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Complex networks are all around us, and they can be generated by sim-
ple  mechanisms.  Understanding  what  kinds  of  networks  can  be  pro-
duced  by  following  simple  rules  is  therefore  of  great  importance.  This
issue  is  investigated by studying the  dynamics  of  extremely  simple  sys-
tems where a “writer” moves around a network, modifying it in a way
that  depends  upon  the  writer’s  surroundings.  Each  vertex  in  the  net-
work has three edges incident upon it, which are colored red, blue, and
green. This edge coloring is done to provide a way for the writer to ori-
ent  its  movement.  The  dynamics  of  a  space  of  3888  of  these  colored
trinet  automata  systems  are  explored.  A  large  variety  of  behavior  is
found, ranging from the very simple to the very complex. Our systems
are  studied  using  simulations  (with  appropriate  visualization  tech-
niques)  and  selected  rules  are  analyzed  mathematically.  An  empirical
classification  scheme  is  arrived  at,  which  reveals  a  lot  about  the  kinds
of dynamics and networks that can be generated by these systems. 

1. Introduction

Many advances in complex systems research have come from identify-
ing simple  deterministic  systems that  can generate  complex behavior.
For  example,  cellular  automata  are  used  to  model  many  systems  in
physics  and  biology  [1],  string  rewrite  systems  are  used  to  model
plant  development  [2],  and  chaotic  differential  equations  are  used  in
many  areas  [3].  The  most  popular  models  of  complex  network
growth  are  probabilistic  [4,  5].  These  models  have  yielded  many  in-
sights, but they do not offer an explanation as to where the complex-
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ity  in  networks  comes  from.  The  complexity  in  probabilistic  models
comes from the randomizing mechanisms they are based on. 

In  this  paper,  we  study  a  class  of  simple  deterministic  network
growth models. Our systems can produce a wide variety of behavior,
ranging from the very simple to the very complex. They offer insights
into how complex structures can be generated, because each aspect of
their behavior can be traced back to a deterministic cause. The simple
nature  of  our  models  allows  us  to  quickly  generate  exact  pictures  of
their dynamics. This gives us the ability to easily explore the behavior
of large numbers of systems. By taking an unbiased look at the dynam-
ics of many simple rules, we see what types of network growth are eas-
ily generated by simple computational processes. 

In  Turing  machines  [6],  a  writer  moves  along  a  one-dimensional
tape  and  rewrites  symbols  using  local  rules.  Our  network  automata
systems are like a generalization of this idea—where the writer moves
around a network and rewrites it on a local level. The way the writer
moves  and modifies  its  local  structure  is  determined by its  surround-
ings.  The network the writer  runs on is  a trinet  (i.e.,  each vertex has
three connections). Trinets are also known as cubic graphs and three-
regular  graphs.  There  are  many  natural  examples  of  trinets,  such  as
two-dimensional foams [7] and polygonal networks formed by biolog-
ical  cells  and cracks  in  the  soil  [8].  We focus  on trinets  because  they
are  easy  to  manipulate  and  expressive.  Any  network  can  be  repre-
sented as a trinet by replacing vertices that have more than three con-
nections  with  roundabout-like  circles  of  vertices  with  three  connec-
tions [9]. 

One of our goals is to find simple deterministic rules that generate
complex  dynamics.  An  obstacle  to  this  goal  is  the  inability  of  deter-
ministic rules to break symmetries. For example, if the writer is at one
of  the  corners  of  a  cube,  then  it  has  no  deterministic  way  to  select
which of its similar-looking neighbors it should move to next. We cir-
cumvent this obstacle by supposing the edges of our trinet are colored
red, blue, and green in such a way that touching edges have different
colors  (such an edge coloring is  also known as  a  Tait  coloring [10]).
This  allows  us  to  specify  how  the  writer  should  move  by  stating
which colored edge it  should move along in  different  situations.  (We
could  remove  the  reliance  of  edge  color  in  our  systems  by  replacing
the red, blue, and green edges with different uncolored structures and
modifying  our  rewrite  rules  accordingly—although  this  would  make
the systems look more complicated.)

Our main goal is to understand what kinds of behavior can be gen-
erated by colored trinet automata. To achieve this, we do a thorough
exploration of the dynamics of a space of simple rules. Using pictures
and  analytic  techniques,  we  sort  these  rules  into  three  classes  (fixed
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points, repetitive growth, and elaborate growth) according to their be-
havior. We discuss these classes in Sections 2 through 4. In Section 5,
we exhibit more general rules, which can produce other exotic behav-
ior such as persistent complex behavior and periodically changing net-
works. 

We have tried to keep the main text as free from equations as possi-
ble.  This was done to increase readership,  and because complex phe-
nomena are often better explained using pictures. Proofs of our theo-
rems and extra  technical  details  about  these  systems will  be  included
in  our  upcoming  paper,  “Complex  Networks  from  Simple  Rules:
Technical  Details,”  which  will  be  published  in  Complex  Systems
soon. 

1.1 Related Literature   
Many interesting deterministic network growth models have been pre-
viously  considered.  These  include  the  growth  models  discussed  in
[11], the fascinating deterministic network growth systems considered
in  [12],  and  the  biologically  inspired  models  considered  in  [13–16],
which can produce rich and complicated self-replicating structures, de-
spite extremely simple rules. Self-replication in adaptive network mod-
els  was  also  considered  in  [17].  In  each  of  these  cases,  every  part  of
the network gets updated in parallel. In our systems, by contrast, only
a small piece of the network gets updated at any time. This makes our
systems easier to implement because there is no need for distant parts
of the network to have synchronized clocks. It is true that many real-
world  networks  grow  in  parallel;  however,  evolving  our  systems  for
many time steps often leads to structural modifications that are equiv-
alent to global/parallel rewrite operations (see Sections 4.1 and 4.4).  

