6298, 6299, 6300,
6410, 6610, 6710, 6810, 8010, 8210, 8291, 8292, 8293, 8294, 8295,
8296, 8297, 8298, 8299, 8300, 8410, 8610, 8710, and 8810.

C.2 Subtraction Programs
The following 415 register machines subtract register 2’s contents
from register 1, expressed mathematically as

 register1final = Max
register1initial - register2initial

0
:

198, 398, 818, 838, 858, 878, 1007, 1017, 1027, 1037, 1047, 1057,
1066, 1067, 1077, 1097, 1105, 1107, 1113, 1115, 1117, 1125, 1127,
1135, 1137, 1145, 1147, 1155, 1157, 1165, 1167, 1175, 1177, 1195,
1197, 1207, 1217, 1227, 1237, 1247, 1257, 1266, 1267, 1277, 1287,
1297, 1307, 1313, 1317, 1327, 1337, 1341, 1342, 1343, 1344, 1345,
1346, 1347, 1348, 1349, 1350, 1357, 1365, 1367, 1377, 1397, 1407,
1417, 1427, 1437, 1447, 1457, 1467, 1477, 1497, 1507, 1513, 1517,
1527, 1537, 1547, 1557, 1567, 1577, 1597, 1607, 1617, 1627, 1637,
1647, 1649, 1657, 1660, 1667, 1677, 1683, 1687, 1697, 1707, 1713,
1717, 1727, 1737, 1747, 1750, 1757, 1767, 1777, 1793, 1797, 1907,
1917, 1927, 1937, 1947, 1957, 1967, 1977, 1997, 2198, 3061, 3062,
3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070, 3098, 3105, 3113,
3115, 3125, 3135, 3145, 3147, 3155, 3161, 3162, 3163, 3164, 3165,
3166, 3167, 3168, 3169, 3170, 3175, 3195, 3197, 3261, 3262, 3263,
3264, 3265, 3266, 3267, 3268, 3269, 3270, 3313, 3341, 3342, 3343,
3344, 3345, 3346, 3347, 3348, 3349, 3350, 3361, 3362, 3363, 3364,
3365, 3366, 3367, 3368, 3369, 3370, 3461, 3462, 3463, 3464, 3465,
3466, 3467, 3468, 3469, 3470, 3513, 3561, 3562, 3563, 3564, 3565,
3566, 3567, 3568, 3569, 3570, 3613, 3615, 3661, 3662, 3663, 3664,
3665, 3666, 3667, 3668, 3669, 3670, 3713, 3761, 3762, 3763, 3764,
3765, 3766, 3767, 3768, 3769, 3770, 3913, 3915, 3961, 3962, 3963,
3964, 3965, 3966, 3967, 3968, 3969, 3970, 5069, 5080, 5105, 5113,
5115, 5125, 5135, 5145, 5155, 5165, 5170, 5175, 5195, 5313, 5341,
5342, 5343, 5344, 5345, 5346, 5347, 5348, 5349, 5350, 5513, 5601,
5602, 5603, 5604, 5605, 5606, 5607, 5608, 5609, 5610, 5611, 5612,
5613, 5614, 5615, 5616, 5617, 5618, 5619, 5620, 5621, 5622, 5623,
5624, 5625, 5626, 5627, 5628, 5629, 5630, 5631, 5632, 5633, 5634,
5635, 5636, 5637, 5638, 5639, 5640, 5641, 5642, 5643, 5644, 5645,
5646, 5647, 5648, 5649, 5650, 5651, 5652, 5653, 5654, 5655, 5656,
5657, 5658, 5659, 5660, 5661, 5662, 5663, 5664, 5665, 5666, 5667,
5668, 5669, 5670, 5671, 5672, 5673, 5674, 5675, 5676, 5677, 5678,
5679, 5680, 5681, 5682, 5683, 5684, 5685, 5686, 5687, 5688, 5689,
5690, 5691, 5692, 5693, 5694, 5695, 5696, 5697, 5698, 5699, 5700,
5713, 5913, 7105, 7113, 7115, 7125, 7135, 7145, 7155, 7165, 7175,
7195, 7313, 7341, 7342, 7343, 7344, 7345, 7346, 7347, 7348, 7349,
7350, 7513, 7713, 7913, 8195, 9105, 9113, 9115, 9125, 9135, 9145,

Discovering Nontrivial and Functional Behavior in Register Machines 141

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

9155, 9165, 9175, 9195, 9313, 9341, 9342, 9343, 9344, 9345, 9346,
9347, 9348, 9349, 9350, 9513, 9713, and 9913.

