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The dynamic behavior of a system can be modeled as the trajectory of
the  system  in  the  phase  space.  A  phase  space  is  an  abstraction  where
each possible state of the system is represented by a unique point; each
dimension  of  the  phase  space  represents  a  degree  of  freedom  of  the
system. Individual trajectories have different probabilities, with some of
them  more  likely  than  others.  For  a  complex  system,  it  is  conjectured
that  the  highly  probable  trajectories  in  the  phase  space  are  dominant.
Random  walks  are  analyzed  for  fully  connected  finite  state  machines.
We show that  the  cardinality  of  the  set  of  highly  probable  trajectories
is  very  large;  its  lower  bound  is  exponential  in  the  number  of  states
traversed by the random walk and in an expression of the entropy of a
system. 

1. Introduction and Motivation

When we think about complex systems, the human brain comes imme-
diately  to  mind;  the  number  of  neurons  in  the  human  brain  is  esti-
mated  to  be  between  80  and  120  billion.  Systems  with  a  very  large
number of components such as the space shuttle, a modern micropro-
cessor,  the  internet,  and  computer  clouds  are  examples  of  complex
manmade systems.  

Indeed,  “the  main  elements  of  the  space  shuttle  …  are  assembled
from more than 2.5 million parts, 230 miles of wire, 1040 valves, and
1440  circuit  breakers”  [1].  The  microprocessors  vintage  2011  have
several  million  transistors:  the  10-core  Xeon  Westmere-EX produced
by Intel has 2.5 million transistors, the Tahiti graphics processing unit
(GPU)  by  Advanced  Micro  Devices  (AMD)  has  4.3  million,  and  the
Virtex-7 FPGA by Xilinx has 6.8 million. 

In  January  2010,  the  internet  connected  some  800  million  hosts.
Cloud  computing  reflects  the  realization  that  information  processing
can be done more efficiently on large farms of computing and storage
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systems  accessible  via  the  internet  than  on  local  systems  [2].  A
March!16,  2012  posting  on  ZDNet  reveals  that  Amazon’s  Elastic
Compute Cloud (EC2) was made up of 454 600 servers; if the number
of  servers  supporting  other  Amazon  Web  Services  (AWS)  are  added,
then the total number of Amazon systems dedicated to cloud comput-
ing is much larger. EC2 is one of the services provided by AWS; it pro-
vides  a  resizable  compute  capacity.  An unofficial  estimation  puts  the
number of servers used by Google in January 2012 at close to 1.8 mil-
lion;  this  number  was  expected  to  be  close  to  2.4  million  by  early
2013 [3]. 

Computing  and  communications  systems  are  increasingly  more
complex and, at the same time, play a more vital role for our society.
A  modern  server  is  typically  built  with  several  multicore  processors,
multiple servers can be linked together to form a cluster, and, finally,
a cloud computing infrastructure could be built from many such clus-
ters  interconnected  by  high-speed  networks.  This  is  possible  because
the software acts as a “glue” and pushes further and further the limits
of composability of such systems. In this example, each server is con-
trolled by a software stack consisting of a hypervisor, multiple virtual
machines  running  possibly  different  operating  systems,  and  applica-
tions;  additional  control  and  communication  software  allows  the
servers in a cluster and the clusters to communicate and interact with
one another. 

Figure 1. Factors contributing to the complexity of computing and communi-
cation systems. Causality relations between individual factors are indicated by
slim  arrows;  for  example,  physical  constraints  demand  optimization  of  re-
source consumption.  

Computing  and  computing  systems  are  at  the  heart  of  the  critical
infrastructure  of  society.  Thus,  it  seems  reasonable  to  ask  what  fac-
tors  are  contributing  to  their  complexity,  try  to  quantify  their  com-
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plexity, and attempt to use this knowledge to test and verify their dy-
namic behavior. 

Some  of  the  factors  contributing  to  the  complexity  of  computing
and communication systems are illustrated in Figure 1 [2]: 

† The rapid pace of technological developments and the availability of rel-
atively  cheap  and  efficient  new  system  components,  such  as  multicore
processors, sensors, and high-density storage devices. 

† The development of new applications, which take advantage of the new
technological developments. 

