
Complex Networks from Simple Rules

Richard Southwell
Jianwei Huang

Information Engineering Department
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
richardsouthwell254@gmail.com
jianweihuang@gmail.com

Chris Cannings

School of Mathematics and Statistics
University of Sheffield
Sheffield, S3 7RH, UK
c.cannings@sheffield.ac.uk

Complex networks are all around us, and they can be generated by sim-
ple mechanisms. Understanding what kinds of networks can be pro-
duced by following simple rules is therefore of great importance. This
issue is investigated by studying the dynamics of extremely simple sys-
tems where a “writer” moves around a network, modifying it in a way
that depends upon the writer’s surroundings. Each vertex in the net-
work has three edges incident upon it, which are colored red, blue, and
green. This edge coloring is done to provide a way for the writer to ori-
ent its movement. The dynamics of a space of 3888 of these colored
trinet automata systems are explored. A large variety of behavior is
found, ranging from the very simple to the very complex. Our systems
are studied using simulations (with appropriate visualization tech-
niques) and selected rules are analyzed mathematically. An empirical
classification scheme is arrived at, which reveals a lot about the kinds
of dynamics and networks that can be generated by these systems.

1. Introduction

Many advances in complex systems research have come from identify-
ing simple deterministic systems that can generate complex behavior.
For example, cellular automata are used to model many systems in
physics and biology [1], string rewrite systems are used to model
plant development [2], and chaotic differential equations are used in
many areas [3]. The most popular models of complex network
growth are probabilistic [4, 5]. These models have yielded many in-
sights, but they do not offer an explanation as to where the complex-

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

g y p p
ity in networks comes from. The complexity in probabilistic models
comes from the randomizing mechanisms they are based on.

In this paper, we study a class of simple deterministic network
growth models. Our systems can produce a wide variety of behavior,
ranging from the very simple to the very complex. They offer insights
into how complex structures can be generated, because each aspect of
their behavior can be traced back to a deterministic cause. The simple
nature of our models allows us to quickly generate exact pictures of
their dynamics. This gives us the ability to easily explore the behavior
of large numbers of systems. By taking an unbiased look at the dynam-
ics of many simple rules, we see what types of network growth are eas-
ily generated by simple computational processes.

In Turing machines [6], a writer moves along a one-dimensional
tape and rewrites symbols using local rules. Our network automata
systems are like a generalization of this idea—where the writer moves
around a network and rewrites it on a local level. The way the writer
moves and modifies its local structure is determined by its surround-
ings. The network the writer runs on is a trinet (i.e., each vertex has
three connections). Trinets are also known as cubic graphs and three-
regular graphs. There are many natural examples of trinets, such as
two-dimensional foams [7] and polygonal networks formed by biolog-
ical cells and cracks in the soil [8]. We focus on trinets because they
are easy to manipulate and expressive. Any network can be repre-
sented as a trinet by replacing vertices that have more than three con-
nections with roundabout-like circles of vertices with three connec-
tions [9].

One of our goals is to find simple deterministic rules that generate
complex dynamics. An obstacle to this goal is the inability of deter-
ministic rules to break symmetries. For example, if the writer is at one
of the corners of a cube, then it has no deterministic way to select
which of its similar-looking neighbors it should move to next. We cir-
cumvent this obstacle by supposing the edges of our trinet are colored
red, blue, and green in such a way that touching edges have different
colors (such an edge coloring is also known as a Tait coloring [10]).
This allows us to specify how the writer should move by stating
which colored edge it should move along in different situations. (We
could remove the reliance of edge color in our systems by replacing
the red, blue, and green edges with different uncolored structures and
modifying our rewrite rules accordingly—although this would make
the systems look more complicated.)

Our main goal is to understand what kinds of behavior can be gen-
erated by colored trinet automata. To achieve this, we do a thorough
exploration of the dynamics of a space of simple rules. Using pictures
and analytic techniques, we sort these rules into three classes (fixed

152 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 y q
points, repetitive growth, and elaborate growth) according to their be-
havior. We discuss these classes in Sections 2 through 4. In Section 5,
we exhibit more general rules, which can produce other exotic behav-
ior such as persistent complex behavior and periodically changing net-
works.

