
Graphic Lambda Calculus

Marius Buliga

Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, RO 014700
Bucharest, Romania
Marius.Buliga@imar.ro

Graphic lambda calculus, a visual language that can be used for repre-
senting untyped lambda calculus, is introduced and studied. It can also
be used for computations in emergent algebras or for representing Rei-
demeister moves of locally planar tangle diagrams.

1. Introduction

Graphic lambda calculus consists of a class of graphs endowed with
moves between them. It might be considered a visual language in the
sense of Erwig [1]. The name comes from the fact that it can be used
for representing terms and reductions from untyped lambda calculus.
Its main move is called the graphic beta move for its relation to the
beta reduction in lambda calculus. However, the graphic beta move
can be applied outside the “sector” of untyped lambda calculus, and
the graphic lambda calculus can be used for other purposes than that
of visually representing lambda calculus.

For other visual, diagrammatic representations of lambda calculus
see the VEX language [2], or Keenan’s website [3].

The motivation for introducing graphic lambda calculus comes
from the study of emergent algebras. In fact, my goal is to eventually
build a logic system that can be used for the formalization of certain
“computations” in emergent algebras. The system can then be applied
for a discrete differential calculus that exists for metric spaces with di-
lations, comprising Riemannian manifolds and sub-Riemannian
spaces with very low regularity.

Emergent algebras are a generalization of quandles; namely, an
emergent algebra is a family of idempotent right quasigroups indexed
by the elements of an Abelian group, while quandles are self-distribu-
tive idempotent right quasigroups. Tangle diagrams decorated by
quandles or racks are a well-known tool in knot theory [4, 5].

In Kauffman [6] knot diagrams are used for representing combina-
tory logic, thus forming a graphical notation for untyped lambda cal-

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

y g g g p yp
culus terms. Also, Meredith and Snyder [7] associate to any knot dia-
gram a process in pi-calculus.

Is there any common ground between these three apparently sepa-
rate fields, namely, differential calculus, logic, and tangle diagrams?
As a first attempt for understanding this, I proposed l-scale calculus
[8], which is a formalism containing both untyped lambda calculus
and emergent algebras. Also, in [9] I proposed a formalism of deco-
rated tangle diagrams for emergent algebras and I called “computing
with space” the various manipulations of these diagrams with geomet-
ric content. Nevertheless, in that paper I was not able to give a precise
sense of the use of the word “computing.” I speculated, by using
analogies from studies of the visual system, especially the “brain as a
geometry engine” paradigm of Koenderink [10], that, in order for the
visual front end of the brain to reconstruct the visual space in the
brain, there should be a kind of “geometrical computation” in the
neural network of the brain akin to the manipulation of decorated tan-
gle diagrams described in this paper.

I hope to convince the reader that graphic lambda calculus gives a
rigorous answer to this question, being a formalism that contains, in a
sense, lambda calculus, emergent algebras, and tangle diagrams.

2. Graphs and Moves

An oriented graph is a pair HV, EL, with V the set of nodes and

E Õ V äV the set of edges. Let us denote by a : V Ø 2E the map that
associates to any node N œ V the set of adjacent edges aHNL. In this
paper we work with locally planar graphs with decorated nodes; that
is, we shall attach supplementary information to a graph HV, EL.

† A function f : V Ø A that associates to any node N œ V an element of
the “graphical alphabet” A (see Definition 1).

† A cyclic order of aHNL for any N œ V, which is equivalent to giving a lo-
cal embedding of the node N and edges adjacent to it into the plane.

We shall construct a set of locally planar graphs with decorated
nodes, starting from a graphical alphabet of elementary graphs. We
shall define local transformations, or moves, on the set of graphs.
Global moves or conditions will then be introduced.

Definition 1. The graphical alphabet contains the elementary graphs, or
gates, denoted by l, U, !, !, and for any element ! of the commuta-
tive group G, a graph denoted by !. Here are the elements of the
graphical alphabet:

312 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

l graph , U graph

! graph , ! graph

! graph

With the exception of the ! graph, all other elementary graphs have
three edges. The ! graph has only one edge.

There are two types of “fork” graphs: l and U, and two types of
“join” graphs: ! and !. I now briefly explain what they are supposed
to represent and why they are needed in this graphic formalism.

The l gate corresponds to the lambda abstraction operation from
untyped lambda calculus. This gate has one input (the entry arrow)
and two outputs (the exit arrows); therefore, at first view, it cannot
be a graphical representation of an operation. In untyped lambda cal-
culus the l abstraction operation has two inputs, namely a variable
name x and a term A, and one output, the term l x.A. An algorithm is
presented in Section 3 to transform a lambda calculus term into a
graph made by elementary gates, such that to any lambda abstraction
that appears in the term there is a corresponding l gate.

The U gate corresponds to a fan-out gate. It is needed because the
graphic lambda calculus described in this paper does not have vari-
able names. U gates appear in the process of eliminating variable
names from lambda terms, as described in Section 3.

Another justification for the existence of two fork graphs is that
they are subjected to different moves: the l gate appears in the
graphic beta move, together with the ! gate, while the U gate appears
in the fan-out moves. Thus, even if the l and U gates have the same
topology, they are subjected to different moves, which in fact charac-
terizes their lambda abstraction and fan-out qualities. The alternative,
consisting of only one generic fork gate, leads to identifying, in a
sense, lambda abstraction with fan-out, which would be confusing.

The ! gate corresponds to the application operation from lambda
calculus. The algorithm from Section 3 associates a ! gate to any ap-
plication operation used in a lambda calculus term.

Graphic Lambda Calculus 313

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The ! gate corresponds to an idempotent right quasigroup opera-
tion, which appears in emergent algebras as an abstraction of the geo-
metrical operation of taking a dilation (of coefficient !), based at a
point and applied to another point.

The existence of two join gates, with the same topology, is justified
by the fact that they appear in different moves.

2.1 The Set of Graphs
We now construct the set of graphs graph over the graphical alphabet.

Definition 2. The set of graphs graph is obtained by grafting edges from
a finite number of copies of the elements of the graphical alphabet.
During the grafting procedure, we start from a set of gates and add a
finite number of gates one at a time, such that, at any step, any edge
of any elementary graph is grafted on any other free edge (i.e., not al-
ready grafted to another edge) of the graph, with the condition that
they have the same orientation.

For any node of the graph, the local embedding into the plane is
given by the element of the graphical alphabet that decorates it.

The set of free edges of a graph G œ graph is named the set of
leaves LHGL. Technically, imagine that we complete the graph
G œ graph by adding to the free extremity of any free edge a deco-
rated node, called a “leaf,” with decoration “in” or “out,” depending
on the orientation of the respective free edge. The set of leaves LHGL
thus decomposes into a disjoint union LHGL ! inHGL ‹ outHGL of in or
out leaves.

Moreover, we admit into graph arrows without nodes,

called wires or lines, and loops (without either nodes from the elemen-
tary graphs or leaves):

Graphs in graph can be disconnected. Any graph that is a finite re-
union of lines, loops, and assemblies of the elementary graphs is in
graph.