† The ubiquitous use of the systems in virtually every area of human en-
deavor,  which,  in  turn,  demands  a  faster  pace  for  hardware  and  soft-
ware development. 

† The need for interconnectivity and the support for mobility. 

† The need to optimize the resource consumption. 

† Last  but  not  least,  constraints  imposed by the laws of  physics,  such as
heat dissipation and finite speed of light. 

Though  it  is  not  feasible  to  quantify  the  effects  on  system  com-
plexity  of  all  factors  presented  in  Figure  1,  we  can  draw  qualitative
conclusions  regarding  testing  and  verifications  of  these  systems.  For
example,  the  emergence  of  new  applications  and  the  ever-increasing
segment  of  the  population  with  access  to  them  lead  to  innovative,
unorthodox,  and  often  unpredictable  use  of  the  systems.  In  addition
to the prescribed, and thus well-tested execution modes, such systems
often end up in an undesirable state affecting the entire community of
users. 

There is also the issue of malicious use, which is increasingly more
threatening  to  society.  New  technologies  have  provided  deeply  trou-
bling means to attack such systems. For example, a hardware Trojan
horse  (HTH) is  a  malicious  modification  of  an  integrated  circuit  [4].
Critical infrastructure and defense systems of a country often use em-
bedded hardware devices that could be produced by companies other
than those that designed them; such companies can re-engineer the de-
vices  to  make  them  vulnerable  to  attacks.  Verification  of  embedded
hardware devices affected by HTH is very hard [5]. 

It  seems  prudent  that  random  walks  through  their  state  space
should be part of the testing and verification of such systems, in addi-
tion  to  the  most  likely  execution  paths.  But  how  much  confidence
should  we  have  as  a  result  of  verifications  including  such  random
walks? 

In  this  paper,  we  are  concerned  with  random walks  on  fully  con-
nected  finite  state  machines  (FSM)  and  show  that  the  cardinality  of
the set of highly probable trajectories is very large; its lower bound is
exponential  in  the  number  of  states  traversed  by  the  random  walk
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and in an expression of the entropy of the system. This result reflects
our  intuition  that  among  all  possible  system  evolutions,  a  random
walk in the state space exposes a more complex system behavior, and
this  behavior is  amplified when the states  are fully  connected so that
the system could reach all  states from any state.  This makes verifica-
tion of such systems an elusive task. 

2. Dynamic Behavior of Physical Systems    

There  is  little  doubt  that  the  dynamic  behavior  of  a  system  must  be
considered  when we attempt  to  quantify  the  complexity  of  a  system.
The concept  of  “state” is  used to describe  the  current  condition of  a
system.  In  general,  the  state  represents  an  ensemble  of  information;
for example, the state of a computing system represents the ensemble
of  information  necessary  to  restart  an  interrupted  process  or  thread.
An event is a change of state; the information describing the condition
of the system prior to the event is replaced by the information describ-
ing the condition of the system after the event. Identification and char-
acterization of the state of the system is critical for understanding the
dynamic behavior of systems or entities in diverse areas, including bi-
ology and psychology, chemistry, computing, control theory, physics,
and linguistics.  

Dynamic behavior can be seen as the trajectory the system follows
in a phase space [6]; a phase space is an abstraction where each possi-
ble  state  of  the  system  is  represented  by  a  unique  point.  In  a  phase
space, every degree of freedom of the system is represented as an axis
of  this  multidimensional  space.  A  trajectory  in  this  space  links  these
points  and  describes  the  evolution  in  time  of  the  system;  individual
trajectories  have  different  probabilities,  with  some  of  them  more
likely than others. 

Thus,  it  seems  reasonable  to  conjecture  that  as  the  ratio  of  high-
probability trajectories in the phase space to the low-probability ones
increases,  so  does  the  system complexity.  When there  are  only  a  few
highly  probable  trajectories,  it  is  easier  to  debug  the  system  and  to
optimize  its  performance.  Optimize  for  the  common  case  is  a  well-
established design principle  exploited to reduce latency by caching in
the case of domain names service (DNS), web browsers, and other sys-
tems. When all or nearly all cases are “common,” the design and sys-
tem verification becomes very challenging. 

