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Behavior-based optimization is proposed to take advantage of relation-
ships  between  complexity  and  optimality  with  respect  to  both  perfor-
mance  and  robustness.  Two  dynamic  measures  are  presented:  logical
and  state  complexities  in  the  case  of  naval  weapons  elevator  design.
Logical  complexity measure is  defined as  the ratio of  the length of  the
logical evolution to the temporal evolution length, while state complex-
ity  is  the measure identifying the number of  unique states  in an evolu-
tion. A system with more complexity is found to result in an increase of
throughput.

1. Introduction

In complex systems having nonlinear interactions and system element
independencies,  the  global  system  behavior  may  not  be  predictable
from the set of rules dictating local interactions among elements. The
characteristics  of  complex  systems  present  difficulties  with  respect  to
optimization  using  traditional  techniques.  These  techniques  utilize
some measure  or  measures  of  performance through the  identification
and manipulation of relevant system variables, largely ignoring the be-
havior of systems during operation.

Here  we explain  the  essence  of  the  system behaviors  by  using  ele-
mentary cellular automata with a transition function. It might initially
appear  that  elementary  cellular  automata  are  capable  of  producing
only  simple  behaviors  because  of  the  apparent  simplicity  of  the  rule
sets.  Despite  their  simple  construction,  elementary  cellular  automata
are capable of producing all types of behavior qualitatively possible in
any  system.  Furthermore,  the  initial  conditions  required  to  produce
this range of behavior need not be complicated. A certain form of be-
havior is often inherent to a given rule set, regardless of the initial con-
ditions.  It  should  be  noted  that  there  is  a  possibility  for  a  given  rule
set to behave differently based on the initial conditions of the system.
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On this  basis,  system behaviors  can be classified into four  groups by
intuitive perception.

Generally,  all  behaviors  have  a  qualitative  nature  associated  with
them. We have been able to classify the behavior mainly through our
intuitive perceptive abilities [1, 2]. In example cellular automata evolu-
tions, shown in Figure 1, it is apparent that (b) is the most complex of
the  three  evolutions.  Figure  1(a)  is  simple  to  represent  by  describing
the  fixed  point  attractor  state,  while  Figure  1(c)  is  indistinguishable
from  a  series  of  states  generated  from  a  simple  pseudorandom  state
generator.
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Figure  1. Three  qualitative  behaviors  from  elementary  cellular  automata  rule
sets. Evolution (a) is from rule 4 and represents simple class II behavior. Evo-
lution (b) is class IV complex behavior from rule 110 (the description of rule
numbers is given in Section 2). Class III random behavior appears in (c) from
rule 45.

This  perception of  complexity,  while  powerful,  is  often subjective,
and only an objective measure of complexity provides an absolute de-
scription of a system that can validate intuition. Although there is no
exact quantitative definition of complexity, several parameters can to-
gether explain a characteristic of a system behavior. Since there are so
many  measures,  both  static  and  dynamic,  only  the  particular  mea-
sures applied in our research are presented in this paper.

Additionally,  we  discuss  how  the  process  of  coevolution—the  si-
multaneous  evolution  of  interdependent  species—evolves  to  a  com-
plex  regime  at  the  transition  region  between  order  and  chaos.  More
importantly, we will see that the complex regime corresponds to opti-
mal performance in terms of fitness in one of the models.

After the system behaviors have been presented, the layouts of ele-
vator  group  control  and  naval  weapons  elevators,  where  our  experi-
ment was performed, are illustrated. It is beneficial to be familiar with
the  system.  Understanding  how it  works  can  easily  draw a  brief  pic-
ture of how the complexity of such a system arises. 
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With complexity measures presented, we are ready to set up the ex-
periment,  although  there  is  the  fact  that  the  naval  weapons  elevator
system is extremely large. The use of exhaustive simulations is not in-
tended to suggest that this approach is required when using behavior
toward optimization, but only as a means for full  characterization of
the  possible  relationships.  Consequently,  simulation  has  been  pro-
posed as the only approach providing the predictive shortcut to indi-
cate the performance or behavior of  that  configuration.  In Section 4,
all  measures  of  complexity  for  weapons  elevator  simulations,  both
static  and dynamic,  are  briefly  introduced.  Then,  we discuss  two dy-
namic measures, logical complexity and state complexity in Sections 9
and 10, respectively. 

Logical complexity is the ratio of the length of the logical evolution
to the temporal evolution length. It  indicates the amount of informa-
tion required to express the logical sequence of states. As we examine
the  relationship  between  performance  and  behavior  of  the  system,
throughput  will  be  measured  with  respect  to  complexity  throughout
this paper. The results of our experiment indicated that evolution act-
ing  relatively  more  logically  yields  greater  throughput  or  perfor-
mance. Furthermore, we present the logical complexity of the systems
of  different  sizes.  For  each  size  of  the  system,  we  measured  logical
complexity of evolution subsets composed of nonhalting, complete, ro-
bust,  unique  and  nonhalting,  unique  and  complete,  unique  and  ro-
bust,  and mimics evolutions to illustrate the trends of the complexity
with respect to system sizes and types of evolutions.

State complexity expresses the number of unique states used in an
evolution with respect to the temporal evolution length. It is the ratio
of the number of distinct states entered to the product of the number
of  items  carried  and  the  system  cycle  time.  From  our  simulations,
there  existed  evidence  suggesting  the  relationship  between state  com-
plexity  and  throughput.  Like  logical  complexity,  the  plots  of  state
complexity  with  respect  to  configurations  and  evolution  subsets  are
presented.

Although a naval weapons elevator system is such a rich model for
the study of complexity of material handling systems, not all possible
configurations  are  measured  here.  Due  to  a  large  amount  of  data
available  for  each  configuration,  only  those  configurations  represent-
ing each type of distinct behavior are presented.

2. Cellular Automata

In order to address the possibility of artificial self-reproduction, or the
ability  of  a  machine  to  replicate  itself  in  an  electronic  computer  and
avoid  the  costs  associated  with  hardware,  John  von  Neumann,  often
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considered  the  father  of  the  modern  computer,  created  an  abstract
mathematical  representation  of  a  machine,  known  as  automata.  Au-
tomata are capable of self-replication if given the proper logic and ini-
tial conditions [3].

Cellular  automata  consist  of  a  network  of  elements,  or  cells,  that
exist  on  some  lattice  structure.  Cellular  automata  networks  operate
by the application of a set of transition functions Q to each cell in the
network.  The  network  evolves  as  the  transition  functions  are  recur-
sively applied.

To  further  explain  cellular  automata  systems,  we  will  use  elemen-
tary cellular automata, the simplest configuration capable of all forms
of possible behavior [1, 4, 5].

2.1 Elementary Cellular Automata
One-dimensional cellular automata networks consist of a line of cells,
with each cell having a neighbor to the left and right. In a closed net-
work  with  periodic  boundary  conditions,  the  cells  therefore  form  a
ring. When represented in two dimensions, the ring must be “broken”
and  unfolded  to  capture  all  information  about  the  state  of  the
network.

HaL

HbL
Figure  2. A  one-dimensional  closed  network  with  periodic  boundary  condi-
tions forms (a) a closed ring. Expressed in one dimension, the network is bro-
ken as in (b), but the ends A and B remain neighbors.
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As a one-dimensional network is evolved, we can visualize the cur-
rent state of the system in two dimensions as in Figure 2, which is up-
dated  with  each  successive  application  of  the  transition  functions  on
all  cells.  To  visualize  a  history  of  an  evolution,  we  simply  add  on  a
new row for each complete mapping. The result is a two-dimensional
grid  n  columns  wide  and  t + 1  rows  long,  where  n  is  the  number  of
cells  involved in  the  network and t  is  the  number  of  evolution steps.
Evolution of the actual topography of the network shown in Figure 1
results  in  a  hollow  cylinder.  Since  the  term  evolution  is  used  to  de-
scribe  the  recursive  mapping  of  the  transition  functions,  we  refer  to
each row in the evolution in integer values of time, so that the state of
the system at time step t1 evolves to the system state at time step t2.

Cells in elementary cellular automata networks can exist in one of
two states. In binary terms, these values are 0 and 1, equivalent to the
Boolean  values  of  false  and true.  In  our  visual  representations,  the  0
and 1 states are equivalent to white and black cells, respectively.

2.2 Transition Function
The  transition  functions  associated  with  a  cellular  automaton  repre-
sent  the  conditional  logic  that  controls  the  operation  of  the  system.
Elementary  cellular  automata  have  a  neighborhood  with  a  radius  of
one cell, r = 1.

In general, for automata with k possible states and a neighborhood

of r adjacent cells to the left and right, there are kH2 r+1L  combinations
of  cell  states  that  form the  input  to  the  transition  functions.  For  ele-
mentary  cellular  automata  with  two  possible  states  and  a  neighbor-
hood of  three cells  (r = 1),  the number of  combinations of  cell  states

is 23 = 8, which are presented in Figure 3.

Figure  3. The  eight  combinations  of  three  cells  with  two  possible  states  that
define elementary cellular automata transition function inputs.

Each of these sequences can evolve to one of two states. In general,

there  are  kkH2 r+1L
 possible  sets  of  transition functions.  For  the  case  of

elementary  cellular  automata,  there  are  223
= 256  possible  rule  sets,

or combinations of evolved states. This evolution structure leads to a
convenient  method for  expressing  a  rule  set  without  explicit  descrip-
tion of cell digit sequences [5].

Each  combination  of  cell  sequences  is  assigned  a  decimal  value
equivalent  to  the  binary  representation  of  cells,  letting  black  and
white  equal  1  and  0,  respectively.  Each  of  these  decimal  equivalents
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represents a single bit in an eight-bit byte, with the bit evolving from
the sequence of  three  black cells  representing the  most  significant  bit
and the bit evolving from the sequence of three white cells represent-
ing  the  least  significant  bit.  The  eight-bit  binary  sequence  of  evolved
cell  states,  converted  to  its  decimal  equivalent,  yields  a  single  coded
“rule number” that completely describes the evolution logic. An exam-
ple of the coding process is illustrated in Figure 4 for elementary cellu-
lar automata rule 22.

0 ÿ27 0 ÿ26 0 ÿ25 1 ÿ24 0 ÿ23 1 ÿ22 1 ÿ21 0 ÿ20

0 + 0 + 0 + 16 + 0 + 4 + 2 + 0

= 22

Figure 4. Rule numbers for cellular automata are based on the evolved binary
value (white = 0 and black = 1) of a transition function and the corresponding
bit  value  of  the  transition  function,  assuming  transition  functions  are  ar-
ranged in some standard order. For elementary rule 22, the first, second, and
fourth  transition  functions’  bits  evolve  to  a  black,  or  1,  state,  meaning  the
evolved  “byte”  is  (00010110).  The  decimal  representation  of  this  binary
value is 22.

3. System Behavior

In general,  a system behavior ranges from four to six classes depend-
ing  on  the  source  [1,  6–8].  In  Wolfram’s  classification  system,  four
classes of behavior are as follows.

Class I: Trivial Behavior. System states rapidly evolve to a uniform
quiescent  state.  An  example  of  trivial  behavior  is  found  in  rule  0  as
shown  in  Figure  5.  This  rule  creates  evolutions  of  all  white  cells  in
one step, regardless of initial conditions.

Figure  5. The  rule  set  for  elementary  cellular  automata  rule  0.  All  possible
combinations of three cells map to a white cell.

An  example  of  a  rule  set  that  is  normally  regarded  as  producing
simple behavior, but is capable of trivial behavior, is rule 90. Rule 90,
shown in Figure 6, is an additive rule. An additive rule has the prop-
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erty that the evolution is the spatial superposition of the independent
evolutions of each initial  cell.  Because of this property,  rule 90 is  de-
fined as simple despite the ability to produce apparently random evo-
lutions. The additive property also leads to trivial behavior in rule 90.
When  the  number  of  cells  N  in  the  network  is  equal  to
2n Hn = 1, 2, 3, …L,  the  evolution  reaches  a  trivial  state  in  exactly

2n-1  steps, regardless of the initial conditions. Example evolutions il-
lustrating  this  behavior  using  various  system  sizes  and  initial  condi-
tions are shown in Figure 7.

Figure  6. The  rule  set  for  elementary  cellular  automata  rule  90,  an  additive
rule.

HaL HbL HcL
Figure 7. Trivial behavior in a noninherently trivial rule set. Rule 90, an addi-

tive  rule,  produces  trivial  behavior  after  2n-1  evolution  steps  for  a  network
with  2n  cells,  regardless  of  the  initial  conditions.  The  evolution in  (a)  shows
rule 90 starting from a single black cell and N = 128, (b) from random initial
conditions with a 20% black cell density and N = 256, and (c) from random
initial conditions with a 50% black cell density and N = 512.

Class II: Simple Behavior. The system evolves, yielding a repetitive
pattern  of  finite  limit  cycles  or  streaks  resulting  from fixed-point  at-
tractors. Rule 4 provides an example of a simple behavior, known as
a  “filter”  rule,  which  identifies  the  number  of  white-black-white  cell
sequences in the initial conditions. The result of rule 4 is shown in Fig-
ure  8.  Since  the  number  of  streaks  depends  on  the  number  of  initial
white-black-white  cell  sequences  in  the  initial  conditions,  the  evolu-
tion  of  the  network  is  very  predictable  if  the  initial  conditions  are
known.
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Figure 8. (a) The rule set for elementary cellular automata rule 4. Rule 4 is a
filtering rule, identifying the number of white-black-white sequences. (b) The
first  150 evolution steps  of  rule  4  from random initial  conditions.  There  are
150 cells in the network.

Figure 9(a) shows the transition functions for rule 94. Like rule 4,
the evolution of  rule  94 is  dependent on the initial  conditions.  How-
ever,  rule  94  typically  has  limit  cycle  attractors  rather  than  fixed-
point  attractors.  In  the  example  evolution shown in Figure  9(b),  rule
94 has a limit cycle with a period of six evolution steps, the first com-
mon multiple of the period 3 sequence in the leftmost band and the pe-
riod 2 sequences on the right bands.

While  the  example  evolution  of  rule  94  is  more  complicated  than
that  for  rule  4,  the  behavior  in  Figure  9(b)  is  still  considered  simple.
Beyond  the  transient  response,  the  network  falls  into  a  repetitive  se-
quence of network states. 

Class III: Chaotic Behavior.  There are no attractors and the states
are  essentially  random.  Since  cellular  automata  are  deterministic  sys-
tems, it is guaranteed that any cellular automata evolution is periodic.
The behavior of a rule that creates chaotic behavior is therefore tech-
nically  not  random.  However,  the  evolution  may  be  required  to
evolve through 2 N  distinct states for a network consisting of N  cells.
For even modest size N, this means that a rule set exhibiting random
behavior locally can essentially be treated as globally random. 

