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Even though the patterns appearing in the evolution of two-dimen-
sional cellular automata have been deeply studied, the evolution rules
themselves have not received the same amount of attention. In the pre-
sent paper, the evolution rules of totalistic and outer totalistic two-di-
mensional cellular automata for a set of neighborhood templates have
been expressed in terms of the iota-delta function. Additionally, the
idea of iota-delta function bases for the rule space of two-dimensional
cellular automata evolution is introduced. By means of suitable bases,
every two-dimensional cellular automaton can have its evolution rule
described in terms of the iota-delta function. This approach enables in-
vestigating the evolution rules as mathematical functions and the evolu-
tion itself as a function composition process.

I 1. Introduction

By definition, a cellular automaton (CA) consists of a neighborhood
template N, a state space S, and a state transition function f that up-
dates the state space [1, 2].

One of the most studied topics in CA theory is the behavior of the
state space. For example, the patterns generated by the evolution of a
CA such as Conway’s Game of Life [3] have been deeply studied and
classified as gliders, beehives, loafs, and so on.

The evolution rules, on the other hand, tend to receive less atten-
tion in the process; that is, the state transition functions are taken into
account in order to implement the CA, but no deep analysis has been
performed on them.

By drawing a parallel between discrete and continuous dynamical
systems, the state transition functions of the former correspond to the
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partial differential equations of the latter. It is widely known that the
partial differential equations that govern a given phenomenon carry
important information about continuous dynamical systems. In fact,
the presence of first- and higher-order derivatives is often related to
advective and dispersive phenomena, respectively.

In order to represent the state transition functions, several ap-
proaches have been proposed, namely: lookup tables [1], Boolean alge-
bra [1], algebraic equations [1], and genetic algorithms [4]. It is clear
that in order to proceed to a rigorous mathematical treatment of the
evolution rules, it is of interest that the state transition functions are
in fact mathematical functions.

Using Boolean algebra is interesting for dealing with one-dimen-
sional binary systems. As the number of dimensions grows, the
Boolean expressions tend to become highly intricate, ultimately pre-
venting a full mathematical analysis. Algebraic equations, on the
other hand, are of great interest but can only be assigned to a few
CAs. A recent paper [5] introduced a new special function, called the
iota-delta function, that is able to straightforwardly present the state
transition functions of CAs. It is shown in [5] that every elementary
CA can have its evolution rules represented in terms of the iota-delta
function.

In the present paper, the propositions from [5] are further devel-
oped in order to represent not only the state transition function of ev-
ery elementary CA but also every two-dimensional CA. This ways, it is
possible to establish a solid mathematical framework for the study of
evolution rules.

Section 2 discusses the iota-delta function.

I 2. The lota-Delta Function

Let the iota-delta function be defined as follows [5]:

Wy x] = mod[mod[...mod[mod[x, Dl Pon-1ls -+ s p]-], n],

m=j; mnely,; xeC, j=nnl+1;

(1)

in which mod[o, p] denotes the modulus operator, which gives the
rest of the division of o by p if o is greater than p or o itself; other-

wise, 7 and 7 are parameters of the iota-delta function, p,, is the mth

prime number, and 7 [#] stands for the prime counting function that
gives the number of primes less than or equal to #. Note that it is con-
sidered that p; = 2. The value of # determines how many states the
automata generated have. Thus, for binary automata »n =2, for
ternary ones n = 3, for quaternary ones 7 = 4, and so on. Also, the
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iota-delta function is taken to be non-negative and max [¢6} [x]] - n
when x € R [5]. The iota-delta function is periodic with a period
length of p,,.

I 2.1 The lota-Delta Function and Elementary Cellular Automata
As stated in Section 1, it has been shown in [5] that every elementary
CA can be represented by the following evolution rule:

Cil = 6 [ay Cl_y +ay Cl + a3 Chyy +ay), (2)

in which the coefficients are aj ={r |*<pm—-1; reZ,} and

j=1,2, 3, 4. In the case of elementary CAs, the minimum value of m
that enables expressing every rule is m=35; that is,
Ldg[x] = mod[mod[mod[mod[mod[x, 11], 7], 5], 3], 2]. Also, the infe-

rior and superior indexes k and i, respectively, are related to the posi-
tion of the cell in the bidimensional (space and time) state space of
the CA.

Each elementary CA has a set of tuples {aq, @;, a3, a4} that charac-
terizes it. A complete list of tuples can be found in [5]. For example,
the well-known rule 30 can be described by this simple updating
rule [5]:

Cil =183 [Chy +4Ch+4 Cppy. (3)

Sections 3 through 5 develop the framework for obtaining the evo-
lution rules of two-dimensional CAs.