2.2 Local Moves
These are transformations of graphs in graph that are local, in the
sense that any of the moves apply to a limited part of a graph, keep-
ing the rest of the graph unchanged.

314 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We may define a local move as a rule transforming a graph into an-
other of the following form.

First, a subgraph of graph G in graph is any collection of nodes
and/or edges of G. It is not supposed that the mentioned subgraph
must be in graph. Also, a collection of some edges of G, without any
node, counts as a subgraph of G. Thus, a subgraph of G might be
imagined as a subset of the reunion of nodes and edges of G.

For any natural number N and any graph G in graph, let "HG, NL
be the collection of subgraphs P of the graph G with the sum of the
number of their edges and nodes less than or equal to N.

Definition 3. A local move has the following form: there is a number N
and a condition C that is formulated in terms of graphs with the sum
of the number of their edges and nodes less than or equal to N, such
that for any graph G in graph and for any P œ "HG, NL, if C is true
for P then transform P into P£, where P£ is also a graph with the sum
of the number of its edges and nodes less than or equal to!N.

We may graphically group the elements of the subgraph, subjected
to the application of the local rule, into a region encircled with a
dashed, closed, simple curve. The edges that cross the curve (thus con-
necting the subgraph P with the rest of the graph) will be numbered
clockwise. The transformation will affect only the part of the graph
that is inside the dashed curve (inside meaning the bounded connected
part of the plane that is bounded by the dashed curve) and, after the
transformation is performed, the edges of the transformed graph will
connect to the graph outside the dashed curve by respecting the num-
bering of the edges that cross the dashed line.

However, the grouping of the elements of the subgraph has no in-
trinsic meaning in graphic lambda calculus. It is just a visual aid and
is not a part of the formalism. Sometimes colors are used in the fig-
ures as a visual aid. The colors, as well, do not have any intrinsic
meaning in the graphic lambda calculus.

2.2.1 Graphic b Move

This is the most important move, inspired by the b-reduction from
lambda calculus; see Theorem 1, part (d):

The labels “1, 2, 3, 4” are used only as guides for correctly gluing
the new pattern, after removing the old one. As with the encircling

Graphic Lambda Calculus 315

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 p g g

dashed curve, they have no intrinsic meaning in graphic lambda calcu-
lus.

This “sewing braids” move will also be used in contexts outside of
lambda calculus! It is the most powerful move in this graphic calcu-
lus. A primitive form of this move appears as the rewiring move (W1)
[9, pp. 20, 21].

Here is an alternative notation for the sewing braids move:

A move that looks very much like the graphic beta move is the un-
zip operation from the formalism of knotted trivalent graphs; see, for
example, [11, Section 3]. In order to see this, we draw the graphic
beta move again, this time without labeling the arrows:

The unzip operation acts only from left to right in the following
figure. Remarkably, it acts on trivalent graphs (but not oriented):

Let us go back to the graphic beta move and remark that it does
not depend on the particular embedding in the plane. For example,
the intersection of the 1,3 arrow with the 4,2 arrow is an artifact of
the embedding; there is no node there. Intersections of arrows have
no meaning, since we are working with graphs that are locally planar,
not globally planar.

The graphic beta move goes in both directions. In order to apply
the move, pick a pair of arrows and label them with 1,2,3,4, such
that, according to the orientation of the arrows, 1 points to 3 and 4
points to 2. There are no nodes or labels between 1 and 3 or between
4 and 2. Then, a graphic beta move will replace the portions of the
two arrows that are between 1 and 3 and between 4 and 2 with the
pattern from the left-hand side of the figure, which describes the
graphic beta move.

316 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

As an illustration of this, the graphic beta move may be applied
even to a single arrow or to a loop. The next figure shows three appli-
cations of the graphic beta move that illustrate the need to consider
loops and wires as members of graph:

We can apply a graphic beta move in different ways to the same
graph and in the same place, simply by using different labels 1, … 4
(here A, B, C, D are graphs in graph):

A particular case of the previous figure is yet another justification
for having loops as elements in graph:

Graphic Lambda Calculus 317

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The two previous applications of the graphic beta move may be rep-
resented alternatively like this:

2.2.2 Coassociativity Move

This is the coassociativity move involving the U graphs. Consider the
U graph as corresponding to a fan-out gate:

318 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

By using coassociativity moves, we can move between any two bi-
nary trees formed only with U gates, with the same number of output
leaves.

2.2.3 Cocommutativity Move

This is the cocommutativity move involving the U gate. It will be not
used until Section 6 concerning knot diagrams:

2.2.3a R1a Move

This move is imported from emergent algebras. Explanations are
given in Section 5. It involves an U graph and a ! graph, with ! œ G:

Graphic Lambda Calculus 319

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

2.2.3b R1b Move

Here is the R1b move (also related to emergent algebras):

2.2.4 R2 Move

This corresponds to the Reidemeister II move for emergent algebras.
It involves an U graph and two others: a ! and a m graph, with
!, m œ G:

The R2 move appears in [9, p. 21], with the supplementary name
“triangle move.”

2.2.5 Ext2 Move

This corresponds to the rule (ext2) from l-scale calculus. It expresses
the fact that in emergent algebras the operation indexed with the neu-
tral element 1 of the group G has the property x È1 y ! y:

320 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

2.2.6 Local Pruning

Local pruning moves are local moves that eliminate dead edges. Note
that, unlike the previous moves, these are one way (you can eliminate
dead edges, but not add them to graphs):

Graphic Lambda Calculus 321

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

2.3 Global Moves or Conditions
Global moves are not local either because the condition C applies to
parts of the graph that may have an arbitrarily large sum of edges
plus nodes or because after the move the graph P£ that replaces the
graph P has an arbitrarily large sum of edges plus nodes.

2.3.1 Ext1 Move

This corresponds to the rule (ext1) from l-scale calculus, or to h-re-
duction in lambda calculus (see Theorem 1, part (e) for details). It
involves a l graph (similar to the l abstraction operation in lambda
calculus) and a ! graph (similar to the application operation in
lambda calculus).

The rule is: if there is no oriented path from 2 to 1, then the ext1
move can be performed:

2.3.2 Global Fan-Out Move

This is a global move that consists of replacing (under certain circum-
stances) a graph by two copies of that graph.

The rule is: if a graph in G œ graph has an U bottleneck, that is, if

we can find a subgraph A œ graph connected to the rest of the graph
G only through an U gate, then we can perform the move depicted in
the next figure, from the left to the right:

322 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

Conversely, if in the graph G we can find two identical subgraphs
(denoted by A) that are in graph and have no edge connecting one
with another and that are connected to the rest of G only through one
edge, as in the right-hand side of the figure, then we can perform the
move from the right to the left.

Note that global fan-out trivially implies cocommutativity. As a lo-
cal rule alternative to the global fan-out, we might consider the follow-
ing. Fix a number N and consider only graphs A that have at most N
(nodes + arrows). The N local fan-out move is the same as the global
fan-out move, except it only applies to such graphs A. This local fan-
out move does not imply cocommutativity.

2.3.3 Global Pruning

This a global move to eliminate dead edges.