The rule set for rule 30 is shown in Figure 10(a).  Despite the sim-
plicity  of  the  eight  rules  defining the  rule  set,  rule  30 inherently  pro-
duces chaotic behavior for essentially all but a trivial set of initial con-
ditions [9]. Figure 10(b) shows the evolution after 100 steps. Looking
at this evolution, we see some periodic structure on the left of the tri-
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Figure 9. (a) The rule set for elementary cellular automata rule 94. Rule 94 of-
ten  has  limit  cycle  attractors  rather  than  fixed-point  attractors.  (b)  The  first
150 evolution steps of rule 94 from random initial conditions. There are 150
cells in the network.

HaL
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Figure  10. (a)  The  rule  set  for  elementary  cellular  automata  rule  30.  Despite
the  simplicity  of  the  rule  set,  rule  30  inherently  produces  chaotic  behavior.
Evolutions  of  rule  30  starting  from  a  single  centered  black  cell  for  (b)  100
steps and (c) 500 steps.

angle.  However,  on  the  right  side,  there  is  no  discernible  pattern,  al-
though  there  are  similar  structures,  inverted  triangles,  throughout.
These local structures are of different sizes and follow no global struc-
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ture. We might at first assume that we have not evolved the network
sufficiently to observe a pattern or attractor with a longer cycle than
we  have  seen  in  simpler  evolutions.  But  when  the  system  is  evolved
further, as in Figure 10(c), the same behavior is apparent.

Class  IV:  Complex  Behavior.  Represents  a  mixture  of  simple  and
random behaviors,  and  has  been  described  as  a  transition  region  be-
tween the two. Like a phase transition from solid to liquid, the com-
plex regime is  a  transition regime from order  to  chaos.  This  form of
behavior is illustrated in rule 110, described in Figure 11(a). 

HaL

HbL
Figure 11. (a) The rule set for elementary cellular automata rule 110. Rule 110
results  in complex behavior,  a mixture of  order and chaos.  (b)  The first  300
evolution  steps  of  rule  110  from  random  initial  conditions.  There  are  300
cells in the network.

Figure 11(b) illustrates an example evolution of rule 110 from ran-
dom initial  conditions  for  the  first  300 evolution  steps.  After  a  tran-
sient  period,  the  system  settles  down  to  a  regular  background,
through  which  random  structures  meander  and  collide  to  form  new
structures  with  different  trajectories.  As  with  chaotic  evolutions,  the
system  is  deterministic  and  will  therefore  have  a  repetition  period.
Like chaotic systems, this limit cycle is  often very long, making com-
plex evolutions unpredictable. To determine the state of a given cell at
a specific evolution step, explicit evolution of the network from initial
conditions is therefore required.

According  to  biological  sciences,  particularly  evolutionary  pro-
cesses,  there  is  evidence  that  the  highest  average  fitness  occurs  when
the coevolution process is in a complex regime. In other words, com-
plex behavior allows optimality, but the other classes do not. For in-
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stance, genetic algorithms usually rely on the complex interactions of
“schema” to search through large design spaces [10, 11]. 

Since complexity is usually only qualitatively defined, we must mea-
sure the level  of  complexity to quantitatively determine the complex-
ity of the system.

4. Measures of Complexity

The  behavior  can  be  classified  by  intuitive  perceptive  abilities.  Cur-
rently,  there  is  no universal  quantitative  definition of  complexity  but
several measures have been proposed, both static and dynamic. Static
complexity  measures,  in  practice,  describe  the  potential  types  of  be-
havior that a system can support while dynamic complexity measures
describe  the  behavior  that  has  emerged  from  a  system.  Since  many
measures  have  been  proposed,  only  the  most  commonly  known  and
applied measures are presented in this paper. 

4.1 Static Measures
4.1.1 Shannon’s Information

This measure is based on information theory for finding the informa-
tion content in telecommunications. The information of a system of N
parts is defined by I as shown in equation (1):

(1)I = -K‚
i=0

N

pi log2 pi

where pi  is the probability of the ith  part/event/state occurring and K
is a constant that accounts for units of measure. The information con-
tent of N, IHNL is the sum of the information in each independent set
of events as in equation (2):

(2)IHNL = IHN1L + IHN2L.
For example,  the entropy of two outcomes with probability p  and

q = 1 - p is given by I = - Ip log2 p + q log2 qM. This example describes

the entropy in the elementary cellular automata with k = 2 states. En-
tropy  is  maximal  when  pblack = 0.5  for  a  given  cell.  Entropy  is  0
when either p = 0 (q = 1) or p = 1 (q = 0). In general, entropy is maxi-
mal for random systems and minimal for ordered ones.

4.1.2 l Parameter

This measure, introduced by Langton, is the method used to describe

the number of cell neighborhoods or transition functions of the 22 r+1
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possible neighborhoods evolving to a given state. It acts as an indica-
tor of the potential activity of evolutions:

(3)l =
m

22 r+1

where  m  is  the  number  of  active  cell  neighborhoods  and  r  is  the  ra-
dius  of  the  neighborhood (e.g.,  in  Figure  4,  there  are  eight  neighbor-
hoods of three cells, each with r = 1). For l = 0, there is no potential
activity. As the value of l is increased to 0.5, the corresponding behav-
ior  goes  through  fundamental  changes,  while  for  l = 0.5,  evolutions
are chaotic without attractors. When l  is  increased from low to high
values,  the  behavior  of  evolutions  passes  through  a  transition  region
at some critical range corresponding to a complex regime.

4.1.3 Hierarchical Complexity

The complexity of hierarchical systems is based on the idea of cluster-
ing system components according to the strength of their mutual inter-
actions.  The  most  strongly  interacting  components  are  associated
with  upper  parts  of  the  hierarchy,  followed  by  progressively  weaker
associated components.  Complexity in the system is  based on a mea-
surement  of  the  system  described  by  the  number  of  interactions  be-
tween  or  within  subtrees  of  a  hierarchy.  Complexity  of  a  hierarchy
CHTL is defined as in equation (4):

(4)CHTL = log2 DHTL = log2 f HkTL‰
j=1

k

DITjM
where  DHTL  is  the  diversity  of  the  tree  found by counting all  distinct
interactions within clusters or subtrees of T.  If the tree branches to a
single  leaf  or  set  of  single  leaves,  the  diversity  of  each leaf  is  1,  as  is
the  diversity  of  the  root.  The  diversity  becomes  greater  than  1  when
at  least  two subtrees  from one (sub)root  have different  structures.  fT
is the form factor presenting the number of distinct subtrees stemming
from a given (sub)root. It is calculated as the number of ways Nk  that

k subtrees can interact and is given as 2kT - 1. A tree with a constant
branching  ratio  has  only  one  distinct  subtree  at  every  tier  and  there-
fore has a diversity of 1 and a complexity of 0. This follows intuition,
as a constant branching ratio represents an ordered structure.

4.1.4 Simplicial Complexes

A simplicial  complex is  described by the association between the ele-
mentary  networks  combined  to  construct  a  system.  The  number  of
nodes in an n-simplex is n + 1. 
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In such a system, a single node or multiple nodes can be members
of multiple distinct simplices. The relation between simplices is charac-
terized  by  the  simplices’  q-connectivity,  presenting  the  minimum
number  of  shared  edges  between  two  particular  simplices.  The  first

structure  vector  Q = 8QD, QD-1, … , Q0<  describes  the  number  of
q-connected  simplices  of  each  value  of  q  for  0 § q § D,  where  D  is
the largest dimension simplex of the simplicial complex. 

The complexity measure KHCL of a simplicial complex based on the

first structure vector Q is given by equation (5):

(5)KHCL = 2

HD + 1L HD + 2L ‚i=0

D Hi + 1LQi.

4.1.5 Number of Components

A fundamental part of component counting, proposed by Bar-Yam, is
that complexity is a function of the interactions between elements and
with  greater  numbers  of  interacting  elements  comes  greater  potential
for complex behavior. Key to using component counting as a complex-
ity measure is the identification of relevant components and the scale
of  observation.  Complexity,  in  general,  is  maximal  on  microscopic
scales and decreases as the scales increase in size. The rate of decrease
and the shape of the complexity profile depend on the behavior of the
system.

The  component  counting  method  lacks  ability  to  describe  the  be-
havior of the system but it is able to present the potential character of
behavior supported by a system. In addition, component counting fre-
quently  ignores  the  connectivity  between  elements,  an  important
consideration.

4.2 Dynamic Measures
4.2.1 Mutual Information

Mutual  information  describes  how  well  information  communicates
through  a  system  and  presents  the  correlations  between  variables  as
well.  The mutual information between two probabilities 8pi<  and 9pj=
using the joint probability 9pij= is given by equation (6):

(6)M = ‚
i
‚

j
pij log

pij

pi pj

.
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4.2.2 Algorithmic Complexity

Introduced by Solomonoff,  Komogorov,  and Chaitin  [12–14],  the  al-
gorithmic  complexity  ICHsL  of  a  binary  string  s  is  defined  to  be  the
shortest  program  p  that  produces  the  output  s  on  a  universal  com-
puter U. Equation (7) shows the relation of the variables:

(7)IUHsL = minUHpL=s
logHpL.

The value of ICHsL depends on the universal computer used. The dif-
ference  between  algorithmic  complexities  on  universal  computer  U1
and  U2  is  limited  by  the  additional  information  tU1 U2

 required  for

each computer to emulate the other as presented in equation (8):

(8)°IU1
HsL - IU2

HsL• § °tU1 U2
•.

It  is  practically  difficult  to  set  up  an  absolute  measure  of  algo-
rithmic  complexity  for  a  given  system  since  no  formal  descriptive
system can encompass all  true theorems (e.g.,  Godel’s incompleteness
theorem).  For  example,  consider  two  binary  digit  sequences,
(a)!10101010101010101010  and  (b)  10111001001010011010.  Se-
quence  (a)  can  be  compressed  to  a  short  program  <Print  '10'  ten
times> and has low algorithmic complexity, while the sequence in (b)
is  incompressible  and  requires  a  program  approximately  as  long  as
the  digit  sequence  itself  to  represent  it,  resulting  in  high  algorithmic
complexity.

4.2.3 Computational Complexity

Computational complexity measures the minimal time or memory re-

quired by a universal computer to solve a particular problem. If ⁄N
HiL  is

the  initial  state  of  a  size-N  problem with  a  final  state  solution  using

function f  of ⁄N
Hf L, then the computational complexity HC H⁄N

Hf L L is the
time required t for the program P running on the universal computer

U  to  reach  state  ⁄N
Hf L  from  initial  state  ⁄N

HiL.  The  relation  is  in
equation!(9):

(9)HCH‚
N

Hf L L = min
UHPL=⁄N

Hf L tUHPL.
Computational  complexity treats  all  complexity measures  in terms

of functions, but a difficulty with this approach is that not all systems
are describable in terms of functions.

4.2.4 Logical Depth

Logical  depth  DU
L  describes  the  time  t  required  for  a  universal  com-

puter  U  to  execute  a  minimal  program  P*  to  generate  some  output
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representative of object O as in equation (10). Note that SHOL is the bi-
nary string representation of the object O:

(10)DU
L HOL = tUHP*L where UHP*L = SHOL.

5. Complexity in Natural Systems

The  real  reason  for  looking  at  natural  systems  is  that  they  show  a
strong correlation between complex behavior and adaptability. In nat-
ural  systems,  we  will  see  that  adaptability,  not  necessarily  perfor-
mance in a given environment, implies optimality. To illustrate the as-
sociation  between  complex  behavior,  adaptability,  and  optimality  in
biological  systems,  we  will  investigate  evolutionary  theory  and  the
models  used  to  study  evolution.  Fundamental  to  the  relationships  of
these attributes is the context of the network topology.

Coevolution  is  the  simultaneous  evolution  of  interdependent
species  that  evolve  to  a  complex  regime  at  the  transition  region  be-
tween order and chaos.  Two models  are presented to give an idea of
the  process  of  coevolution.  The  first  model,  described  by  Kauffman
[15],  shows  that  by  tuning  the  parameters  that  determine  how genes
affect the fitness within an organism and among species, it is possible
to create a continuum of evolutionary strategy behaviors, from stable
to chaotic. In addition, the model shows that when the coevolution is
in a complex regime, the aggregate fitness of all  coevolving species is
at a maximum. The second model,  created by Holland [11, 16],  uses
a  simulated  ecosystem  with  no  external  measures  of  fitness,  but  still
exhibits evolution toward complex regimes. 

Kauffman describes two ultimate behaviors that can occur in a coe-
volving  system  of  interdependent  species.  The  first  is  known  as  the
evolutionary  stable  strategy  (ESS)  regime  of  behavior.  An  ESS  de-
scribes a Nash equilibrium [17] where each agent will always have at
least  one  Nash  strategy.  The  Nash  strategy  has  the  property  that  an
agent  will  be  better  off  following  it  as  long  as  all  other  agents  in-
volved follow their own Nash strategy. In terms of fitness landscapes,
all  species have found a suitable local peak from which they have no
incentive to move.

The second region of behavior is the Red Queen, or chaotic regime.
In  this  regime,  the  coevolutionary  process  continually  changes  as  a
species  deforms  the  fitness  landscape  of  another.  This  second species
in turns deforms the landscape of the first species, forming a feedback
loop.  This  process  becomes  even  more  complicated  as  more  species
are added to the web of interactions.

Both  the  ESS  and  chaotic  regimes  result  in  low  overall  fitness  for
all  species.  In ESS behavior,  species remain frozen at low local  peaks
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on their fitness landscapes while in chaotic coevolution, the landscape
of  each  species  constantly  changes,  and  a  species  that  has  found  a
peak is soon knocked off as the landscape is deformed by changes in
other species.

Kauffman uses  a  four-parameter  model  to explore the relation be-
tween the  relative  rates  of  fitness  landscape  deformability  and move-
ment  within  a  landscape  and  the  resulting  coevolutionary  behavior
with  coupled  fitness  landscapes.  The  first  parameter  N  describes  the
number of genes (or traits) that defines each organism. The values for
each trait or gene are taken to be binary. The second parameter K de-
scribes the number of epistatic couplings between genes within an or-
ganism’s genome. Epistatic coupling describes the fitness contribution
of one allele (0 or 1) of one gene in relation to other specific genes in
the genome. To define how genes interact between species and how fit-
ness landscapes are coupled, the model uses a coevolution coupling pa-
rameter  C,  which  indicates  how  each  of  the  N  genes  in  one  species
makes a fitness contribution that depends on C  genes, again modeled
as binary values, in each of the other connected species. The final pa-
rameter necessary in the model describes the number of species found
in the ecosystem S.