The following 415 register machines subtract register 1’s contents
from register 2, expressed mathematically as

 register2final = Max
register2initial - register1initial

0
:

4, 6, 8, 16, 18, 26, 28, 36, 38, 46, 48, 56, 58, 66, 68, 76, 78, 86, 88,
108, 118, 128, 138, 148, 158, 168, 175, 178, 188, 204, 208, 218, 228,
238, 248, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 268, 276,
278, 288, 308, 318, 328, 338, 348, 358, 368, 375, 378, 388, 398, 404,
408, 418, 428, 438, 448, 458, 468, 478, 488, 508, 518, 528, 538, 548,
558, 568, 578, 588, 604, 608, 618, 628, 638, 648, 658, 659, 668, 678,
684, 688, 708, 718, 728, 738, 748, 749, 758, 760, 768, 778, 788, 794,
798, 808, 818, 828, 838, 848, 858, 868, 878, 888, 1087, 1287, 1907,
1927, 1947, 1967, 2004, 2006, 2016, 2026, 2036, 2046, 2056, 2058,
2066, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079, 2080,
2086, 2088, 2171, 2172, 2173, 2174, 2175, 2176, 2177, 2178, 2179,
2180, 2187, 2204, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258,
2259, 2260, 2271, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279,
2280, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380,
2404, 2471, 2472, 2473, 2474, 2475, 2476, 2477, 2478, 2479, 2480,
2571, 2572, 2573, 2574, 2575, 2576, 2577, 2578, 2579, 2580, 2604,
2671, 2672, 2673, 2674, 2675, 2676, 2677, 2678, 2679, 2680, 2704,
2706, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 2780,
2804, 2806, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 2879,
2880, 3087, 4004, 4006, 4016, 4026, 4036, 4046, 4056, 4066, 4076,
4079, 4086, 4169, 4180, 4204, 4251, 4252, 4253, 4254, 4255, 4256,
4257, 4258, 4259, 4260, 4404, 4604, 4701, 4702, 4703, 4704, 4705,
4706, 4707, 4708, 4709, 4710, 4711, 4712, 4713, 4714, 4715, 4716,
4717, 4718, 4719, 4720, 4721, 4722, 4723, 4724, 4725, 4726, 4727,
4728, 4729, 4730, 4731, 4732, 4733, 4734, 4735, 4736, 4737, 4738,
4739, 4740, 4741, 4742, 4743, 4744, 4745, 4746, 4747, 4748, 4749,
4750, 4751, 4752, 4753, 4754, 4755, 4756, 4757, 4758, 4759, 4760,
4761, 4762, 4763, 4764, 4765, 4766, 4767, 4768, 4769, 4770, 4771,
4772, 4773, 4774, 4775, 4776, 4777, 4778, 4779, 4780, 4781, 4782,
4783, 4784, 4785, 4786, 4787, 4788, 4789, 4790, 4791, 4792, 4793,
4794, 4795, 4796, 4797, 4798, 4799, 4800, 4804, 6004, 6006, 6016,
6026, 6036, 6046, 6056, 6066, 6076, 6086, 6204, 6251, 6252, 6253,
6254, 6255, 6256, 6257, 6258, 6259, 6260, 6404, 6604, 6804, 8004,
8006, 8016, 8026, 8036, 8046, 8056, 8066, 8076, 8086, 8204, 8251,
8252, 8253, 8254, 8255, 8256, 8257, 8258, 8259, 8260, 8404, 8604,
8804, and 9086.

C.3 Multiplication Programs
The following 16 register machines multiply register 1’s contents by 2
and then add this value to register 2, expressed mathematically as

142 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

 g p y

register1final = register1initial + 2 * register2initial:

1189, 2189, 3189, 3881, 3882, 3883, 3884, 3885, 3886, 3887, 3888,
3890, 5189, 7189, and 9189.

The following 16 register machines multiply register 1’s contents
by 2 and then add this value to register 2, expressed mathematically
as register2final = register2initial + 2 * register1initial:

100, 2100, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999,
3000, 3100, 4100, 6100, and 8100.

C.4 Division Programs
Register machines 3780 and 3851 take the integral part of dividing
register 2’s value by 2, incrementing the value, and storing the result
in register 1, otherwise expressed mathematically as

 register1final = f register2initial

2
v + 1.