The rule is: if a graph in G œ graph has a ! ending, that is, if we

can find a subgraph A œ graph connected only to a ! gate, with no
edges connecting to the rest of G, then we can erase this graph and
the respective ! gate:

The global pruning may be needed because of the l gates that can-
not be removed only by local pruning.

Graphic Lambda Calculus 323

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

2.3.4 Elimination of Loops

It is possible that after using a local or global move, we obtain a
graph with an arrow that closes itself, without being connected to any
node. For example, if a loop appears after the application of a graphic
beta move, then it can be erased by the elimination of loops move.

2.4 l-graphs
The edges of an elementary graph l can be numbered unambiguously,
clockwise, by 1, 2, 3, such that 1 is the number of the entrant edge.

Definition 4. A graph G œ graph is a l-graph, denoted as G œ l graph,
if:

† it does not have any ! gates,

† for any node l any oriented path in G starting at edge 2 of this node
can be completed to a path that either terminates in a graph !, or else
terminates at edge 1 of this node.

The condition G œ l graph is global, in the sense that in order to

decide if G œ l graph, we have to examine parts of the graph that
may have an arbitrarily large sum of edges plus nodes.

3. Conversion of Lambda Terms

This section describes how to associate a lambda term to a graph in
graph that is then used to show that b-reduction in lambda calculus

transforms into the b rule for graph.
Indeed, to any term A œ THXL (where THXL is the set of lambda

terms over the variable set X) we associate its syntactic tree. The syn-
tactic tree of any lambda term is constructed by using two gates, one
corresponding to the l abstraction and the other corresponding to the
application. We draw syntactic trees with the leaves (elements of X)
at the bottom and the root at the top. We shall use the following nota-
tion for the two gates: at the left is the gate for the l abstraction and
at the right is the gate for the application:

Notice that these two gates are from the graphical alphabet of
graph, but the syntactic tree is decorated: at the bottom we have

324 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

leaves from X. Also, notice the peculiar orientation of the edge from
the left (in tree notation convention) of the l gate. For the moment,
this orientation is in contradiction with the implicit orientation (from
down-up) of edges of the syntactic tree, but soon this matter will be-
come clear.

We shall remove all leaf decorations, with the price of introducing
new gates, namely U and !. This will be done in a sequence of steps,
detailed later. Take the syntactic tree of A œ THXL, drawn with the
mentioned conventions (concerning gates and the positioning of
leaves and root, respectively).

We take as examples the following five lambda terms:

I ! lx.x
K ! lx.Hly.xL
S ! lx.Hly.Hlz.HHxzL HyzLLLL
W ! Hlx.HxxLL Hlx.HxxLL
T ! Hlx.HxyLL Hlx.HxyLL

3.1 Step 1: List Bound Variables
Any leaf of the tree is connected to the root by a unique path. Start
from the leftmost leaf, perform the algorithm explained next, then go
to the right and repeat until all leaves are exhausted. We also initialize
a list B ! « of bound variables.

Take a leaf, say decorated with x œ X. To this leaf is associated a
word (a list) that is formed by the symbols of gates on the path con-
necting (from the bottom up) the leaf with the root, together with in-
formation about which way, left (L) or right (R), the path passes

through the gates. Such a word is formed by the letters lL, lR,

!L, !R.

If the first letter is lL, then add to the list B the pair Hx, wHxLL
formed by the variable name x and the associated word (describing
the path to follow from the respective leaf to the root). Then pass to a
new leaf.

Otherwise, continue along the path to the root. If we arrive at a l
gate, which can happen only coming from the right leg of the l gate,

we can find only the letter lR. In such a case look at the variable y
that decorates the left leg of the same l gate. If x ! y, then add a new
edge to the syntactic tree from y to x and proceed farther along the
path; otherwise proceed farther. If the root is attained, then pass to
the next leaf.

Here are some examples of graphs associated to the mentioned
lambda terms, together with the list of bound variables.

Graphic Lambda Calculus 325

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

† I ! l x.x has B ! 9Ix, lLM=, K ! lx.Hly.xL has B ! 9Ix, lLM, Iy, lL lRM=,
and S ! l x.Hl y.Hl z.HHx zL Hy zLLLL has

B ! 9Ix, lLM, Iy, lL lRM, Iz, lL lR lRM=:

† W ! Hl x.Hx xLL Hl x.Hx xLL has B ! 9Ix, lL !LM, Ix, lL !RM= and

T ! Hl x.Hx yLL Hl x.Hx yLL has B ! 9Ix, lL !LM, Ix, lL !RM=:

3.2 Step 2: Eliminate Bound Variables
We now have a list B of bound variables. If the list is empty, then go
to the next step. Otherwise, do the following, starting from the first el-
ement of the list, until the list is finished.

An element, say Hx, wHxLL, of the list is either connected to other
leaves by one or more edges added at step 1 or not. If it is not con-
nected, then erase the variable name with the associated path wHxL
and replace it with a ! gate. If it is connected, then erase it and re-
place it with a tree formed by U gates, starting at the place where the
elements of the list were before the erasure and stopping at the leaves

326 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 pp g
that were connected to x. Erase all decorations that were joined to x
and also erase all edges added at step 1 to leaf x from the list.

Here are examples showing the graphs associated to the mentioned
lambda terms after step 2.

† The graphs of I ! l x.x, K ! lx.Hly.xL, and
S ! l x.Hl y.Hl z.HHx zL Hy zLLLL:

† The graphs of W ! Hl x.Hx xLL Hl x.Hx xLL and T ! Hl x.Hx yLL Hl x.Hx yLL:

Notice that at this step the necessity of having the peculiar orientation
of the left leg of the l gate becomes clear.

Note also that there may be more than one possible tree of gates U,
for example, at each elimination of a bound variable (in cases when a
bound variable has at least three occurrences). One may use any tree
of U that is fit. The problem of multiple possibilities is the reason for
introducing the coassociativity move.

3.3 Step 3: Remove Leaf Decorations
There may still be leaves decorated with free variables. Starting from
the left to the right, group them together in case some of them occur
in multiple places, then replace the multiple occurrences of a free vari-
able by a tree of U gates with a free root ending exactly at the occur-
rences of the respective variables. Again, there are multiple ways of

Graphic Lambda Calculus 327

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 p g p y
doing this, but we may pass from one to another by a sequence of
coassociativity moves.

Here are examples after step 3. All the graphs associated to the
mentioned lambda terms, except the last one, are left unchanged. The
graph of the last term changes.

† The graph of W ! Hl x.Hx xLL Hl x.Hx xLL, left unchanged by step 3, and
the graph of T ! Hl x.Hx yLL Hl x.Hx yLL:

Theorem 1. Let A # @AD be a transformation of a lambda term A into a
graph @AD as described previously (multiple transformations are possi-
ble because of the choice of U trees). Then:

(a) For any term A the graph @AD is in l graph.

(b) If @AD£ and @AD££ are transformations of the term A, then we may pass
from @AD£ to @AD££ by using a finite number (exponential in the number of
leaves of the syntactic tree of A) of coassociativity moves.

(c) If B is obtained from A by a-conversion, then we may pass from @AD to@BD by a finite sequence of coassociativity moves.