Our  work  was  inspired  by  the  work  of  Tommaso  Bolognesi  [9],
who studies the dynamics of planar trinet automata. Like our models,
these  systems  involve  a  writer  that  moves  around  the  trinet,  making
structural modifications as it goes. Unlike our systems, the models con-
sidered in [9]  circumvent the symmetry-breaking problem by suppos-
ing the trinets are embedded in the plane. The way the writer behaves
in  these  systems  is  governed  by  the  structure  of  the  faces  formed  by
the planar embedding. Although these models are fascinating, the fact
that the dynamics depend on how the network is embedded makes it
difficult  to  get  a  full  picture  of  what  is  going  on  at  any  given  time.
Our approach (of  considered edge-colored trinets,  rather  than planar
embedded  trinets)  allows  us  to  easily  picture  the  complete  dynamics
(and  rules)  behind  the  systems  we  consider.  Our  systems  also  have
similarities to the generalized mobile automata considered in [18]. 

The  experimental  approach  we  use  was  pioneered  by  Stephen
Wolfram [18],  who  uses  simulations  to  reveal  a  vast  array  of  simple
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programs  that  can  generate  complex  dynamics.  Wolfram finds  many
network  growth  models  that  can  generate  complex  dynamics  and
explores  the  idea  that  the  physical  universe  could  be  generated  by  a
simple network growth model. The idea that the universe can be gen-
erated in exact detail, by a simple program, is one of the most interest-
ing  conjectures  from  digital  physics  [19–21].  Wolfram  suggests  that
the  correct  model  could  be  found  by  doing  an  automated  search  of
the simplest possibilities [22]. In order to do such universe hunting, in-
tuition  is  needed  about  the  kinds  of  things  that  simple  adaptive  net-
work mechanisms can do. One of our aims is to provide some of this
intuition. 

1.2 How Our Systems Work   
A  colored  trinet  automata  is  a  dynamical  system  where  a  writer
moves around the vertices of an edge-colored trinet,  applying rewrite
rules as it goes. For every time step, some rewrite operation is applied
about  the  writer’s  current  location,  and  then  the  writer  moves.  We
start  by  considering  only  extremely  simple  rewrite  operations,  where
the writer’s current vertex is either replaced with a triangle or left un-
altered. The action the writer takes on a given time step is determined
by the colors of the edges interlinking its neighbors.  

The rules behind a colored trinet  automata specify how the writer
should move and modify the network in response to its surroundings
(i.e.,  the  colors  of  the  edges  interlinking  the  writer’s  neighbors).  We
show the  rules  at  the  top  of  our  figures,  with  the  writer  represented
by a black vertex. For example, the rule for the system shown in Fig-
ure 1 can be described as follows. 

1. If  there  are  no  edges  linking  the  writer’s  neighbors,  then  the  writer
moves along a blue edge, and the writer’s previous location is replaced
with a triangle. 

2. If there is exactly one edge linking the writer’s neighbors, which is red,
then take no action. 

3. If there is exactly one edge linking the writer’s neighbors, which is blue,
then  the  writer  moves  along  a  red  edge  and  the  network  is  left  unal-
tered. 

4. If  there  is  exactly  one  edge  linking  the  writer’s  neighbors,  which  is
green, then take no action. 

Notice  how  these  instructions  correspond  to  the  pictures  in  the
four boxes at the top of Figure 1. In general, a rule is just a specifica-
tion  of  which  structural  modifications  and  movements  the  writer
should  perform  in  response  to  the  four  types  of  surroundings
(depending on the colors of edges interlinking the writer’s  neighbors)
that the writer can have when there is no more than one edge linking
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its  neighbors.  Our  rules  do  not  specify  which  actions  the  writer
should  take  in  other  situations,  where  there  are  two  or  more  edges
linking  its  neighbors.  In  these  cases  we  suppose  that  no  action  is
taken.  Actually,  the  rules  we  consider  never  generate  vertices  with
two or more linked neighbors and so these situations never occur any-
way. 

Figure 1. An example colored trinet automata. At the top, we show the rules
of the system by indicating how the writer (the black vertex) moves and modi-
fies the network in response to its surroundings. Underneath, we show the sys-
tem evolving  for  four  updates,  starting  from the  cube.  The  system reaches  a
fixed  point  after  three  updates.  The  red,  blue,  and  green  edges  (which  are
aligned horizontally,  vertically,  and diagonally  within  the  cube  shown at  the
bottom  left)  are  more  clearly  visible  in  the  online  color  version  of  this
document.

1.3 The Rule Space  
In each of our investigations we used the cube (shown at the bottom
left  of  Figure 1)  as  our initial  condition.  We studied the dynamics of
the space of 12ä18ä18 ! 3888 rules depicted in Figure 2.  