3. The lota-Delta Function and Totalistic Two-Dimensional Cellular
Automata

The philosophy behind using the iota-delta function for representing
any evolution rule is recognizing which variables are important for
determining the value of a given cell. For example, in the case of ele-
mentary CAs, the value of a given cell depends on the value of its im-
mediate left and right neighbors and the value of the cell itself in the
current step.

This elementary case shows that three variables determine the
value of the cell of interest in the next step. This way, the iota-delta
function representation given in [5] and reproduced in equation (2)
fits the need. It is worth noticing that besides the coefficients multiply-
ing each variable, a fourth coefficient is added to enable representing
odd rules (rule parity is determined by the output of the transforma-
tion when the three cells are 0).

Given these first thoughts about the iota-delta representation of
evolution rules, it is necessary to investigate on which variables the
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values of the cells of interest depend. In the case of CAs, the number
of variables is deeply related to the neighborhood template consid-
ered. Also, the type of rule is of interest (totalistic, outer totalistic, or-
dinary, etc.). In the present paper, at first, special attention is given to
totalistic and outer totalistic CAs. Following that, ordinary two-
dimensional CAs are taken into account.

Totalistic CAs are, by definition, CAs in which the value of a given
cell in the next time step is uniquely determined by the sum of the
cells in its neighborhood template, including in the sum the cell itself
[1]. This shows that, despite the number of cells in the neighborhood,
the value of a given cell in the next time step is dependent on a single
variable.

In Sections 3.1 and 3.2, every evolution rule of totalistic two-
dimensional CAs for a set of neighborhood templates is shown to be
expressible in terms of the iota-delta function.

3.1 Two-Dimensional Totalistic Cellular Automata with the
Neumann Neighborhood
Consider the neighborhood template known as the Neumann neigh-
borhood, graphically shown in Figure 1.

Figure 1. Schemes of Neumann, Moore, extended Neumann, and extended
Moore neighborhood templates (from left to right).

As discussed, an appropriate iota-delta evolution rule for a two-di-
mensional totalistic CA is of the type:

Citi =105 [ay o +al, (4)

in which j is the additional spatial dimension and o is the sum of the

neighborhood cells and the cell of interest itself. In the case of a Neu-
mann neighborhood template, the sum goes from 0 to 5. This makes

a total of 2° totalistic rules in a Neumann neighborhood template.
Each of these rules can be numbered following the scheme proposed
in [1], in which the outputs of the transformation correspond to a co-
efficient in the binary decomposition of the rule number (abbreviated
as RN in the tables). Table 1 shows the value of m, @, and @, as in
equation (4) for every two-dimensional totalistic CA with the Neu-
mann neighborhood.
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RN | Tuples |RN | Tuples RN | Tuples RN | Tuples
0 | {1,0,0} 16 | {5,7,0} 321 {59,0} 48 | {4,5,2)
111{52,1} 17 1 5,4, 1) 33 | 4,2,1} 49 1 {3,2,1}
2 115,8,0} 18 | {2,1,0) 34 | {5, 10,2} S0 | {4,4,2)
3 11{4,2,6} 19 | (4,3, 1} 351 (3,3, 1} 511 {6,6,8)}
4 115,6,3)} 20 | {3, 1,2} 36 | {2,2,0) 521 {5,3,0}
S 1145,1,6} 21 {1,1,1) 37 | {3,4,1} 53| {7,3,6)
6 |1{3,2,2} 22 1 {5,8,7) 38 | {4,4,0} 54 | {6, 11, 3}
7 | {4,5,1} 231 {5,2,4) 39 | {8, 11, 1} S5 {6,2,4)
8§ 11{5,5,0} 24 1 {3,3,2} 40 [ {5, 10, 0} 56 | {4,5,0}
9 11{2,1,1} 25 | 4,3,6) 41 {3, 1,1} 57 1 {8, 11, 6}

10 | {3,4,2} 26 | {5, 3,3} 42 1 {1,1,0} 581 (5,9, 3)
11 11{5,8,4} 27 | {6,2,6} 43 | (7,14, 4} 59 | {6, 11,1}
12 1 {3,2,0} 28 | {4,2,0) 44 1 (5,8, 10} 60 |{9,17,13}
13 | {5, 3,6} 29 1 (5,9, 1} 45 [ {7,15, 1} 61 |{10, 3,18}
14 | {4,2,2} 30 | {9,6,0} 46 | {5,2,2) 62 | {10, 6, 0}
15 {9, 17,1} | 31 |{10,23,1} | 47 [{10,26,4} | 63 | {1,0,1}

Table 1. Iota-delta tuples {m, a1, a} for totalistic CAs with the Neumann
neighborhood.

