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Graphic lambda calculus, a visual language that can be used for repre-
senting untyped lambda calculus, is introduced and studied. It can also
be used for computations in emergent algebras or for representing Rei-
demeister moves of locally planar tangle diagrams. 

1. Introduction

Graphic  lambda  calculus  consists  of  a  class  of  graphs  endowed  with
moves between them. It  might be considered a visual language in the
sense of Erwig [1]. The name comes from the fact that it can be used
for representing terms and reductions from untyped lambda calculus.
Its  main  move  is  called  the  graphic  beta  move  for  its  relation  to  the
beta  reduction  in  lambda  calculus.  However,  the  graphic  beta  move
can be applied outside  the  “sector” of  untyped lambda calculus,  and
the graphic lambda calculus can be used for other purposes than that
of visually representing lambda calculus.

For  other  visual,  diagrammatic  representations  of  lambda calculus
see the VEX language [2], or Keenan’s website [3]. 

The  motivation  for  introducing  graphic  lambda  calculus  comes
from the study of emergent algebras. In fact, my goal is to eventually
build a logic system that can be used for the formalization of certain
“computations” in emergent algebras. The system can then be applied
for a discrete differential calculus that exists for metric spaces with di-
lations,  comprising  Riemannian  manifolds  and  sub-Riemannian
spaces with very low regularity. 

Emergent  algebras  are  a  generalization  of  quandles;  namely,  an
emergent algebra is a family of idempotent right quasigroups indexed
by the elements of an Abelian group, while quandles are self-distribu-
tive  idempotent  right  quasigroups.  Tangle  diagrams  decorated  by
quandles or racks are a well-known tool in knot theory [4, 5]. 

In Kauffman [6] knot diagrams are used for representing combina-
tory logic, thus forming a graphical notation for untyped lambda cal-
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culus terms. Also, Meredith and Snyder [7] associate to any knot dia-
gram a process in pi-calculus.

Is there any common ground between these three apparently sepa-
rate  fields,  namely,  differential  calculus,  logic,  and  tangle  diagrams?
As  a  first  attempt  for  understanding  this,  I  proposed  l-scale  calculus
[8],  which  is  a  formalism  containing  both  untyped  lambda  calculus
and  emergent  algebras.  Also,  in  [9]  I  proposed  a  formalism of  deco-
rated tangle diagrams for emergent algebras and I  called “computing
with space” the various manipulations of these diagrams with geomet-
ric content. Nevertheless, in that paper I was not able to give a precise
sense  of  the  use  of  the  word  “computing.”  I  speculated,  by  using
analogies from studies of the visual system, especially the “brain as a
geometry engine” paradigm of Koenderink [10], that, in order for the
visual  front  end  of  the  brain  to  reconstruct  the  visual  space  in  the
brain,  there  should  be  a  kind  of  “geometrical  computation”  in  the
neural network of the brain akin to the manipulation of decorated tan-
gle diagrams described in this paper. 

I hope to convince the reader that graphic lambda calculus gives a
rigorous answer to this question, being a formalism that contains, in a
sense, lambda calculus, emergent algebras, and tangle diagrams. 

2. Graphs and Moves

An  oriented  graph  is  a  pair  HV, EL,  with  V  the  set  of  nodes  and

E Õ V äV  the set  of  edges.  Let  us denote by a : V Ø 2E  the map that
associates  to  any  node  N œ V  the  set  of  adjacent  edges  aHNL.  In  this
paper we work with locally planar graphs with decorated nodes; that
is, we shall attach supplementary information to a graph HV, EL.

† A function f : V Ø A  that associates to any node N œ V  an element of
the “graphical alphabet” A (see Definition 1).

† A cyclic order of aHNL for any N œ V, which is equivalent to giving a lo-
cal embedding of the node N and edges adjacent to it into the plane. 

We  shall  construct  a  set  of  locally  planar  graphs  with  decorated
nodes,  starting  from  a  graphical  alphabet  of  elementary  graphs.  We
shall  define  local  transformations,  or  moves,  on  the  set  of  graphs.
Global moves or conditions will then be introduced. 

Definition 1. The graphical alphabet contains the elementary graphs, or
gates, denoted by l,  U,  !,  !,  and for any element !  of the commuta-
tive  group  G,  a  graph  denoted  by  !.  Here  are  the  elements  of  the
graphical alphabet:
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l graph , U graph

! graph , ! graph

! graph

With the  exception of  the  !  graph,  all  other  elementary  graphs  have
three edges. The ! graph has only one edge.

There  are  two types  of  “fork”  graphs:  l  and  U,  and  two types  of
“join” graphs: ! and !. I now briefly explain what they are supposed
to represent and why they are needed in this graphic formalism. 

The  l  gate  corresponds  to  the  lambda  abstraction  operation  from
untyped  lambda  calculus.  This  gate  has  one  input  (the  entry  arrow)
and  two  outputs  (the  exit  arrows);  therefore,  at  first  view,  it  cannot
be a graphical representation of an operation. In untyped lambda cal-
culus  the  l  abstraction  operation  has  two  inputs,  namely  a  variable
name x and a term A, and one output, the term l x.A. An algorithm is
presented  in  Section  3  to  transform  a  lambda  calculus  term  into  a
graph made by elementary gates, such that to any lambda abstraction
that appears in the term there is a corresponding l gate. 

The U  gate corresponds to a fan-out gate. It  is needed because the
graphic  lambda  calculus  described  in  this  paper  does  not  have  vari-
able  names.  U  gates  appear  in  the  process  of  eliminating  variable
names from lambda terms, as described in Section 3. 

Another  justification  for  the  existence  of  two  fork  graphs  is  that
they  are  subjected  to  different  moves:  the  l  gate  appears  in  the
graphic beta move, together with the ! gate, while the U gate appears
in  the  fan-out  moves.  Thus,  even if  the  l  and U  gates  have  the  same
topology, they are subjected to different moves, which in fact charac-
terizes their lambda abstraction and fan-out qualities. The alternative,
consisting  of  only  one  generic  fork  gate,  leads  to  identifying,  in  a
sense, lambda abstraction with fan-out, which would be confusing. 

The  !  gate  corresponds  to  the  application operation from lambda
calculus. The algorithm from Section 3 associates a ! gate to any ap-
plication operation used in a lambda calculus term. 
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The  !  gate  corresponds  to  an  idempotent  right  quasigroup  opera-
tion, which appears in emergent algebras as an abstraction of the geo-
metrical  operation  of  taking  a  dilation  (of  coefficient  !),  based  at  a
point and applied to another point. 

The existence of two join gates, with the same topology, is justified
by the fact that they appear in different moves. 

2.1 The Set of Graphs
We now construct the set of graphs graph over the graphical alphabet.

Definition 2. The set of graphs graph is obtained by grafting edges from
a  finite  number  of  copies  of  the  elements  of  the  graphical  alphabet.
During the grafting procedure, we start from a set of gates and add a
finite number of gates one at a time, such that, at any step, any edge
of any elementary graph is grafted on any other free edge (i.e., not al-
ready  grafted  to  another  edge)  of  the  graph,  with  the  condition  that
they have the same orientation. 