Consider the collection of all rules where the writer’s reactions con-
sists  of  possible  triangle  replacement  and  movement  across  two  or
fewer  links.  Our  rule  set  consists  of  the  members  of  this  collection
such  that  (1)  the  writer’s  location  is  always  replaced  with  a  triangle
when  the  writer  has  no  interlinked  neighbors,  and  (2)  no  action  is
taken when there is a green edge linking the writer’s neighbors. We in-
sist upon condition (1) because rules that do not satisfy this will never
change the initial cube network, and so will have uninteresting dynam-
ics.  We  insist  upon  condition  (2)  to  reduce  the  number  of  rules  we
must consider. If we drop constraint (2), we find new kinds of behav-
ior, but the rule space becomes too large to thoroughly explore. With-

out  constraint  (2),  the  set  has  12ä H18L3 ! 69 984  members,  which
makes it small enough to explore with a computer, but too large to ex-
amine all the interesting cases in detail. 
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Figure 2. An illustration of the space of rules we explored. A rule is specified
by associating each of the four different types of surroundings with one of the
images to its right.  

By  severely  limiting  the  kinds  of  operations  our  trinet  automata
can  perform,  we  reduce  the  rule  space  to  a  manageable  size  and  en-
sure  that  it  contains  minimal  systems  that  generate  certain  types  of
behavior.  We  sort  our  3888  rules  into  three  classes  (fixed  points,
repetitive  growth,  and  elaborate  growth)  according  to  the  long-term
dynamics they generate, starting from the cube (see Figure 3). The fol-
lowing  three  sections  are  devoted  to  describing  the  behavior  of  the
rules in these three classes. 
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Figure 3. Our rules are sorted into three classes, and each class is divided into
two subclasses. We picture a network produced by a rule from each subclass.
Fixed point type rules produce small  static networks. Repetitive growth with
short  transients  quickly  generates  repeating  substructures,  while  the  rules
with  long  transients  exhibit  complex  growth  for  many  time  steps.  Rules  ex-
hibiting elaborate growth tend to create networks with fractal structures.  

2. Fixed Points   

We say a system has reached a fixed point where there comes a time
after which the network no longer changes. Of the rules, 2918 (about
75 percent) eventually reach a fixed point. Our example system from
Figure 1 reaches a fixed point after three updates. One reason such a
large number of rules end up at a fixed point is that our rule space is
such that whenever a green edge links a pair of the writer’s neighbors,
a system becomes fixed. Indeed, 2562 of our rules halt their evolution
because  of  this  effect.  These  include  the  rule  that  grows  the  largest
fixed structure, shown in Figure 4.  

In addition to the fixed points where the writer halts, there are dy-
namic-writer fixed points where the writer continues to move forever,
even  after  the  network  has  become  static.  Only  162  of  the  rules  in
class 1 evolve into dynamic-writer fixed points. In 130 of these rules,
the writer ends up doing a period two orbit (see Figure 5); in the oth-
ers, the writer ends up doing a period four orbit. 
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Figure 4. Of all  our  rules,  this  one  generates  the  largest  static  network  (with
56 vertices). It takes 26 updates for the cube to change into this network.  

Figure 5. Of  all  our  rules,  this  one  takes  the  longest  (34  updates)  to  reach  a
static network (which has 52 vertices). The writer continues to move in the pe-
riod two orbit shown after this network has been generated.  

3. Repetitive Growth   

The  next  most  complex  type  of  behavior  observed  is  repetitive
growth. This is characterized by the feature that the structure contin-
ues to grow, while the writer is trapped within a particular region of
the  network—with  the  form  of  its  surroundings  changing  periodi-
cally.  Repetitive  growth  occurs  because  the  writer’s  surroundings  in-
duce  it  to  generate  more  structure  around  itself  of  the  same  form.
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Repetitive growth is eventually generated by 840 of our rules (see Fig-
ure 6).  

Figure 6. A rule that generates simple repetitive growth evolving over the first
four updates. Once the writer’s surroundings are such that a pair of its neigh-
bors  are  linked  by  a  blue  edge,  the  writer  performs  an  update  that  leads  to
similar surroundings occurring again on the next time step.  

Let  us  define  repetitive  growth  more  precisely.  Period  p  repetitive
growth is occuring at time t when the network grows arbitrarily large
eventually, and there is a distance r such that the network on vertices
within a distance r of the writer’s position at time t looks identical to
the network on vertices within a distance r of the writer at time t + p,
and  the  writer  never  moves  to  an  old  vertex  more  than  a  distance
r - 1  from  where  it  was  at  time  step  t  during  the  interval  @t, t + pD.
The rule shown in Figure 6 falls into period one repetitive growth be-
cause after the first update, the structure within a distance one of the
writer always looks similar. Evolving this rule for t > 0 time steps re-
sults in a network with 8 + 2 t vertices and a single triangle on the end
of a long ladder-like substructure. 

Although whether dynamics fit our definition can be tested using a
computer, there are more practical ways to spot repetitive growth (see
Figure  7).  Networks  undergoing  repetitive  growth  tend  to  have  an
elongated linear or circular shape because they are composed of a se-
ries  of  repeating  substructures.  Plotting  the  index  of  the  writer  over
time is an excellent way to see dynamics. However, it does depend on
the  way  the  vertices  are  indexed  within  the  computer  program,  and
this  inevitably  depends  on  more  than  just  the  pure  topological  dy-
namics of the system. In our case, when a vertex with index v in an L
vertex network is  replaced with a  triangle,  we give  the  vertex of  this
triangle  with  a  red  external  edge  an  index  v,  and  we  give  the  other
two  vertices  of  this  triangle,  with  green  and  blue  external  edges,  in-
dices L + 1 and L + 2, respectively. 
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Figure 7. On the left, we show the networks generated on time steps 6, 7, and
8 (reading downward) when evolving from a cube. On the right, we plot the
index of  the  writer’s  position over  time.  Notice  how the  differences  between
the indices of the writer’s position form a periodic sequence. This is because,
although the network keeps growing, the writer keeps moving in the same rel-
ative way. This system has period two repetitive growth because the network
induced on vertices  within a distance two of  the writer  on time step 6 looks
identical  to  that  induced  on  vertices  within  a  distance  two  of  the  writer  at
time step 6 + 2.  