3.2 Two-Dimensional Totalistic Cellular Automata with the Moore
Neighborhood
Consider now the neighborhood template known as the Moore neigh-
borhood, graphically shown in Figure 1.
As in the case of a Neumann neighborhood, equation (4) is also ap-
plicable. In the case of a Moore neighborhood, on the other hand, o

goes from 0 to 9, making a total of 219 totalistic rules. The same num-
bering scheme described in Section 3.1 can be applied. Table 2 gives
the values of m, aq, and @, as in equation (4) for every two-dimen-
sional totalistic CA with the Moore neighborhood. It is worth noting
that the values of m, @1, and @, in the tables are the first ones that al-
low representing the evolution of the indicated CA rules in terms of
equation (4). In this sense, the values in the tables are the smallest val-
ues that allow such a representation.
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RN | Tuples RN Tuples RN Tuples RN Tuples
0l (Lo,0y |36 17,977 | 72| (7.8, 1] [108 | 1{6,8,3
T o0 1371 5.8.0 | B3] 5.6.11 [109] 6.7.4
27,2, 161 | 38| 6,6,00 | 74| ©5,10,7 |110| 6,22
315,60 | 39| 8, 1L 11 | 75| 15.8,41 [111[1{12,8,27)
710615 |40 6.9.00 | 76| 6.6.77 |112| 4.5.2
5117,2,14) 41 | {6, 10, 8} 77 {6, 5,4} 113 (5,7, 6}
616210 | 42| 8.16.21 | 78| 8,1, 9 |[114 | (1L, 5.7
7116, 11, 8] | 43 [110, 25, 18) | 79 |15, 41, 24) | 115 |10, 17, 20)
S| 8,6,5 | 44| 15,13.9) | 80| 6,431 |16 ©5.9,5
o0, 27. 41 | 45| 17.2.81 | 81| 16.9.41 117 [112.3.12
10 (14,00 | 46| 5,2,21 | 82| 16,12,51 |118 | 16, 11, 3)
1| 5,26 | 47 [ (13,6,12] | 83 [ {10, 18,6} | 119 | (14,37, )
T 0o.1L2 | 48| 8.5.00 | 84| 5. L2 120 5.6, 10
3] 16,58 | 49| 98,201 | 85 [(10, 26,24} | 121 [ {11, 19, 6)
12 | (5.9,10; | 50 | 1, 11,31 | 86 {10, 25,22} [122 | (10, 3, 15}
15 119,17, 1} 511 {6,7,12) 87 | {13, 13,1} 123 | {12,29,1}
6] 9.6,3) | 52| 5,3,00 | 88|17 13,131 | 124 [{10, 23, 13)
717,712 | 53| 1.3.60 | 89| .12 4 [125 |14, 37, 42}
18 | (7,5,9) 541 {6,8,11) 90 {8, 5, 3} 126 | {17, 3, 45}
] 16510 | 55| 62,4 | 91 (7.2,61 [127 [123, 71,54
20171431 | 56| 4.5.00 | 2| .20 128 | 9. 17,0}
21 (18, 16,181 | 57 [ (10, 17,81 | 93 | (11,25, 1} | 129 | (8, 13, 8)
2 (17,1351 | 58| ©5.9.31 | 94 [{14,31, 13} | 130 | {7, 12, 13}
23| {5,2,4) 59| (6,11, 1} 95 | {13,6,6} [131 ] {6,8,4}
24 1{10,17,2} | 60 | {9, 17, 13} 96 | {10, 23,5} | 132 |{12, 21, 13}
25 [19,11,14) | 61 [ {10,3,18} | 97 | (8, 14,12} | 133 | ©.3.8)
26 | {7,3,9) 62 | {10, 6,0} 98 | {7, 11,10} [134 ] {5,3,9}
71 16.2.6 | 630348 | 99| 3.3, 17 |135| 6.7, 1)
28 [ 17,4131 | 64| (8,13.2) |100 | ©5.5.97 | 136 | {7, 10, 10}
29[ 15,911 | 65| (1L 6) 101 |0, 16,200 |137 | (77,8
30 [ 19,1771 | 66| 19,8.16) |102 | 16.7.5) 138 | 5. L35
31 [{10,23,1} | 67 | {5,7,8} 103 | {8,8,4} [139] {8,12,6}
320,17, 111 | 68 | 17,7, 15) |104 | (7,4, 10) 140 | (5.5,2)
33 19,6,20] | 69 [113,12, 14 [ 105 | ©5.3.8 | 141 | (1L 7.6
4| .75 | 0] 1,62 106 (1.3,3) 122 ©5.4,0
5| 65,48 | 71| 0,44 107 [ {14,8,27 | 143 [{12, 14,27}