Proving this conjecture for an irregular topology of the state transi-
tion  diagram  is  likely  to  be  very  challenging,  so  we  choose  to  focus
our discussion on a fully connected FSM. An FSM is a model of a sys-
tem that can be in a finite number of states; this abstraction is used in
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the design of a wide range of computing and communication systems,
including  hardware  components,  software  systems,  and  communica-
tion protocols. For example, in computer architecture the control unit
of  a  processor  is  described  as  an  FSM.  Many  complex  applications
are based on a finite state model.  In the internet, the border gateway
protocol  (BGP) is  used for routing decisions among autonomous sys-
tems. A BGP peer maintains a table of IP networks and uses an FSM
with  six  states;  for  each  peer-to-peer  session,  a  state  variable  tracks
the state the session is in. 

The  complexity  of  an  FSM  depends  on  the  number  of  states  and
the  connectivity  among  these  states.  A  fully  connected  FSM  allows
transitions from any state to any other state. For example, the system
for  minimally  invasive  surgery  described  in  [7]  is  modeled  by  a  fully
connected FSM. 

A  random  walk  is  an  abstraction  of  a  trajectory  when  successive
steps  are  taken  at  random;  random walks  model  stochastic  activities
in a wide range of disciplines, including physics, biology, computer sci-
ence,  and  chemistry.  Random  walks  can  be  conducted  on  graphs,
lines, planes, or higher-dimensional objects. 

3. Quantifying System Complexity    

Abstract questions about systems consisting of an ensemble of compo-
nents have preoccupied the minds of humans for millennia. For exam-
ple, Aristotle stated that “...the whole is something over and above its
parts, and not just the sum of them all.” In The Republic, Plato intro-
duces  the  concept  of  “level  of  knowledge,”  ranging  from total  igno-
rance to total  knowledge.  “True knowledge” exists  only if  a  founda-
tion of axioms or a priori knowledge exists [8], and this cannot be the
case for complex systems.  

In  modern  times,  in  addition  to  the  philosophical  aspects  of  com-
posability and complexity, we are also concerned with practical ques-
tions including quantitative characterization of complexity. To under-
stand and facilitate  the  rapid  adoption of  increasingly  more  complex
computing  and  communication  systems,  the  metrics  that  allow  us  to
assess the complexity of a system are investigated; we also attempt to
gain insight into how complex systems behave in nature. 

While  we  have  an  intuitive  notion  of  what  complexity  means,  no
rigorous definition allowing us to quantify and measure the complex-
ity of a system is universally accepted. Certainly, the scale of a system,
the  topology  of  the  interconnect  linking  the  individual  components,
the unpredictability of the next state, and the length of time a system
has been in existence may affect its complexity, but none of these ele-
ments by itself allows us to conclude that a system is complex or not. 
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All systems are thus physical; the concept of state reflects an intrin-
sic property of a physical system. The transition from one state to an-
other  has  informational  as  well  as  thermodynamic  consequences;  in
this process, the information about the current state is erased and the
one about the new state is engraved in the memory of the system. 

Thus,  there  is  an intrinsic  relationship between matter,  system dy-
namics,  and  information.  This  relationship  allows  us  to  explain  the
apparent paradox known as James Maxwell’s demon. Maxwell imag-
ined  a  gedanken  experiment  involving  the  famous  demon  as  a  chal-
lenge to the second law of thermodynamics. Landauer’s law [9] states
that  erasing  a  single  bit  of  information  generates  an  amount  of  heat

equal  to  kB T ln 2,  with  kB ! 1.3806488ä10-23  the  Boltzmann  con-
stant. 

According  to  Bennett,  this  law  implies  that  “any  logically  irre-
versible  manipulation  of  information,  such  as  the  erasure  of  a  bit  or
the  merging  of  two  computation  paths,  must  be  accompanied  by  a
corresponding  entropy  increase  in  non-information  bearing  degrees
of!freedom  of  the  information  processing  apparatus  or  its  environ-
ment”![10]. 

The concept of entropy will be used in our derivation in Section 4,
and next we shall discuss several flavors of it. Shannon entropy, ther-
modynamic  entropy,  and  von  Neumann  entropy  are  related  to  the
number of states of a system, thus they reflect to some extent the sys-
tem complexity [11]. 