For  any  node  of  the  graph,  the  local  embedding  into  the  plane  is
given by the element of the graphical alphabet that decorates it. 

The  set  of  free  edges  of  a  graph  G œ graph  is  named  the  set  of
leaves  LHGL.  Technically,  imagine  that  we  complete  the  graph
G œ graph  by  adding  to  the  free  extremity  of  any  free  edge  a  deco-
rated node, called a “leaf,” with decoration “in” or “out,” depending
on the  orientation of  the  respective  free  edge.  The set  of  leaves  LHGL
thus decomposes into a disjoint union LHGL ! inHGL ‹ outHGL of in or
out leaves. 

Moreover, we admit into graph arrows without nodes,

called wires or lines, and loops (without either nodes from the elemen-
tary graphs or leaves): 

Graphs in graph can be disconnected. Any graph that is a finite re-
union  of  lines,  loops,  and  assemblies  of  the  elementary  graphs  is  in
graph. 

2.2 Local Moves
These  are  transformations  of  graphs  in  graph  that  are  local,  in  the
sense that any of the moves apply to a limited part of a graph, keep-
ing the rest of the graph unchanged.
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We may define a local move as a rule transforming a graph into an-
other of the following form. 

First,  a  subgraph  of  graph  G  in  graph  is  any  collection  of  nodes
and/or  edges  of  G.  It  is  not  supposed  that  the  mentioned  subgraph
must be in graph. Also, a collection of some edges of G, without any
node,  counts  as  a  subgraph  of  G.  Thus,  a  subgraph  of  G  might  be
imagined as a subset of the reunion of nodes and edges of G. 

For any natural number N  and any graph G in graph, let "HG, NL
be the collection of  subgraphs P  of  the graph G  with the sum of  the
number of their edges and nodes less than or equal to N. 

Definition 3. A local move has the following form: there is a number N
and a condition C that is formulated in terms of graphs with the sum
of the number of their edges and nodes less than or equal to N, such
that  for  any graph G  in  graph  and for  any P œ "HG, NL,  if  C  is  true
for P then transform P into P£, where P£  is also a graph with the sum
of the number of its edges and nodes less than or equal to!N. 

We may graphically group the elements of the subgraph, subjected
to  the  application  of  the  local  rule,  into  a  region  encircled  with  a
dashed, closed, simple curve. The edges that cross the curve (thus con-
necting  the  subgraph P  with  the  rest  of  the  graph)  will  be  numbered
clockwise.  The  transformation  will  affect  only  the  part  of  the  graph
that is inside the dashed curve (inside meaning the bounded connected
part of the plane that is bounded by the dashed curve) and, after the
transformation is  performed, the edges of the transformed graph will
connect to the graph outside the dashed curve by respecting the num-
bering of the edges that cross the dashed line. 

However, the grouping of the elements of the subgraph has no in-
trinsic meaning in graphic lambda calculus. It  is just a visual aid and
is  not  a  part  of  the  formalism.  Sometimes  colors  are  used  in  the  fig-
ures  as  a  visual  aid.  The  colors,  as  well,  do  not  have  any  intrinsic
meaning in the graphic lambda calculus. 

2.2.1 Graphic b Move

This  is  the  most  important  move,  inspired  by  the  b-reduction  from
lambda calculus; see Theorem 1, part (d):

The labels “1, 2, 3, 4” are used only as guides for correctly gluing
the  new  pattern,  after  removing  the  old  one.  As  with  the  encircling
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dashed curve, they have no intrinsic meaning in graphic lambda calcu-
lus. 

This “sewing braids” move will also be used in contexts outside of
lambda  calculus!  It  is  the  most  powerful  move  in  this  graphic  calcu-
lus. A primitive form of this move appears as the rewiring move (W1)
[9, pp. 20, 21]. 

Here is an alternative notation for the sewing braids move:

A move that looks very much like the graphic beta move is the un-
zip operation from the formalism of knotted trivalent graphs; see, for
example,  [11,  Section  3].  In  order  to  see  this,  we  draw  the  graphic
beta move again, this time without labeling the arrows: 

The  unzip  operation  acts  only  from  left  to  right  in  the  following
figure. Remarkably, it acts on trivalent graphs (but not oriented):

Let  us  go  back  to  the  graphic  beta  move  and  remark  that  it  does
not  depend  on  the  particular  embedding  in  the  plane.  For  example,
the  intersection of  the  1,3 arrow with the  4,2 arrow is  an artifact  of
the  embedding;  there  is  no  node  there.  Intersections  of  arrows  have
no meaning, since we are working with graphs that are locally planar,
not globally planar. 

The  graphic  beta  move  goes  in  both  directions.  In  order  to  apply
the  move,  pick  a  pair  of  arrows  and  label  them  with  1,2,3,4,  such
that,  according to the  orientation of  the  arrows,  1  points  to  3 and 4
points to 2. There are no nodes or labels between 1 and 3 or between
4  and  2.  Then,  a  graphic  beta  move  will  replace  the  portions  of  the
two arrows that  are  between 1 and 3 and between 4 and 2 with the
pattern  from  the  left-hand  side  of  the  figure,  which  describes  the
graphic beta move.

           
              

           
      

316 M. Buliga

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.4.311



As  an  illustration  of  this,  the  graphic  beta  move  may  be  applied
even to a single arrow or to a loop. The next figure shows three appli-
cations  of  the  graphic  beta  move  that  illustrate  the  need  to  consider
loops and wires as members of graph:

We  can  apply  a  graphic  beta  move  in  different  ways  to  the  same
graph and in the same place,  simply by using different  labels  1,  … 4
(here A, B, C, D are graphs in graph): 

A particular  case  of  the  previous  figure  is  yet  another  justification
for having loops as elements in graph:
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The two previous applications of the graphic beta move may be rep-
resented alternatively like this: 

2.2.2 Coassociativity Move

This is the coassociativity move involving the U  graphs. Consider the
U graph as corresponding to a fan-out gate:
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By using coassociativity moves, we can move between any two bi-
nary trees formed only with U gates, with the same number of output
leaves. 

2.2.3 Cocommutativity Move

This is the cocommutativity move involving the U gate. It will be not
used until Section 6 concerning knot diagrams:

2.2.3a R1a Move

This  move  is  imported  from  emergent  algebras.  Explanations  are
given in Section 5. It involves an U graph and a ! graph, with ! œ G:
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2.2.3b R1b Move

Here is the R1b move (also related to emergent algebras):

2.2.4 R2 Move

This  corresponds  to  the  Reidemeister  II  move  for  emergent  algebras.
It  involves  an  U  graph  and  two  others:  a  !  and  a  m  graph,  with
!, m œ G:

The  R2  move  appears  in  [9,  p.  21],  with  the  supplementary  name
“triangle move.” 