3.1 Repetitive Growth with Long Transients  
All  but  four  of  our  repetitive  growth  rules  settle  into  low  (i.e.,  less
than 12) period repetitive growth quickly (in less than 40 time steps).
The  other  four  rules  eventually  produce  repetitive  growth  (see  Fig-
ure!8), although it would perhaps be best to describe their behavior as
complex  because  the  systems  have  extremely  long  transients  within
which the structures  appear  to grow in a  pseudorandom way (this  is
reminiscent of elementary cellular automaton 110 [18]). Interestingly,
evolving  the  rule  shown  in  Figure  8  from other  small  networks  pro-
duces  different  behavior.  The  network known as  K3,3  is  obtained by

taking  two  clusters  of  three  vertices  and  linking  each  vertex  in  one
cluster  to  each  vertex  in  the  other.  Initiating  this  system  from  K3,3

(instead of the cube) leads to dynamics that (again) eventually settle in
period 454 repetitive growth, although this time the transient lasts for
29 964  time  steps.  Another  of  the  four  rules  that  induce  repetitive
growth  after  a  long  transient  is  symmetrically  equivalent  to  the  rule
shown in Figure 8, because it can be transformed into it by swapping
the roles of the red and blue colors. 
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Figure 8. This system has complex behavior for the first  4994 time steps and
then  settles  into  period  454  repetitive  growth.  We  show the  rule  at  the  top.
On the left,  we show an uncolored plot  of  the network present on time step
7000.  The  large  “handle”  developing  on  the  right  side  of  this  picture  is  a
symptom of the repetitive growth. The plot on the right shows the writer in-
dex over the first 7000 time steps.  

The other two rules that induce repetitive growth, after a long tran-
sient,  are  not  symmetrically  equivalent  to  the  system  shown  in  Fig-
ure!8,  although they are  symmetrically  equivalent  to each other.  One
of these rules is shown in Figure 9. 

The  ability  of  these  systems  to  alter  their  behavior  after  large
amounts  of  time  leads  to  the  production  of  heterogeneous  substruc-
tures.  The fact that these rules produce a complex “ball” of network
followed  by  a  long  one-dimensional  structure  is  reminiscent  of  the
way plants grow by complicating the structure around the initial seed
and then growing out a long stalk (see the figures from Section 5).

4. Elaborate Growth   

The remaining 130 rules  produce  elaborate  patterns  of  growth,  lead-
ing  to  self-similar  networks.  It  turns  out  that  in  each  of  these  cases,
the way the writer moves is effectively one-dimensional. The writer re-
peatedly  traverses  a  one-dimensional  “track,”  applying  rewrite  rules
as  it  goes,  and  lengthening  the  track  with  each  traversal.  In  most
cases,  the  fact  that  the  writer  is  confined  to  a  one-dimensional  sub-
structure  can  be  inferred  directly  from  the  rules.  In  the  other  cases,
this  behavior  is  revealed  by  using  appropriate  visualization  tech-
niques. 
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Figure 9. On the  left,  we  show the  network  obtained  after  evolving  this  rule
for  300  time  steps.  The  black  arrows  track  the  course  that  the  writer  has
taken over  the  last  150 time steps  (note  that  the  positioning of  these  arrows
depends  on how we indexed our  vertices).  The  writer’s  movement  looks  un-
predictable during this early transience. On the right, we plot the writer’s in-
dex over time. The transient behavior lasts 17 615 time steps; then the system
settles  into  period  1355  repetitive  growth.  Similar  behavior  ensues  when
evolving from other initial conditions.  

The  writer  can  move  backward  and  forward  on  the  one-dimen-
sional  track  it  is  confined  to.  Although  the  writer  can  move  in  com-
plex ways, we can sort the rules into two subclasses according to the
general  nature  of  the  writer’s  movement.  Either  the  writer  moves
around and around a  closed loop,  in  which case  we say  the  rule  has
cyclic  writer  movement,  or  the  writer  moves  backward  and  forward
over a line, in which case we say the rule has bouncing writer move-
ment. 

4.1 A Simple Case with Cyclic Writer Movement   
Only 104 of the rules with elaborate growth have cyclic writer move-
ment.  We  show  one  of  the  simplest  in  Figure  10.  By  looking  at  the
rules  of  this  system,  is  it  clear  that  the  writer  must  move  in  a  one-
dimensional fashion. Whenever there are no red or green edges inter-
linking  the  writer’s  neighbors  (i.e.,  whenever  the  system  is  not  at  a
fixed point), the writer moves along a red edge and then a blue edge,
and the writer’s previous location is replaced with a triangle. The fact
that  the  writer’s  movement  can  be  expressed  as  a  combination  of
steps along edges of only two different colors implies that the writer’s
movement is effectively one-dimensional. In particular, since any suffi-
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ciently long path along edges of alternating red/blue color must even-
tually return to its starting point, the writer must always remain con-
fined  to  a  cyclic  track.  In  this  case,  the  cyclic  track  starts  out  as  the
inner  face  of  our  cube  (see  Figure  11).  On  each  update,  the  writer
replaces its current vertex with a triangle and moves two edges clock-
wise  around  the  developing  track  of  edges  with  alternating  red/blue
colors.  Theorem  1  describes  the  global  rewrite  operation,  which  the
writer  effectively  performs  with  each  complete  traversal  of  its  cyclic
track. The amount of time successive traversals take doubles. 