Varying the values of the number of genes in each species, the num-
ber of intraspecies epistatic couplings, the number of interspecies gene
couplings, and the species population in an ecosystem, it is possible to
produce different evolutionary behaviors.  When either the number of
epistatic couplings K  is  high, or the number of interspecies gene cou-
plings C is low, the ecosystem tends to settle to an evolutionary stable
strategy where all species have found peaks in their fitness landscapes
such that no mutation leads to increased fitness. When K  is high, the
landscape  is  rugged,  resulting  in  many  peaks  for  a  species  to  get
trapped on.  When C  is  low, landscape deformation of  species  A  that
results  from  an  adaptive  walk  of  species  B  is  minimal,  so  that  the
peak  that  A  had  found  remains  a  peak.  Behavior  in  the  ESS  regime
also arises when the number of species in the ecosystem S is low. This
result follows the logic that the fewer the species that can deform the
landscape,  the  less  the  landscape  has  the  potential  to  change.  Kauff-
man identifies ESS behavior by plotting the fitness of species through
successive generations [18]. When an ecosystem reaches a steady-state
condition, no changes in fitness occur throughout the population, indi-
cating no changes in genotypes. The ecosystem has found a Nash equi-
librium,  where  all  species  have  found  their  optimal  configurations
with respect to the configurations of the rest of the population.

Chaotic behavior results when K is low (when there are few peaks
to get trapped on), when C  is high (many interdependencies exist be-
tween species so that a change in one species can have a significant ef-
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fect on another species' landscape), or when S is high (so that each fit-
ness  landscape  is  directly  affected  by  many  other  species).  In  this
regime  of  behavior,  the  peaks  on  each  fitness  landscape  move  away
faster than the species can chase them and overall fitness is low.

The model indicates that the number of interspecies gene couplings
and the number of species comprising an ecosystem have the greatest
effect on the behavior of the coevolutionary process. When C is high,
a single move by one species has significant impact on the fitness land-
scapes  of  other  species  because  the  chance  that  the  genotype  of  a
species is affected by a mutated gene in another species is greater than
if  C  is  low. Similarly,  when the number of species in an ecosystem is
high and connectivity  is  complete  so  that  many species  affect  the  fit-
ness of a single species, there is a greater chance of a single landscape
being deformed, and the landscape is also subject to the collective ef-
fects of multiple deformations.

These  results  indicate  that  both  stable  and  chaotic  regimes  can
exist in the same system, with the type of behavior dependent on the
values  of  the  input  parameters.  Tuning  the  parameters  results  in  a
transition  between  regimes,  much  like  the  change  from  simple  to
chaotic behavior observed when the value of the l parameter, a char-
acteristic of a rule set that indicates the level of activity, is increased in
cellular automata systems. In this transition regime, as in cellular au-
tomata  networks,  coevolution  is  a  mixture  of  ESS  and  chaotic
behaviors.

To  illustrate  this  mixture  of  behaviors,  Kauffman  uses  a  set  of
ecosystems  coevolved  with  the  same  model  parameter  values.  Multi-
ple  sets  are  used  to  demonstrate  the  effect  of  varying  the  number  of
epistatic  couplings.  The  observed  values  are  the  number  of  ecosys-
tems, evolved with the same number of epistatic couplings, that have
found  a  Nash  equilibrium  within  a  specified  number  of  generations.
Each set of 50 ecosystems is assumed to contain 25 species, arranged
in an arbitrary 5 by 5 lattice. Connectivity is not complete, but is re-
stricted  to  the  nearest  neighbors  to  the  north,  east,  south,  and  west.
Boundary  conditions  are  not  periodic  and  species  in  the  corners  and
on the edges of the lattice have two and three neighbors, respectively.
The number of interspecies couplings is fixed to a single gene.

The  results  of  varying  the  number  of  epistatic  couplings  indicate
that,  for  low  values  of  K,  the  coevolution  process  is  always  chaotic,
with all  50 ecosystems in a state  of  perpetual  variation at  the end of
200  generations.  Conversely,  with  K  sufficiently  high,  all  50  ecosys-
tems  will  find  Nash  equilibria  within  the  200  generations  available.
The rate at which the species approach their equilibria increases with
increasing values of K. When K is at a value of 10 however, a percent-
age of the 50 trial ecosystems has not reached a stable strategy in the
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200 generations available.  This  indicates  a transition region from or-
dered to chaotic behavior for this set of parameters with respect to a
time scale as the number of epistatic couplings increases.

As parameters  are  changed,  the aggregate  fitness  also varies.  As K
is  increased  from  low  values,  the  average  fitness  of  an  ecosystem  at
first  increases,  and then decreases.  Absolute values of  fitness  are also
affected by the number of epistatic couplings. The most important re-
sult  here,  and key  to  the  assumptions  in  this  work,  is  that,  unlike  in
cellular  automata  networks,  where  tuning  the  l  parameter  corre-
sponds  to  qualitative  changes  in  behavior,  a  correlation  exists  be-
tween the behavior of the coevolution process and the performance of
the  species  within  the  ecosystem,  measured  in  terms  of  fitness.  The
highest  average  fitness  occurs  when  the  coevolution  process  is  in  a
complex  regime,  in  the  transition  region  between  ESS  and  chaotic
behavior.

6. Elevator Group Control and Naval Weapons Elevators

A  naval  weapons  elevator  system  is  similar  to  any  elevator  system.
For  our  purposes,  the  system  consists  of  four  types  of  elements  that
are  entities  (passengers  or  materiel),  elevators,  queues,  and  destina-
tions.  The  main  function  of  the  system  is  the  transportation  of  ele-
ments  between  the  main  deck  and  magazines  sketched  in  Figure  12.
Scheduled  movements  of  the  elevator  can  be  divided  into  two  types,
that  is,  strike-down  operations  and  strike-up  operations.  Like  up-
peak,  a  strike-down  operation  is  a  moving  of  an  elevator  from  the
main deck to magazines, while strike-up, like down-peak, is a moving
of  an elevator  from magazines  to  the  main deck.  As up-peak empiri-
cally provides the greatest limitations on system performance, we will
assume  that  strike-up  and  strike-down  behave  similarly  and  we  will
only consider strike-down operations for our study.

Figure 12. Strike-down and strike-up weapons transfer scenarios.

The  most  important  measure  of  the  performance  of  the  weapons
elevator system is  the total  cycle  time.  Minimizing the length of  time
ordnance  remains  on  the  main  deck  during  strike-down and  convey-
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ing ordnance to the main deck at  a  rate  that  matches the demand of
flight  operation during strike-up constitute  the  expected performance
of the system.

For a better understanding of the system, we would like to review
here the current configuration of a weapons elevator system. In an air-
craft  carrier,  multiple  elevators  are  employed  to  serve  a  number  of
magazines. Each elevator shaft operates with a single carriage always
remaining within the confines of the shaft that has only a vertical de-
gree  of  freedom.  Elevator  shafts  are  located  along  transverse  water-
tight bulkheads. The shafts can usually access two compartments, one
of  which  is  through  a  transverse  watertight  bulkhead.  Thus,  a  shaft
can  access  multiple  compartments  at  the  same  level  as  in  Figure  13.
To  isolate  the  shaft  from  the  compartments  when  the  doors  are
closed,  the  doors  between  the  shafts  and  magazines  are  also  water-
tight.  To  isolate  regions  within  the  shaft,  two  hatches  are  provided
within the elevator shaft shown in Figure 14. 

Figure 13. Plan view of a magazine layout. WT indicates a watertight partition.

Figure  14. Elevation  of  magazine  and  shaft  layout,  showing  ballistic  hatches
and doors.

The weapons elevator system operation commons involves multiple
elevators,  magazines,  and  queues  that  have  significant  interaction.
The basic operational  logic of  the system can be described by the se-
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quence of events in a strike-down operation in one elevator cycle in a
system consisting of a single queue, carriage, and magazine as shown
in Table 1. Note that the platform is initially located one level below
the  main  deck  and  all  doors  and  hatches  are  closed.  Figure  15  illus-
trates  the  weapons  elevator  transfer  operation  events  corresponding
to Table 1.

Step Event

1 Open main deck hatch

2 Move carriage to the main deck

3 Load carriage

4 Move carriage to the 02 level

5 Close main deck hatch

6 Open ballistic hatch

7 Move carriage to the magazine Hbelow ballistic hatchL
8 Open magazine door

9 Unload carriage

10 Close magazine door

11 Move carriage to the 02 level

12 Close ballistic hatch

Table 1. Current weapons elevator transfer operation events.

Figure 15. Theoretical operations of a current weapons elevator.

Although a naval weapons elevator system is similar to a commer-
cial elevator system, there are some differences between them. The dif-
ferences between both systems are with respect to the queues and the
ballistic safety features (interlocks) of the weapons elevator system.
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In  a  weapons  elevator  system,  we  have  information  about  the
queues, while the queues in the commercial elevator are considered as
stochastic (equation (11)). The rate of passengers (items in queue) en-
tering the system can be described by a Poisson distribution, where n
is the number of calls being registered in the time interval T for an av-
erage rate of arrival l:

(11)prHnL = HlTLn
n !

e-lT .

Due to several reasons, the queues in a naval weapons elevator sys-
tem are not ideal and can encounter variability.

7. Naval Weapons Elevator Simulations

The  physical  layout  and  mode  of  operation  employed  in  naval
weapons  elevators  are  two  of  an  extremely  large  number  of  system
configurations. In a large design space corresponding to systems with
nonlinear  dynamics,  the  process  of  reductionism,  creating  generaliza-
tions regarding the effects of a single variable, is not applicable. Simu-
lation,  therefore,  is  the  only  approach  that  provides  the  predictive
shortcut to indicate the performance or behavior of that configuration.

Physical  characteristics  of  a  naval  weapons  elevator  system  de-
scribe  three  types  of  spaces—queues,  shafts,  and  destinations—and
also  include  the  arrangement  and  interactions  among  the  spaces.  In
this paper, which considers only the strike-down scenario, queues are
the main deck areas and destinations are magazines. The relationships
between  spaces  can  be  compactly  described  using  three  distinct  inci-
dence metrics: the matrix relating shafts and queues (SQ),  the matrix
relating  shafts  and  magazines  (SM),  and  the  matrix  relating  queues
and  magazines  (QM).  Based  on  physical  relationships,  SQ  and  SM

matrices are considered 0th-order incidence matrices since they are ad-
jacent spaces,  and the QM  matrix is  considered a 1st-order incidence
matrix  due  to  the  indirect  relationship  between  spaces.  The  relation-
ship among the three matrices is shown in equation (12):

(12)HQML = HSQLT HSML.
Zeroth-order incidence matrices consist of only binary values indi-

cating  the  presence  or  lack  of  interactions.  However,  elements  in
higher-order incidence matrices are not necessarily only binary values.
The  entries  in  the  1st-order  QM  matrix  indicate  not  only  a  relation-
ship between queues and magazines, but also the number of shafts by
which the spaces are related. For example, consider a conventional ele-
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vator  system  with  carriages  fixed  in  shafts  consisting  of  two  shafts,

two queues, and three magazines with the 0th-order SQ and SM inci-

dence matrices defined in Figure 16. The resulting 1st-order QM  ma-
trix  is  therefore  calculated  in  Figure  16.  For  the  SQ  matrix,  the  first
shaft is connected only to the first queue while the second shaft is con-
nected to both queues. For the SM matrix, the first shaft is connected
to  all  three  magazines  but  the  second  shaft  is  connected  only  to  the
third  magazine.  The  QM  matrix  is  determined  from the  SQ  and  SM
matrices. The connectivity of the first shaft results in many of the con-
nections  between  the  first  queue  and  all  magazines.  Since  the  first
shaft  is  not  connected  to  the  second  queue  and  the  second  shaft  is
only connected to the third magazine, there is no connection between
the second queue and the first and second magazines.

HSQL !
1 0

1 1
HSML !

1 1 1

0 0 1

HQML !
1 1

0 1

1 1 1

0 0 1
!

1 1 2

0 0 1

Figure 16. Incident matrices  describing the relationship of  shafts,  queues,  and
magazines.

In  descriptions  of  these  systems,  information  regarding  the  direc-
tionality  of  shafts  is  included  as  a  shaft  direction  vector  (SDV)  and

the  0th-order  directed  incidence  matrices  are  determined  by  row-by-
row scalar multiplication of each element in the shaft direction vector
(or 1 minus the element)  with the SQ  and SM  matrices,  as  shown in
equations (13) through (16):

(13)SQupi
= SDVi SQi 8i i = 1 … s<

(14)SQdowni
= H1 - SDViL SQi 8i i = 1 … s<

(15)SMupi
= SDVi SMi 8i i = 1 … s<

(16)SMdowni
= H1 - SDViL SMi 8i i = 1 … s<.

For  a  system  with  q  queues,  s  shafts,  and  m  magazines  (base
q-s-m), there are 2sq SQ incidence matrices and 2sm SM incidence ma-

trices,  for  a  total  of  2sq .2sm = 2sHq+mL  possible  physical  configura-
tions. In these possible configurations, however, there are invalid con-
figurations  such  as  all  0  entries  of  both  SQ  and  SM  matrices,  which
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are  a  null  system.  Valid  configurations  are  based  on  the  following
rules.

1. All shafts must be associated with at least one queue and magazine (no
all-zero rows in the SQ or SM matrices).

2. All queues and magazines must communicate with at least one shaft (no
all-zero columns in the SQ or SM matrices). For a unidirectional shaft,
all queues and magazines must communicate with at least one up-shaft
and one down-shaft.

3. SM  matrices  must  be  in  the  lowest  energy  state  with  respect  to  shafts
and magazines.

4. SQ matrices must be in the lowest energy state with respect to queues.

5. Any rows in the SQ matrix corresponding to repeated rows in SM must
be in the lowest energy state.

Operational logic of the elevator system is the set of rules that are
applied  to  evolve  a  system  from  its  initial  state  to  a  final  state.  In
terms  of  discrete  event  simulation,  the  operational  logic  determines
the evolution of states. 

There are two categories of decision logic that are used in the eleva-
tor system simulations. 

1. General operational logic is common to all elevator systems and repre-
sents  the  actual  state  changes  in  an  evolution.  For  instance,  a  carriage
goes up if its destination is above its current position.

2. Specific  operational  logic  controls  the  timing  of  general  logic.  Then,  it
defines  the  operational  behavior  of  the  system.  For  instance,  the  two
primary operational logic parameters that relate to the operation of car-
riages  and  hatches  are  the  serial/parallel  operation  of  carriages  and
doors/hatches, and interlock logic.

The input stream in a weapons elevator system is defined to be all
of  the  elements  to  be  transported  by  the  system.  These  elements  can
be considered as individual items, or a load of items with a common
destination.  The  four  major  characteristics  defining  an  input  stream
are the number, type, and order of items in the queues and the arrival
rate  of  items  throughout  an  evolution.  In  this  paper,  queues  are  as-
sumed  to  contain  all  items  at  the  start  of  an  evolution,  so  the  inter-
arrival rate of items is zero.