2.2.5 Ext2 Move

This corresponds to the rule (ext2) from l-scale calculus. It expresses
the fact that in emergent algebras the operation indexed with the neu-
tral element 1 of the group G has the property x È1 y ! y:
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2.2.6 Local Pruning

Local pruning moves are local moves that eliminate dead edges. Note
that, unlike the previous moves, these are one way (you can eliminate
dead edges, but not add them to graphs):
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2.3 Global Moves or Conditions
Global  moves  are  not  local  either  because  the  condition C  applies  to
parts  of  the  graph  that  may  have  an  arbitrarily  large  sum  of  edges
plus  nodes  or  because  after  the  move  the  graph  P£  that  replaces  the
graph P has an arbitrarily large sum of edges plus nodes.

2.3.1 Ext1 Move

This  corresponds  to  the  rule  (ext1)  from l-scale  calculus,  or  to  h-re-
duction  in  lambda  calculus  (see  Theorem  1,  part  (e)  for  details).  It
involves  a  l  graph  (similar  to  the  l  abstraction  operation  in  lambda
calculus)  and  a  !  graph  (similar  to  the  application  operation  in
lambda calculus).

The rule is:  if  there is no oriented path from 2 to 1, then the ext1
move can be performed:

2.3.2 Global Fan-Out Move

This is a global move that consists of replacing (under certain circum-
stances) a graph by two copies of that graph.

The rule is: if a graph in G œ graph has an U bottleneck, that is, if

we can find a subgraph A œ graph connected to the rest of the graph
G only through an U gate, then we can perform the move depicted in
the next figure, from the left to the right:
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Conversely, if  in the graph G  we can find two identical subgraphs
(denoted  by  A)  that  are  in  graph  and  have  no  edge  connecting  one
with another and that are connected to the rest of G only through one
edge, as in the right-hand side of the figure, then we can perform the
move from the right to the left. 

Note that global fan-out trivially implies cocommutativity. As a lo-
cal rule alternative to the global fan-out, we might consider the follow-
ing. Fix a number N and consider only graphs A that have at most N
(nodes + arrows). The N  local fan-out move is the same as the global
fan-out move, except it only applies to such graphs A. This local fan-
out move does not imply cocommutativity.

2.3.3 Global Pruning

This a global move to eliminate dead edges.

The rule  is:  if  a  graph in G œ graph  has  a  !  ending,  that  is,  if  we

can  find  a  subgraph  A œ graph  connected  only  to  a  !  gate,  with  no
edges  connecting  to  the  rest  of  G,  then  we  can  erase  this  graph  and
the respective ! gate:

The global pruning may be needed because of the l gates that can-
not be removed only by local pruning. 
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2.3.4 Elimination of Loops

It  is  possible  that  after  using  a  local  or  global  move,  we  obtain  a
graph with an arrow that closes itself, without being connected to any
node. For example, if a loop appears after the application of a graphic
beta move, then it can be erased by the elimination of loops move.

2.4 l-graphs
The edges of an elementary graph l can be numbered unambiguously,
clockwise, by 1, 2, 3, such that 1 is the number of the entrant edge.

Definition 4.  A graph G œ graph  is  a l-graph, denoted as G œ l graph,
if: 

† it does not have any ! gates, 

† for  any  node  l  any  oriented  path  in  G  starting  at  edge  2  of  this  node
can be completed to a path that either terminates in a graph !,  or else
terminates at edge 1 of this node. 

The  condition  G œ l graph  is  global,  in  the  sense  that  in  order  to

decide  if  G œ l graph,  we  have  to  examine  parts  of  the  graph  that
may have an arbitrarily large sum of edges plus nodes. 

3. Conversion of Lambda Terms

This  section  describes  how to  associate  a  lambda term to  a  graph in
graph  that  is  then  used  to  show that  b-reduction  in  lambda  calculus

transforms into the b rule for graph.
Indeed,  to  any  term  A œ THXL  (where  THXL  is  the  set  of  lambda

terms over the variable set X) we associate its syntactic tree. The syn-
tactic tree of any lambda term is constructed by using two gates, one
corresponding to the l abstraction and the other corresponding to the
application.  We  draw  syntactic  trees  with  the  leaves  (elements  of  X)
at the bottom and the root at the top. We shall use the following nota-
tion for the two gates: at the left is the gate for the l abstraction and
at the right is the gate for the application:

Notice  that  these  two  gates  are  from  the  graphical  alphabet  of
graph,  but  the  syntactic  tree  is  decorated:  at  the  bottom  we  have
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leaves  from X.  Also,  notice  the peculiar  orientation of  the edge from
the  left  (in  tree  notation  convention)  of  the  l  gate.  For  the  moment,
this orientation is in contradiction with the implicit orientation (from
down-up) of edges of the syntactic tree, but soon this matter will  be-
come clear. 

We shall remove all leaf decorations, with the price of introducing
new gates, namely U and !. This will be done in a sequence of steps,
detailed  later.  Take  the  syntactic  tree  of  A œ THXL,  drawn  with  the
mentioned  conventions  (concerning  gates  and  the  positioning  of
leaves and root, respectively). 

We take as examples the following five lambda terms:

I ! lx.x
K ! lx.Hly.xL
S ! lx.Hly.Hlz.HHxzL HyzLLLL
W ! Hlx.HxxLL Hlx.HxxLL
T ! Hlx.HxyLL Hlx.HxyLL

3.1 Step 1: List Bound Variables
Any leaf  of  the  tree  is  connected  to  the  root  by  a  unique  path.  Start
from the leftmost leaf, perform the algorithm explained next, then go
to the right and repeat until all leaves are exhausted. We also initialize
a list B ! « of bound variables. 

Take a leaf,  say decorated with x œ X.  To this  leaf  is  associated a
word (a list) that is formed by the symbols of gates on the path con-
necting (from the bottom up) the leaf with the root, together with in-
formation  about  which  way,  left  (L)  or  right  (R),  the  path  passes

through  the  gates.  Such  a  word  is  formed  by  the  letters  lL,  lR,

!L, !R. 

If  the  first  letter  is  lL,  then  add  to  the  list  B  the  pair  Hx, wHxLL
formed  by  the  variable  name  x  and  the  associated  word  (describing
the path to follow from the respective leaf to the root). Then pass to a
new leaf. 

Otherwise, continue along the path to the root. If we arrive at a l
gate, which can happen only coming from the right leg of the l gate,

we  can  find  only  the  letter  lR.  In  such  a  case  look  at  the  variable  y
that decorates the left leg of the same l gate. If x ! y, then add a new
edge  to  the  syntactic  tree  from y  to  x  and  proceed  farther  along  the
path;  otherwise  proceed  farther.  If  the  root  is  attained,  then  pass  to
the next leaf. 

Here  are  some  examples  of  graphs  associated  to  the  mentioned
lambda terms, together with the list of bound variables.
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† I ! l x.x has B ! 9Ix, lLM=, K ! lx.Hly.xL has B ! 9Ix, lLM, Iy, lL lRM=, 
and S ! l x.Hl y.Hl z.HHx zL Hy zLLLL has 

B ! 9Ix, lLM, Iy, lL lRM, Iz, lL lR lRM=:

† W ! Hl x.Hx xLL Hl x.Hx xLL has B ! 9Ix, lL !LM, Ix, lL !RM= and 

T ! Hl x.Hx yLL Hl x.Hx yLL has B ! 9Ix, lL !LM, Ix, lL !RM=:

3.2 Step 2: Eliminate Bound Variables
We now have a list B of bound variables. If the list is empty, then go
to the next step. Otherwise, do the following, starting from the first el-
ement of the list, until the list is finished.