Figure 10. One of the simplest rules with cyclic writer movement, evolving for
seven updates.  

Figure 11. An  alternative  “one-dimensional”  representation  of  the  dynamics
of  the  rule  shown  in  Figure  10.  Successive  rows  of  the  picture  on  the  left
(reading downward) show the relevant part of the network on successive time
steps.  Here  the  relevant  part  of  the  network  consists  of  network  induced  on
the vertices that can be reached by moving along red or blue edges from the
writer. We do not show green edges that are not part of triangles, since these
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have no effect on dynamics. For each time step, the writer replaces its current
vertex with a triangle (effectively adding a red edge and a blue edge below a
green arc) and moves two edges to the right. On the right, we illustrate how
this system can be viewed as a string rewrite system.  

Theorem 1.  The  way  the  rule  shown  in  Figure  10  evolves  (with  the
cube as the initial condition) is such that for each n ¥ 2, the network

present on the I2n+1 - 2Mth time step can be obtained by taking the net-

work  present  on  the  H2n - 2Lth  time  step  and  then  simultaneously  re-
placing each vertex, with a red or blue edge interconnecting its neigh-
bors, with a triangle (see Figure 12). 

Figure 12. The  network  generated  by  the  system  with  rules  shown  in  Fig-
ure!10 on the first few time steps of the form 2n - 2 : n ¥ 2. Between times of
this  form,  the  writer  makes  a  complete  traversal  of  its  cyclic  path  and effec-
tively performs the rewrite operation shown at the bottom globally.  

4.2 A Rule Related to the Golden Ratio   
In Figure 13, we show a rule with cyclic writer movement with a com-
plicated-looking growth rate. It turns out that the growth rate can be

described exactly in terms of the golden ratio f ! I1 + 5 M ë 2.  

Theorem 2.  The number of  vertices  in  the  network obtained by evolv-
ing the rule shown in Figure 13 for t ¥ 0 time steps (starting from the
cube) is 

8 + 2
1

f2

t

2
+ 2

t + 1

2
.

It  is  pleasing  that  this  seemingly  complex  growth  rate  can  be  de-
scribed  simply  in  terms  of  the  golden  ratio,  because  this  number  ap-
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pears in so many interesting places in the natural world. This colored
trinet automata has similar qualitative behavior to the one considered
in Section 4.1. Once again the writer goes around and around a cyclic
track consisting of edges with alternating red/blue color. Again the sys-
tem  can  be  reduced  to  a  one-dimensional  string  rewrite  system.  The
proof  to  Theorem  2  is  based  on  relating  this  system  to  the  binary
rewrite system with rules 0 Ø 01, 1 Ø 011. This proof will be given in
our upcoming paper “Complex Networks from Simple Rules: Techni-
cal Details.” 

Figure 13. On the left, we show the network obtained by evolving this rule for
62 time steps. The number of vertices in the network at time step t grows ap-
proximately linearly with t. However, the way the number of vertices deviates
from its best linear fit looks complicated (as shown on the right).  

4.3 A Rule with Complex Behavior   
The rule with cyclic  writer  movement shown in Figure 14 has a very
complicated-looking  growth  rate.  Although  this  system can  be  trans-
formed into a one-dimensional rewrite system (in a way similar to the
systems considered in Sections 4.1 and 4.2), we have not been able to
derive a formula for its growth rate. This means this system, together
with its equivalent red/blue reflection, stands out as the most complex
rules in our entire set. We are unable to predict the long-term dynam-
ics  of  these  systems,  although  it  appears  the  pseudorandom  growth
pattern  continues  forever.  (All  of  the  rules  that  generate  fixed  points
and  repetitive  growth  have  trivial  long-term  behavior.  Plotting  the
writer  index  over  time  reveals  significant  regularities  in  all  the  other
rules exhibiting elaborate growth.)
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Figure 14. On  the  left,  we  show  the  structure  obtained  by  evolving  this  rule
for 100 time steps. The black arrows track the positions of the writer over the
previous  45  time  steps.  On  the  right,  we  show  how  the  growth  rate  of  the
number of vertices deviates from its best linear fit. This plot reveals consider-
able complexity.  

Rules could be designed to directly emulate Turing machines by al-
lowing  the  writer  to  perform  more  different  kinds  of  structural
rewrite operations (in addition to triangle replacement). In this way, a
computationally  universal  colored  trinet  automata  could  be  created
by emulating the simplest universal Turing machine. Wolfram’s Princi-
ple of Computational Equivalence [18] (which asserts that almost ev-
ery  system with  behavior  that  does  not  seem obviously  simple  corre-
sponds  to  a  computation  of  equivalent  sophistication)  suggests  that
some of the systems we have encountered (such as the ones shown in
Figures  9  and  14)  should  be  computationally  universal.  However,  it
can sometimes be very difficult to prove that a given system is compu-
tationally universal. 