The  number  of  items  in  a  typical  input  stream is  fairly  large.  The
possible  permutations  of  items  within  a  single  queue  are  also  ex-
tremely large, following n ! for n distinct items. However, while there
exists  a  large  variety  of  types  of  ordnance  stored  on  an  aircraft  car-
rier, each item is ordinarily not distinct, as multiple items of the same
type are typically found. Since the order of the identical items is there-
fore not important,  the total number of possible input streams is sig-
nificantly reduced.
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Compatibility  between  certain  types  of  ordnance  is  another  factor
that results in grouping of identical items in queues. These constraints
result in the ability to make generalized statements about the contents
or arrangements of queues,  reducing the total  number of possible ar-
rangements of items in queues. 

The ordering of items assumes only one item is available at a time
and items  are  serially  treated.  This  assumption significantly  increases
the design space of the input streams and is associated with the facto-
rial terms. On the other hand, the factorial terms disappear when the
queues  are  assumed to  be  parallel,  in  which a  carriage  can access  all
items in queues. The parallel queues, however, are not unrealistic if a
queue  is  composed  of  a  limited  number  of  item  types.  In  a  parallel
queue,  items/destinations  are  selected  by  the  carriage  based  on  some
decision logic  intended,  but  not  guaranteed,  to  minimize  total  opera-
tion  time.  The  order  of  items  selected  in  a  parallel  queue  defines  a
near  upper  bound  on  performance  for  the  given  configuration.  How
close the resulting performance is to the actual upper bound is depen-
dent on the decision logic (heuristic) used. If a serial queue is ordered
using a heuristic  applied in a parallel  queue instead of  random selec-
tion of one of the n ! item arrangements, system performance is identi-
cal to the performance of a parallel queue system with the same set of
items.  This  concept  also  yields  an  arguably  better  performance  than
random selection. 

The  common  motives  for  the  number  of  assumptions  used  in  the
simulation model are to simplify the search space while offering com-
plete  characterization  of  the  ranges  of  behavior  and  performance.
These  assumptions  occur  with  respect  to  physical  attributes,  opera-
tional logic, and input streams.

Our goal is not to evaluate the performance of the actual system to-
ward its optimization but to identify the relationships between behav-
ior,  performance,  and  robustness.  Therefore,  the  vertical  distance
between each queue and magazine is identical and actual distances be-
tween spaces  are  not  specified.  Only  the  connectivity  between spaces
is considered.

In  another  attempt  to  limit  the  design  space,  we  assume  a  set  of
queues based on a predetermined ratio of item types. Additionally, all
queues contain identical item distributions at the start of a given simu-
lation. We are interested in complete characterization of how the ele-
vator  systems  respond  in  variable  environments.  By  varying  item
ratios systematically, however, each configuration is bound to experi-
ence queue distributions that both are and are not suited to its specific
connectivity, which could be thought of as varying the level of pertur-
bation in input streams from ideal sets. Identical queues of systemati-
cally varied item distributions are therefore intended to offer complete
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characterizations of the range of behavior and performance while lim-
iting the set of required simulations to tractable levels.

An encoding process, analogous to the encoding of evolution rules
in cellular automata, is used to systematically define and identify alter-
natives. Encoding expresses the configuration in the compact form of
a decimal number rather than a cumbersome description. A configura-
tion code is based on the system size, or base value, which is the num-
ber  of  queues,  shafts,  and  magazines.  The  total  number  of  bits  b  re-
quired  to  describe  the  physical  configuration  is  equal  to  the  sum  of
the  product  of  the  number  of  queues  and  shafts  and  the  product  of
the number of magazines and shafts, equal to the total number of en-
tries in the SQ and SM incidence matrices. This relationship is shown

in equation (17). The maximum decimal value for b bits is 2b - 1, the
maximum number of distinct configurations corresponding to a given
base:

(17)b = s.q + s.m = sHq + mL.
Valid configurations are determined by creating and testing all con-

figurations  corresponding  to  codes  0  to  2b - 1.  Configurations  are
constructed from a decimal value by first converting the decimal value
to a binary digit sequence. To derive SQ and SM matrices, the digit se-
quence is partitioned into two bytes, with lengths equal to the number
of entries in the SQ and SM matrices. The first byte is s.q long and is
comprised of the most significant bits. For binary code 01110111, the
partitioning process is illustrated in Figure 17.

01110111Ø H011101L H11L 011101Ø H011L H101LØ B 0 1 1
1 0 1 FHaL HbL

11Ø H1L H1LØ B 11 FHcL
Figure  17. (a)  Partitioning  code  119  into  SQ  and  SM  bytes.  (b)  Partitioning
SQ  bytes  to  form rows  in  the  SQ  matrix.  (c)  Partitioning  SM  bytes  to  form
rows in the SM matrix.

For all  coded configuration descriptions,  the code number and the
base  system are  provided along with a  description of  the  operational
logic  used in  a  binary format.  We let  serial  shaft  operations  equal  0,
parallel  shaft  operations  equal  1,  the  lack  of  interlocks  equal  0,  and
the use of interlocks equal 1. The distribution of item types may also
be included if a description of the input stream is required. An exam-
ple is shown in Figure 18.
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119 3 - 2 - 1 0 - 1 H100L
Figure 18. The code description of system 119, consisting of three queues, two
shafts, and one magazine. The system has serial shaft operations and uses in-
terlocks. All of the items in the queue are bound for the single magazine.

Visualization  techniques  are  used  to  describe  the  performance,
since  a  numerical  representation  does  not  necessarily  fully  character-
ize  the  behavior  of  the  evolution  and  provide  a  means  for  involving
subjective  human  perceptive  abilities.  For  long  evolutions,  explicit
state  representations,  especially  in  terms  of  verbal  descriptions,  are
practically impossible.

There are  several  visualization techniques that  can be used to pre-
sent evolutions. We primarily will use evolution histories, with respect
to both temporal  and logical  evolution lengths,  of  both system states
and the states of individual carriages. However, for completeness, we
also discuss cellular evolutions and state evolution trajectories.  These
techniques  are  not  used extensively,  although they have unique char-
acteristics that may be advantageous for particular conditions.

Cellular  representations  are  similar  to  the  cellular  automata  evo-
lutions  but  the  elevator  system  is  inhomogeneous,  with  cells  repre-
senting  distinct  system  attributes.  A  row  in  a  cellular  representation
represents  the  system  state  at  a  given  instant,  and  a  column  of  cells
represents the history of a single system attribute with time advancing
down the page. The width of the evolution is proportional to the num-
ber  of  attributes  required  to  completely  describe  the  system  and  in-
creases with larger system sizes. For consistency, all cellular represen-
tations are composed of only the attribute listed in Table 2 along with
a  description  of  their  possible  states.  All  of  the  system  states  are  bi-
nary  variables  and  are  represented  by  a  colored  cell  (black = true,
white = false). For long evolutions, the cellular representation is physi-
cally cumbersome, while evolution trajectories address this space issue
by illustrating behavior patterns.

Evolution trajectories are visualized by constructing a list of coordi-
nates  of  the  form  Hst-1, stL  for  It 1 § t § tf M  where  st  is  the  decimal

representation of the state of the system at time step t and st= 0  is the
initial state of the system. Figure 19 presents an evolution correspond-
ing  to  a  1-1-1  base  conventional  system  for  100  time  steps.  Since
there is only one item type, one source of items, and one carriage, the
evolution is repetitive and will follow the same evolution trajectory re-
gardless of the number of items or length of evolution.
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Attribute Possible States

Carriage location integer value

Carriage movement true ê false

Destination type queue ê magazine

Direction true ê false

Carriage loading true ê false

Carriage unloading true ê false

Upper ballistic hatch opening true ê false

Upper ballistic hatch open true ê false

Upper ballistic hatch closing true ê false

Upper ballistic hatch closed true ê false

Lower ballistic hatch opening true ê false

Lower ballistic hatch open true ê false

Lower ballistic hatch closing true ê false

Lower ballistic hatch closed true ê false

Magazine door opening true ê false

Magazine door open true ê false

Magazine door closing true ê false

Magazine door closed true ê false

Table  2. System  attributes  included  in  cellular  representation  visualization
techniques.

HaL HbL
Figure  19. Evolution  trajectory  for  the  simple  1-1-1  size  system.  There  are
only four states  entered by the single carriage.  (a)  In the evolution trajectory
using temporal evolution, repeated states are encountered, so all edges are par-
allel. (b) Each step in the logical trajectory corresponds to a state change.
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Evolution  histories  are  used  to  retain  the  information  associated
with  the  sequencing  of  states  missing  in  evolution  trajectories.  These
histories  are  similar  to  cellular  evolutions,  except  states  are  repre-
sented as encoded values. As with evolution trajectories, evolution his-
tories  can  be  presented  with  respect  to  both  the  temporal  evolution
length and the logical evolution length. Additionally,  evolution histo-
ries can be presented in terms of both system states and individual car-
riage states. The number of possible states that define valid history or
trajectory  points  is  dependent  on  the  system  size  and  the  arbitrary
level  of  detail  used to describe the system. The finest  detail  considers
all  system  states,  including  timers  and  item  locations,  and  no  states
are  ever  identical.  In  conventional  systems,  the  carriage  attributes
used to define a carriage state are presented in Table 3, along with the
number of bits required to describe each attribute.

Attribute Number of Bits

Global destination type 1

Global destination number MaxHCeilingHlog2 qL, CeilingHlog2 mLL
Current location type 2 H0 = queue, 1 = magazine, 2 = shaftL
Current location number MaxHCeilingHlog2 qL, CeilingHlog2 mLL
Loading 1

Unloading 1

Up direction 1

Down direction 1

Magazine reservation number CeilingHlog2 mL
Queue reservation number CeilingHlog2 qL
Carriage unsure of queue 1

Table 3. The carriage attribute used to define evolution states in conventional
elevator systems.

These attributes are used to describe a carriage in five possible car-
riage  states:  carriage  loading,  moving  down  to  a  destination  maga-
zine,  carriage  unloading,  moving  up  with  a  known  destination,  and
moving  up  without  a  known  destination,  respectively.  Combinations
of  these  state  variations  in  turn  define  system  states,  the  validity  of
which is based upon the physical limitations and constraints imposed
on  the  system.  The  attribute  combinations  defining  each  of  the  five
states are presented in Table 4.
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State 1 1 xx00xx1010xx000

State 2 1 xx10000001xx000

State 3 1 xx01xx010100000

State 4 0 xx1000001000xx0

State 5 0 xx1000001000001

Table  4. The  five  possible  state  descriptors  of  the  attribute  combinations  in
Table  3  and  bit  locations  for  a  conventional  system.  Variable  bits  are  indi-
cated  by  x  and  can  be  filled  by  binary  values  corresponding  to  possible  at-
tribute values. The number of x symbols is not fixed and depends on the sys-
tem size. Possible state variations are found by finding valid combinations of
possible bytes indicated by x.

In virtual conveyor systems (unidirectional shafts),  a carriage must
wait to select an available queue before moving up from a magazine,
since the selection of a queue depends on the selection of an appropri-
ate shaft. The “carriage unsure of queue” in conventional systems (bi-
directional  shafts)  seen in Table 3 is  therefore not  required in virtual
conveyor  systems.  The  virtual  conveyor  systems  assume  that  a  car-
riage  travels  in  a  down-shaft  while  loaded  and  up  in  a  shaft  when
unloaded. Virtual conveyors therefore use a bit to describe if the car-
riage  is  loaded,  which  eliminates  the  direction  bits  used  in  conven-
tional  system  state  descriptions.  The  attributes  used  to  describe  car-
riage  states  in  virtual  conveyor  systems  are  listed  in  Table  5,  along
with the number of bits required to describe each attribute.

Attribute Number of Bits

Global destination type 1

Global destination number MaxHCeilingHlog2 qL, CeilingHlog2 mLL
Current location type 2 H0 = queue, 1 = magazine,

2 = upper shaft, 3 = lower shaftL
Current location number MaxHCeilingHlog2 qL, CeilingHlog2 mLL
Loading 1

Unloading 1

Magazine reservation number CeilingHlog2 mL
Queue reservation number CeilingHlog2 qL
Carriage loaded 1

Table  5. The  carriage  attribute  used  to  define  evolution  states  in  virtual
conveyor elevator systems.
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With mobile carriages, it is possible to have multiple carriages in a
single shaft, magazine, or queue. As there are multiple carriages in the
same  location,  virtual  conveyors  are  divided  into  zones,  each  with  a
maximum occupancy limit. The zones in a virtual conveyor are listed,
along  with  a  description  of  their  boundaries  or  the  state  of  the  car-
riages within them in Table 6. The use of zones results in an increase
in  the  carriage  states.  There  are  11  carriage  states,  as  shown  in
Table!7.

Queue Contain carriages loading or waiting to load.

Queue to Shaft All carriages are loaded. Bounded by the upper
ballistic hatch of the destination shaft.

Upper Shaft From the upper to lower ballistic hatch.

Lower Shaft From the lower ballistic hatch to all magazine doors
in that lower shaft.

Shaft to Magazine Loaded carriages moving from the magazine door
connected to the down-shaft to the magazine
unloading area.

Magazine Carriages are unloading or waiting to unload.

Magazine to Shaft From the magazine unloading area to the
selected up-shaft door. All carriages are unloaded
and have selected their queue and shaft.

Table 6. Zone definitions for virtual conveyors. Zones are defined by physical
boundaries of the state of carriages within them.

The  qualitative  descriptions  of  evolution  histories  are  loosely  re-
lated to the concept of algorithmic complexity. In a simple evolution,
it is possible to describe the patterns that occur in a compressed form,
while for the most complex trajectories, a description of the pattern is
incompressible  and  explicit  representation  is  required  to  describe  the
pattern without losing information. 

8. Measure of Complexity for Weapons Elevator Simulations

As described in Section 7, both static and dynamic measures are used
for  the  elevator  systems.  Static  measures  describe  the  potential  com-
plexity of the system, such as the total number of possible valid states
the system can enter, the physical connectivity, and the logical connec-
tivity of the system. Dynamic measures are based on actual complex-
ity.  Dynamic measures  are  therefore  more accurate,  but  the  accuracy
also comes with cost,  in this  case,  time/computational  cost.  Since the
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State Number State

1 Carriage loading

2 Moving from queue to shaft

3 Moving down in upper shaft

4 Moving down in lower shaft

5 Moving to magazine Hincludes entering magazine
from shaftL

6 Unloading

7 Finished unloading and unsure of destination

8 Moving from magazine to shaft with known
destination queue

9 Moving up in lower shaft

10 Moving up in upper shaft

11 Moving to queue Hincludes entering queue from shaftL
Table  7. The  11  possible  carriage  states  used  in  a  virtual  conveyor  elevator
system.

complete  design  space  of  elevator  systems  is  quite  large,  the  use  of
static versus dynamic measures and relative accuracy are therefore of
great significance. The static and dynamic measures used in this paper
are presented in Table 8.

Static Dynamic

Total number of possible states Number of unique states used

Average physical connectivity Fraction of states used

Fraction of potential connectivity Logical complexity

Average logical connectivity State complexity

Compressed state complexity

Table  8. Static  and  dynamic  measures  of  complexity  specific  to  elevator
systems.