We have tried to keep the main text as free from equations as possi-
ble. This was done to increase readership, and because complex phe-
nomena are often better explained using pictures. Proofs of our theo-
rems and extra technical details about these systems will be included
in our upcoming paper, “Complex Networks from Simple Rules:
Technical Details,” which will be published in Complex Systems
soon.

1.1 Related Literature
Many interesting deterministic network growth models have been pre-
viously considered. These include the growth models discussed in
[11], the fascinating deterministic network growth systems considered
in [12], and the biologically inspired models considered in [13–16],
which can produce rich and complicated self-replicating structures, de-
spite extremely simple rules. Self-replication in adaptive network mod-
els was also considered in [17]. In each of these cases, every part of
the network gets updated in parallel. In our systems, by contrast, only
a small piece of the network gets updated at any time. This makes our
systems easier to implement because there is no need for distant parts
of the network to have synchronized clocks. It is true that many real-
world networks grow in parallel; however, evolving our systems for
many time steps often leads to structural modifications that are equiv-
alent to global/parallel rewrite operations (see Sections 4.1 and 4.4).

Our work was inspired by the work of Tommaso Bolognesi [9],
who studies the dynamics of planar trinet automata. Like our models,
these systems involve a writer that moves around the trinet, making
structural modifications as it goes. Unlike our systems, the models con-
sidered in [9] circumvent the symmetry-breaking problem by suppos-
ing the trinets are embedded in the plane. The way the writer behaves
in these systems is governed by the structure of the faces formed by
the planar embedding. Although these models are fascinating, the fact
that the dynamics depend on how the network is embedded makes it
difficult to get a full picture of what is going on at any given time.
Our approach (of considered edge-colored trinets, rather than planar
embedded trinets) allows us to easily picture the complete dynamics
(and rules) behind the systems we consider. Our systems also have
similarities to the generalized mobile automata considered in [18].

The experimental approach we use was pioneered by Stephen
Wolfram [18], who uses simulations to reveal a vast array of simple

Complex Networks from Simple Rules 153

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 y p

programs that can generate complex dynamics. Wolfram finds many
network growth models that can generate complex dynamics and
explores the idea that the physical universe could be generated by a
simple network growth model. The idea that the universe can be gen-
erated in exact detail, by a simple program, is one of the most interest-
ing conjectures from digital physics [19–21]. Wolfram suggests that
the correct model could be found by doing an automated search of
the simplest possibilities [22]. In order to do such universe hunting, in-
tuition is needed about the kinds of things that simple adaptive net-
work mechanisms can do. One of our aims is to provide some of this
intuition.

1.2 How Our Systems Work
A colored trinet automata is a dynamical system where a writer
moves around the vertices of an edge-colored trinet, applying rewrite
rules as it goes. For every time step, some rewrite operation is applied
about the writer’s current location, and then the writer moves. We
start by considering only extremely simple rewrite operations, where
the writer’s current vertex is either replaced with a triangle or left un-
altered. The action the writer takes on a given time step is determined
by the colors of the edges interlinking its neighbors.

The rules behind a colored trinet automata specify how the writer
should move and modify the network in response to its surroundings
(i.e., the colors of the edges interlinking the writer’s neighbors). We
show the rules at the top of our figures, with the writer represented
by a black vertex. For example, the rule for the system shown in Fig-
ure 1 can be described as follows.

1. If there are no edges linking the writer’s neighbors, then the writer
moves along a blue edge, and the writer’s previous location is replaced
with a triangle.

2. If there is exactly one edge linking the writer’s neighbors, which is red,
then take no action.

3. If there is exactly one edge linking the writer’s neighbors, which is blue,
then the writer moves along a red edge and the network is left unal-
tered.

4. If there is exactly one edge linking the writer’s neighbors, which is
green, then take no action.

Notice how these instructions correspond to the pictures in the
four boxes at the top of Figure 1. In general, a rule is just a specifica-
tion of which structural modifications and movements the writer
should perform in response to the four types of surroundings
(depending on the colors of edges interlinking the writer’s neighbors)
that the writer can have when there is no more than one edge linking

154 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 g g
its neighbors. Our rules do not specify which actions the writer
should take in other situations, where there are two or more edges
linking its neighbors. In these cases we suppose that no action is
taken. Actually, the rules we consider never generate vertices with
two or more linked neighbors and so these situations never occur any-
way.