(d) Let A, B œ THXL be two terms and x œ X be a variable. Consider the
terms l x.A and A@x := BD, where A@x := BD is the term obtained by sub-
stituting in A the free occurrences of x by B. We know that b reduction
in lambda calculus consists of passing from Hl x.ALB to A@x := BD. Then,
by one b move in graph applied to @Hl x.ALBD we pass to a graph that can
be further transformed into one of A@x := BD, via global fan-out, coasso-
ciativity, and pruning moves.

(e) With the notations from (d), consider the terms A and l x.A x with
x – FVHAL; then the h reduction, consisting of passing from l x.A x to A,
corresponds to the ext1 move applied to the graphs @l x.A xD and @AD.

Proof. (a) We have to prove that, for any node l, any oriented path in@AD starting at the left exiting edge of the l node can be completed as

328 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 g g g p

a path that either terminates in a ! graph, or else terminates at the
entry peg of the l node, but this is clear. Indeed, either the bound vari-
able (of this l node in the syntactic tree of A) is fresh and gets re-
placed by a ! gate, or else the bound variable is replaced by a tree of
U gates. No matter which path we choose, we may complete it as a
cycle passing by the said l node.

(b) Clear also, because the coassociativity move is designed for
passing from a tree of U gates to another tree with the same number
of leaves.

(c) Indeed, the names of bound variables of A do not affect the con-
struction of @AD, therefore if B is obtained by a-conversion of A, then@BD differs from @AD only by the particular choice of trees of U gates.
But this is solved by coassociativity moves.

(d) This may be the surprising part of the theorem. There are two
cases: x is fresh for A or not. If x is fresh for A, then in the graph@Hl x.ALBD the named variable x is replaced by a ! gate. If not, then
all the occurrences of x in A are connected by an U tree with its root
at the left peg of the l gate where x appears as a bound variable.

In the case when x is not fresh for A, the left-hand side of the fig-
ure has the graph @Hl x.ALBD (with a remaining decoration of “x”).
We perform a graphic b move and obtain the graph on the right:

This graph can be transformed into a graph of A@x := BD via global
fan-out and coassociativity moves. Here is the case when x is fresh
for!A:

Graphic Lambda Calculus 329

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We see that the graph obtained by performing the graphic b move
is the union of the graph of A and the graph of B with a ! gate added
at the root. After pruning we are left with the graph of A, consistent
with the fact that when x is fresh for A then Hl x.ALB transforms by b
reduction into A.

(e) In the next figure the left-hand side is the graph @l x.A xD and
the right-hand side is the graph @AD:

The red asterisk marks the arrow that appears in the construction@l x.A xD from the variable x, taking into account the hypothesis
x – FVHAL. We have a pattern where we can apply the ext1 move and
obtain @AD, as claimed. ·

As an example, let us manipulate the graph of W ! Hl x.Hx xLLHlx.Hx xLL:

330 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We can pass from the left-hand side of the figure to the right-hand
side by using a graphic b move. Conversely, we can pass from the
right-hand side of the figure to the left-hand side by using a global fan-
out move. These manipulations correspond to the well-known fact
that W remains unchanged after b reduction: let U ! l x.Hx xL, then
W ! U U ! Hl x.Hx xLLU ¨ U U ! W.

3.4 Example: Combinatory Logic
The combinators I ! l x.x, K ! lx.Hly.xL, and S ! l x.Hly.Hlz.

HHx zL Hy zLLLL have the following correspondents in graph, denoted by
the same letters:

Proposition 1. (a) By one graphic b move, I ! A transforms into A, for
any A œ graph with one output.

(b) By two graphic b moves followed by a global pruning, for any
A, B œ graph with one output, the graph HK ! AL! B transforms in-
to!A.

(c) By five graphic b moves followed by one local pruning move,
the graph HS ! KL! K transforms into I.

(d) By three graphic b moves followed by a global fan-out move,
for any A, B, C œ graph with one output, the graph HHS ! AL! BL! C
transforms into the graph HA ! CL! HB ! CL.
Proof. The proof of (b) is given as this figure:

Graphic Lambda Calculus 331

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The proof of (c) is given as this figure:

(a) and (d) are left to the interested reader. ·

4. Using Graphic Lambda Calculus

The graph manipulations presented in this section can be applied for
graphs that represent lambda terms. However, they can also be ap-
plied for graphs that do not represent lambda terms.

4.1 Fixed Points
Let us start with a graph A œ graph that has one distinguished input
and one distinguished output represented as follows:

332 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

For any graph B with one output, we denote by AHBL the graph ob-
tained by grafting the output of B to the input of A.

I want to find B such that AHBL ¨ B, where ¨ means any finite se-
quence of moves in graphic lambda calculus. Such a graph B is called
a fixed point of A.

The solution of this problem is the same as in usual lambda calcu-
lus. We start from the following succession of moves:

This is very close to the solution; we only need a small modifica-
tion:

Graphic Lambda Calculus 333

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

4.2 Grafting: Application or Abstraction?
If the A, B from the previous paragraph represent lambda terms, then
the natural operation between them is not grafting, but the applica-
tion. Or, in graphic lambda calculus the application is represented by
an elementary graph, therefore A B (seen as the term in lambda cal-
culus obtained as the application of A to B) is not represented as a
grafting of the output of B to the input of A.

We can easily transform grafting into the application operation:

Suppose that A and B are graphs representing lambda terms. More
precisely, suppose that A is representing a term (also denoted by A)
and its input represents a free variable x of the term A. Then, the
grafting of B to A is the term A@x := BD and the graph from the right
is representing Hl x.ALB; therefore, both graphs are representing terms
from lambda calculus.

334 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We can transform grafting into something else:

This has no meaning in lambda calculus, but it looks as if the ab-
straction gate (the l gate) plays the role of an application operation,
except for the orientation of one of the arrows of the graph from the
right.

4.3 Zippers and Combinators as Half-Zippers
Let us take n ¥ 1 to be a natural number and let us consider the fol-
lowing graph in graph, called the n-zipper:

At the left is the n-zipper graph; at the right is a notation for it, or a
“macro.” The zipper graph is interesting because it allows performing
(nontrivial) graphic beta moves in a fixed order. In the following fig-
ure, red depicts the place where the first graphic beta move is applied:

Graphic Lambda Calculus 335

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

This graphic beta move has the following appearance in zipper
notation:

We see that an n-zipper transforms into an Hn-1L-zipper plus an ar-
row. This move may be repeated as long as possible. This procedure
defines a zipper move:

We may consider the 1-zipper move the same as the graphic beta
move, transforming the 1-zipper into two arrows.

336 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The combinator I ! l x.x satisfies the relation I A ! A. The next
figure shows that I (in green), when applied to A, is just a half of the
1-zipper, with an arrow added (in blue):

By opening the zipper we obtain A, as we should.
The combinator K ! l x y.x satisfies K A B ! HK ALB ! A. In the

next figure the combinator K (in green) appears as half of the 2-zip-
per, with one arrow and one termination gate added (in blue):

After opening the zipper we obtain a pair made by A and B that gets
the termination gate on top of it. A global pruning move sends B to
the trash bin.