The  total  number  of  possible  states  is  based  on  the  counting  of
states as an estimate of complexity used by Bar-Yam [14]. When used
as  a  static  measure,  all  potential  system  states  are  counted,  rather
than the number of states a system exhibits during an evolution. The
number of carriages in the system has a significant impact on the num-
ber of possible states, as shown in equation (18):

(18)total valid states § In
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where I is the number of possible states for an individual carriage and
n is the number of carriages in the system.

Average  physical  connectivity  is  associated  with  the  l  parameter,
described  in  another  format  with  connectivity  by  Kauffman  [12].
Kauffman concludes that, for systems with low connectivity with one
or two connections, behavior can only be trivial or simple. For a sys-
tem with complete connectivity, behavior is almost always chaotic, ex-
cept for the simplest of initial conditions. In between, complex behav-
ior is found with the proper tuning of the l parameter and the system
connectivity.  Average  physical  connectivity  provides  an  indication  of
system architecture.

Physical  connectivity  is  calculated from SQ  and SM  incidence ma-
trices  and  measures  the  accessibility  between  spaces.  The  expression
used  to  calculate  average  physical  connectivity  is  presented  in  equa-
tion (19):

(19)

average physical connectivity =

2 I⁄i=1
s ⁄j=1

q SQij +⁄i=1
s ⁄k=1

m SMikM
s + q + m

=

2⁄i=1
s I⁄j=1

q SQij +⁄k=1
m SMikM

s + q + m
.

The fraction of  potential  connectivity  represents  the normalization
of the average physical connectivity with respect to the maximum av-
erage  physical  connectivity  for  a  system  with  the  same  number  of
physical  spaces.  Equations  (20)  and  (21)  present  the  maximum aver-
age physical connectivity and the fraction of physical connectivity, the
ratio  of  the  average  connectivity  to  the  maximum  average  physical
connectivity, respectively:

(20)maximum average physical connectivity =
2 Hsq + smL
s + q + m

(21)

fraction of potential connectivity =

2⁄i=1
s I⁄j=1

q SQij +⁄k=1
m SMikM

sq + sm
.

The average logical connectivity describes the amount of informa-
tion  comprising  an  evolution  rule  associated  with  a  system attribute.
In  an  inhomogeneous  system like  the  elevator  system,  where  the  sys-
tem attributes can be thought of as analogous to the cells of a cellular
automata network, the amount of information required to evolve sys-
tem attributes is variable and connections to a single attribute may be
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distributed over a wide range of  the attribute network,  not restricted
to a local neighborhood.

Logical connectivity is determined by searching through the simula-
tion code and identifying the number of variables that are involved in
the  decision  logic  for  each  attribute.  Since  different  evolution  logic
may be used depending on the control logic, the values of logical con-
nectivity may vary.

The expressions for  the logical  connectivities  for  conventional  and
virtual  conveyors  for  the  various  control  logics  are  presented  in
Table!9, where l is the number of items carried per carriage load. The
expressions  in  Table  9  indicate  that  the  logical  connectivity  is  con-
stant for a fixed system size and control logic, regardless of any physi-
cal or structural differences among the systems of that size. In this re-
spect,  the average logical  connectivity is  analogous to the measure of
the  maximum  average  physical  connectivity  of  a  system,  measuring
the potential complexity of a system size.

In  addition  to  the  operational  logic,  the  values  of  the  logical  con-
nectivities  are  dependent  on  the  system  size,  which  illustrates  that
more entities affect the evolution of an attribute in larger systems, in-
creasing the complexity of the system toward chaos. Furthermore, the
expressions and values of average logical connectivity are also depen-
dent on the evolution logic and number of attributes considered.

A dynamic measure of logical connectivity is costly in large simula-
tions. It is therefore not considered in this paper.

Operational Logic Average Logical Connectivity

Conventional, serial, interlocks
335+59 n+l+68 m+10 q

42

Conventional, serial, no interlocks
329+59 n+l+38 m+10 q

42

Conventional, parallel, interlocks
296+59 n+l+51 m+10 q

42

Conventional, parallel, no interlocks
290+59 n+l+22 m+10 q

42

Virtual conveyor, serial, interlocks
507+346 n+53 m+6 q+50 s

58

Virtual conveyor, serial, no interlocks
491+331 n+20 m+6 q+44 s

58

Virtual conveyor, parallel, interlocks
476+211 n+8 m+6 q+44 s

58

Virtual conveyor, parallel, no interlocks
507+346 n+53 m+6 q+50 s

58

Table 9. The average logical connectivity for tested operational logics. The logi-
cal  connectivity  is  dependent  on  system  size  and  the  operational  logic
employed.
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The number of  unique states  used is  based on the complexity esti-
mation technique of Bar-Yam [14], and the number of states visited in
an evolution is the dynamic equivalent to the static measure of the to-
tal number of possible states comprising an evolution state space. The
measure  of  the  number  of  visited  states  is  dependent  on  the  scale  of
the definition of the attributes used to define system states. 

For a given evolution, the finer the resolution, the greater the num-
ber  of  unique  states  found  in  an  evolution.  A  greater  number  of
visited states is an indication of greater complexity.

The fraction of states used is a mixture of dynamic and static com-
plexity  measures.  However,  since  explicit  simulation is  required,  it  is
defined  as  a  dynamic  measure.  The  expression  for  the  fraction  of
states used is presented in equation (22):

(22)

fraction of states used =

number of unique states used

total number of possible states
.

A comparison of the actual space explored to the potential space in-
dicates how the actual evolution “lives up” to its potential. The com-
parison also validates the use of the total number of possible states as
a potential measure of complexity.

The  logical  complexity/logical  compression  is  a  normalized  com-
plexity  measure  enabling comparison of  evolutions  of  systems of  dif-
ferent sizes. The logical complexity CxL

 describes the amount of infor-
mation  required  to  express  the  logical  sequence  of  states  and  is
defined in equation (23):

(23)CxL
=

logical evolution length

temporal evolution length
.

Logical  compression  describes  the  amount  of  redundant  informa-
tion in an evolution with respect to the logical sequence of states. The
logical compression CmL

 is defined in equation (24):

(24)CmL
= 1 -

logical evolution length

temporal evolution length
= 1 - CxL

.

The logical evolution length is defined as the length of an evolution
logically  equivalent  to an evolution history but with at  least  one sys-
tem  attribute  change  per  evolution  step.  The  logical  evolution  there-
fore does not change the sequencing of states, but removes the tempo-
ral  dependence.  A  logical  evolution  by  definition  is  always  less  than
or  equal  to  the  equivalent  temporal  evolution  length,  and  the  logic
complexity and compression therefore range from 0 to 1.
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Logical  complexity/compression  is  based  fundamentally  on  the
measure  of  algorithmic  complexity.  Algorithmic  complexity  is  great-
est when the algorithm is incompressible. An evolution with repeated
states can be compressed by substituting the explicit state representa-
tions with a description of the number of repetitions. The information
compression for a single repeated state follows the expression in equa-
tion (25) for a state composed of b bits with p repetitions:

(25)1 -
b + p

bp
.

For states composed of a large number of attributes, the additional
information required to describe the number of repetitions in the com-
pressed  form becomes  negligible,  and  equation  (25)  reduces  to  equa-
tion  (26),  which  essentially  states  that  any  information  additional  to
the declaration of the first state is redundant:

(26)1 -
1

b
.

State  complexity/state  compression  is  another  application  of
algorithmic  complexity  that  accounts  for  global  patterns  and  local
patterns.  The  state  complexity  identifies  the  number  of  unique  states
in  an  evolution,  indicating  the  information  necessary  to  represent
both runs of identical states and possible global sequences. The num-
ber of unique states is normalized with respect to the temporal evolu-
tion  length  shown  in  equation  (27),  where  the  state  complexity  is
denoted by CxS

:

(27)CxS
=

number of unique states used

temporal evolution length
.

The state compression CmS
 describes the amount of redundant in-

formation in a temporal evolution when the local and global patterns
are  taken  into  account,  and  is  related  to  the  state  complexity  as  in
equation (28):

(28)CmS
= 1 -

number of unique states used

temporal evolution length
= 1 - CxS

.

Following the definition of algorithmic complexity, maximum com-
plexity occurs when there is no redundant information and each state
in the temporal evolution is unique, that is, ICxS

= 1, CmS
= 0M.

The number of unique states visited is normalized by the length of
the temporal evolution to obtain a complexity measure corresponding
to the actual evolution.
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The  compressed  state  complexity/compressed  state  compression  is
identical  to  the  state  complexity,  except  that  the  number  of  unique
states visited in an evolution is normalized by the length of the logical
evolution,  rather  than  the  length  of  the  temporal  evolution.  The  ex-
pression  for  the  compressed  state  complexity  CxC

 is  given  in
equation!(29):

(29)CxC
=

number of unique states used

logical evolution length
.

The compressed state compression CmC
 describes the amount of re-

dundant  information  in  the  logical  evolution,  related  to  compressed
state complexity by the relationship in equation (30):

(30)CmC
= 1 -

number of unique states used

logical evolution length
= 1 - CxC

.

The  compressed  state  complexity  is  related  to  the  logical  com-
plexity  and  the  state  complexity  by  the  expression  in  equation  (31).
The relation in equation (31) indicates that the compressed state com-
plexity  is  the  ratio  of  the  information  required  to  account  for  local
and  global  patterns  to  the  information  required  to  account  for  local
patterns  only.  The  amounts  of  compression  are  not  related  in  this
manner, and the compressed state compression does not represent the
excess information describing repetitions of global patterns:

(31)CxC
=

CxS

CxL

.

In the case of longer evolutions resulting from a greater number of
repetitions of a single sequence of states, the relative values of the frac-
tion  of  unique  visited  states  that  a  set  of  repeating  states  comprises,
the number of states in the set of repeated states, the number of repeti-
tions  of  the  set,  and  the  original  logical  evolution  length  collectively
affect the complexity. The compressed state complexity is generalized
in equation (32), where u is the number of unique states visited in the
evolution,  excluding  the  states  comprising  the  set  of  repeating  states
x.  The  original  number  of  logical  evolution  steps  TL  increases  with
each additional repetition p of the x states:

(32)CxC
=

u + x

TL + px
where u + x § TL.
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9. Logical Complexity

9.1 Simple Conventional System
As described in Section 8, logical complexity is defined as the ratio of
the  length  of  the  logical  evolution  to  the  temporal  evolution  length
and is intended to identify the level of logical activity in evolution. We
defined the baseline scenario as the 1-1-1 system used for defining tar-
get operation cycle times. Figure 20 presents the relationship between
the  logical  complexity  and  throughput  for  all  conventional  SIL  sys-
tems. Throughput is in units of items per minute, where one item per
carriage  is  carried  per  trip.  The  correlation  between  complexity  and
throughput for all evolutions is 0.921, indicating a relatively strong re-
lationship. This measure of throughput is used throughout this paper.
But,  as  shown  in  Figure  20,  the  correlation  between  complexity  and
throughput  is  apparently  meaningless.  For  a  large  range  of  logical
complexities,  there also exists a large range of throughputs. The gen-
eral  trend  resulting  from  the  common  skew  of  the  left  and  right
boundaries, however, is that more logically active evolutions have in-
creased performance.

Figure 20. The distribution of all evolutions for conventional SIL systems with
respect to logical  complexity and throughput;  546 919 data points are repre-
sented. The variables have a correlation of 0.921.

Our  analysis  begins  with  the  simplest  of  systems,  1-1-1.  The
throughput  and  the  logical  complexity  are  predictable  and  both  the
values  are  minimal  when compared  to  Figure  1.  Thus  we  should  ex-
pect the complexity to be minimal. Figure 21 presents a data point of
a 1-1-1 system.

The compressed state trajectory in Figure 22 shows the system cy-
cling  through four  states,  and  the  compressed  and  full  state  histories
presented  in  Figure  23  identify  the  same  pattern—a simple  repetitive
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cycle through four states—loading, traveling, unloading, and traveling
back.

Figure 21. A single 1-1-1 configuration and evolution. The logical complexity
and throughput are both minimal values for all evolutions.

Figure 22. The compressed state trajectory for configuration 3 in 1-1-1 evolu-
tion shows a simple cycle through four states.
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Figure  23. The  full  and  compressed  state  histories  for  the  configuration  3  in
1-1-1  evolution.  These  histories  also  identify  a  simple  cycle  through  four
unique states.

Larger systems with a single carriage all behave like a 1-1-1 system
and  theoretically  have  the  same  throughput  and  logical  complexity.
The  state  trajectories  and  state  histories  may  appear  slightly  more
complex  in  this  case,  however.  There  possibly  exist  different  cycles
due to the carriage’s visiting different magazine numbers, but the evo-
lution is characteristically simple and has the same throughput as the
evolution with a single magazine. The logical complexity is also identi-
cal,  as  it  does  not  identify  unique  patterns  in  an  evolution,  only  the
state change.

In  systems with more  than one carriage,  variations  in  connectivity
are  possible  and  a  relationship  between  logical  complexity  and
throughput  begins  to  develop.  Figure  24  shows  the  correlation  be-
tween logical complexity and throughput for all 2-2-2 systems, which
has 66 valid evolutions. Since some evolutions have identical through-
put  and  logical  complexity,  the  three-dimensional  frequency  land-
scape is employed to present a truer picture of the performance/behav-
ior relationship.

9.2 Evolution Sets
The sets  of  evolutions  2-2-2  that  have  been presented have  consisted
of  all  nonhalting  evolutions.  Halting  evolutions  are  defined  as  those
in  which  the  system logic  freezes  a  carriage  in  place,  leaving  deliver-
able  items  undelivered.  This  condition  is  distinct  from  an  evolution
with incomplete item transfer, where undelivered items are undeliver-
able  because  of  absent  connections  between  queues  and  item
destinations.
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Figure  24. The  frequency  landscape  for  all  2-2-2  evolutions.  The  various  fre-
quencies  indicate  the  presence  of  close-to-identical  complexity  and  through-
put values.

In  an  optimal  search,  the  nonhalting  and  complete  evolution  sets
are larger  than they should be.  If  an evolution of  a  physical  configu-
ration  with  one  queue  distribution  fails,  then  all  evolutions  of  that
configuration should be removed from the set. The remaining configu-
rations,  however,  are  not  always  necessarily  robust.  Our  measure  of
robustness is based on the set of queue distributions considered in the
evolutions. Not halting or complete delivery for these queue distribu-
tions  is  necessary,  but  not  sufficient  for  inclusion  of  a  configuration
into  the  respective  sets.  For  many  configurations,  it  is  undecidable
whether  any configuration will  ever  result  in  a  halting  or  incomplete
evolution for any set of queue distributions without explicit evolution
of the configuration for all of those queue distributions. Since the com-
plete  set  of  queue  distributions  has  been  shown  to  be  quite  large,  a
complete  demonstration  of  robustness  is  practically  impossible.  The
set of queue distributions used is only intended to represent a signifi-
cant variety and serve as a go/no go test for robustness.