Figure 1. An example colored trinet automata. At the top, we show the rules
of the system by indicating how the writer (the black vertex) moves and modi-
fies the network in response to its surroundings. Underneath, we show the sys-
tem evolving for four updates, starting from the cube. The system reaches a
fixed point after three updates. The red, blue, and green edges (which are
aligned horizontally, vertically, and diagonally within the cube shown at the
bottom left) are more clearly visible in the online color version of this
document.

1.3 The Rule Space
In each of our investigations we used the cube (shown at the bottom
left of Figure 1) as our initial condition. We studied the dynamics of
the space of 12ä18ä18 ! 3888 rules depicted in Figure 2.

Consider the collection of all rules where the writer’s reactions con-
sists of possible triangle replacement and movement across two or
fewer links. Our rule set consists of the members of this collection
such that (1) the writer’s location is always replaced with a triangle
when the writer has no interlinked neighbors, and (2) no action is
taken when there is a green edge linking the writer’s neighbors. We in-
sist upon condition (1) because rules that do not satisfy this will never
change the initial cube network, and so will have uninteresting dynam-
ics. We insist upon condition (2) to reduce the number of rules we
must consider. If we drop constraint (2), we find new kinds of behav-
ior, but the rule space becomes too large to thoroughly explore. With-

out constraint (2), the set has 12ä H18L3 ! 69 984 members, which
makes it small enough to explore with a computer, but too large to ex-
amine all the interesting cases in detail.

Complex Networks from Simple Rules 155

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 2. An illustration of the space of rules we explored. A rule is specified
by associating each of the four different types of surroundings with one of the
images to its right.

By severely limiting the kinds of operations our trinet automata
can perform, we reduce the rule space to a manageable size and en-
sure that it contains minimal systems that generate certain types of
behavior. We sort our 3888 rules into three classes (fixed points,
repetitive growth, and elaborate growth) according to the long-term
dynamics they generate, starting from the cube (see Figure 3). The fol-
lowing three sections are devoted to describing the behavior of the
rules in these three classes.

156 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 3. Our rules are sorted into three classes, and each class is divided into
two subclasses. We picture a network produced by a rule from each subclass.
Fixed point type rules produce small static networks. Repetitive growth with
short transients quickly generates repeating substructures, while the rules
with long transients exhibit complex growth for many time steps. Rules ex-
hibiting elaborate growth tend to create networks with fractal structures.

2. Fixed Points

We say a system has reached a fixed point where there comes a time
after which the network no longer changes. Of the rules, 2918 (about
75 percent) eventually reach a fixed point. Our example system from
Figure 1 reaches a fixed point after three updates. One reason such a
large number of rules end up at a fixed point is that our rule space is
such that whenever a green edge links a pair of the writer’s neighbors,
a system becomes fixed. Indeed, 2562 of our rules halt their evolution
because of this effect. These include the rule that grows the largest
fixed structure, shown in Figure 4.

In addition to the fixed points where the writer halts, there are dy-
namic-writer fixed points where the writer continues to move forever,
even after the network has become static. Only 162 of the rules in
class 1 evolve into dynamic-writer fixed points. In 130 of these rules,
the writer ends up doing a period two orbit (see Figure 5); in the oth-
ers, the writer ends up doing a period four orbit.

Complex Networks from Simple Rules 157

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 4. Of all our rules, this one generates the largest static network (with
56 vertices). It takes 26 updates for the cube to change into this network.

Figure 5. Of all our rules, this one takes the longest (34 updates) to reach a
static network (which has 52 vertices). The writer continues to move in the pe-
riod two orbit shown after this network has been generated.

3. Repetitive Growth

The next most complex type of behavior observed is repetitive
growth. This is characterized by the feature that the structure contin-
ues to grow, while the writer is trapped within a particular region of
the network—with the form of its surroundings changing periodi-
cally. Repetitive growth occurs because the writer’s surroundings in-
duce it to generate more structure around itself of the same form.

158 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 g

Repetitive growth is eventually generated by 840 of our rules (see Fig-
ure 6).