An  element,  say  Hx, wHxLL,  of  the  list  is  either  connected  to  other
leaves  by  one  or  more  edges  added at  step  1  or  not.  If  it  is  not  con-
nected,  then  erase  the  variable  name  with  the  associated  path  wHxL
and  replace  it  with  a  !  gate.  If  it  is  connected,  then  erase  it  and  re-
place it with a tree formed by U gates, starting at the place where the
elements of the list were before the erasure and stopping at the leaves
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that were connected to x.  Erase all  decorations that were joined to x
and also erase all edges added at step 1 to leaf x from the list. 

Here are examples showing the graphs associated to the mentioned
lambda terms after step 2.

† The graphs of I ! l x.x, K ! lx.Hly.xL, and 
S ! l x.Hl y.Hl z.HHx zL Hy zLLLL:

† The graphs of W ! Hl x.Hx xLL Hl x.Hx xLL and T ! Hl x.Hx yLL Hl x.Hx yLL:

Notice that at this step the necessity of having the peculiar orientation
of the left leg of the l gate becomes clear. 

Note also that there may be more than one possible tree of gates U,
for example, at each elimination of a bound variable (in cases when a
bound variable has at least three occurrences).  One may use any tree
of U that is fit. The problem of multiple possibilities is the reason for
introducing the coassociativity move. 

3.3 Step 3: Remove Leaf Decorations
There may still  be leaves decorated with free variables.  Starting from
the left to the right, group them together in case some of them occur
in multiple places, then replace the multiple occurrences of a free vari-
able by a tree of U gates with a free root ending exactly at the occur-
rences  of  the  respective  variables.  Again,  there  are  multiple  ways  of
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doing  this,  but  we  may  pass  from  one  to  another  by  a  sequence  of
coassociativity moves.

Here  are  examples  after  step  3.  All  the  graphs  associated  to  the
mentioned lambda terms, except the last one, are left unchanged. The
graph of the last term changes. 

† The  graph  of  W ! Hl x.Hx xLL Hl x.Hx xLL,  left  unchanged  by  step  3,  and
the graph of T ! Hl x.Hx yLL Hl x.Hx yLL: 

Theorem 1. Let A # @AD be a transformation of a lambda term A into a
graph @AD as described previously (multiple transformations are possi-
ble because of the choice of U trees). Then:

(a) For any term A the graph @AD is in l graph.

(b) If  @AD£  and  @AD££  are  transformations  of  the  term  A,  then  we  may  pass
from @AD£  to @AD££  by using a finite number (exponential in the number of
leaves of the syntactic tree of A) of coassociativity moves.

(c) If  B  is  obtained from A  by a-conversion, then we may pass from @AD  to@BD by a finite sequence of coassociativity moves.

(d) Let  A, B œ THXL  be  two  terms  and  x œ X  be  a  variable.  Consider  the
terms l x.A and A@x := BD, where A@x := BD is the term obtained by sub-
stituting in A  the free occurrences of x  by B.  We know that b  reduction
in lambda calculus consists of passing from Hl x.ALB to A@x := BD. Then,
by one b move in graph applied to @Hl x.ALBD we pass to a graph that can
be further transformed into one of A@x := BD, via global fan-out, coasso-
ciativity, and pruning moves. 

(e) With  the  notations  from  (d),  consider  the  terms  A  and  l x.A x  with
x – FVHAL; then the h reduction, consisting of passing from l x.A x to A,
corresponds to the ext1 move applied to the graphs @l x.A xD and @AD. 

Proof. (a) We have to prove that, for any node l, any oriented path in@AD starting at the left exiting edge of the l node can be completed as
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a  path  that  either  terminates  in  a  !  graph,  or  else  terminates  at  the
entry peg of the l node, but this is clear. Indeed, either the bound vari-
able  (of  this  l  node  in  the  syntactic  tree  of  A)  is  fresh  and  gets  re-
placed by a ! gate, or else the bound variable is replaced by a tree of
U  gates.  No  matter  which  path  we  choose,  we  may  complete  it  as  a
cycle passing by the said l node. 

(b)  Clear  also,  because  the  coassociativity  move  is  designed  for
passing from a tree of U  gates to another tree with the same number
of leaves. 

(c) Indeed, the names of bound variables of A do not affect the con-
struction of @AD, therefore if B is obtained by a-conversion of A, then@BD  differs from @AD  only by the particular choice of trees of U  gates.
But this is solved by coassociativity moves. 

(d) This may be the surprising part of the theorem. There are two
cases:  x  is  fresh  for  A  or  not.  If  x  is  fresh  for  A,  then  in  the  graph@Hl x.ALBD  the  named variable  x  is  replaced by a  !  gate.  If  not,  then
all the occurrences of x in A are connected by an U tree with its root
at the left peg of the l gate where x appears as a bound variable. 

In the case when x  is not fresh for A,  the left-hand side of the fig-
ure  has  the  graph  @Hl x.ALBD  (with  a  remaining  decoration  of  “x”).
We perform a graphic b move and obtain the graph on the right:

This graph can be transformed into a graph of A@x := BD via global
fan-out  and  coassociativity  moves.  Here  is  the  case  when  x  is  fresh
for!A:
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We see that the graph obtained by performing the graphic b move
is the union of the graph of A and the graph of B with a ! gate added
at the root. After pruning we are left with the graph of A,  consistent
with the fact that when x is fresh for A then Hl x.ALB transforms by b
reduction into A. 

(e)  In  the  next  figure  the  left-hand  side  is  the  graph  @l x.A xD  and
the right-hand side is the graph @AD:

The  red  asterisk  marks  the  arrow  that  appears  in  the  construction@l x.A xD  from  the  variable  x,  taking  into  account  the  hypothesis
x – FVHAL. We have a pattern where we can apply the ext1 move and
obtain @AD, as claimed. ·

As  an  example,  let  us  manipulate  the  graph  of  W ! Hl x.Hx xLLHlx.Hx xLL: 
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We  can  pass  from  the  left-hand  side  of  the  figure  to  the  right-hand
side  by  using  a  graphic  b  move.  Conversely,  we  can  pass  from  the
right-hand side of the figure to the left-hand side by using a global fan-
out  move.  These  manipulations  correspond  to  the  well-known  fact
that  W  remains  unchanged  after  b  reduction:  let  U ! l x.Hx xL,  then
W ! U U ! Hl x.Hx xLLU ¨ U U ! W. 

3.4 Example: Combinatory Logic
The  combinators  I ! l x.x,  K ! lx.Hly.xL,  and  S ! l x.Hly.Hlz.

HHx zL Hy zLLLL  have  the  following  correspondents  in  graph,  denoted  by
the same letters:

Proposition 1.  (a)  By one graphic b  move,  I ! A  transforms into A,  for
any A œ graph with one output.

(b) By two graphic b  moves followed by a global pruning, for any
A, B œ graph  with  one  output,  the  graph  HK ! AL! B  transforms  in-
to!A. 