The decision to include or exclude configurations for which at least
one  evolution  fails  with  respect  to  halting  or  complete  delivery  is
based primarily on what we are attempting to characterize. While we
are generally interested in characterization of the full range of behav-
iors,  characterization of  a  robust  set  is  important,  as  are  refining the
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set and indicating the requirements for consistent inclusion in the set.
They also help establish a correlation between performance and com-
plexity—generalizations are possible from the requirements for robust-
ness and the aggregate performance and complexity.

A  comparison  of  the  values  and  distribution  of  throughput  and
complexity of sets of evolution of varying degrees of robustness with
respect  to  completeness  with  all  nonhalting  and  all  complete  evolu-
tions in 2-2-2 configurations yields some initial  correlations.  As a re-
sult  shown  in  Figure  25,  the  correlation  of  logical  complexity  and
throughput  for  the  most  robust  configurations  of  0.997  is  greater
than the correlation for all nonhalting evolutions of 0.931. The mean
for the most robust configurations is greater than the mean for all evo-
lutions  (0.0267  vs.  0.0235),  as  is  the  mean  throughput  (0.407  vs.
0.375).  Since  the  most  robust  and  adaptable  configurations  have  a
higher  mean complexity,  adaptability  is  then directly  related  to  com-
plexity. Similarly, the most adaptable configurations are also the best
performers.

HaL HbL
Figure  25. The distributions of  2-2-2 evolutions with (a)  one complete  evolu-
tion and (b) six complete evolutions (most robust configurations).

Any general  statement  as  in  Section 9.2  is  tentative  since  these  re-
sults  are drawn only from a 2-2-2 configuration set,  and the correla-
tion  and  mean  values  depend  on  the  distribution  of  evolution  sets,
which may vary relatively for evolution sets with different sizes.

Since  the  differences  between  the  distributions  of  different  sets  of
evolutions is not completely apparent in a comparison of two dimen-
sions,  three-dimensional  frequency  landscapes  and  histograms  of
cross  sections  of  complexity  and  throughput  presented  in  Figure  26
are used for comparisons. 

As in Figure 26, a comparison of the frequency landscapes and his-
tograms  of  the  complete  evolutions  and  the  evolutions  of  the  most
robust configurations with the set of nonhalting evolutions further il-
lustrates the differences in the distributions that lead to higher aggre-
gate  throughput  and  complexity  for  the  most  robust  configurations.
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Although the absolute number of high-complexity evolutions is lower
for most robust configurations, the ratio of the highest- to lowest-com-
plexity  evolutions  increases  substantially  when  the  logically  simpler
evolutions are removed. The differences in the sets of evolutions have
a similar, but lessened, effect on throughput.
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Figure 26. The three-dimensional distribution and the histograms of the evolu-
tions for (a) nonhalting evolutions, (b) complete evolutions, and (c) the evolu-
tions of the most robust 2-2-2 configurations.

One of the most apparent features of the histograms is that none of
them are  normal.  However,  the  use  of  the  mean  implies  that  we  are
dealing with normally distributed data. Therefore, characterization of
the distributions using their mean values has a lower significance. The
mean does characterize the differences between various subsets of evo-
lutions,  like  the  complete  and  robust  evolution  sets.  Based  on  the
unique characteristics of sets, it is possible to make general statements
regarding complexity and throughput with the mean.

9.3 Mimicry
Mimicry results  from a combination of  the  physical  connectivity  and
the  queue  distribution.  We  can  think  of  these  two  forms  as  mimicry
with  respect  to  carriages  and  mimicry  with  respect  to  magazines.
There  is  no  mimicry  with  respect  to  queues  because  all  queues  must
contain some set of items and be connected to at least one shaft in a
valid configuration, so all queues specified in a configuration descrip-
tion are always used.

A requirement for mimicry is a queue distribution with at least one
item  type  absent.  If  the  physical  connectivity  of  the  configuration  is
such  that  all  carriages  are  utilized  to  some extent  and simply  do  not
visit the magazines corresponding to the absent item types, mimicry is
defined  to  be  with  respect  to  magazines.  If  there  is  at  least  one  car-
riage connected only to the magazines for which there are no items in
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the queues, mimicry is defined to be with respect to carriages. In these
configurations,  the  combination  of  the  physical  connectivity  and
queue  distribution  keeps  the  carriage(s)  idle,  and  the  configuration
mimics  a  configuration  with  as  many  magazines  as  nonzero  item
types and as many shafts as nonzero shaft utilizations. Mimics with re-
spect  to carriages result  in evolutions with both complete item trans-
fer and incomplete item transfer.  The set of all  nonhalting evolutions
and the set of complete evolutions can therefore both contain mimics.

From  the  unique  sets  and  comparisons  of  subsets  of  the  unique
sets,  correlations  between  complexity  and  performance  are  estab-
lished that are truer than the correlations made from the sets that in-
clude  mimics  because  of  the  elimination  of  redundancies.  Therefore,
the set of the evolutions of the most robust and unique configurations
is  created  to  establish  correlations  between  complexity  and  through-
put and to identify trends applicable in an optimal search.

The  two-dimensional  distribution  of  nonhalting  evolutions  unique
to  2-2-2  size  systems,  shown  in  Figure  27(a),  does  not  look  signifi-
cantly  different  than  the  distribution  of  all  nonhalting  evolutions.
Much  of  the  similarity  results  from  the  limited  number  of  mimics
with  respect  to  carriages—there  are  just  12  mimics  out  of  a  total  of
66 evolutions. The frequency landscapes, however, are different, with
many  of  the  low  complexity/low  throughput  evolutions  presented  in
Figure  26(a)  for  the  set  of  all  nonhalting evolutions  absent  in  the  set
of unique nonhalting evolutions in Figure 27(b).

There  are  54  unique  nonhalting  2-2-2  evolutions,  meaning  12  of
the 66 2-2-2 evolutions are equivalent to smaller systems. All 12 evo-
lutions are of  low logical  complexity and low throughput,  but  repre-
sent a mixture of complete and incomplete evolutions. Since the logi-
cal  complexity  and throughput  are  minimal  for  all  mimics,  the  mean
logical  complexity  and  throughput  for  the  set  of  unique,  nonhalting
evolutions  are  both  greater  than  for  the  set  of  all  nonhalting  evolu-
tions.  The  mean  logical  complexity  for  the  unique  evolutions  is
0.0252  and  0.0235  for  all  nonhalting  evolutions,  while  the  mean
throughput for the unique evolutions is 0.406 and 0.375 for all  non-
halting evolutions. A higher mean logical complexity and throughput
for  unique  systems  imply  that  increases  in  the  number  of  carriages
result  in  an  ability  to  support  additional  complexity  in  behavior.
Additionally,  since mean throughput also increases,  we can suggest  a
correlation between logical complexity and throughput—greater com-
plexity  supports  greater  performance.  Once  again,  these  conclusions
are  tentative,  since  they  are  based  on  small  systems  with  few  evolu-
tions.  However,  they  identify  trends  to  examine  with  the  results  of
larger systems.

The set of unique nonhalting evolutions containing incomplete evo-
lutions may be considered as misrepresenting the true nature of the re-
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lationship  between  complexity  and  performance.  Removal  of  these
evolutions  affects  the  mean  logical  complexity  and  throughput.  The
distribution  appears  to  be  identical  to  the  distribution  of  complete
evolutions shown in Figure 28, which has 34 unique, complete 2-2-2
evolutions.  There  are,  however,  six  different  evolutions  between
unique complete 2-2-2 evolutions and complete evolutions, appearing
at  the  lowest  logical  complexity  and  throughput,  which  cause  the
slight  difference  of  the  mean  logical  complexity  and  throughput  be-
tween both evolutions  (0.0283 vs.  0.0264 for  logical  complexity  and
0.431 vs. 0.402 for throughput).

HaL HbL
Figure  27. (a)  The  two-dimensional  distribution  of  nonhalting  evolutions
unique to 2-2-2 size systems. (b) The frequency landscape of unique 2-2-2 evo-
lutions.

Figure 28. The two-dimensional distribution of unique, complete 2-2-2 evolu-
tions is nearly identical to the distribution of all  complete evolutions primar-
ily because the sets differ by only six evolutions. The six evolutions have low
logical  complexity  and  throughput,  resulting  in  a  greater  mean  logical  com-
plexity and throughput for the unique evolutions.
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The set of unique, robust evolutions is a subset of unique, complete
evolutions  and  contains  only  the  evolutions  of  configurations  that
completely deliver all queue distributions. The two-dimensional distri-
bution  of  the  evolutions  of  robust  configurations  is  shown  in  Fig-
ure!29. The 18 evolutions from the three configurations that populate
this  set  share  the  same  logical  complexity  of  0.0311  and  throughput
of 0.471, which correspond to the maximum values for the set of com-
plete  evolutions.  Since  all  logical  complexities  and  throughputs  are
identical  and  maximal,  the  mean  logical  complexity  and  throughput
are  greater  than  the  means  for  both  unique,  nonhalting  evolutions
and unique, complete evolutions. If we associate adaptability with ro-
bustness,  then  the  most  adaptable  configurations  are  also  the  most
logically complex and exhibit the greatest throughput. 

Figure  29. The  two-dimensional  distribution  of  the  evolutions  of  the  unique
and robust 2-2-2 configurations.

9.4 Larger Systems
Subtle  differences  occur  to  the  correlation  between  the  logical  com-
plexity  and  throughput  with  increases  in  system  size,  which  are  evi-
dent  in  both  the  sets  of  all  evolutions  and  unique  evolutions.  Ta-
bles!10 and 11 present the mean logical complexities and throughputs
for the evolution subsets for all systems (size considered) and indicate
the same trends. 
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System N C R UN UC UR M

1-2-2 0.02574 0.02574 0.02574 0.02773 0.02773 0.03081 0.01577
1-2-3 0.02491 0.02491 0.02491 0.02695 0.02695 0.03081 0.01577
1-2-4 0.02475 0.02475 0.02475 0.02671 0.02671 0.03081 0.01577
2-2-2 0.02347 0.02639 0.02673 0.02519 0.02829 0.03112 0.0157
2-2-3 0.02332 0.02492 0.02531 0.02388 0.02701 0.03112 0.0157
2-3-2 0.02856 0.02917 0.02921 0.02981 0.03017 0.03231 0.02457
2-3-3 0.02742 0.02841 0.02884 0.02951 0.02994 0.03261 0.02285
2-3-4 0.02718 0.02820 0.02893 0.02943 0.02992 0.03276 0.02250
2-4-2 0.03357 0.03416 0.03446 0.03541 0.03614 0.04216 0.02874
2-4-3 0.03249 0.03315 0.03391 0.03540 0.03594 0.04291 0.02812
3-2-2 0.02170 0.02448 0.02492 0.02306 0.02581 0.02700 0.01565
3-3-2 0.02775 0.02968 0.02983 0.02927 0.03174 0.03657 0.02306
3-4-2 0.03194 0.03309 0.03293 0.03317 0.03427 0.04016 0.02878
4-2-2 0.02105 0.02388 0.02457 0.02229 0.02498 0.02602 0.01562
4-2-3 0.02041 0.02288 0.02366 0.02159 0.02431 0.02602 0.01562
4-2-4 0.02027 0.02234 0.02304 0.02136 0.02385 0.02602 0.01562
4-3-2 0.02691 0.02915 0.02939 0.02828 0.03070 0.03362 0.02274
4-3-3 0.02562 0.02799 0.02860 0.02764 0.02985 0.03363 0.02131
4-4-2 0.03179 0.03427 0.03419 0.03331 0.03644 0.04496 0.02781

Table  10. The  mean  logical  complexity  for  evolution  subsets  of  different  sys-
tem size (N = nonhalting,  C = complete,  R = robust,  UN = unique and non-
halting, UC = unique and complete, UR = unique and robust, M = mimics).

System N C R UN UC UR M

1-2-2 0.3860 0.3860 0.3860 0.4159 0.4159 0.4621 0.2365
1-2-3 0.3736 0.3736 0.3736 0.4042 0.4042 0.4621 0.2365
1-2-4 0.3713 0.3713 0.3713 0.4006 0.4006 0.4621 0.2365
2-2-2 0.3748 0.4015 0.4069 0.4058 0.4310 0.4715 0.2355
2-2-3 0.3616 0.3800 0.3859 0.3913 0.4126 0.4715 0.2355
2-3-2 0.4849 0.4884 0.4915 0.5208 0.5195 0.5549 0.3704
2-3-3 0.4670 0.4713 0.4832 0.5172 0.5117 0.5464 0.3574
2-3-4 0.4653 0.4673 0.4852 0.5174 0.5102 0.5411 0.3563
2-4-2 0.5970 0.6061 0.6174 0.6447 0.6561 0.7336 0.4722
2-4-3 0.5780 0.5873 0.6091 0.6509 0.6583 0.7518 0.4686
3-2-2 0.3492 0.3710 0.3780 0.3751 0.3916 0.4078 0.2348
3-3-2 0.4796 0.5036 0.5102 0.5224 0.5550 0.6361 0.3479
3-4-2 0.5875 0.5992 0.6028 0.6300 0.6381 0.7065 0.4777
4-2-2 0.3407 0.3618 0.3713 0.3651 0.3782 0.3923 0.2343
4-2-3 0.3351 0.3468 0.3582 0.3599 0.3691 0.3923 0.2343
4-2-4 0.3347 0.3394 0.3492 0.3584 0.3630 0.3923 0.2343
4-3-2 0.4653 0.4923 0.5016 0.5054 0.5344 0.5810 0.3426
4-3-3 0.4456 0.4672 0.4827 0.4956 0.5151 0.5812 0.3395
4-4-2 0.5884 0.6188 0.6250 0.6381 0.6767 0.7910 0.4587

Table 11. The mean throughput for evolution subsets of different system size.
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10. State Complexity

10.1 Simple System
We would  like  to  analyze  the  simplest  conventional  system  to  deter-
mine  how  closely  state  complexity  approaches  the  definition  of
algorithmic complexity and the usefulness of state complexity in opti-
mization  and  establishing  correlations  between  complexity  and
throughput.  The  state  complexity  is  the  ratio  of  the  number  of  dis-
tinct states entered to the product of the number of items carried and
the  system  cycle  time.  Since  there  is  only  one  queue,  one  magazine,
and one path in the simplest system, the carriage enters only four dis-
tinct states throughout the course of the evolution. For the determinis-
tic cycle times used, each system cycle corresponds to 258 time steps,
and  the  number  of  items  in  a  queue  at  the  start  of  an  evolution  is
always  25.  The  minimum  theoretical  state  complexity  is
4 ê H25 ÿ 258L = 0.000620.  The  actual  state  complexity  for  the  simple
system is, however, 0.000784. 