Figure 6. A rule that generates simple repetitive growth evolving over the first
four updates. Once the writer’s surroundings are such that a pair of its neigh-
bors are linked by a blue edge, the writer performs an update that leads to
similar surroundings occurring again on the next time step.

Let us define repetitive growth more precisely. Period p repetitive
growth is occuring at time t when the network grows arbitrarily large
eventually, and there is a distance r such that the network on vertices
within a distance r of the writer’s position at time t looks identical to
the network on vertices within a distance r of the writer at time t + p,
and the writer never moves to an old vertex more than a distance
r - 1 from where it was at time step t during the interval @t, t + pD.
The rule shown in Figure 6 falls into period one repetitive growth be-
cause after the first update, the structure within a distance one of the
writer always looks similar. Evolving this rule for t > 0 time steps re-
sults in a network with 8 + 2 t vertices and a single triangle on the end
of a long ladder-like substructure.

Although whether dynamics fit our definition can be tested using a
computer, there are more practical ways to spot repetitive growth (see
Figure 7). Networks undergoing repetitive growth tend to have an
elongated linear or circular shape because they are composed of a se-
ries of repeating substructures. Plotting the index of the writer over
time is an excellent way to see dynamics. However, it does depend on
the way the vertices are indexed within the computer program, and
this inevitably depends on more than just the pure topological dy-
namics of the system. In our case, when a vertex with index v in an L
vertex network is replaced with a triangle, we give the vertex of this
triangle with a red external edge an index v, and we give the other
two vertices of this triangle, with green and blue external edges, in-
dices L + 1 and L + 2, respectively.

Complex Networks from Simple Rules 159

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 7. On the left, we show the networks generated on time steps 6, 7, and
8 (reading downward) when evolving from a cube. On the right, we plot the
index of the writer’s position over time. Notice how the differences between
the indices of the writer’s position form a periodic sequence. This is because,
although the network keeps growing, the writer keeps moving in the same rel-
ative way. This system has period two repetitive growth because the network
induced on vertices within a distance two of the writer on time step 6 looks
identical to that induced on vertices within a distance two of the writer at
time step 6 + 2.

3.1 Repetitive Growth with Long Transients
All but four of our repetitive growth rules settle into low (i.e., less
than 12) period repetitive growth quickly (in less than 40 time steps).
The other four rules eventually produce repetitive growth (see Fig-
ure!8), although it would perhaps be best to describe their behavior as
complex because the systems have extremely long transients within
which the structures appear to grow in a pseudorandom way (this is
reminiscent of elementary cellular automaton 110 [18]). Interestingly,
evolving the rule shown in Figure 8 from other small networks pro-
duces different behavior. The network known as K3,3 is obtained by

taking two clusters of three vertices and linking each vertex in one
cluster to each vertex in the other. Initiating this system from K3,3

(instead of the cube) leads to dynamics that (again) eventually settle in
period 454 repetitive growth, although this time the transient lasts for
29 964 time steps. Another of the four rules that induce repetitive
growth after a long transient is symmetrically equivalent to the rule
shown in Figure 8, because it can be transformed into it by swapping
the roles of the red and blue colors.

160 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 8. This system has complex behavior for the first 4994 time steps and
then settles into period 454 repetitive growth. We show the rule at the top.
On the left, we show an uncolored plot of the network present on time step
7000. The large “handle” developing on the right side of this picture is a
symptom of the repetitive growth. The plot on the right shows the writer in-
dex over the first 7000 time steps.

The other two rules that induce repetitive growth, after a long tran-
sient, are not symmetrically equivalent to the system shown in Fig-
ure!8, although they are symmetrically equivalent to each other. One
of these rules is shown in Figure 9.

The ability of these systems to alter their behavior after large
amounts of time leads to the production of heterogeneous substruc-
tures. The fact that these rules produce a complex “ball” of network
followed by a long one-dimensional structure is reminiscent of the
way plants grow by complicating the structure around the initial seed
and then growing out a long stalk (see the figures from Section 5).

4. Elaborate Growth

The remaining 130 rules produce elaborate patterns of growth, lead-
ing to self-similar networks. It turns out that in each of these cases,
the way the writer moves is effectively one-dimensional. The writer re-
peatedly traverses a one-dimensional “track,” applying rewrite rules
as it goes, and lengthening the track with each traversal. In most
cases, the fact that the writer is confined to a one-dimensional sub-
structure can be inferred directly from the rules. In the other cases,
this behavior is revealed by using appropriate visualization tech-
niques.