Shannon’s  entropy is  a measure of  the uncertainty of  a single ran-
dom variable  X  with  the  probability  density  function pXHxL  before  it
is observed, or the average uncertainty removed by observing it: 

(1)HHXL ! -‚
x

pXHxL log pXHxL.
The thermodynamic entropy of a microscopic system, for example,

N molecules of gas, is 

(2)S ! kB lnW,

with kB  the Boltzmann’s constant and W the number of microstates of
the system. If the N molecules are grouped together in m macro states
depending  on  their  energy,  then  the  number  of  bits  required  to  label
the individual microstates is  

(3)Q ! HHp1, p2, … , pmL,
with  HHp1, p2, … , pmL  the  Shannon  entropy  of  a  system  with  m
states.  If  ni  is  the  number  of  molecules  in  state  i,  then  pi ! ni ê N  is
the probability of the system being in state i [12].  
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In  turn,  the  von  Neumann entropy  of  a  quantum system with  the
density matrix r 

(4)SHrL ! - tr@r log rD
is  equal to the Shannon entropy if  the system is  prepared in a maxi-
mally mixed state, a state where all pure states are equally likely.  

The  relative  predictive  efficiency,  e ! E ê C  with  E  the  excess  en-
tropy and C the statistical complexity [13], is also a measure of com-
plexity. The excess entropy measures the complexity of the stochastic
process  and can be regarded as  the  fraction of  historical  information
about the process that allows us to predict the future behavior of the
process. The statistical complexity reflects the size of the model of the
system at a certain level of abstraction. The scale of organization con-
sidered by an external observer plays a critical role in assessing the rel-
ative  predictive  efficiency.  For  example,  at  the  microscopic  level,  the
calculation of e  for a volume of gas requires very complex molecular
dynamics  computations  in  order  to  accurately  predict  the  excess  en-
tropy; both E and C are very high and the predictive efficiency is low.
On the other hand, at the macroscopic level, the relationship between
the  pressure  P,  the  volume  V,  and  the  temperature  T  is  very  simple:
P V ! n R T,  with n  the number of  moles  of  gas and R  the universal
gas constant. In this case E maintains a high value, but now C is low
and the predictive efficiency E ê C is large. 

Physical  systems in equilibrium display their  most  complex behav-
ior at critical points.  In thermodynamics, a critical point specifies the
conditions  of  temperature  and  pressure  at  which  a  phase  boundary,
for  example,  between  liquid  and  gas,  ceases  to  exist.  The  time  to
reach  equilibrium becomes  very  high  at  critical  points,  a  phenomena
called critical slowing. 

Wolpert  and  Macready  [14]  argue  that  self-similarity  can  be  used
to quantify complexity;  the patterns exhibited by complex systems at
different scales are very different, while the patterns exhibited by sim-
ple  systems  such  as  gases  and crystals  do  not  vary  significantly  from
one scale to another. 

We could use  the  complexity  of  a  program that  simulates  the  sys-
tem  as  a  measure  of  complexity  of  the  system;  this  will  reflect  not
only  the  number  of  states  but  also  the  pattern  of  transitions  among
states. This idea has its own limitations, as we generally simulate ap-
proximate models of a system, rather than exact ones. 

This measure of complexity is consistent with the concept of depth
defined  as  the  number  of  computational  steps  needed  to  simulate  a
state of a system; the author of [15] argues that the emergence of com-
plexity  requires  a  long  history,  but  a  measure  stricter  than  physical
time is needed to reflect this history. The depth reflects not how long
the system remains in equilibrium, but how many steps are necessary

         
           

         
        

          
        

            
           

        
           
   

High-Probability Trajectories in the Phase Space and the System Complexity 239

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.3.233



          
          

             
          

            
 y    q    y p   y

to  reach  equilibrium  following  some  efficient  process.  The  rate  of
change of the system state and the communication time do not reflect
the complexity of  a system. Indeed,  two rotating structures  involving
very  different  physical  processes—a  hurricane  and  a  spiral  galaxy—
are  at  the  limit  of  today’s  realistic  computer  simulation,  both  of
similar  depth  and,  consequently,  of  similar  complexity.  Yet,  galaxy
formation occurs  at  a  scale  of  millions  of  light  years  and is  bounded
by communication at  the speed of  light,  while  the time for hurricane
formation  is  measured  in  days,  the  atmospheric  disturbances  propa-
gate  more  slowly,  and  the  scale  of  hurricane  formation  is  only  hun-
dreds of kilometers. 