The discrepancy results  from two factors  related to  the  initial  and
terminal  conditions.  All  carriages  are  assumed  to  begin  unloaded  at
the  top  of  their  respective  shafts.  A  system cycle  therefore  requires  a
round trip between a queue and a magazine and, to complete an inte-
ger number of cycles, a carriage must return to its starting position at
the end of the evolution. However, since evolutions end when the last
item is delivered, the carriage is located outside of a magazine and the
last  system cycle  is  incomplete.  The  actual  temporal  evolution length
is  therefore  less  than  the  theoretical  value,  which  increases  the  state
complexity. Because there are items left in the queue after the carriage
unloads  the  last  item,  its  destination  queue  is  unsure.  Although  the
carriage is only in this state for one time step, it still represents a dis-
tinct state and increases the total number of distinct states to five, fur-
ther  increasing the  state  complexity.  Although a  state  is  entered only
once  in  the  course  of  an  evolution,  the  state  complexity  can  be  af-
fected significantly. In the simple case considered, the system is in one
of the four cycle states for 6341 of the 6342 time steps (99.9842%),
which corresponds to a state complexity of 0.000631. The addition of
the  single  state  results  in  an  increase  of  the  state  complexity  of
24.3%. However, the disproportionate increase in the state complex-
ity from the addition of this one state agrees with the definition of al-
gorithmic complexity.  Changes in the complexity from additional cy-
cles  involving  the  four  most  frequent  states  are  negligible—only  the
bits  describing  the  number  of  cycle  changes,  which are  small  relative
to the bits required to describe the cycle. An additional state (or pat-
tern),  regardless  of  the  frequency  of  occurrence,  requires  a  complete
description that involves significantly more information. 

The limit of the number of items involved is inversely proportional
to the square of the number of items. For sufficiently large quantities

           
          
  

294 R. J. Anderson and R. H. Sturges

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.3.247



          
  q        y g  q

of  items,  the  effect  of  the  number  of  cycles  is  therefore  negligible,
bringing state complexity closer to agreement with the definition of al-
gorithmic complexity. 

The impact of the temporal evolution length on the state complex-
ity  suggests  that  only  comparisons  between  evolutions  involving  the
same  number  of  items  are  valid.  While  the  minimum and  maximum
theoretical  throughputs  are  unaffected  by  the  number  of  items  deliv-
ered, a decrease in the number of items delivered tends to decrease to
the  temporal  evolution  length  and  bias  the  state  complexity  toward
larger values. Since the number of items delivered is the only dynamic
evolution  measure  common  to  all  evolutions  of  a  particular  system
size  with  respect  to  system  complexity,  halting  evolutions  cannot
validly be compared to nonhalting evolutions. 

To perform an analysis consistent with that for logical complexity,
we next explore the set of 2-2-2 evolutions, a set small enough to ex-
plore  exhaustively  but  large  enough  to  exhibit  a  range  of  behaviors
and  performance.  Although  the  possible  minimum  and  maximum
state  complexity  boundaries  are  less  apparent,  the  distribution  sug-
gests  a  triangular  boundary  with  one  vertex  at  the  minimum  state
complexity/minimum  throughput  combination  corresponding  to  a
mimic.

Larger  system  sizes  always  contain  a  mimic  of  a  q-1-1  system,
which  always  shares  approximately  the  same  logical  complexity  de-
spite differences in the number of items transported because the num-
ber of items, the number of logical steps, and the number of temporal
steps  tend  to  increase  proportionally.  Doubling  the  number  of  items
will  not  change  the  logical  complexity  because  it  also  doubles  the
number  of  logical  steps.  For  state  complexity,  however,  the  relative
number of temporal steps and the actual states visited are important.
To be a mimic of a q-1-1 system and be complete, an evolution must
transport  all  items from all  queues to the magazine corresponding to
the lone item type. 

Mimicry does not result when queue distributions are comprised of
a single item type if the proper physical connectivity is present. Evolu-
tions with the minimum state complexity at the maximum throughput
reflect this condition and correspond to configurations with both car-
riages connected to the magazine corresponding to the lone item type.
Each  shaft  is  connected  to  a  unique  queue.  Since  carriages  run  be-
tween  a  single  queue  and  magazine,  each  carriage  has  only  one  pat-
tern throughout the evolution. However, state complexity is based on
the number of system states and therefore a combination of individual
carriage states. Since carriages share a common magazine, a phase lag
is introduced in the evolution, resulting in eight combinations of car-
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riage states per system cycle, twice the number of states per cycle for
an individual carriage.

The maximum theoretical number of distinct system states possible
from two carriages with equal numbers of distinct individual states is
always  twice  the  number  of  individual  carriage  states,  regardless  of
the individual cycle times of each carriage state. The actual states for
the  deterministic,  a  two-carriage  evolution  with  a  phase  lag,  is  pre-
sented in Table 12.

Since  the  carriages  are  phase  lagged,  one  carriage  ends  before  the
other and adopts the “unsure of queue” state while the remaining op-
erational  carriage  continues  to  transport  its  items.  For  the  2-2-2  sys-
tems  considered,  there  are  three  additional  system  states  resulting
from the transient period at the end of the evolution corresponding to
the combination of the unsure first carriage with the second carriage’s
traveling  to  a  magazine,  unloading,  and  becoming  unsure  of  its  own
destination  queue.  Transients  also  occur  at  the  start  of  these  evolu-
tions  as  a  result  of  the  interaction  of  the  carriages.  The  delay  of  the
second  carriage  when  both  carriages  arrive  at  the  same  magazine  in
the  first  system  cycle,  meaning  the  system  experiences  the  distinct
state  of  both  carriages’  loading  simultaneously  in  their  respective
queues, is a state not experienced at any other point in the evolution.

First Carriage Second Carriage

Loading Travel to a queue

Travel to a magazine Travel to a queue

Travel to a magazine Loading

Travel to a magazine Travel to a magazine

Unloading Travel to a magazine

Travel to a queue Travel to a magazine

Travel to a queue Unloading

Travel to a queue Travel to a queue

Table  12. The  dominant  sequence  of  carriage  states  in  a  two-carriage  system
with  a  constant  phase  lag.  The  queue  and  magazine  identification  numbers
are  omitted  because,  with  a  constant  phase  lag,  the  sequence  of  the  same
types of states is identical.

The  fourth  state  resulting  from  transients  at  the  start  and  end  of
the two-carriage, single-pattern evolution, which represents 1/3 of the
total  number of  distinct  states,  significantly  increases  the  complexity.
The  single  state  resulting  from the  transient  at  the  end  of  the  evolu-
tion of the mimic also has a significant impact on the total number of
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distinct  states,  but  at  25%,  the  effect  is  less  than  that  for  a  two-car-
riage system. Once again, we see that the transients have a significant
impact  on  the  state  complexity  and  cannot  be  ignored  even  though
they represent a small fraction of the entire temporal evolution length.

In  addition  to  the  additional  states  resulting  from  transients,  the
state complexity corresponding to the two-carriage, single-pattern evo-
lution  is  also  greater  than  the  state  complexity  of  the  mimic  because
the  temporal  evolution  length  of  the  mimic  is  approximately  twice
that of the two-carriage system.

For configurations with complete shaft-magazine connectivity with
respect to the magazine corresponding to the single present item type
and  complete  shaft-queue  connectivity  (like  configurations  247  and
255),  both  carriages  visit  both  queues,  so  each  carriage  has  two  dis-
tinct patterns. With two distinct patterns for each carriage, each com-
prised of four states, four combinations of patterns are possible, each
with a theoretical maximum of eight state combinations, for a total of
32 possible state combinations (ignoring transients). When states com-
mon  to  each  pattern  are  considered,  the  possible  number  of  distinct
states is 18, assuming the phase lag is constant and the sequencing of
carriage  states  is  identical  to  the  two-carriage,  single-pattern  evolu-
tion.  This  number  can also  be  determined by  calculating  the  number
of unique combinations of states at each stage in the sequence defined
in Table 12.

Assuming a  constant  number  of  states  resulting  from transients,  it
is therefore possible for the state complexity to be significantly greater
than  the  measured  value.  However,  because  of  logic  dictating  that  a
carriage  selects  the  first  available  queue  it  finds,  and  because  queues
are evaluated for availability in order, lower-numbered queues have a
de facto priority. Both carriages therefore empty the first queue before
simultaneously  switching  to  the  second  queue,  and  only  two  of  the
possible  four  combinations  of  carriage  patterns  are  utilized,  resulting
in  14  distinct  states  when  repeated  states  are  removed.  With  the
proper  ratio  of  item types  in  each  queue  to  the  number  of  carriages,
or  in  the  presence  of  additional  logic  specifying  how  resources  are
shared,  additional  system  patterns  are  possible  that  result  in  greater
state complexity.

10.2 Theoretical Boundaries
A  maximum  theoretical  state  complexity  can  be  calculated  based  on
the  number  of  queues,  shafts,  and  magazines  and  the  sequence  of
state changes for the corresponding number of shafts (carriages). It is
possible to calculate the maximum theoretical state complexity corre-
sponding to a specific  queue distribution—queue distributions with a
single  item  type  effectively  limit  the  number  of  carriage  destinations
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and decrease the possible state complexity. The maximum theoretical
state  complexity  as  described  is  only  applicable  at  the  maximum
throughput,  where  all  carriages  are  operational  for  the  entire  evolu-
tion and carriages only enter the patterns defined. The maximum theo-
retical  state  complexity  at  any  given  throughput  is,  however,  calcu-
lated by assuming the number of items transported is constant. At the
minimum throughput, the number of operational carriages is  known,
since the minimum throughput always corresponds to a mimic system
with a single carriage.

Calculation of the minimum theoretical state complexity for evolu-
tions with either one or all carriages operational is also different than
for evolutions with carriages that halt partially through the evolution.
The  minimum  number  of  states  in  a  complete  evolution  will  always
correspond  to  the  queue  distribution  with  the  lowest  diversity—one
containing  a  single  system  type—because  it  effectively  eliminates  the
possible number of destinations. The minimum theoretical state com-
plexity at  the maximum possible throughput should therefore always
correspond to  an  evolution  in  which  all  carriages  are  connected  to  a
respective queue and the magazine corresponds to the lone item type.
The  minimum number  of  phase  lags  occurs,  but  there  is  at  least  one
for the evolution to be complete, since all carriages must share a com-
mon magazine. At the minimum throughput, a single carriage delivers
all items from all queues (to be complete) and the state complexity is
described  by  equation  (33)  where  t  is  the  number  of  temporal  steps
per additional item, c is the number of items in each additional queue,
and q is the number of queues:

(33)CS =
2 Hq + 1L + 2

tcHq + 1L .

The  theoretical  boundaries  for  the  state  complexity  for  2-2-2  size
systems are presented in Figure 30. The boundary lines reflect the min-
imum  and  maximum  state  complexities  for  evolutions  with  various
numbers  of  operational  carriages  through  the  range  of  possible
throughputs. The points A and B respectively represent the minimum
and maximum theoretical state complexities at the maximum theoreti-
cal  throughput,  when the number of  operational  carriages and there-
fore the number of possible states are known. Similarly, point C corre-
sponds  to  the  minimum/maximum  state  complexity  at  the  minimum
theoretical  throughput,  when  only  a  single  carriage  is  in  operation.
The  evolutions  are  not  necessarily  within  the  boundaries,  because  of
states  resulting  from  transient  periods  and  because  not  all  possible
states  are  visited.  The  differences  between  the  minimum/maximum
state  complexity  points  at  the  minimum  and  maximum  throughputs
and the minimum/maximum state complexity boundary lines are a re-
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sult  of  the  lack  of  knowledge  of  the  actual  number  of  states  used  in
evolutions with carriages that halt.

Figure  30. The  relationship  between  the  minimum/maximum theoretical  state
complexities and the actual distribution of evolutions. 

The  differences  between  the  actual  and  theoretical  minimum  and
maximum state complexities occur for two reasons. First, the theoreti-
cal state complexities consider all states that are possible, given the va-
riety  of  queue  distribution  to  account  for  the  lack  of  information
regarding the actual numbers of operation carriages. Second, the mini-
mum  and  maximum  state  complexities  consider  only  the  possible
steady state  cycles  created when a  phase  lag  is  introduced and there-
fore ignore the effect of transients on the state complexity, which can
significantly increase the state complexity.

Since  the  theoretical  state  complexity  boundaries  account  for  all
possible  carriage  state  combinations  that  are  feasible  within  the  con-
straints  of  model  definitions,  the  differences  between  the  actual  and
theoretical  state  complexities  may  be  thought  of  as  being  equivalent
to the result of the introduction of randomness or variability into the
model.  This  variability  could  be  a  function  of  nondeterministic  cycle
times,  the  inclusion of  actual  physical  dimensions,  or  the  elimination
of  the  assumption  of  identical  distances  between  each  queue  and
magazine.

Variability  tends  to  both  shift  and  stretch  the  complexity  bound-
aries toward greater complexity values.  The increase in complexity is
simply a reflection of the effects of variations, and is not a function of
the  underlying  relationships  between  complexity  and  performance
that  may  be  applicable  toward  optimization.  Since  our  task  is  to
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identify the presence, strength, and causes of relationships, we ignore
nondeterminism in  our  analyses  in  order  to  capture  the  fundamental
reasons why relationships between behavior, performance, and robust-
ness  may  exist,  while  recognizing  that  the  usefulness  of  behavior  as
part  of  an  optimization  tool  may  be  limited,  depending  on  the
amount of system variability.

The  relative  effects  of  the  inclusion  of  all  potential  states  and  the
omission  of  transient  states  are  apparent  at  the  minimum theoretical
state  complexities  corresponding  to  the  minimum  and  maximum
throughputs,  because  of  the  additional  information  known regarding
the evolutions.  At throughputs between the theoretical  minimum and
maximum that correspond to evolutions with halting carriages, less in-
formation is known about the actual states visited because the halting
sequence is unknown. 

Figure 30 suggests that the state complexity can be maximal at less-
than-maximal  throughputs  because  the  potential  number  of  distinct
states,  created  from  the  combinations  of  carriage  states  for  various
numbers of operational carriages, is greater. However, whether or not
an  evolution  with  suboptimal  throughput  corresponds  to  the  maxi-
mum  state  complexity  is  dependent  on  the  relative  effects  of  halting
creating  additional  evolution  states  and  the  increase  in  the  temporal
evolution length resulting from the loss of operational carriages.

Normalization of  the  number  of  distinct  states  with  respect  to  the
temporal evolution length has a correlating effect between state com-
plexity  and  throughput  and  implies  that,  to  achieve  the  maximum
state  complexity  at  a  less-than-optimal  throughput,  halting  must  oc-
cur late in the evolution. As carriages halt earlier in the evolution, the
number of states may be greater than the number of states for an evo-
lution involving all  carriages throughout the entire evolution, but the
increase  in  the  temporal  evolution  length  caused  by  disproportionate
carriage utilization will result in lower state complexity.