(c)  By  five  graphic  b  moves  followed  by  one  local  pruning  move,
the graph HS ! KL! K transforms into I. 

(d)  By  three  graphic  b  moves  followed  by  a  global  fan-out  move,
for  any  A, B, C œ graph  with  one  output,  the  graph  HHS ! AL! BL! C
transforms into the graph HA ! CL! HB ! CL. 
Proof. The proof of (b) is given as this figure:

Graphic Lambda Calculus 331

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.4.311



The proof of (c) is given as this figure:

(a) and (d) are left to the interested reader. ·

4. Using Graphic Lambda Calculus

The graph manipulations presented in this  section can be applied for
graphs  that  represent  lambda  terms.  However,  they  can  also  be  ap-
plied for graphs that do not represent lambda terms.

4.1 Fixed Points
Let us start  with a graph A œ graph  that  has one distinguished input
and one distinguished output represented as follows:
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For any graph B with one output, we denote by AHBL the graph ob-
tained by grafting the output of B to the input of A. 

I want to find B such that AHBL ¨ B, where ¨ means any finite se-
quence of moves in graphic lambda calculus. Such a graph B is called
a fixed point of A. 

The solution of this problem is the same as in usual lambda calcu-
lus. We start from the following succession of moves: 

This  is  very  close  to  the  solution;  we  only  need  a  small  modifica-
tion: 
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4.2 Grafting: Application or Abstraction?
If the A, B from the previous paragraph represent lambda terms, then
the  natural  operation  between  them  is  not  grafting,  but  the  applica-
tion. Or, in graphic lambda calculus the application is represented by
an  elementary  graph,  therefore  A B  (seen  as  the  term  in  lambda  cal-
culus  obtained  as  the  application  of  A  to  B)  is  not  represented  as  a
grafting of the output of B to the input of A.

We can easily transform grafting into the application operation:

Suppose that A and B are graphs representing lambda terms. More
precisely,  suppose  that  A  is  representing  a  term  (also  denoted  by  A)
and  its  input  represents  a  free  variable  x  of  the  term  A.  Then,  the
grafting of B to A is the term A@x := BD and the graph from the right
is representing Hl x.ALB; therefore, both graphs are representing terms
from lambda calculus. 
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We can transform grafting into something else: 

This has no meaning in lambda calculus,  but it  looks as if  the ab-
straction gate  (the  l  gate)  plays  the  role  of  an application operation,
except for the orientation of one of the arrows of the graph from the
right.

4.3 Zippers and Combinators as Half-Zippers
Let us take n ¥ 1 to be a natural number and let us consider the fol-
lowing graph in graph, called the n-zipper:

At the left is the n-zipper graph; at the right is a notation for it, or a
“macro.” The zipper graph is interesting because it allows performing
(nontrivial) graphic beta moves in a fixed order. In the following fig-
ure, red depicts the place where the first graphic beta move is applied:
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This  graphic  beta  move  has  the  following  appearance  in  zipper
notation:

We see that an n-zipper transforms into an Hn-1L-zipper plus an ar-
row.  This  move may be repeated as  long as  possible.  This  procedure
defines a zipper move: 

We  may  consider  the  1-zipper  move  the  same  as  the  graphic  beta
move, transforming the 1-zipper into two arrows. 
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The  combinator  I ! l x.x  satisfies  the  relation  I A ! A.  The  next
figure shows that I  (in green), when applied to A, is just a half of the
1-zipper, with an arrow added (in blue):

By opening the zipper we obtain A, as we should. 
The  combinator  K ! l x y.x  satisfies  K A B ! HK ALB ! A.  In  the

next  figure  the  combinator  K  (in  green)  appears  as  half  of  the  2-zip-
per, with one arrow and one termination gate added (in blue):

After opening the zipper we obtain a pair made by A and B that gets
the  termination gate  on top of  it.  A global  pruning move sends  B  to
the trash bin. 

Finally,  the  combinator  S ! l x y z.HHx zL Hy zLL  satisfies
S A B C ! HHS ALBLC ! HA CL HB CL.  The  combinator  S  (in  green)  ap-
pears to be made by half of the 3-zipper, with some arrows and also
with  a  “diamond”  added  (all  in  blue).  Interestingly,  the  diamond
looks similar to the ones from Definition 8 in Section 5.
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Expressed  with  the  help  of  zippers,  the  relation  S K K ! I  appears
like this:
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4.4 Lists and Currying
With  the  help  of  zippers,  we  may  enhance  the  procedure  of  turning
grafting  into  the  application  operation.  We  have  a  graph  A œ graph
that has one output and several inputs:
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We use an n-zipper in order to clip the inputs with the output:

This graph is, in fact, the following one:
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We may interpret the graph inside the green dotted rectangle as the
currying of A, called curryHAL. This graph has only one output and no
inputs.  The graph inside the red dotted rectangle is  almost a list.  We
shall  transform it  into a list  by again using a zipper and one graphic
beta move:
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4.5 Packing Arrows
We may pack several arrows into one. The case of two arrows is de-
scribed  first.  We  start  from  the  following  sequence  of  three  graphic
beta moves:
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This figure means: we pack the 1,2 entries into a list, pass it through
one arrow,  then unpack the  list  into  the  outputs  3,4.  Of  course,  this
packing/unpacking trick may be used for more than a pair of arrows,
in obvious ways; therefore, it is not a restriction of generality to write
only about two arrows.

We may apply the trick to a pair of graphs A  and B  that are con-
nected by a pair of arrows, as in the following figure:

With the added packing/unpacking triples of gates, the graphs A, B
are interacting only by the intermediary of one arrow. 

In particular, we may use this trick for the elementary gates of ab-
straction and application, transforming them into graphs with one in-
put and one output, like this: 

If  we  use  the  elementary  gates  transformed  into  graphs  with  one
input  and  one  output,  the  graphic  beta  move  becomes  this  almost-
algebraic, one-dimensional rule: 
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With such procedures, we may transform any graph in graph into a
one-dimensional  string  of  graphs,  consisting  of  transformed  elemen-
tary graphs and packers/unpackers of arrows, which could be used, in
principle,  for  transforming  graphic  lambda  calculus  into  a  text  pro-
gramming language. 

5. Emergent Algebras

Emergent algebras [12, 13] are a distillation of differential calculus in
metric spaces with dilations [14]. This class of metric spaces contains
the  “classical”  Riemannian  manifolds,  as  well  as  fractal-like  spaces
such as Carnot groups or, more generally, sub-Riemannian or Carnot–
Carathéodory  spaces  (see  Bellaïche  [15]  or  Gromov  [16]),  endowed
with  an  intrinsic  differential  calculus  based  on  some  variant  of  the
Pansu derivative [17].

In [14, Section 4] I proposed a formalism for making various calcu-
lations  easier  with  dilation  structures.  This  formalism  works  with
moves  acting  on  binary  decorated  trees,  with  the  leaves  decorated
with elements of a metric space. 