Complexity  could  be  related  to  the  description  of  a  system  and
may  consist  of  structural,  functional,  and  possibly  other  important
properties of the system. The question of how to measure the descrip-
tive  complexity  of  an  object  was  addressed by  Kolmogorov [16]  and
independently by Solomonoff [17] and Chaitin [18]. 

The  Kolmogorov  complexity  K!HsL  of  the  string  s  with  respect  to
the universal computer " is defined as the minimal length over all pro-
grams Prog! that print s and halt: 

(5)K!HsL ! min@LengthHsLD over all Prog : "IProg!M ! s.

This  approach  is  intuitive  and  has  been  known  for  centuries.
“Nunquam ponenda est pluritas sine necesitate,” the famous principle
formulated by William of Ockham (c. 1290–1349), states that an ex-
planation  should  not  be  extended  beyond  what  is  necessary  [19].
Bertrand  Russell  translates  this  as,  “It  is  vain  to  do  with  more  what
can  be  done  with  fewer.”  An application  of  Kolmogorov  complexity
to  the  characterization  of  scheduling  on  a  computational  grid  is  dis-
cussed in [20]. 

The  concept  of  computational  irreducibility  was  introduced  by
Stephen Wolfram in [21]; it captures the intuition of inability to short-
cut  a  program,  or  to  describe  the  behavior  of  a  system  in  a  simple
way. 

It was then observed that some computationally irreducible elemen-
tary  cellular  automata  have  properties  that  are  predictable,  and  so
these properties are computationally reducible. In the experiments re-
ported in [22], several cells of an automaton were replaced, fused into
a single cell; a new rule for the low-resolution automaton was then de-
vised that  would lead to the  same long-term behavior  as  the  original
automaton.  An analogy  for  this  experiment  is  to  make  a  low-resolu-
tion digital image from a higher-resolution version. 

The  conclusion  of  [22]  is  that  for  some  rules,  the  low-resolution
version  behaves  simply  and  predictably,  even  when  the  high-resolu-
tion  version  is  computationally  irreducible  and  therefore  unpre-
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dictable.  In  other  words,  the  complexity  can  only  be  reflected  in  the
unimportant  details  and  when  only  approximate  results  are  accept-
able, such results are predictable in spite of the system complexity. 

As  pointed  out  by  Wolfram,  the  real  question  is  “under  what  cir-
cumstances  will  large-scale  rules  emerge  that  allow  a  simple,  pre-
dictable  description  of  a  complex  phenomenon”  [23].  The  results
discussed in Section 4 cast some doubts that such circumstances are re-
alistic  for  many  systems  of  interest;  the  expectation  that  computa-
tional irreducibility can be avoided seems rather utopic. 

4. Random Walks in Fully Connected Finite State Machines    

Now we return to our conjecture,  namely,  that the cardinality of the
set of highly probable trajectories is very large for a system we suspect
to exhibit complex dynamics. We study random walks in a fully con-
nected  FSM  and  we  consider  #  an  FSM  initially  in  state  Si.  We  as-
sume that: 

1. The  system  can  transition  from  the  initial  state  to  a  finite  number  of
states ! " 8S1, S2, … , Sm< and †!§ " m; 

2. The  FSM  is  fully  connected  and  pi  is  the  probability  of  an  input  that
causes a transition from the current state to state Si, 1 § i § m; 

(6)‚
i!1

m

pi " 1.

Call sn  a random walk of length n and assume that in any random
walk the next state is selected independently. Then the probability of
the  random walk  s n  traversing  the  states  ISi1 M, ISi2 M, … , ISin M  in  this

order is 

(7)PHsnL ! pISi1 M pISi2 M… pISin M.
We define the entropy of the source controlling the behavior of the

FSM #  as 

(8)HH$L ! - ‚
i " 1

m

pi log pi.