Register machines 2692 and 2942 similarly take the integral part of di-
viding register 1’s value by 2, incrementing the value, and storing the
result in register 2, otherwise expressed mathematically as

 register2final = f register1initial

2
v + 1.

Much like the other arithmetic register machines mentioned in Sec-
tion 4.2, the following 22 register machines take the integral part of
dividing register 2’s value by 2 and adding the result to register 1, ex-
pressed mathematically as

 register1final = register1initial + f register2initial

2
v:

1079, 1159, 1179, 1379, 1579, 1679, 1779, 3159, 3780, 3782, 3783,
3784, 3785, 3786, 3787, 3788, 3789, 3790, 5159, 5184, 7159, and
9159.

The following 22 register machines take the integral part of divid-
ing register 1’s value by 2 and adding the result to register 2, ex-
pressed mathematically as

 register2final = register2initial + f register1initial

2
v:

50, 70, 170, 270, 470, 670, 770, 2050, 2691, 2692, 2693, 2694, 2695,
2696, 2697, 2698, 2699, 2700, 4050, 4093, 6050, and 8050.

Discovering Nontrivial and Functional Behavior in Register Machines 143

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

D. Other Register Machine Examples

D.1 Complex Register Machines
The register machine outputs of program 386 (Figure D1) in Fig-
ures!D2 and D3 show how register machines can be observed to ei-
ther halt or run indefinitely after register 1’s contents is cleared.

R:1, -1

R:1, 1 R:1, -1

R:2, -1

R:1, 012 43 5

Figure D1. Program number 386.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure D2. Program number 386’s registers with an initial program counter
value of 2, register 1’s initial value of 3 bits, and register 2’s initial value of
4!bits.

D.2 Functional Register Machines
D.2.1 The Addition Operation

The register machine shown in Figures D4 and D5 increments the con-
tents of the second register before halting, a specific implementation
of the addition function.

144 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4

1

10

20

31

1 2 3 4
1

10

20

31

program
counter

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 1

1 2 3 4 5 6 7 8

1

10

20

31

1 2 3 4 5 6 7 8
1

10

20

31

register: 2

Figure D3. Program number 386’s registers with an initial program counter
value of 2, register 1’s initial value of 3 bits, and register 2’s initial value of
3!bits.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure D4. Program number 4920’s registers with an initial program counter
value of 1, register 1’s initial value of 3 bits, and register 2’s initial value of
4!bits. The result of incrementing register 2’s value and clearing register 1 is
that register 1’s final value is 0 and register 2’s final value is 5.

Discovering Nontrivial and Functional Behavior in Register Machines 145

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

R:1, -1

R:1, -1

R:2, 1

R:1, -1
R:1, 01 2 3 4 5

Figure D5. Program number 4920.

D.2.2 The Subtraction Operation

Similarly, the register machine shown in Figures D6 and D7 decre-
ments the contents of the second register prior to halting; the incre-
ment operation is replaced by a decrement-jump operation at instruc-
tion 3.

R:1, -1

R:1, -1

R:2, -1

R:1, -1

R:1, 01 2 3 4 5

Figure D6. Program number 4720.

1 2 3 4 5

1

5

10

15

20

26

1 2 3 4 5
1

5

10

15

20

26

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

20

26

1 2 3 4 5 6 7 8
1

5

10

15

20

26

register: 2

Figure D7. Functional behavior example: program number 4720’s registers
with an initial program counter value of 1, register 1’s initial value of 3 bits,
and register 2’s initial value of 7 bits. The result of decrementing register 2’s
value and clearing register 1 is that register 1’s final value is 0 and register 2’s
final value is 6.

146 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

D.2.3 The Multiplication Operation

Figures D8 and D9 are examples of register machines that perform
multiplication operations on register 2 by storing the results in regis-
ter 1.

The value of register 1 can also be incremented twice by initializing
the program counter to 1 instead of 4 (see Figure D10).

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure D8. Program number 3881’s registers with an initial program counter
value of 2, register 1’s initial value of 3 bits, and register 2’s initial value of
1!bit. The result of multiplying 1 more than register 2’s value by 2, adding the
result in register 1, and clearing register 2 is that register 1’s final value is 5
and register 2’s final value is 0.

Discovering Nontrivial and Functional Behavior in Register Machines 147

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure D9. Program number 3881’s registers with an initial program counter
value of 4, register 1’s initial value of 3 bits, and register 2’s initial value of
2!bits. The result of multiplying register 2’s value by 2, adding the result to
register 1, and clearing register 2 is that register 1’s final value is 7 and regis-
ter 2’s final value is 0.