Complex Networks from Simple Rules 161

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 9. On the left, we show the network obtained after evolving this rule
for 300 time steps. The black arrows track the course that the writer has
taken over the last 150 time steps (note that the positioning of these arrows
depends on how we indexed our vertices). The writer’s movement looks un-
predictable during this early transience. On the right, we plot the writer’s in-
dex over time. The transient behavior lasts 17 615 time steps; then the system
settles into period 1355 repetitive growth. Similar behavior ensues when
evolving from other initial conditions.

The writer can move backward and forward on the one-dimen-
sional track it is confined to. Although the writer can move in com-
plex ways, we can sort the rules into two subclasses according to the
general nature of the writer’s movement. Either the writer moves
around and around a closed loop, in which case we say the rule has
cyclic writer movement, or the writer moves backward and forward
over a line, in which case we say the rule has bouncing writer move-
ment.

4.1 A Simple Case with Cyclic Writer Movement
Only 104 of the rules with elaborate growth have cyclic writer move-
ment. We show one of the simplest in Figure 10. By looking at the
rules of this system, is it clear that the writer must move in a one-
dimensional fashion. Whenever there are no red or green edges inter-
linking the writer’s neighbors (i.e., whenever the system is not at a
fixed point), the writer moves along a red edge and then a blue edge,
and the writer’s previous location is replaced with a triangle. The fact
that the writer’s movement can be expressed as a combination of
steps along edges of only two different colors implies that the writer’s
movement is effectively one-dimensional. In particular, since any suffi-

162 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 y p y
ciently long path along edges of alternating red/blue color must even-
tually return to its starting point, the writer must always remain con-
fined to a cyclic track. In this case, the cyclic track starts out as the
inner face of our cube (see Figure 11). On each update, the writer
replaces its current vertex with a triangle and moves two edges clock-
wise around the developing track of edges with alternating red/blue
colors. Theorem 1 describes the global rewrite operation, which the
writer effectively performs with each complete traversal of its cyclic
track. The amount of time successive traversals take doubles.

Figure 10. One of the simplest rules with cyclic writer movement, evolving for
seven updates.

Figure 11. An alternative “one-dimensional” representation of the dynamics
of the rule shown in Figure 10. Successive rows of the picture on the left
(reading downward) show the relevant part of the network on successive time
steps. Here the relevant part of the network consists of network induced on
the vertices that can be reached by moving along red or blue edges from the
writer. We do not show green edges that are not part of triangles, since these

Complex Networks from Simple Rules 163

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 g g p g

have no effect on dynamics. For each time step, the writer replaces its current
vertex with a triangle (effectively adding a red edge and a blue edge below a
green arc) and moves two edges to the right. On the right, we illustrate how
this system can be viewed as a string rewrite system.

Theorem 1. The way the rule shown in Figure 10 evolves (with the
cube as the initial condition) is such that for each n ¥ 2, the network

present on the I2n+1 - 2Mth time step can be obtained by taking the net-

work present on the H2n - 2Lth time step and then simultaneously re-
placing each vertex, with a red or blue edge interconnecting its neigh-
bors, with a triangle (see Figure 12).

Figure 12. The network generated by the system with rules shown in Fig-
ure!10 on the first few time steps of the form 2n - 2 : n ¥ 2. Between times of
this form, the writer makes a complete traversal of its cyclic path and effec-
tively performs the rewrite operation shown at the bottom globally.

4.2 A Rule Related to the Golden Ratio
In Figure 13, we show a rule with cyclic writer movement with a com-
plicated-looking growth rate. It turns out that the growth rate can be

described exactly in terms of the golden ratio f ! I1 + 5 M ë 2.

Theorem 2. The number of vertices in the network obtained by evolv-
ing the rule shown in Figure 13 for t ¥ 0 time steps (starting from the
cube) is

8 + 2
1

f2

t

2
+ 2

t + 1

2
.