Finally, the combinator S ! l x y z.HHx zL Hy zLL satisfies
S A B C ! HHS ALBLC ! HA CL HB CL. The combinator S (in green) ap-
pears to be made by half of the 3-zipper, with some arrows and also
with a “diamond” added (all in blue). Interestingly, the diamond
looks similar to the ones from Definition 8 in Section 5.

Graphic Lambda Calculus 337

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

Expressed with the help of zippers, the relation S K K ! I appears
like this:

338 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

4.4 Lists and Currying
With the help of zippers, we may enhance the procedure of turning
grafting into the application operation. We have a graph A œ graph
that has one output and several inputs:

Graphic Lambda Calculus 339

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We use an n-zipper in order to clip the inputs with the output:

This graph is, in fact, the following one:

340 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

We may interpret the graph inside the green dotted rectangle as the
currying of A, called curryHAL. This graph has only one output and no
inputs. The graph inside the red dotted rectangle is almost a list. We
shall transform it into a list by again using a zipper and one graphic
beta move:

Graphic Lambda Calculus 341

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

4.5 Packing Arrows
We may pack several arrows into one. The case of two arrows is de-
scribed first. We start from the following sequence of three graphic
beta moves:

342 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

This figure means: we pack the 1,2 entries into a list, pass it through
one arrow, then unpack the list into the outputs 3,4. Of course, this
packing/unpacking trick may be used for more than a pair of arrows,
in obvious ways; therefore, it is not a restriction of generality to write
only about two arrows.

We may apply the trick to a pair of graphs A and B that are con-
nected by a pair of arrows, as in the following figure:

With the added packing/unpacking triples of gates, the graphs A, B
are interacting only by the intermediary of one arrow.

In particular, we may use this trick for the elementary gates of ab-
straction and application, transforming them into graphs with one in-
put and one output, like this:

If we use the elementary gates transformed into graphs with one
input and one output, the graphic beta move becomes this almost-
algebraic, one-dimensional rule:

Graphic Lambda Calculus 343

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

With such procedures, we may transform any graph in graph into a
one-dimensional string of graphs, consisting of transformed elemen-
tary graphs and packers/unpackers of arrows, which could be used, in
principle, for transforming graphic lambda calculus into a text pro-
gramming language.

5. Emergent Algebras

Emergent algebras [12, 13] are a distillation of differential calculus in
metric spaces with dilations [14]. This class of metric spaces contains
the “classical” Riemannian manifolds, as well as fractal-like spaces
such as Carnot groups or, more generally, sub-Riemannian or Carnot–
Carathéodory spaces (see Bellaïche [15] or Gromov [16]), endowed
with an intrinsic differential calculus based on some variant of the
Pansu derivative [17].

In [14, Section 4] I proposed a formalism for making various calcu-
lations easier with dilation structures. This formalism works with
moves acting on binary decorated trees, with the leaves decorated
with elements of a metric space.

Here is an example of the formalism. The moves are (with the
same names as those used in graphic lambda calculus; see the explana-
tion below):

344 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

Define the following graph (consider it as the graphical representa-
tion of an operation u + v with respect to the basepoint!x):

Then, in the binary trees formalism the following “approximate”
associativity relation can be proved, by using the moves R1a, R2a (it
is approximate because a basepoint appears that is different from x,
but is close to x in the geometric context of spaces with dilations):

It was puzzling that the formalism worked without needing to
know which metric space is used. Moreover, reasoning with moves
acting on binary trees gave proofs of generalizations of results from
sub-Riemannian geometry, while classical proofs involve elaborate cal-
culations with pseudo-differential operators. At a close inspection it
looked like somewhere in the background there is an abstract non-
sense machine that is applied just to the particular case of sub-Rieman-
nian spaces.

Graphic Lambda Calculus 345

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

In this paper I shall take the following pure algebraic definition of
an emergent algebra (compare with [12, Definition 5.1]), which is a
stronger version of [13, Definition 4.2] of a G idempotent right quasi-
group, in the sense that I define a G idempotent quasigroup here.

Definition 5. Let G be a commutative group with neutral elements de-
noted by 1 and operation denoted multiplicatively. A G idempotent
quasigroup is a set X endowed with a family of operations
È! : XäX Ø X, indexed by ! œ G, such that:

1. For any ! œ G\81< the pair HX, È!L is an idempotent quasigroup; that is,
for any a, b œ X the equations x È! a ! b and a È! x ! b have unique
solutions, and moreover x È! x ! x for any x œ X.

2. The operation È1 is trivial: for any x, y œ X we have x È1 y ! y.

3. For any x, y œ X and any !, m œ G we have: x È! Ix Èm yM ! x È!m y.

Here are some examples of G idempotent quasigroups.

Example 1. Real (or complex) vector spaces: let X be a real (complex)
vector space, G ! H0, +¶L (or G ! C*), with multiplication as the op-
eration. We define for any ! œ G the following quasigroup operation:
x È! y ! H1 - !L x + ! y. These operations give to X the structure of a G
idempotent quasigroup. Note that x È! y is the dilation, based at x, of
coefficient !, applied to y.

Example 2. Contractible groups: let G be a group endowed with a
group morphism f : G Ø G. Let G ! ! with the operation of integer
addition (thus we may adapt Definition 5 to this example by using
“! + m” instead of “!m” and “0” instead of “1” as the name of the

neutral element of G). For any ! œ ! let x È! y ! x f! Ix-1 yM. This is a
! idempotent quasigroup. The most interesting case is the one when f
is a uniformly contractive automorphism of a topological group G.
The structure of these groups is an active exploration area; see, for ex-
ample, [18] and the bibliography therein. A fundamental result here is
Siebert [19], which gives a characterization of topologically con-
nected, contractive, locally compact groups as being nilpotent Lie
groups endowed with a one-parameter family of dilations, that is, al-
most Carnot groups.

Example 3. A group with an invertible self-mapping f : G Ø G such
that fHeL ! e, where e is the identity of the group G. It looks like
Example 2 but shows that there is no need for f to be a group mor-
phism.

5.1 Local Versions
We may accept that there is a way (definitely needing a careful formu-
lation, but intuitively clear) to define a local version of the notion of a

346 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 y

G idempotent quasigroup. With such a definition, for example, a con-
vex subset of a real vector space gives a local H0, +¶L idempotent
quasigroup (as in Example 1) and a neighborhood of the identity of a
topological group G. An identity-preserving, locally-defined, invert-
ible self map (as in Example 3) gives a ! local idempotent quasigroup.

Example 4. A particular case of Example 3 is a Lie group G with the op-

erations defined for any ! œ H0, +¶L by x È! y ! x exp I! log Ix-1 yMM.
Example 5. A less-symmetric example is the one of X’s being a Rieman-
nian manifold, with associated operations defined for any ! œ H0, +¶L
by x È! y ! expxI! logxHyLM, where exp is the metric exponential.

Example 6. More generally, any metric space with dilations is a local
idempotent (right) quasigroup.