Here  is  an  example  of  the  formalism.  The  moves  are  (with  the
same names as those used in graphic lambda calculus; see the explana-
tion below): 
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Define the following graph (consider it as the graphical representa-
tion of an operation u + v with respect to the basepoint!x): 

Then,  in  the  binary  trees  formalism  the  following  “approximate”
associativity relation can be proved, by using the moves R1a, R2a (it
is  approximate  because  a  basepoint  appears  that  is  different  from x,
but is close to x in the geometric context of spaces with dilations): 

It  was  puzzling  that  the  formalism  worked  without  needing  to
know  which  metric  space  is  used.  Moreover,  reasoning  with  moves
acting  on  binary  trees  gave  proofs  of  generalizations  of  results  from
sub-Riemannian geometry, while classical proofs involve elaborate cal-
culations  with  pseudo-differential  operators.  At  a  close  inspection  it
looked  like  somewhere  in  the  background  there  is  an  abstract  non-
sense machine that is applied just to the particular case of sub-Rieman-
nian spaces. 
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In this paper I shall take the following pure algebraic definition of
an  emergent  algebra  (compare  with  [12,  Definition  5.1]),  which  is  a
stronger version of [13, Definition 4.2] of a G idempotent right quasi-
group, in the sense that I define a G idempotent quasigroup here. 

Definition 5.  Let  G  be  a  commutative  group  with  neutral  elements  de-
noted  by  1  and  operation  denoted  multiplicatively.  A  G  idempotent
quasigroup  is  a  set  X  endowed  with  a  family  of  operations
È! : XäX Ø X, indexed by ! œ G, such that:

1. For any ! œ G\81< the pair HX, È!L is an idempotent quasigroup; that is,
for  any  a, b œ X  the  equations  x È! a ! b  and  a È! x ! b  have  unique
solutions, and moreover x È! x ! x for any x œ X.

2. The operation È1 is trivial: for any x, y œ X we have x È1 y ! y.

3. For any x, y œ X and any !, m œ G we have: x È! Ix Èm yM ! x È!m y. 

Here are some examples of G idempotent quasigroups. 

Example 1.  Real  (or complex) vector spaces:  let  X  be a real  (complex)
vector space, G ! H0, +¶L  (or G ! C*),  with multiplication as the op-
eration. We define for any ! œ G  the following quasigroup operation:
x È! y ! H1 - !L x + ! y. These operations give to X the structure of a G
idempotent quasigroup. Note that x È! y is the dilation, based at x, of
coefficient !, applied to y. 

Example 2.  Contractible  groups:  let  G  be  a  group  endowed  with  a
group  morphism f : G Ø G.  Let  G ! !  with  the  operation  of  integer
addition  (thus  we  may  adapt  Definition  5  to  this  example  by  using
“! + m”  instead  of  “!m”  and  “0”  instead  of  “1”  as  the  name  of  the

neutral element of G). For any ! œ ! let x È! y ! x f! Ix-1 yM. This is a
! idempotent quasigroup. The most interesting case is the one when f
is  a  uniformly  contractive  automorphism  of  a  topological  group  G.
The structure of these groups is an active exploration area; see, for ex-
ample, [18] and the bibliography therein. A fundamental result here is
Siebert  [19],  which  gives  a  characterization  of  topologically  con-
nected,  contractive,  locally  compact  groups  as  being  nilpotent  Lie
groups endowed with a one-parameter family of dilations, that is, al-
most Carnot groups. 

Example 3.  A  group  with  an  invertible  self-mapping  f : G Ø G  such
that  fHeL ! e,  where  e  is  the  identity  of  the  group  G.  It  looks  like
Example 2 but shows that there is  no need for f  to be a group mor-
phism. 

5.1 Local Versions
We may accept that there is a way (definitely needing a careful formu-
lation, but intuitively clear) to define a local version of the notion of a
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G idempotent quasigroup. With such a definition, for example, a con-
vex  subset  of  a  real  vector  space  gives  a  local  H0, +¶L  idempotent
quasigroup (as in Example 1) and a neighborhood of the identity of a
topological  group  G.  An  identity-preserving,  locally-defined,  invert-
ible self map (as in Example 3) gives a ! local idempotent quasigroup.

Example 4. A particular case of Example 3 is a Lie group G with the op-

erations defined for any ! œ H0, +¶L by x È! y ! x exp I! log Ix-1 yMM. 
Example 5. A less-symmetric example is the one of X’s being a Rieman-
nian manifold, with associated operations defined for any ! œ H0, +¶L
by x È! y ! expxI! logxHyLM, where exp is the metric exponential. 

Example 6.  More  generally,  any  metric  space  with  dilations  is  a  local
idempotent (right) quasigroup. 

Example 7.  One-parameter  deformations  of  quandles.  A  quandle  is  a
self-distributive  quasigroup.  Now,  take  a  one-parameter  family  of
quandles  (indexed  by  ! œ G)  that  also  satisfies  points  2  and  3  from
Definition 5.  What  is  interesting  about  this  example  is  that  quandles
appear as decorations of knot diagrams [4, 5], which are preserved by
the Reidemeister moves (more on this in Section 6). At closer examina-
tion, Examples 1 and 2 are particular cases of one-parameter quandle
deformations! 

The operations of approximate sum and approximate difference as-
sociated to a G idempotent quasigroup are defined next. 

Definition 6. For any ! œ G we give the following names to several com-
binations of operations of emergent algebras: 

† The approximate sum operation is S!
x Hu, vL ! x •! HHx È! uL È! vL.

† The approximate difference operation is D!
x Hu, vL ! Hx È! uL •! Hx È! vL.

† The approximate inverse operation is inv!
x u ! Hx È! uL •! x. 

Here is the approximate sum operation for Example 1: 

‚
!

x Hu, vL ! uH1 - !L - x + v.

It is clear that, as ! converges to 0, this becomes the operation of addi-
tion in the vector space with x  as a neutral  element.  It  might be said
that it is the operation of addition of vectors in the tangent space at x,
where x is seen as an element of the affine space constructed over the
vector space from Example 1. 

This  is  a  general  phenomenon  that  becomes  really  interesting  in
noncommutative  situations,  as  in  the  examples  from  the  end  of  the
provided list. 
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These approximate operations have many algebraic properties that
can be found by the abstract nonsense of manipulating binary trees. 

Another construction that can be done in emergent algebras is tak-
ing finite differences (at a high level of generality, not bound to vector
spaces). 

Definition 7. Let A : X Ø X be a function (from X to itself, for simplic-
ity). Here is the finite difference function associated to A, with respect
to the emergent algebra over X, at a point x œ X:

T!
x A : X Ø X , T!

x AHuL ! A HxL •! HA Hx È! uLL.
For Example 1, the finite difference has the expression: 

T!
x A Hu - xL ! A HxL + 1

!
HA Hx + ! uL - AHxLL,

which is a finite difference indeed. In more generality, for Example 2
this definition leads to the Pansu derivative [17].

Finite  differences  as  defined  here  behave  like  discrete  versions  of
derivatives.  Again, the proofs consist  of manipulating well-chosen bi-
nary trees. 

All  this  can  be  formalized  in  graphic  lambda  calculus,  thus  trans-
forming the proofs into computations inside graphic lambda calculus. 