It is pleasing that this seemingly complex growth rate can be de-
scribed simply in terms of the golden ratio, because this number ap-

164 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 p y g p

pears in so many interesting places in the natural world. This colored
trinet automata has similar qualitative behavior to the one considered
in Section 4.1. Once again the writer goes around and around a cyclic
track consisting of edges with alternating red/blue color. Again the sys-
tem can be reduced to a one-dimensional string rewrite system. The
proof to Theorem 2 is based on relating this system to the binary
rewrite system with rules 0 Ø 01, 1 Ø 011. This proof will be given in
our upcoming paper “Complex Networks from Simple Rules: Techni-
cal Details.”

Figure 13. On the left, we show the network obtained by evolving this rule for
62 time steps. The number of vertices in the network at time step t grows ap-
proximately linearly with t. However, the way the number of vertices deviates
from its best linear fit looks complicated (as shown on the right).

4.3 A Rule with Complex Behavior
The rule with cyclic writer movement shown in Figure 14 has a very
complicated-looking growth rate. Although this system can be trans-
formed into a one-dimensional rewrite system (in a way similar to the
systems considered in Sections 4.1 and 4.2), we have not been able to
derive a formula for its growth rate. This means this system, together
with its equivalent red/blue reflection, stands out as the most complex
rules in our entire set. We are unable to predict the long-term dynam-
ics of these systems, although it appears the pseudorandom growth
pattern continues forever. (All of the rules that generate fixed points
and repetitive growth have trivial long-term behavior. Plotting the
writer index over time reveals significant regularities in all the other
rules exhibiting elaborate growth.)

Complex Networks from Simple Rules 165

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 14. On the left, we show the structure obtained by evolving this rule
for 100 time steps. The black arrows track the positions of the writer over the
previous 45 time steps. On the right, we show how the growth rate of the
number of vertices deviates from its best linear fit. This plot reveals consider-
able complexity.

Rules could be designed to directly emulate Turing machines by al-
lowing the writer to perform more different kinds of structural
rewrite operations (in addition to triangle replacement). In this way, a
computationally universal colored trinet automata could be created
by emulating the simplest universal Turing machine. Wolfram’s Princi-
ple of Computational Equivalence [18] (which asserts that almost ev-
ery system with behavior that does not seem obviously simple corre-
sponds to a computation of equivalent sophistication) suggests that
some of the systems we have encountered (such as the ones shown in
Figures 9 and 14) should be computationally universal. However, it
can sometimes be very difficult to prove that a given system is compu-
tationally universal.

4.4 A Simple Case with Bouncing Writer Movement
The 26 remaining rules with elaborate growth exhibit bouncing
writer movement. In these rules, the writer moves forward and back-
ward along a one-dimensional track, which grows with successive
traversals. The rule in this class with the simplest behavior is shown
in Figure 15. This rule can be represented in a one-dimensional man-
ner similar to Figure 11, except that this time the writer is confined to
moving on the red and green edges.

It appears that the writer effectively performs a global rewrite oper-
ation every time it makes a traversal of the one-dimensional track it is
confined to. Simulations suggest that the network present on time

step 2n+3 + n (where n ¥ 0) can be obtained by taking the network

166 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

p y g

present at time step 2n+2 + n - 1 and then simultaneously replacing
each vertex with a triangle that has no red or green edges interlinking
its neighbors and is not part of the external face (see Figure 16).

Figure 15. A rule with bouncing writer movement evolving for eight updates.
The writer travels around the red and green edges of the track that start out
as the central face of the cube. The writer keeps bouncing off the red edge at
the bottom of this face and reversing its direction of movement.

Figure 16. The network generated by the system with rules shown in Fig-

ure!15 on the first few time steps of the form 2n+2 - n - 1 : n ¥ 0. Between
times of this form, the writer makes a complete traversal of its linear path and
both rewrite operations shown at the bottom globally.

Not all of the rules with elaborate growth can be reduced to one-
dimensional rewrite systems as directly as the examples we have con-

Complex Networks from Simple Rules 167

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 y y p

sidered, although the effectively one-dimensional nature of the
writer’s movement can be revealed by plotting the trail followed by
the writer over several time steps (as on the left of Figure 14).