Example 7. One-parameter deformations of quandles. A quandle is a
self-distributive quasigroup. Now, take a one-parameter family of
quandles (indexed by ! œ G) that also satisfies points 2 and 3 from
Definition 5. What is interesting about this example is that quandles
appear as decorations of knot diagrams [4, 5], which are preserved by
the Reidemeister moves (more on this in Section 6). At closer examina-
tion, Examples 1 and 2 are particular cases of one-parameter quandle
deformations!

The operations of approximate sum and approximate difference as-
sociated to a G idempotent quasigroup are defined next.

Definition 6. For any ! œ G we give the following names to several com-
binations of operations of emergent algebras:

† The approximate sum operation is S!
x Hu, vL ! x •! HHx È! uL È! vL.

† The approximate difference operation is D!
x Hu, vL ! Hx È! uL •! Hx È! vL.

† The approximate inverse operation is inv!
x u ! Hx È! uL •! x.

Here is the approximate sum operation for Example 1:

‚
!

x Hu, vL ! uH1 - !L - x + v.

It is clear that, as ! converges to 0, this becomes the operation of addi-
tion in the vector space with x as a neutral element. It might be said
that it is the operation of addition of vectors in the tangent space at x,
where x is seen as an element of the affine space constructed over the
vector space from Example 1.

This is a general phenomenon that becomes really interesting in
noncommutative situations, as in the examples from the end of the
provided list.

Graphic Lambda Calculus 347

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

These approximate operations have many algebraic properties that
can be found by the abstract nonsense of manipulating binary trees.

Another construction that can be done in emergent algebras is tak-
ing finite differences (at a high level of generality, not bound to vector
spaces).

Definition 7. Let A : X Ø X be a function (from X to itself, for simplic-
ity). Here is the finite difference function associated to A, with respect
to the emergent algebra over X, at a point x œ X:

T!
x A : X Ø X , T!

x AHuL ! A HxL •! HA Hx È! uLL.
For Example 1, the finite difference has the expression:

T!
x A Hu - xL ! A HxL + 1

!
HA Hx + ! uL - AHxLL,

which is a finite difference indeed. In more generality, for Example 2
this definition leads to the Pansu derivative [17].

Finite differences as defined here behave like discrete versions of
derivatives. Again, the proofs consist of manipulating well-chosen bi-
nary trees.

All this can be formalized in graphic lambda calculus, thus trans-
forming the proofs into computations inside graphic lambda calculus.

I shall not stress this further, with the exception of describing the
emergent algebra sector of graphic lambda calculus.

Definition 8. For any ! œ G, the following graphs in graph are
introduced.

† The approximate sum graph S!:

348 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

† The approximate difference graph D!:

† The approximate inverse graph inv!:

Let A be a set of symbols a, b, c, … (these symbols will play the
role of scale parameters going to 0). With A and with the Abelian

group G we construct a larger Abelian group G that is generated by A
and by G.

Now we introduce the emergent algebra sector (over the set A).

Definition 9. The subset of graph emerHAL (over the group G) is gener-
ated by the following list of gates.

† Arrows and loops.

† The U and ! gates for any ! œ G.

† The approximate sum gate Sa and the approximate difference gate Da,
for any a œ A.

The operations of linking output to input arrows need the following
list of moves.

† Fan-out moves.

† Emergent algebra moves for the group G.

† Pruning moves.

The set emerHAL with the given list of moves is called the emergent al-
gebra sector over the set A.

Graphic Lambda Calculus 349

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The approximate inverse is not included in the list of generating
gates because we can easily prove that for any a œ A we have
inva œ emerHAL. (If ! œ G then we trivially have inv! œ emerHAL be-
cause it is constructed from emergent algebra gates decorated by ele-
ments in G that are in the list of generating gates.) Here is the proof:
we start with the approximate difference Da and an U gate. We arrive
at the approximate inverse inva by the following sequence of moves:

We proved the following relation for emergent algebras:
Da

x Hu, xL ! inva
x u. This relation appears as a computation in graphic

lambda calculus.
For the finite differences, we proceed as in Definition 10.

Definition 10. A graph A œ graph, with one input and one output distin-

guished, is computable with respect to the group G if the following
graph

350 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

can be transformed by the moves from graphic lambda calculus into a
graph made by assembling:

† graphs from emerHAL
† gates l, !, and !

It would be interesting to mix the emergent algebra sector with the
lambda calculus sector (in a sense this is already suggested in Defini-
tion 10). At first view, it seems that the emergent algebra ! gates are
operations that are added to the lambda calculus operations, the lat-
ter being more basic than the former. I think this is not the case. In
the formalism of lambda-scale calculus [8, Theorem 3.4] (of which
graphic lambda calculus is a visual variant), I show to the contrary
that emergent algebra gates could be applied to lambda terms and the
result would be a collection, or hierarchy, of lambda calculi, orga-
nized into an emergent algebra structure. This is surprising, at least
for the author, because the initial goal of introducing lambda-scale
calculus was to mimic lambda calculus with emergent algebra
operations.

6. Crossings

In this section we discuss tangle diagrams and graphic lambda
calculus.

An oriented tangle is a collection of wires in three-dimensional
space; more precisely it is an embedding of an oriented one-dimen-
sional manifold in three-dimensional space. Two tangles are the same
up to topological deformation of the three-dimensional space. An ori-
ented tangle diagram is, visually, a projection of a tangle, in general
position, on a plane. More specifically, an oriented tangle diagram is
a globally planar oriented graph with 4-valent nodes representing
crossings of wires (as seen in the projection), along with supplemen-
tary information about which wire passes over the respective crossing.
A locally planar tangle diagram is an oriented graph that satisfies the
previous description, with the exception that it is only locally planar.
Visually, a locally planar tangle diagram looks like an ordinary one,
except that there may be crossings of edges of the graph that are not
tangle crossings (i.e., nodes of the graph).

The purpose of this section is to show that we can “simulate” tan-
gle diagrams with graphic lambda calculus. This can be expressed
more precisely in two ways. The first way is to define “crossing
macros,” which are certain graphs that play the role of crossings in a
tangle diagram (i.e., we can express the Reidemeister moves, de-
scribed later, as compositions of moves from graphic lambda calculus

Graphic Lambda Calculus 351

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 p g p

between such graphs). The second way is to associate a graph in
graph to any tangle diagram such that a certain composition of moves
from graphic lambda calculus is associated to any Reidemeister move.

Meredith and Snyder [7] achieve this goal using pi-calculus instead
of graphic lambda calculus. Kauffman, in the second part of [6], asso-
ciates tangle diagrams to combinators and writes about “knotlogic.”

6.1 Oriented Reidemeister Moves
Two tangles are the same, up to topological equivalence, if and only if
any tangle diagram of one tangle can be transformed by a finite se-
quence of Reidemeister moves into a tangle diagram of the second tan-
gle. Here are the oriented Reidemeister moves (using the same names
as Polyak [20], but with the letter W replaced by the letter!R).