I  shall  not  stress  this  further,  with  the  exception  of  describing  the
emergent algebra sector of graphic lambda calculus. 

Definition 8.  For  any  ! œ G,  the  following  graphs  in  graph  are
introduced.

† The approximate sum graph S!: 
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† The approximate difference graph D!:

† The approximate inverse graph inv!:

Let  A  be  a  set  of  symbols  a, b, c, …  (these  symbols  will  play  the
role  of  scale  parameters  going  to  0).  With  A  and  with  the  Abelian

group G we construct a larger Abelian group G that is generated by A
and by G. 

Now we introduce the emergent algebra sector (over the set A). 

Definition 9.  The  subset  of  graph  emerHAL  (over  the  group G)  is  gener-
ated by the following list of gates.

† Arrows and loops.

† The U and ! gates for any ! œ G.

† The approximate sum gate Sa  and the approximate difference gate Da,
for any a œ A.

The operations  of  linking  output  to  input  arrows  need  the  following
list of moves.

† Fan-out moves.

† Emergent algebra moves for the group G.

† Pruning moves. 

The set emerHAL with the given list of moves is called the emergent al-
gebra sector over the set A. 

          
           

        
          
              

            
          

Graphic Lambda Calculus 349

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.4.311



The  approximate  inverse  is  not  included  in  the  list  of  generating
gates  because  we  can  easily  prove  that  for  any  a œ A  we  have
inva œ emerHAL.  (If  ! œ G  then  we  trivially  have  inv! œ emerHAL  be-
cause it  is  constructed from emergent  algebra gates  decorated by ele-
ments in G  that are in the list of generating gates.) Here is the proof:
we start with the approximate difference Da  and an U gate. We arrive
at the approximate inverse inva by the following sequence of moves:

We  proved  the  following  relation  for  emergent  algebras:
Da

x Hu, xL ! inva
x u.  This relation appears as a computation in graphic

lambda calculus. 
For the finite differences, we proceed as in Definition 10. 

Definition 10. A graph A œ graph, with one input and one output distin-

guished,  is  computable  with  respect  to  the  group  G  if  the  following
graph
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can be transformed by the moves from graphic lambda calculus into a
graph made by assembling:

† graphs from emerHAL
† gates l, !, and !

It would be interesting to mix the emergent algebra sector with the
lambda calculus sector (in a sense this  is  already suggested in Defini-
tion 10).  At first  view, it  seems that the emergent algebra !  gates are
operations  that  are  added to the lambda calculus  operations,  the  lat-
ter  being  more  basic  than  the  former.  I  think  this  is  not  the  case.  In
the  formalism  of  lambda-scale  calculus  [8,  Theorem  3.4]  (of  which
graphic  lambda  calculus  is  a  visual  variant),  I  show  to  the  contrary
that emergent algebra gates could be applied to lambda terms and the
result  would  be  a  collection,  or  hierarchy,  of  lambda  calculi,  orga-
nized  into  an  emergent  algebra  structure.  This  is  surprising,  at  least
for  the  author,  because  the  initial  goal  of  introducing  lambda-scale
calculus  was  to  mimic  lambda  calculus  with  emergent  algebra
operations. 

6. Crossings

In  this  section  we  discuss  tangle  diagrams  and  graphic  lambda
calculus.

An  oriented  tangle  is  a  collection  of  wires  in  three-dimensional
space;  more  precisely  it  is  an  embedding  of  an  oriented  one-dimen-
sional manifold in three-dimensional space. Two tangles are the same
up to topological deformation of the three-dimensional space. An ori-
ented  tangle  diagram is,  visually,  a  projection  of  a  tangle,  in  general
position, on a plane.  More specifically,  an oriented tangle diagram is
a  globally  planar  oriented  graph  with  4-valent  nodes  representing
crossings  of  wires  (as  seen  in  the  projection),  along  with  supplemen-
tary information about which wire passes over the respective crossing.
A locally planar tangle diagram is an oriented graph that satisfies the
previous description, with the exception that it is only locally planar.
Visually,  a  locally  planar  tangle  diagram looks  like  an  ordinary  one,
except that there may be crossings of edges of the graph that are not
tangle crossings (i.e., nodes of the graph). 

The purpose of this section is to show that we can “simulate” tan-
gle  diagrams  with  graphic  lambda  calculus.  This  can  be  expressed
more  precisely  in  two  ways.  The  first  way  is  to  define  “crossing
macros,” which are certain graphs that play the role of crossings in a
tangle  diagram  (i.e.,  we  can  express  the  Reidemeister  moves,  de-
scribed later, as compositions of moves from graphic lambda calculus

           
           

          

Graphic Lambda Calculus 351

Complex Systems, 22 © 2013 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.22.4.311



            
         

           
            

         
   p     g p   

between  such  graphs).  The  second  way  is  to  associate  a  graph  in
graph to any tangle diagram such that a certain composition of moves
from graphic lambda calculus is associated to any Reidemeister move. 

Meredith and Snyder [7] achieve this goal using pi-calculus instead
of graphic lambda calculus. Kauffman, in the second part of [6], asso-
ciates tangle diagrams to combinators and writes about “knotlogic.”

6.1 Oriented Reidemeister Moves
Two tangles are the same, up to topological equivalence, if and only if
any  tangle  diagram  of  one  tangle  can  be  transformed  by  a  finite  se-
quence of Reidemeister moves into a tangle diagram of the second tan-
gle. Here are the oriented Reidemeister moves (using the same names
as Polyak [20], but with the letter W replaced by the letter!R).

† Four oriented Reidemeister moves of type 1: 

† Four oriented Reidemeister moves of type 2: 
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† Eight oriented Reidemeister moves of type 3: 

6.2 Crossings from Emergent Algebras
Section 5, Example 7 mentions that there is a connection between tan-
gle  diagrams  and  emergent  algebras,  via  the  notion  of  a  quandle.
Quandles  are  self-distributive  idempotent  quasigroups  that  were  in-
vented as decorations for the arrows of a tangle diagram, which are in-
variant with respect to the Reidemeister moves.

Here are the emergent algebra crossing macros:

We can choose to neglect the ! decorations of the crossings, or, on
the  contrary,  we  can  do  as  in  Definition  9  and  add  a  set  A  to  the
group G and use even more nuanced decorations for the crossings.
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In [9, Sections 3 through 6] the use of these crossings for exploring
emergent algebras and spaces with dilations is presented. All construc-
tions  and  reasonings  from  there  can  be  put  into  the  graphic  lambda
calculus formalism. Here I shall explain only some introductory facts. 

Let us associate to any locally planar tangle diagram T  a graph in@TD œ graph,  called the translation of T,  which is obtained by replac-
ing  the  crossings  with  the  emergent  crossing  macros  (for  a  fixed  !).
Also, to any Reidemeister move we associate its translation in graphic
lambda  calculus,  consisting  of  a  local  move  between  the  translations
of  the  left-  and  right-hand  side  tangles  that  appear  in  the  respective
move.  (Note:  these  translations  are  not  added  to  the  moves  that  de-
fine graphic lambda calculus.) 