5. More General Rules

The behavior of colored trinets with more general rules does not al-
ways fall into the classes listed in Section 4. The set of 3888 rules we
enumerated and previously discussed did not allow the writer to take
any action when the edge between its neighbors is green. If we remove
this restriction, we can find rules with four active parts such as the
one shown in Figure 17. In this rule, the writer continues to move in a
random-looking way (that is not “one-dimensional” as in the rules
with elaborate growth discussed in Section 4) for at least the first
100 000 time steps. It is an open question whether this rule eventually
settles into repetitive growth.

Figure 17. A rule with four active parts that has complex behavior. On the
left, we show the structure obtained by evolving this rule for 100 time steps.
The black arrows track the positions of the writer over the previous 45 time
steps. On the right, we plot the index of the writer over the first 1000 time
steps.

We can also consider rules that include more general kinds of
rewrite operations, such as the one shown in Figure 18. In this sys-
tem, triangles can be replaced with vertices. Unlike all of the systems
in our previously considered rule set (which either has approximately
linear growth rates or reached fixed points) the number of vertices in
this case grows sublinearly over time.

168 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 18. A system with more general rules that may involve replacing a trian-
gle with a vertex. On the left, we show the network present on time step
1000. On the right, we plot the number of vertices over time.

When exploring these more general kinds of rules, many cases can
be found with sublinear growth rates that exhibit repetitive or elabo-
rate growth patterns. In many cases with sublinear growth, the num-
ber of vertices grows like the square root of the number of time steps
elapsed. Other rules involving triangle shrinkage can lead to networks
with shapes that oscillate over time. A trivial example is shown in
Figure 19 (although rules exist with much higher period oscillations).

We can also consider rules including the so-called exchange opera-
tion, which rewires an edge [17]. In Figure 20, we show a rule that
uses this type of exchange operation.

Figure 19. In this system, the network shape changes periodically.

Complex Networks from Simple Rules 169

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

Figure 20. A system that includes the exchange rule, which effectively replaces
a triangle with a square. We show the rule at the top. The structure is gener-
ated by running this system for 500 time steps.

6. Conclusion

We have explored many aspects of the behavior of colored trinet au-
tomata. We found that the systems in our initial rule space could be
sorted into three classes—fixed, repetitive growth, and elaborate
growth. We have shown that each class can be described in terms of
writer movement. When we look at the dynamics of more general
rules, we find other types of behavior. In particular, we find rules that
generate sublinear growth, persistent complex behavior, and periodi-
cally changing networks.

As minimal models capable of growing complex structure, these
systems should have some applications. The systems could be realized
by creating a robot that pulls itself along chains, ropes, or silk and
drops lines (like a spider) to triangulate vertices. This type of realiza-
tion could perhaps be useful for weaving or construction work. The
ability of these systems to produce exotic network structures with rela-
tive ease could make them useful in network design. In existential
graph theory, there are many open questions as to whether large
trinets exist with particular properties, and it will be interesting to see
whether our systems can resolve any of these issues.

It will also be interesting to see if these systems have any applica-
tions in modeling. The way structures grow under repetitive growth is

170 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

 g y g p g

reminiscent of the way plants grow. Many of the networks produced
by rules with elaborate growth rules seem reminiscent of polygonal
networks in cracked soil or foams. The general idea of having a single
writer that rewires a complex network is reminiscent of brains and
databases where the connectivity is altered to store information.

There many directions that this work can be taken in the future.
We have explored the dynamics of many colored trinet automata and
identified many kinds of behavior; however, a more general classifica-
tion scheme is evidently required to deal with the systems we de-
scribed in Section 5. Exploring more general rules will be exciting,
and will surely yield systems with other interesting kinds of behavior
and applications. There are also many unanswered questions about
the systems presented here, for example: is there a simple formula for
the growth rate of the system shown in Figure 14? Does the complex
behavior in Figure 17 persist forever? How can rules be characterized
according to the structural properties of the networks they produce?

Acknowledgments

This work is supported by the General Research Funds (Project Num-
ber 412509) established under the University Grant Committee of the
Hong Kong Special Administrative Region, China.

References

[1] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of
Modern Physics, 55(3), 1983, pp. 601–644.
doi:10.1103/RevModPhys.55.601.

[2] P. Pruskinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants, New York: Springer-Verlag, 1990.

[3] K. Alligood, T. Sauer, and J. Yorke, Chaos: An Introduction to Dynami-
cal Systems, New York: Springer-Verlag, 1997.