The weak law of large numbers states that x ! ⁄i xi pxi
; the mean

of a large number of independent, identically distributed random vari-
ables  xi  approaches  1 ê n⁄i xi,  the  average,  with  a  high  probability
when n is large:

(9)Prob
1

n
‚
i " 1

n

xi - x > d < e,

with d and e two arbitrarily small positive real numbers.  
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If  we define a random variable xi ! - log pHSiL,  then we can estab-
lish  the  following  correspondence  with  the  quantities  in  the  expres-
sion of the weak law of large numbers:

(10)‚
i " 1

n

xi ! - ‚
j " 1

n

log pJSijN ! - log PHsnL,

(11)x ! ‚
i " 1

m

xi pHxiL ! - ‚
i " 1

m

pHSiL log pHSiL ! HH$L.
It follows that given two arbitrarily small real numbers Hd, eL ¥ 0, then
for sufficiently large n, the following inequality holds: 

(12)Prob -
1

n
log PHsnL - HH$L > d < e.

This  inequality  partitions  L,  the  set  of  random walks  of  length  n,
into two subsets: 

(a)  The  subset  Lhpt  of  high-probability  trajectories  (hpt)  (see  Fig-

ure!2) is defined by 

(13)Lhpt ! shpt : -
1

n
log PIshptM - HH$L § d .

These random walks occur with probability ProbIshptM ¥ H1 - eL.  

Figure 2. Random  walks  in  a  fully  connected  FSM.  Typical  high-probability
random walks are dominant.  

(b) The subset of low-probability trajectories (lpt) is defined by 

(14)Prob -
1

n
log PHsL - HH$L > d < e.
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These  random  walks  occur  with  a  vanishing  probability,

ProbIslptM < e. The two subsets are disjoint and complementary:  

(15)Lhpt ›Llpt ! « and L ! Lhpt ‹Llpt.

We concentrate on high-probability random walks, as low-probability
walks  occur  with  a  vanishing  probability  and  can  be  ignored.  Now
we shall determine °Lhpt•, the cardinality of the set of high-probability

random walks, s œ Lhpt. The inequality defining the random walks in

this subset can be rewritten as  

(16)
-d § -

1

n
log PIshptM - HH$L § +d

ï2-nHHH#L+dL § PIshptM § 2-nHHH#L-dL.
The first inequality can be expressed in terms of the cardinality set:  

(17)
‚

sœLhpt

PIshptM ¥ ‚
sœLhpt

2-nHHH#L+dL ! °Lhpt• 2-nHHH#L+dL.

It follows that  

(18)°Lhpt• § 2nHHH#L+dL.
Similarly, the second inequality can be expressed as  

(19)
‚

sœLhpt

PIshptM § ‚
sœLhpt

2-nHHH#L-dL ! °Lhpt• 2-nHHH#L-dL.

This implies that  

(20)°Lhpt• ¥ 2nHHH#L-dL.
It follows that  

(21)d # 0ï °Lhpt• # 2n HH#L.
Thus, the cardinality of the set of high-probability random walks con-

verges to 2n HH#L. This result can be interpreted as the fact that system
dynamics encode the most  probable evolution of  the system with en-
tropy HH$L ! -⁄i "1

m pi log pi, where pi  is the probability that the sys-
tem chooses Si as the next state of the random walk.  

An astute observer will notice that this derivation follows the proof
of Shannon’s source coding theorem. 
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5. Conclusions    

In many instances, a quantitative characterization of system complex-
ity turns out to be an elusive task. In this paper, we study the dynam-
ics  of  a  restricted  class  of  systems,  fully  connected  finite  state  ma-
chines  (FSM)  subject  to  a  special  evolution  pattern,  the  random
walks;  such  systems  reflect  our  informal  view  of  complexity.  We
show  that  the  cardinality  of  the  subset  of  high-probability  random

walks °Lhpt•  converges to 2n HH#L—in other words, that highly proba-

ble trajectories dominate the system dynamics.  It  is  expected that the
entropy of the source that controls the random walk affects the behav-
ior of the system and this result confirms our expectations.  

This result confirms our intuition that random walks in a fully con-
nected  system  expose  complex  system  dynamics.  It  also  justifies  our
conjecture that the ratio of high-probability to low-probability trajec-
tories  in  a  phase  space  could  be  used  as  a  quantitative  characteriza-
tion of system complexity. 

An open question is if this result can be extended to other topolo-
gies  and  if  the  dominance  of  high-probability  trajectories  could  be
used to assess ergodicity. 
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