Theorem 2.  The  translations  of  all  oriented  Reidemeister  moves  of
types  1  and  2  can  be  realized  as  sequences  of  the  following  moves
from graphic  lambda calculus:  emergent  algebra  (i.e.,  R1a,  R1b,  R2,
ext2),  fan-out  (i.e.,  cocommutativity,  coassociativity,  global  fan-out),
and  pruning.  More  precisely,  the  translations  of  the  Reidemeister
moves R1a, R1b are, respectively, the graphic lambda calculus moves
R1a, R1b, modulo fan-out moves. Moreover, all translations of Reide-
meister moves of type 2 can be expressed in graphic lambda calculus
with the R2, fan-out, and pruning moves.

The  proof  is  left  to  the  interested  reader;  see  however  [9,  Sec-
tion!3.4]. 

The  fact  that  Reidemeister  moves  of  type  3  are  not  true  for  (the
algebraic  version  of)  the  emergent  algebras,  that  is,  that  the  transla-
tions of the type 3 moves cannot be expressed as a sequence of moves
from graphic lambda calculus, is a feature of the formalism and not a
weakness. This is explained in detail in [9, Sections 5 and 6], but un-
fortunately  at  the  moment  of  writing that  paper,  the  graphic  lambda
calculus was not available. It would be interesting to express the con-
structions  from  the  mentioned  sections  in  [9]  as  statements  about
computability  in  the  sense  of  Definition  10  with  translations  of  cer-
tain tangle diagrams.

As a justification for this point of view, let us remark that all tangle
diagrams that appear in the Reidemeister moves of type 3 have trans-
lations that are related to the approximate difference or approximate
sum graphs from Definition 8. For example, let us take the translation
of the graph from the right-hand side of the move R3d and call it D.
This graph has three inputs and three outputs. Let us then consider a
graph formed by grafting three graphs A, B, and C at the inputs of D,
such that A, B, and C are not otherwise connected. Then we can per-
form the following sequence of moves:
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The lower-left graph is formed by an approximate difference, a ! gate,
and several  U  gates.  Therefore,  if  A,  B,  and C  are computable in the
sense of Definition 8, then the initial graph (the translation of the left-
hand  side  of  R3d  with  A,  B,  and  C  grafted  at  the  inputs)  is  also
computable.

6.3 Graphic Beta Move as Braiding
We now construct  crossings,  in  the  sense  previously  explained,  using
gates from lambda calculus:

As previously, we define translations of (locally planar) tangle dia-
grams into graphs in graph. There is a one-to-one correspondence be-
tween the class of locally planar tangle diagrams and a class of graphs
in graph. We call this the l-tangle class. 

We  could  proceed  in  the  inverse  direction;  namely,  consider  the
class  of  l-tangle  graphs,  along with graphic  beta moves  and elimina-
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tion  of  loops.  Then,  we  make  the  (inverse)  translation  of  graphs  in
l-tangle into locally planar tangle diagrams and the (inverse) transla-
tion of  the  graphic  beta  move and the  elimination of  loops.  Proposi-
tion 2 explains what we obtain. 

Proposition 2. The class of l-tangle graphs is closed with respect to the
application  of  the  graphic  beta  move  and  elimination  of  loops.  The
translations  of  the  graphic  beta  and  elimination  of  loops  moves  are
the  Splice  1,  2  (translation  of  the  graphic  beta  move)  and Loop 1,  2
(translation of the elimination of loops) moves:

Proof.  The proposition becomes obvious if  we find the translation of
the graphic beta move. There is one translation for each crossing:
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Likewise, there are two translations for the elimination of loops, de-
pending on the orientation of the loop that is added/erased. ·

Theorem 3 clarifies which oriented Reidemeister moves can be ex-
pressed  as  sequences  of  graphic  lambda  calculus  moves  applied  to
graphs  in  a  l-tangle.  Among  these  moves,  some  are  more  powerful
than others, as witnessed by the following. 

Theorem 3.  All  the translations of  an oriented Reidemeister  move into
moves between graphs in a l-tangle, except R2c, R2d, R3a, and R3h,
can be realized as sequences of graphic beta and elimination of loops
moves. Moreover, the translations of moves R2c, R2d, R3a, and R3h
are equivalent up to graphic beta and elimination of loops moves (i.e.,
any  of  these  moves,  together  with  graphic  beta  and  elimination  of
loops, generate the other moves in this list).

Proof.  It  is  easy,  but  tedious,  to  verify  that  all  the  mentioned  moves
can be realized as sequences of splice and loop moves. It is easy to ver-
ify that the moves R2c, R2d, R3a, and R3h are equivalent up to splice
and loop moves. It is not obvious that the moves R2c, R2d, R3a, and
R3h cannot be realized as a sequence of splice and loop moves. In or-
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der  to do this,  we prove that  R2d cannot be generated by splice  and
loop.  Thanks  are  due  to  Peter  Kravchuk  for  the  idea  of  the  proof,
given in an answer to a question I asked on mathoverflow [21], where
I described the moves splice and loop. 

To  any  locally  planar  tangle  diagram  A  associate  its  reduced  dia-
gram  RHAL,  which  is  obtained  by  the  following  procedure:  first  use
splice  1,2  from left  to  right  for  all  crossings,  then  use  loop 1,2  from
right to left in order to eliminate all  loops present at this stage. Note
the following.

† The  order  of  applying  splice  moves  does  not  matter,  because  they  are
applied  only  once  per  crossing.  There  is  a  finite  number  of  splices,
equal to the number of crossings. Define the bag of splices spliceHAL  to
be the set of splice moves applied. 

† The same is true for the order of loop elimination by loop 1,2. There is
a  finite  number  of  loop  eliminations,  because  the  number  of  loops  (at
this stage) cannot be bigger than the number of edges of the initial dia-
gram. Define the bag of loops loopHAL to be the set of all loops present
after all splices are done. 

Let us now check that the reduced diagram does not change if one
of the four moves is applied to the initial diagram. 

Apply a splice 1,2 move to the initial diagram A, from left to right,
and get B. Then spliceHBL is what is left in the bag spliceHAL after tak-

ing  out  the  respective  splice.  Also,  loopHBL ! loopHAL  because  of  the
definition of bags of loops. Therefore, RHAL ! RHBL. 

Apply  a  splice  1,2  from  right  to  left  to  A  and  get  B.  Then,
RHAL ! RHBL by the same proof, with A, B switching places. 

Apply a loop 1,2 move from left to right to A and get B. The new
loop  introduced  in  the  diagram  does  not  participate  in  any  crossing
(therefore, spliceHAL ! spliceHBL), so we find it in the bag of loops of B

made  by  all  the  elements  of  loopHAL  and  this  new  loop.  Therefore,
RHAL ! RHBL. The same goes for loop 1,2 applied from right to left. 

Finally, the reduced diagram of the left-hand side of the move R2d
is  different  from  the  reduced  diagram  of  the  right-hand  side  of  the
move  R2d;  therefore,  the  move  R2d  cannot  be  achieved  with  a  se-
quence of splices and loop addition/elimination. ·
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