4.4 A Simple Case with Bouncing Writer Movement   
The  26  remaining  rules  with  elaborate  growth  exhibit  bouncing
writer movement. In these rules, the writer moves forward and back-
ward  along  a  one-dimensional  track,  which  grows  with  successive
traversals.  The  rule  in  this  class  with  the  simplest  behavior  is  shown
in Figure 15. This rule can be represented in a one-dimensional man-
ner similar to Figure 11, except that this time the writer is confined to
moving on the red and green edges.  

It appears that the writer effectively performs a global rewrite oper-
ation every time it makes a traversal of the one-dimensional track it is
confined  to.  Simulations  suggest  that  the  network  present  on  time

step  2n+3 + n  (where  n ¥ 0)  can  be  obtained  by  taking  the  network
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present  at  time  step  2n+2 + n - 1  and  then  simultaneously  replacing
each vertex with a triangle that has no red or green edges interlinking
its neighbors and is not part of the external face (see Figure 16). 

Figure 15. A rule with bouncing writer movement evolving for eight updates.
The writer travels around the red and green edges of the track that start out
as the central face of the cube. The writer keeps bouncing off the red edge at
the bottom of this face and reversing its direction of movement.  

Figure 16. The  network  generated  by  the  system  with  rules  shown  in  Fig-

ure!15  on  the  first  few  time  steps  of  the  form  2n+2 - n - 1 : n ¥ 0.  Between
times of this form, the writer makes a complete traversal of its linear path and
both rewrite operations shown at the bottom globally.  

Not all  of  the rules  with elaborate  growth can be reduced to one-
dimensional rewrite systems as directly as the examples we have con-
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sidered,  although  the  effectively  one-dimensional  nature  of  the
writer’s  movement  can  be  revealed  by  plotting  the  trail  followed  by
the writer over several time steps (as on the left of Figure 14). 

5. More General Rules   

The  behavior  of  colored  trinets  with  more  general  rules  does  not  al-
ways fall into the classes listed in Section 4. The set of 3888 rules we
enumerated and previously discussed did not allow the writer to take
any action when the edge between its neighbors is green. If we remove
this  restriction,  we  can  find  rules  with  four  active  parts  such  as  the
one shown in Figure 17. In this rule, the writer continues to move in a
random-looking  way  (that  is  not  “one-dimensional”  as  in  the  rules
with  elaborate  growth  discussed  in  Section  4)  for  at  least  the  first
100 000 time steps. It is an open question whether this rule eventually
settles into repetitive growth.  

Figure 17. A  rule  with  four  active  parts  that  has  complex  behavior.  On  the
left,  we show the structure obtained by evolving this rule for 100 time steps.
The black arrows track the positions of the writer over the previous 45 time
steps.  On the  right,  we  plot  the  index  of  the  writer  over  the  first  1000 time
steps.  

We  can  also  consider  rules  that  include  more  general  kinds  of
rewrite  operations,  such  as  the  one  shown  in  Figure  18.  In  this  sys-
tem, triangles can be replaced with vertices.  Unlike all  of the systems
in our previously considered rule set (which either has approximately
linear growth rates or reached fixed points) the number of vertices in
this case grows sublinearly over time. 
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Figure 18. A system with more general rules that may involve replacing a trian-
gle  with  a  vertex.  On  the  left,  we  show  the  network  present  on  time  step
1000. On the right, we plot the number of vertices over time.  

When exploring these more general kinds of rules, many cases can
be found with sublinear growth rates that exhibit repetitive or elabo-
rate growth patterns. In many cases with sublinear growth, the num-
ber of vertices grows like the square root of the number of time steps
elapsed. Other rules involving triangle shrinkage can lead to networks
with  shapes  that  oscillate  over  time.  A  trivial  example  is  shown  in
Figure 19 (although rules exist with much higher period oscillations). 

We can also consider rules including the so-called exchange opera-
tion,  which  rewires  an  edge  [17].  In  Figure  20,  we  show  a  rule  that
uses this type of exchange operation. 

Figure 19. In this system, the network shape changes periodically.  
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Figure 20. A system that includes the exchange rule, which effectively replaces
a triangle with a square. We show the rule at the top. The structure is gener-
ated by running this system for 500 time steps.  

6. Conclusion  

We have explored many aspects of the behavior of colored trinet au-
tomata.  We found that  the  systems in  our  initial  rule  space  could  be
sorted  into  three  classes—fixed,  repetitive  growth,  and  elaborate
growth.  We have shown that  each class  can be described in terms of
writer  movement.  When  we  look  at  the  dynamics  of  more  general
rules, we find other types of behavior. In particular, we find rules that
generate  sublinear  growth,  persistent  complex  behavior,  and  periodi-
cally changing networks. 

As  minimal  models  capable  of  growing  complex  structure,  these
systems should have some applications. The systems could be realized
by  creating  a  robot  that  pulls  itself  along  chains,  ropes,  or  silk  and
drops lines (like a spider) to triangulate vertices. This type of realiza-
tion  could  perhaps  be  useful  for  weaving  or  construction  work.  The
ability of these systems to produce exotic network structures with rela-
tive  ease  could  make  them  useful  in  network  design.  In  existential
graph  theory,  there  are  many  open  questions  as  to  whether  large
trinets exist with particular properties, and it will be interesting to see
whether our systems can resolve any of these issues. 