† Four oriented Reidemeister moves of type 1:

† Four oriented Reidemeister moves of type 2:

352 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

† Eight oriented Reidemeister moves of type 3:

6.2 Crossings from Emergent Algebras
Section 5, Example 7 mentions that there is a connection between tan-
gle diagrams and emergent algebras, via the notion of a quandle.
Quandles are self-distributive idempotent quasigroups that were in-
vented as decorations for the arrows of a tangle diagram, which are in-
variant with respect to the Reidemeister moves.

Here are the emergent algebra crossing macros:

We can choose to neglect the ! decorations of the crossings, or, on
the contrary, we can do as in Definition 9 and add a set A to the
group G and use even more nuanced decorations for the crossings.

Graphic Lambda Calculus 353

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

In [9, Sections 3 through 6] the use of these crossings for exploring
emergent algebras and spaces with dilations is presented. All construc-
tions and reasonings from there can be put into the graphic lambda
calculus formalism. Here I shall explain only some introductory facts.

Let us associate to any locally planar tangle diagram T a graph in@TD œ graph, called the translation of T, which is obtained by replac-
ing the crossings with the emergent crossing macros (for a fixed !).
Also, to any Reidemeister move we associate its translation in graphic
lambda calculus, consisting of a local move between the translations
of the left- and right-hand side tangles that appear in the respective
move. (Note: these translations are not added to the moves that de-
fine graphic lambda calculus.)

Theorem 2. The translations of all oriented Reidemeister moves of
types 1 and 2 can be realized as sequences of the following moves
from graphic lambda calculus: emergent algebra (i.e., R1a, R1b, R2,
ext2), fan-out (i.e., cocommutativity, coassociativity, global fan-out),
and pruning. More precisely, the translations of the Reidemeister
moves R1a, R1b are, respectively, the graphic lambda calculus moves
R1a, R1b, modulo fan-out moves. Moreover, all translations of Reide-
meister moves of type 2 can be expressed in graphic lambda calculus
with the R2, fan-out, and pruning moves.

The proof is left to the interested reader; see however [9, Sec-
tion!3.4].

The fact that Reidemeister moves of type 3 are not true for (the
algebraic version of) the emergent algebras, that is, that the transla-
tions of the type 3 moves cannot be expressed as a sequence of moves
from graphic lambda calculus, is a feature of the formalism and not a
weakness. This is explained in detail in [9, Sections 5 and 6], but un-
fortunately at the moment of writing that paper, the graphic lambda
calculus was not available. It would be interesting to express the con-
structions from the mentioned sections in [9] as statements about
computability in the sense of Definition 10 with translations of cer-
tain tangle diagrams.

As a justification for this point of view, let us remark that all tangle
diagrams that appear in the Reidemeister moves of type 3 have trans-
lations that are related to the approximate difference or approximate
sum graphs from Definition 8. For example, let us take the translation
of the graph from the right-hand side of the move R3d and call it D.
This graph has three inputs and three outputs. Let us then consider a
graph formed by grafting three graphs A, B, and C at the inputs of D,
such that A, B, and C are not otherwise connected. Then we can per-
form the following sequence of moves:

354 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

The lower-left graph is formed by an approximate difference, a ! gate,
and several U gates. Therefore, if A, B, and C are computable in the
sense of Definition 8, then the initial graph (the translation of the left-
hand side of R3d with A, B, and C grafted at the inputs) is also
computable.

6.3 Graphic Beta Move as Braiding
We now construct crossings, in the sense previously explained, using
gates from lambda calculus:

As previously, we define translations of (locally planar) tangle dia-
grams into graphs in graph. There is a one-to-one correspondence be-
tween the class of locally planar tangle diagrams and a class of graphs
in graph. We call this the l-tangle class.

We could proceed in the inverse direction; namely, consider the
class of l-tangle graphs, along with graphic beta moves and elimina-

Graphic Lambda Calculus 355

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 g g p g g p

tion of loops. Then, we make the (inverse) translation of graphs in
l-tangle into locally planar tangle diagrams and the (inverse) transla-
tion of the graphic beta move and the elimination of loops. Proposi-
tion 2 explains what we obtain.

Proposition 2. The class of l-tangle graphs is closed with respect to the
application of the graphic beta move and elimination of loops. The
translations of the graphic beta and elimination of loops moves are
the Splice 1, 2 (translation of the graphic beta move) and Loop 1, 2
(translation of the elimination of loops) moves:

Proof. The proposition becomes obvious if we find the translation of
the graphic beta move. There is one translation for each crossing:

356 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

Likewise, there are two translations for the elimination of loops, de-
pending on the orientation of the loop that is added/erased. ·

Theorem 3 clarifies which oriented Reidemeister moves can be ex-
pressed as sequences of graphic lambda calculus moves applied to
graphs in a l-tangle. Among these moves, some are more powerful
than others, as witnessed by the following.

Theorem 3. All the translations of an oriented Reidemeister move into
moves between graphs in a l-tangle, except R2c, R2d, R3a, and R3h,
can be realized as sequences of graphic beta and elimination of loops
moves. Moreover, the translations of moves R2c, R2d, R3a, and R3h
are equivalent up to graphic beta and elimination of loops moves (i.e.,
any of these moves, together with graphic beta and elimination of
loops, generate the other moves in this list).

Proof. It is easy, but tedious, to verify that all the mentioned moves
can be realized as sequences of splice and loop moves. It is easy to ver-
ify that the moves R2c, R2d, R3a, and R3h are equivalent up to splice
and loop moves. It is not obvious that the moves R2c, R2d, R3a, and
R3h cannot be realized as a sequence of splice and loop moves. In or-

Graphic Lambda Calculus 357

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

 q p p

der to do this, we prove that R2d cannot be generated by splice and
loop. Thanks are due to Peter Kravchuk for the idea of the proof,
given in an answer to a question I asked on mathoverflow [21], where
I described the moves splice and loop.

To any locally planar tangle diagram A associate its reduced dia-
gram RHAL, which is obtained by the following procedure: first use
splice 1,2 from left to right for all crossings, then use loop 1,2 from
right to left in order to eliminate all loops present at this stage. Note
the following.

† The order of applying splice moves does not matter, because they are
applied only once per crossing. There is a finite number of splices,
equal to the number of crossings. Define the bag of splices spliceHAL to
be the set of splice moves applied.

† The same is true for the order of loop elimination by loop 1,2. There is
a finite number of loop eliminations, because the number of loops (at
this stage) cannot be bigger than the number of edges of the initial dia-
gram. Define the bag of loops loopHAL to be the set of all loops present
after all splices are done.

Let us now check that the reduced diagram does not change if one
of the four moves is applied to the initial diagram.

Apply a splice 1,2 move to the initial diagram A, from left to right,
and get B. Then spliceHBL is what is left in the bag spliceHAL after tak-

ing out the respective splice. Also, loopHBL ! loopHAL because of the
definition of bags of loops. Therefore, RHAL ! RHBL.

Apply a splice 1,2 from right to left to A and get B. Then,
RHAL ! RHBL by the same proof, with A, B switching places.

Apply a loop 1,2 move from left to right to A and get B. The new
loop introduced in the diagram does not participate in any crossing
(therefore, spliceHAL ! spliceHBL), so we find it in the bag of loops of B

made by all the elements of loopHAL and this new loop. Therefore,
RHAL ! RHBL. The same goes for loop 1,2 applied from right to left.