To  achieve  the  maximum  number  of  states  per  pattern,  an  evolu-
tion must  also have the maximum number of  phase lags  possible  be-
cause  the  number  of  combinations  of  individual  carriage  states  is
greater  with  phase  lags.  The  maximum  number  of  phase  lags,  how-
ever,  does  not  necessarily  result  in  the  maximum  number  of  system
states.  The  effects  of  the  number  of  phase  lags  on  state  complexity
through  the  number  of  combinations  of  individual  carriage  states
must therefore be determined in the context of the number of system
patterns.

10.3 Qualitative Characterizations
The  boundaries  in  Figure  30  are  created  assuming  a  constant,  maxi-
mum number  of  phase  lags.  If  the  states  created  from various  phase
lags  are  included,  the  maximum  state  complexity  boundary  shifts  to
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the  right,  approaching  the  maximum  state  complexities  possible  for
nondeterministic  systems,  where  all  combinations  of  individual  car-
riage  states  are  possible.  Phase  lags  are  therefore  related  to  the  state
complexity,  but  do not  characterize  the  state  complexity  in  the  same
way as with logical complexity. Figure 31 presents a mapping of logi-
cal complexity values into state complexity space, where the darkness
of  a  point  indicates  the  value  of  the  evolution’s  logical  complexity
(darker  values  indicate  greater  logical  complexity).  Since  the  average
number of phase lags is directly related to the logical complexity, the
mapping therefore indicates the effects of the number of phase lags on
the state complexity. If the number of phase lags were a direct indica-
tor of state complexity, then the darkness should increase as the state
complexity  increases  across  any  line  of  constant  throughput,  and
points  of  constant  darkness  should  be  in  line.  Figure  31  shows  that
the  state  complexity  does  not  necessarily  increase  with  the  average
number  of  phase  lags.  Across  any  line  of  constant  throughput,  there
may be various numbers of phase lags with no general trend, or simi-
lar numbers of phase lags distributed across a range of state complex-
ity values. This mapping indicates that the number of phase lags does
not  necessarily  result  in  more  system  patterns  and,  despite  the  addi-
tional combinations of states associated with larger numbers of phase
lags, state complexity does not necessarily increase. Figure 31 also il-
lustrates  the  differences  between the  definitions  of  logical  complexity
and state complexity. 

Figure 31. The mapping of logical complexity values in state complexity space.

With  only  a  single  item  type,  all  carriages  are  forced  to  the  same
magazine, which results in time delays and phase lags in complete evo-
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lutions.  When  more  carriages  are  involved,  the  state  complexity  in-
creases. However, increasing the variety in the queue distribution will
tend to increase the state complexity for the same throughput because
variety in the item types increases the variety of locations visited and
therefore the number of states entered.

The  resultant  qualitative  characterization  of  state  complexity  with
respect  to  variety  in  the  queue  distribution  and  the  onset  of  carriage
halting  is  presented  in  Figure  32.  For  systems  with  more  than  two
magazines,  there  are  varying  degrees  of  queue  distribution  variety
beyond variety and no variety,  and these generally  correspond to the
relative  state  complexity.  Ultimately,  the  state  complexity  is  a  func-
tion  of  the  queue  distribution  taken  in  the  context  of  the  physical
connectivity.  There  is  therefore  no  distinct  line  corresponding  to
queue  distribution  variety,  limiting  the  characterization  of  the  state
complexity/throughput space to a qualitative one.

10.4 State Complexity and Throughput
For state complexity, the number of distinct states and the number of
patterns are not scalable with temporal evolution length, and compar-
isons of incomplete and complete evolutions can be quite misleading.
As a result, we only consider complete evolutions and their subsets in
establishing correlations between state complexity and throughput, al-
though comparisons  with  nonhalting  evolution  sets  are  used  to  illus-
trate the differences between these evolutions and complete evolutions.

The  summary  of  mean  values  for  the  state  complexity  for
nonunique and unique evolution subsets for 2-2-2 size systems is pre-
sented in Table 13. For 2-2-2 size systems, the mean state complexity
of  incomplete  evolutions  is  less  than  the  mean  for  the  entire  set  of
nonhalting  evolutions,  resulting  in  a  greater  mean  state  complexity
for  complete  evolutions.  To  properly  evaluate  the  effects  of  incom-
plete  evolutions  on  the  mean  state  complexity,  an  analysis  of  addi-
tional  system  sizes  is  required.  Comparisons  of  complete  evolution
sets  for  different  system  sizes  remain  valid  and  show  that  the  mean
state complexity for the evolutions corresponding to robust configura-
tions  is  greater  by  approximately  six  percent.  This  difference  implies
that  the  most  adaptable  configurations  correspond  to  the  most  com-
plex  evolutions.  Since  the  throughputs  remain  unchanged  regardless
of the complexity measure used, the greater mean throughput associ-
ated with the evolutions of robust configurations also implies a direct
relationship  between  complexity  and  performance  and  therefore  be-
tween adaptability and performance.
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Figure 32. The qualitative characterization of  the state  complexity space with
respect  to  halting  carriages  and  variety  in  the  queue  distribution.  Variety  in
the  queue distribution permits  greater  exploration of  possible  states,  increas-
ing  the  state  complexity.  Carriages  that  halt  later  in  an  evolution  result  in
lower  temporal  evolution  lengths  and  therefore  greater  throughput  and
greater state complexity.

Mean CS Mean R

Nonhalting 0.002386 0.3748

Complete 0.002453 0.4015

Robust 0.002591 0.4069

Unique nonhalting 0.002767 0.4058

Unique complete 0.002790 0.4310

Unique robust 0.002969 0.4715

Mimics 0.000668 0.2355

Table  13. Summary  of  the  mean  state  complexity  and  throughput  for  2-2-2
evolution subsets.

Although  the  set  of  evolutions  corresponding  to  the  most  robust
configurations  have  the  greatest  mean  state  complexity  and  through-
put  of  any  set  achieved,  the  mean  values  are  not  equal  to  the
maximum  values  achieved,  although  some  evolutions  in  the  set  may
correspond to maximum values. Figures 33 and 34 illustrate the distri-
bution  of  values  for  complete  and  robust  evolution  sets  with  three-
dimensional  frequency  landscapes  and  cross-sectional  histograms.
Because the same scale is used, it is evident that the maximum frequen-
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cies remain relatively unchanged for all evolution sets. The similarities
exist because the evolutions located at the maximum throughput for a
range  of  state  complexities  are  common  to  all  sets  and  help  explain
the trend toward increased throughput  and state  complexity  with set
refinement.

HaL HbL
Figure 33. The three-dimensional state complexity/throughput frequency land-
scapes  for  (a)  complete  evolutions  and  (b)  robust  evolutions  for  2-2-2  size
systems.

These clusters of evolutions are also evident in Figures 35 and 36,
which  show  the  three-dimensional  frequency  landscapes  and  his-
tograms with  respect  to  state  complexity  for  unique  sets  of  complete
and  robust  evolutions.  The  greater  mean  values  of  these  unique  sets
relative to their corresponding nonunique equivalents again indicate a
relationship  between  adaptability,  complexity,  and  throughput.  They
also  suggest  that  system  size  is  related  to  state  complexity  and
throughput.  Unique  evolutions  represent  the  largest  size  configura-
tions possible in the set and are able to support greater state complex-
ity and throughput.

HaL HbL
Figure 34. The cross-sectional histograms with respect to state complexity for
(a) complete evolutions and (b) robust evolutions for 2-2-2 size systems.
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Figure 35. The three-dimensional state complexity/throughput frequency land-
scapes  for  (a)  unique  complete  evolutions  and  (b)  unique  robust  evolutions
for 2-2-2 size systems.

HaL HbL
Figure 36. The cross-sectional histograms with respect to state complexity for
(a) unique complete evolutions and (b) unique robust evolutions for 2-2-2 size
systems.

10.5 More Complex Systems
The analysis of systems of other sizes, particularly larger systems con-
taining  significantly  more  evolutions,  provides  supporting  evidence
for  the  preliminary  conclusions  regarding  state  complexity  drawn
from observations of 2-2-2 evolution sets. Analysis of different system
sizes illustrates the effects of changing the absolute and relative num-
ber of queues, shafts, and magazines in the context of the logic used.
The distributions of other system sizes further demonstrate the practi-
cal application of the definition of algorithmic complexity and also il-
lustrate  the  effects  of  determinism  on  state  complexity.  The  mean
state  complexities  for  the  various  evolution  subsets  of  nontrivial  sys-
tem sizes  are  listed in  Table  7.  The mean values  in  Table  7  illustrate
why comparisons between incomplete and complete evolutions are in-
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valid as well. For 2-2-2 size systems, the mean state complexity of all
nonhalting  evolutions  is  less  than  the  mean  state  complexities  of  the
complete and robust evolutions sets. The same is true with respect to
the mean state  complexities  of  unique evolution sets.  This  same rela-
tionship  for  logical  complexity  led  to  the  conclusion  that  a  relation-
ship exists between robustness with respect to uncontrollable queues,
logical  complexity,  and  throughput.  The  mean  state  complexities  of
nonhalting evolutions in Table 7 are greater than the mean state com-
plexities of respective complete evolutions. Even if the number of dis-
tinct states entered in an incomplete evolution is less than the number
of distinct states entered in a complete evolution, the state complexity
may  still  be  greater  if  halting  occurs  early  enough  in  the  evolution.
The differences in the mean values therefore reflect the number of in-
complete  evolutions,  the  numbers  of  distinct  states  entered  by  each,
and  the  point  in  each  evolution  at  which  halting  occurs.  For  all  sys-
tem sizes in Table 14, the mean state complexity corresponding to the
most  robust  configurations  resulting  in  complete  evolutions  for  all
queue distributions considered is greater than the mean state complex-
ity of all complete evolutions of the same system size.

11. Conclusion

The models presented serve as evidence that some relationship is pre-
sent  between  behavior  and  optimality.  Given  the  freedom  to  evolve
their  characteristics,  systems  with  complex  interactions  have  been
shown  in  many  cases  to  evolve  to  a  complex  regime,  which  offers  a
combination of stability to take advantage of niche environments and
adaptability to respond to environmental changes, which can be indi-
rectly self-induced. The same characteristics of complex behavior that
result in adaptability also result in good performance. The stability al-
lows  a  system  to  remain  at  optimal  or  near-optimal  fitness  peaks,
while sufficient flexibility permits state-space exploration in search of
greater performance.
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System N C R UN UC UR M

1-2-2 0.003649 0.003649 0.003649 0.004221 0.004221 0.004724 0.000788
1-2-3 0.004212 0.004212 0.004212 0.004921 0.004921 0.005985 0.001035
1-2-4 0.004651 0.004651 0.004651 0.005396 0.005396 0.006767 0.001223
1-3-2 0.008441 0.008441 0.008441 0.010109 0.010109 0.012195 0.002606
1-3-3 0.008612 0.008612 0.008612 0.010858 0.010858 0.014131 0.003313
1-3-4 0.009440 0.009440 0.009440 0.011946 0.011946 0.016131 0.00394
1-4-2 0.014686 0.014686 0.014686 0.017853 0.017853 0.021516 0.005184
1-4-3 0.015008 0.015008 0.015008 0.019555 0.019555 0.024709 0.007309
1-4-4 0.015842 0.015842 0.015842 0.021012 0.021012 0.024709 0.008367
2-2-2 0.002386 0.002453 0.002591 0.002767 0.002790 0.002969 0.000668
2-2-3 0.002874 0.002843 0.003059 0.003344 0.003322 0.003712 0.000873
2-3-2 0.004914 0.004891 0.005171 0.005921 0.005995 0.007109 0.001703
2-3-3 0.005507 0.005431 0.006017 0.006955 0.006877 0.008962 0.002345
2-3-4 0.006245 0.006071 0.006914 0.007870 0.007660 0.010203 0.002845
2-4-2 0.007732 0.007269 0.007609 0.009391 0.008957 0.010914 0.003382
2-4-3 0.008471 0.008203 0.008924 0.010956 0.010553 0.012724 0.004743
3-2-2 0.001876 0.001935 0.002076 0.002170 0.002155 0.002271 0.000578
3-2-3 0.002318 0.002289 0.002527 0.002694 0.002635 0.002893 0.000751
3-2-4 0.002691 0.002574 0.002867 0.003104 0.002991 0.003316 0.000884
3-3-2 0.004076 0.004156 0.004585 0.004969 0.005191 0.006635 0.001331
3-3-3 0.004664 0.004723 0.005422 0.005947 0.006104 0.008803 0.001928
3-3-4 0.005347 0.005340 0.006200 0.006791 0.006862 0.010266 0.010413
3-4-2 0.006358 0.006192 0.006689 0.007827 0.007908 0.010413 0.002566
4-2-2 0.001545 0.001537 0.001668 0.001779 0.001684 0.001772 0.000523
4-2-3 0.001948 0.001798 0.001991 0.002260 0.002043 0.002206 0.000678
4-2-4 0.002287 0.002014 0.002211 0.002638 0.002320 0.002517 0.000796
4-3-2 0.003508 0.003628 0.004124 0.004285 0.004502 0.005629 0.001122
4-3-3 0.004072 0.004138 0.004964 0.005205 0.005346 0.007361 0.001667
4-4-2 0.00564 0.005779 0.006420 0.006976 0.007502 0.010867 0.002158

Table 14.  The mean state complexity for evolution subsets of different system
sizes (N = nonhalting,  C = complete,  R = robust,  UN = unique and nonhalt-
ing, UC = unique and complete, UR = unique and robust, M = mimics).

The  naval  weapons  elevator  simulations  that  have  been  presented
are able to efficiently predict behavior. Taken together with the com-
plexity measures, the simulations are extremely helpful to state the be-
havior of the system. From our simulations, we find several results of
potential  interest.  Not  surprisingly,  the  larger  the  system  size,  the
more  logical  and  state  complexities  exist.  Likewise,  both  logical  and
state  complexities  increase  in  robustness  with  more  evolutions.  It  is
also  clear  that  higher  throughput  occurs  in  more  complex  systems.
With  this  fact  in  mind,  the  relationships  between  logical  complexity
and throughput as well as state complexity and throughput follow the
same trend,  indicating  that  a  system with  more  complexity  results  in
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an increase in throughput. Despite higher performance with larger sys-
tems, there are some evolutions of configurations that act like smaller
systems.  Their  lower  performance  is  reflected  in  the  values  of  logical
and state complexities. These kinds of systems are referred to as mim-
ics.  However,  although  the  relationships  between  complexities  and
throughput  are  presented  in  both  logical  and  state  terms,  a  naval
weapons elevator system remains to be investigated by additional mea-
sures  also introduced in  this  paper  to  clearly  describe  the  complexity
of the system. Those remaining measures will  be presented in our fu-
ture work.
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