It  will  also  be  interesting to  see  if  these  systems have any applica-
tions in modeling. The way structures grow under repetitive growth is
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reminiscent of the way plants grow. Many of the networks produced
by  rules  with  elaborate  growth  rules  seem  reminiscent  of  polygonal
networks in cracked soil or foams. The general idea of having a single
writer  that  rewires  a  complex  network  is  reminiscent  of  brains  and
databases where the connectivity is altered to store information. 

There  many  directions  that  this  work  can  be  taken  in  the  future.
We have explored the dynamics of many colored trinet automata and
identified many kinds of behavior; however, a more general classifica-
tion  scheme  is  evidently  required  to  deal  with  the  systems  we  de-
scribed  in  Section  5.  Exploring  more  general  rules  will  be  exciting,
and will  surely yield systems with other interesting kinds of behavior
and  applications.  There  are  also  many  unanswered  questions  about
the systems presented here, for example: is there a simple formula for
the growth rate of the system shown in Figure 14? Does the complex
behavior in Figure 17 persist forever? How can rules be characterized
according to the structural properties of the networks they produce? 

Acknowledgments

This work is supported by the General Research Funds (Project Num-
ber 412509) established under the University Grant Committee of the
Hong Kong Special Administrative Region, China.  

References

[1] S.  Wolfram,  “Statistical  Mechanics  of  Cellular  Automata,”  Reviews  of
Modern Physics, 55(3), 1983, pp. 601–644.
doi:10.1103/RevModPhys.55.601.

[2] P.  Pruskinkiewicz  and  A.  Lindenmayer,  The  Algorithmic  Beauty  of
Plants, New York: Springer-Verlag, 1990. 

[3] K. Alligood, T. Sauer, and J. Yorke, Chaos: An Introduction to Dynami-
cal Systems, New York: Springer-Verlag, 1997. 

[4] D.  Watts  and  S.  Strogatz,  “Collective  Dynamics  of  ‘Small-World’  Net-
works,” Nature, 393, 1998 pp. 440–442. doi:10.1038/30918.

[5] A-L.  Barabasi  and  R.  Albert,  “Emergence  of  Scaling  in  Random  Net-
works,” Science, 286(5439), 1999 pp. 509–512.
doi:10.1126/science.286.5439.509.

[6] A.  Turing,  “On  Computable  Numbers,  with  an  Application  to  the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, 242, 1937 pp. 230–265. 

Complex Networks from Simple Rules 171

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.2.151



[7] S. Cox, M. Vas, and D. Wearie, “Topological Changes in a Two-Dimen-
sional  Foam  Cluster,”  The  European  Physical  Journal  E:  Soft  Matter
and Biological Physics, 11(1), 2003 pp. 29–35.
doi:10.1140/epje/i2002-10126-9.

[8] P. Pina, J. Saraiva, L. Bandeira, and J. Antunes, “Polygonal Terrains on
Mars: A Contribution to Their Geometric and Topological Characteriza-
tion,”  Planetary  and  Space  Science,  56(15),  2008  pp.  1919–1924.
doi:10.1016/j.pss.2008.09.020.

[9] T. Bolognesi, “Planar Trinet Dynamics with Two Rewrite Rules,” Com-
plex Systems, 18(1), 2008 pp. 1–41.
http://www.complex-systems.com/pdf/18-1-1.pdf.

[10] E.  Gottlieb  and  K.  Shelton,  “Color-Induced  Subgraphs  of  Grünbaum
Colorings  of  Triangulations  of  the  Sphere,”  Australasian  Journal  of
Combinatorics, 30, 2004 pp. 183–192. 

[11] F. Comellas, “Complex Networks: Deterministic Models,” NATO Secu-
rity  through Science  Series  -  D:  Information and Communication Secu-
rity, Vol. 7, Amsterdam: IOS Press Ebooks, 2006 pp. 275–293. 

[12] K. Morrow, T. Rowland, and C. Danforth, “Dynamic Structure of Net-
works  Updated  According  to  Simple,  Local  Rules,”  Physical  Review E,
80(1), 2009. doi:10.1103/PhysRevE.80.016103.

[13] R. Southwell and C. Cannings, “Games on Graphs that Grow Determin-
istically,” in Proceedings of the International Conference on Game The-
ory  for  Networks  (GameNets  2009),  Istanbul,  New  York:  IEEE,  2009
pp. 347–356. doi:10.1109/GAMENETS.2009.5137420.

[14] R. Southwell and C. Cannings, “Some Models of Reproducing Graphs: I
Pure  Reproduction,”  Applied  Mathematics,  1(3),  2010  pp.  137–145.
doi:10.4236/am.2010.13018.

[15] R.  Southwell  and  C.  Cannings,  “Some  Models  of  Reproducing
Graphs:  II  Age  Capped  Vertices,”  Applied  Mathematics,  1(4),  2010
pp. 251–259. doi:10.4236/am.2010.14031.

[16] R.  Southwell  and  C.  Cannings,  “Some  Models  of  Reproducing
Graphs:  III  Game  Based  Reproduction,”  Applied  Mathematics,  1(5),
2010 pp. 335–343. doi:10.4236/am.2010.15044.

[17] K.  Tomita,  H.  Kurokawa,  and  S.  Murata,  “Graph  Automata:  Natural
Expression  of  Self-Reproduction,”  Physica  D:  Nonlinear  Phenomena,
171(4), 2002 pp. 197–210. doi:10.1016/S0167-2789(02)00601-2.