1 2 3 4 5

1

5

10

15

21

1 2 3 4 5

1

5

10

15

21

program
counter

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 1

1 2 3 4 5 6 7 8

1

5

10

15

21

1 2 3 4 5 6 7 8

1

5

10

15

21

register: 2

Figure D10. Program number 3881’s registers with an initial program counter
value of 1, register 1’s initial value of 4 bits, and register 2’s initial value of
8!bits. The result of incrementing register 1’s value twice, adding the result to
register 1, and clearing register 2 is that register 1’s final value is 6 and regis-
ter 2’s final value is 0.

148 A. Joseph

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

References

[1] S. Wolfram, A New Kind of Science, Champaign IL: Wolfram Media,
Inc, 2002.

[2] P. Chapman. “Minsky Register Machine.” (Jan 13, 2003)
http://www.igblan.free-online.co.uk/igblan/ca/minsky.html.

[3] A. Joseph. “Register Machines” from the Wolfram Demonstrations Pro-
ject—A Wolfram Web Resource.
http://demonstrations.wolfram.com/RegisterMachines.

[4] H. Massalin, “Superoptimizer: A Look at the Smallest Program” in Pro-
ceedings of the Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS87),
Berkeley, CA (R. Katz, ed.), Los Alamitos, CA: IEEE Computer Society
Press, 1987 pp. 122–126. doi:10.1145/36177.36194.

[5] S. Bansal and A. Aiken, “Automatic Generation of Peephole Superopti-
mizers,” ACM SIGPLAN Notices, 41(11), 2006 pp. 394–403.
doi:10.1145/1168918.1168906.

[6] J. J. Joosten, F. Soler-Toscano, and H. Zenil, “Program-Size versus Time
Complexity Slowdown and Speed-up Phenomena in the Micro-cosmos
of Small Turing Machines,” International Journal of Unconventional
Computing, 7(5), 2011 pp. 353–387.

Discovering Nontrivial and Functional Behavior in Register Machines 149

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.101

<<
 /ASCII85EncodePages false
 /AllowPSXObjects false
 /AllowTransparency false
 /AlwaysEmbed [
 true
]
 /AntiAliasColorImages false
 /AntiAliasGrayImages false
 /AntiAliasMonoImages false
 /AutoFilterColorImages true
 /AutoFilterGrayImages true
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CheckCompliance [
 /None
]
 /ColorACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorConversionStrategy /LeaveColorUnchanged
 /ColorImageAutoFilterStrategy /JPEG
 /ColorImageDepth -1
 /ColorImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorImageDownsampleThreshold 1.50000
 /ColorImageDownsampleType /Bicubic
 /ColorImageFilter /DCTEncode
 /ColorImageMinDownsampleDepth 1
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /ColorImageResolution 300
 /ColorSettingsFile ()
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /CreateJDFFile false
 /CreateJobTicket false
 /CropColorImages false
 /CropGrayImages false
 /CropMonoImages false
 /DSCReportingLevel 0
 /DefaultRenderingIntent /Default
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /DetectBlends true
 /DetectCurves 0
 /DoThumbnails false
 /DownsampleColorImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /EmbedOpenType false
 /EmitDSCWarnings false
 /EncodeColorImages true
 /EncodeGrayImages true
 /EncodeMonoImages true
 /EndPage -1
 /GrayACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageAutoFilterStrategy /JPEG
 /GrayImageDepth -1
 /GrayImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageDownsampleThreshold 1.50000
 /GrayImageDownsampleType /Bicubic
 /GrayImageFilter /DCTEncode
 /GrayImageMinDownsampleDepth 2
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /GrayImageResolution 300
 /ImageMemory 1048576
 /JPEG2000ColorACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000ColorImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /LockDistillerParams false
 /MaxSubsetPct 100
 /MonoImageDepth -1
 /MonoImageDict <<
 /K -1
 >>
 /MonoImageDownsampleThreshold 1.50000
 /MonoImageDownsampleType /Bicubic
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /MonoImageResolution 1200
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /NeverEmbed [
 true
]
 /OPM 1
 /Optimize true
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.25000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXOutputCondition ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputIntentProfile ()
 /PDFXRegistryName ()
 /PDFXSetBleedBoxToMediaBox true
 /PDFXTrapped /False
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /ParseICCProfilesInComments true
 /PassThroughJPEGImages true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