[4] D. Watts and S. Strogatz, “Collective Dynamics of ‘Small-World’ Net-
works,” Nature, 393, 1998 pp. 440–442. doi:10.1038/30918.

[5] A-L. Barabasi and R. Albert, “Emergence of Scaling in Random Net-
works,” Science, 286(5439), 1999 pp. 509–512.
doi:10.1126/science.286.5439.509.

[6] A. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, 242, 1937 pp. 230–265.

Complex Networks from Simple Rules 171

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

[7] S. Cox, M. Vas, and D. Wearie, “Topological Changes in a Two-Dimen-
sional Foam Cluster,” The European Physical Journal E: Soft Matter
and Biological Physics, 11(1), 2003 pp. 29–35.
doi:10.1140/epje/i2002-10126-9.

[8] P. Pina, J. Saraiva, L. Bandeira, and J. Antunes, “Polygonal Terrains on
Mars: A Contribution to Their Geometric and Topological Characteriza-
tion,” Planetary and Space Science, 56(15), 2008 pp. 1919–1924.
doi:10.1016/j.pss.2008.09.020.

[9] T. Bolognesi, “Planar Trinet Dynamics with Two Rewrite Rules,” Com-
plex Systems, 18(1), 2008 pp. 1–41.
http://www.complex-systems.com/pdf/18-1-1.pdf.

[10] E. Gottlieb and K. Shelton, “Color-Induced Subgraphs of Grünbaum
Colorings of Triangulations of the Sphere,” Australasian Journal of
Combinatorics, 30, 2004 pp. 183–192.

[11] F. Comellas, “Complex Networks: Deterministic Models,” NATO Secu-
rity through Science Series - D: Information and Communication Secu-
rity, Vol. 7, Amsterdam: IOS Press Ebooks, 2006 pp. 275–293.

[12] K. Morrow, T. Rowland, and C. Danforth, “Dynamic Structure of Net-
works Updated According to Simple, Local Rules,” Physical Review E,
80(1), 2009. doi:10.1103/PhysRevE.80.016103.

[13] R. Southwell and C. Cannings, “Games on Graphs that Grow Determin-
istically,” in Proceedings of the International Conference on Game The-
ory for Networks (GameNets 2009), Istanbul, New York: IEEE, 2009
pp. 347–356. doi:10.1109/GAMENETS.2009.5137420.

[14] R. Southwell and C. Cannings, “Some Models of Reproducing Graphs: I
Pure Reproduction,” Applied Mathematics, 1(3), 2010 pp. 137–145.
doi:10.4236/am.2010.13018.

[15] R. Southwell and C. Cannings, “Some Models of Reproducing
Graphs: II Age Capped Vertices,” Applied Mathematics, 1(4), 2010
pp. 251–259. doi:10.4236/am.2010.14031.

[16] R. Southwell and C. Cannings, “Some Models of Reproducing
Graphs: III Game Based Reproduction,” Applied Mathematics, 1(5),
2010 pp. 335–343. doi:10.4236/am.2010.15044.

[17] K. Tomita, H. Kurokawa, and S. Murata, “Graph Automata: Natural
Expression of Self-Reproduction,” Physica D: Nonlinear Phenomena,
171(4), 2002 pp. 197–210. doi:10.1016/S0167-2789(02)00601-2.

[18] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[19] E. Fredkin, “Five Big Questions with Pretty Simple Answers,” IBM Jour-
nal of Research and Development, 48(1), 2004 pp. 31–45.
doi:10.1147/rd.481.0031.

[20] T. Bolognesi, “Causal Sets from Simple Models of Computation,” In-
ternational Journal of Unconventional Computing, 6(6), 2010
pp. 489–524.

172 R. Southwell, J. Huang, and C. Cannings

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

[21] A. Lamb, “Dense Graphs, Node Sets, and Riders: Toward a Foundation
for Particle Physics without Continuum Mathematics,” Complex Sys-
tems, 19(2), 2010 pp. 115–130.
http://www.complex-systems.com/pdf/19-2-1.pdf.

[22] H. Zenil, Randomness through Computation, Singapore: World Scien-
tific, 2011.

Complex Networks from Simple Rules 173

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.2.151

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