[18] S.  Wolfram,  A New Kind  of  Science,  Champaign,  IL:  Wolfram Media,
Inc., 2002. 

[19] E. Fredkin, “Five Big Questions with Pretty Simple Answers,” IBM Jour-
nal  of  Research  and  Development,  48(1),  2004  pp.  31–45.
doi:10.1147/rd.481.0031.

[20] T.  Bolognesi,  “Causal  Sets  from  Simple  Models  of  Computation,”  In-
ternational  Journal  of  Unconventional  Computing,  6(6),  2010
pp. 489–524. 

172 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.2.151



[21] A. Lamb, “Dense Graphs, Node Sets, and Riders: Toward a Foundation
for  Particle  Physics  without  Continuum  Mathematics,”  Complex  Sys-
tems, 19(2), 2010 pp. 115–130.
http://www.complex-systems.com/pdf/19-2-1.pdf.

[22] H.  Zenil,  Randomness  through  Computation,  Singapore:  World  Scien-
tific, 2011. 

Complex Networks from Simple Rules 173

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.2.151



<<

  /ASCII85EncodePages false

  /AllowPSXObjects false

  /AllowTransparency false

  /AlwaysEmbed [

    true

  ]

  /AntiAliasColorImages false

  /AntiAliasGrayImages false

  /AntiAliasMonoImages false

  /AutoFilterColorImages true

  /AutoFilterGrayImages true

  /AutoPositionEPSFiles true

  /AutoRotatePages /All

  /Binding /Left

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CheckCompliance [

    /None

  ]

  /ColorACSImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /ColorConversionStrategy /LeaveColorUnchanged

  /ColorImageAutoFilterStrategy /JPEG

  /ColorImageDepth -1

  /ColorImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /ColorImageDownsampleThreshold 1.50000

  /ColorImageDownsampleType /Bicubic

  /ColorImageFilter /DCTEncode

  /ColorImageMinDownsampleDepth 1

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /ColorImageResolution 300

  /ColorSettingsFile ()

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /CreateJDFFile false

  /CreateJobTicket false

  /CropColorImages false

  /CropGrayImages false

  /CropMonoImages false

  /DSCReportingLevel 0

  /DefaultRenderingIntent /Default

  /Description <<

    /ENU <>

  >>

  /DetectBlends true

  /DetectCurves 0

  /DoThumbnails false

  /DownsampleColorImages true

  /DownsampleGrayImages true

  /DownsampleMonoImages true

  /EmbedAllFonts true

  /EmbedJobOptions true

  /EmbedOpenType false

  /EmitDSCWarnings false

  /EncodeColorImages true

  /EncodeGrayImages true

  /EncodeMonoImages true

  /EndPage -1

  /GrayACSImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /GrayImageAutoFilterStrategy /JPEG

  /GrayImageDepth -1

  /GrayImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /GrayImageDownsampleThreshold 1.50000

  /GrayImageDownsampleType /Bicubic

  /GrayImageFilter /DCTEncode

  /GrayImageMinDownsampleDepth 2

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /GrayImageResolution 300

  /ImageMemory 1048576

  /JPEG2000ColorACSImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000ColorImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000GrayACSImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000GrayImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /LockDistillerParams false

  /MaxSubsetPct 100

  /MonoImageDepth -1

  /MonoImageDict <<

    /K -1

  >>

  /MonoImageDownsampleThreshold 1.50000

  /MonoImageDownsampleType /Bicubic

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /MonoImageResolution 1200

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /NeverEmbed [

    true

  ]

  /OPM 1

  /Optimize true

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /BleedOffset [

        0

        0

        0

        0

      ]

      /ConvertColors /NoConversion

      /DestinationProfileName ()

      /DestinationProfileSelector /NA

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure true

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles true

      /MarksOffset 6

      /MarksWeight 0.25000

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /NA

      /PageMarksFile /RomanDefault

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /LeaveUntagged

      /UseDocumentBleed false

    >>

    <<

      /AllowImageBreaks true

      /AllowTableBreaks true

      /ExpandPage false

      /HonorBaseURL true

      /HonorRolloverEffect false

      /IgnoreHTMLPageBreaks false

      /IncludeHeaderFooter false

      /MarginOffset [

        0

        0

        0

        0

      ]

      /MetadataAuthor ()

      /MetadataKeywords ()

      /MetadataSubject ()

      /MetadataTitle ()

      /MetricPageSize [

        0

        0

      ]

      /MetricUnit /inch

      /MobileCompatible 0

      /Namespace [

        (Adobe)

        (GoLive)

        (8.0)

      ]

      /OpenZoomToHTMLFontSize false

      /PageOrientation /Portrait

      /RemoveBackground false

      /ShrinkContent true

      /TreatColorsAs /MainMonitorColors

      /UseEmbeddedProfiles false

      /UseHTMLTitleAsMetadata true

    >>

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXBleedBoxToTrimBoxOffset [

    0

    0

    0

    0

  ]

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXOutputCondition ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputIntentProfile ()

  /PDFXRegistryName ()

  /PDFXSetBleedBoxToMediaBox true

  /PDFXTrapped /False

  /PDFXTrimBoxToMediaBoxOffset [

    0

    0

    0

    0

  ]

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /ParseICCProfilesInComments true

  /PassThroughJPEGImages true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness false

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