Finally, the reduced diagram of the left-hand side of the move R2d
is different from the reduced diagram of the right-hand side of the
move R2d; therefore, the move R2d cannot be achieved with a se-
quence of splices and loop addition/elimination. ·

Acknowledgments

This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS UEFISCDI, project number
PN-II-ID-PCE-2011-3-0383.

358 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

References

[1] M. Erwig, “Abstract Syntax and Semantics of Visual Languages,” Jour-
nal of Visual Languages and Computing, 9(5), 1998 pp. 461–483.
doi:10.1006/jvlc.1998.0098.

[2] W. Citrin, R. Hall, and B. Zorn, “Programming with Visual Expres-
sions,” Proceedings of the 11th IEEE Symposium on Visual Languages,
Darmstadt, 1995 pp. 294–301. doi:10.1109/VL.1995.520822.

[3] D. C. Keenan. “To Dissect a Mockingbird: A Graphical Notation for
the Lambda Calculus with Animated Reduction.” (Oct 2, 2013)
http://dkeenan.com/Lambda.

[4] R. Fenn and C. Rourke, “Racks and Links in Codimension Two,” Jour-
nal of Knot Theory and its Ramifications, 1(4), 1992 pp. 343–406.

[5] D. Joyce, “A Classifying Invariant of Knots; the Knot Quandle,” Jour-
nal of Pure and Applied Algebra, 23(1), 1982 pp. 37–65.
doi:10.1016/0022-4049(82)90077-9.

[6] L. Kauffman (ed.), Knot Logic: Knots and Applications (Series on Knots
and Everything, Vol. 6), River Edge, NJ: World Scientific, 1995.

[7] L. G. Meredith and D. F. Snyder, “Knots as Processes: A New Kind of
Invariant.” http://arxiv.org/abs/1009.2107.

[8] M. Buliga, “l-Scale, a Lambda Calculus for Spaces with Dilations.”
http://arxiv.org/abs/1205.0139.

[9] M. Buliga, “Computing with Space: A Tangle Formalism for Chora and
Difference.” http://arxiv.org/abs/1103.6007.

[10] J. J. Koenderink, “The Brain a Geometry Engine,” Psychological Re-
search, 52(2–3), 1990 pp. 122–127.

[11] D. P. Thurston, “The Algebra of Knotted Trivalent Graphs and Tu-
raev’s Shadow World.” http://arxiv.org/abs/math/0311458.

[12] M. Buliga, “Emergent Algebras.” http://arxiv.org/abs/0907.1520.

[13] M. Buliga, “Braided Spaces with Dilations and sub-Riemannian Symmet-
ric Spaces,” in Geometry. Exploratory Workshop on Differential Ge-
ometry and its Applications (D. Andrica and S. Moroianu, eds.),
Cluj-Napoca, Romania: Cluj University Press, 2011 pp. 21–35.
http://arxiv.org/abs/1005.5031.

[14] M. Buliga, “Dilatation Structures I. Fundamentals,” Journal of General-
ized Lie Theory and Applications, 1(2), 2007 pp. 65–95.
http://arxiv.org/abs/math/0608536.

[15] A. Bellaïche, “The Tangent Space in sub-Riemannian Geometry,” in Sub-
Riemannian Geometry (A. Bellaïche and J.-J. Risler, eds.), Progress in
Mathematics, 144, Boston: Birkhäuser, 1996 pp. 4–78.

[16] M. Gromov, “Carnot-Carathéodory Spaces Seen from Within,” in Sub-
Riemannian Geometry (A. Bellaïche and J.-J. Risler, eds.), Progress in
Mathematics, 144, Boston: Birkhäuser, 1996 pp. 79–323.

Graphic Lambda Calculus 359

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

[17] P. Pansu, “Métriques de Carnot-Carathéodory et quasi-isométries des es-
paces symétriques de rang un,” Annals of Mathematics, 129(2), 1989
pp. 1–60.

[18] H. Glöckner, “Contractible Lie Groups over Local Fields,” Mathema-
tische Zeitschrift, 260(4), 2008 pp. 889–904.
doi:10.1007/s00209-008-0305-x.

[19] E. Siebert, “Contractive Automorphisms on Locally Compact Groups,”
Mathematische Zeitschrift, 191(1), 1986 pp. 73–90.
doi:10.1007/BF01163611.

[20] M. Polyak, “Minimal Generating Sets of Reidemeister Moves.”
http://arxiv.org/abs/0908.3127.

[21] M. Buliga. “Oriented Reidemeister Move R2d by Splices and Loop
Adding/Erasing?” MathOverflow. (Oct 2, 2013)
mathoverflow.net/questions/128511.

360 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.311

<<
 /ASCII85EncodePages false
 /AllowPSXObjects false
 /AllowTransparency false
 /AlwaysEmbed [
 true
]
 /AntiAliasColorImages false
 /AntiAliasGrayImages false
 /AntiAliasMonoImages false
 /AutoFilterColorImages true
 /AutoFilterGrayImages true
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CheckCompliance [
 /None
]
 /ColorACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorConversionStrategy /LeaveColorUnchanged
 /ColorImageAutoFilterStrategy /JPEG
 /ColorImageDepth -1
 /ColorImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorImageDownsampleThreshold 1.50000
 /ColorImageDownsampleType /Bicubic
 /ColorImageFilter /DCTEncode
 /ColorImageMinDownsampleDepth 1
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /ColorImageResolution 300
 /ColorSettingsFile ()
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /CreateJDFFile false
 /CreateJobTicket false
 /CropColorImages false
 /CropGrayImages false
 /CropMonoImages false
 /DSCReportingLevel 0
 /DefaultRenderingIntent /Default
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /DetectBlends true
 /DetectCurves 0
 /DoThumbnails false
 /DownsampleColorImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /EmbedOpenType false
 /EmitDSCWarnings false
 /EncodeColorImages true
 /EncodeGrayImages true
 /EncodeMonoImages true
 /EndPage -1
 /GrayACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageAutoFilterStrategy /JPEG
 /GrayImageDepth -1
 /GrayImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageDownsampleThreshold 1.50000
 /GrayImageDownsampleType /Bicubic
 /GrayImageFilter /DCTEncode
 /GrayImageMinDownsampleDepth 2
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /GrayImageResolution 300
 /ImageMemory 1048576
 /JPEG2000ColorACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000ColorImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /LockDistillerParams false
 /MaxSubsetPct 100
 /MonoImageDepth -1
 /MonoImageDict <<
 /K -1
 >>
 /MonoImageDownsampleThreshold 1.50000
 /MonoImageDownsampleType /Bicubic
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /MonoImageResolution 1200
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /NeverEmbed [
 true
]
 /OPM 1
 /Optimize true
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.25000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXOutputCondition ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputIntentProfile ()
 /PDFXRegistryName ()
 /PDFXSetBleedBoxToMediaBox true
 /PDFXTrapped /False
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /ParseICCProfilesInComments true
 /PassThroughJPEGImages true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