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
144 {7, 8, 3} 180 | {8, 14, 5} |216 | {6, 5, 10} |252 | {20, 59, 7}
145 {5, 5, 6} 181 | {11, 26, 24} | 217 {6, 8, 8} 253 | {17, 3, 42}
146 {2, 1, 0} 182 | {8, 12, 15} |218 | {8, 7, 16} [254 |{23, 12, 53}
147 {5, 6, 6} 183 {7, 2,4} 219 {8, 2, 6} 255 {23, 15, 65}
148 | (7,5, 11) |184 | (5,2,9 |220| 6,2, 0y |256 | (7, 15, 0}
149 | (5, 10, 8) | 185 | (13, 19, 14} | 221 | {10, 13, 4} |257 | (9, 17, 6}
150 | (5,8, 7) |186 | {11, 25, 7} |222 | (12, 8, 19} | 258 | {11, 18, 0}
151 | {15, 10, 4} | 187 |(11, 27, 24} | 223 | (15, 6, 6} |259 | (5,9, 6}
152 | {5, 6, 10} | 188 | {13, 26, 31} | 224 | (7, 6, 10} |260 | (7,5, 2}
153 | 14 3,6 |189 [(17, 31,57} |225 | 4 2 1} |261 | (7, 12, 1)
154 | {10, 4,2} |190 | (13,6, 0} |226 | (5,7, 10} |262 | 16,8, 9
155 | 16, 5, 12) | 191 | (17, 56, 4} |227 | (7, 11, 14} |263 | {7, 11, 1}
156 | {8, 11, 17} |192 | {9, 11, 0} |228 {8, 8, 2} 264 | {9, 15, 19}
157 [{10, 27, 12} | 193 [{10, 18, 14} | 229 [{11, 14, 27} | 265 | {9, 18, 12}
158 [{20, 61, 34} | 194 | {6, 6, 11} |230 | {8, 11, 3} |266 {9, 8, 0}
159 [ {15, 41, 30} | 195 [{12, 26, 35} | 231 | {11, 12, 8} |267 | {10, 24, 6}
160 | {7, 3, 10} |196 {5, 6, 3} 232 {5, 9,7} 268 {6, 7, 0}
161 {6, 3, 4} 197 | {11, 3, 14} |233 | {15, 44, 6} | 269 {5, 3, 6}
162 {6, 1, 7} 198 {3, 2, 2} 234 | {11, 3,9} |[270 {5, 7,5}
163 {6, 9, 8} 199 {7, 6, 6} 235 | {15, 38, 4} [271 {11, 23, 20}
164 | {7, 12, 5} |200 {6, 7, 9} 236 | {6, 11,5} [272] {7, 10, 0}
165 {3, 4, 1} 201 {4, 4, 1} 237 | {7, 15, 1}y 273 | {9, 10, 18}
166 | {7, 5, 13} 202 [{10, 11, 16} (238 | {14, 6,2} |274 | {5, 10, 5}
167 | {14, 39, 12} 1203 | {9, 16, 4} |[239 | {16, 6, 12} |275 {7, 7, 1}
168 | {5, 10, 0} |204 {6, 6, 9} 240 | {9, 17,2} 276 | {6, 12, 3}
169 | (4, 1, 1) |205 | (14, 9, 24} |241 | (12, 14, 8) |277 | G5, 1, 4)
170 | {14, 14, 0} |206 | {8, 8, 15} [242 |{16, 41, 39} |278 | {8, 12, 13}
171 | (9, 20, 4] | 207 | (14, 12, 6} | 243 | (11, 19, 18} | 279 | (13, 19, 30}
172 | {7, 14, 10} |208 | {7, 5,51 |244 |{13, 15, 19} |280 | (7, 6, 7}
173 | {11, 5, 20} |209 | {9, 14, 14} | 245 | {10, 3, 12} |281 | (5, 5, 8}
174 |{13, 13, 29} [210 | {5, 3, 5] |246 | (12, 29, 9} |282 |10, 11, 26}
175 |{15, 13, 35} |211 | {11, 13, 14} | 247 | (17, 6, 18} | 283 | {11, 7, 30}
176 | 15,8, 51 212 | (73,01 |248 | (10,6, 17} |284 | (5.4, 7)
177 [110, 18, 27} | 213 | (9, 3, 6} | 249 | (18, 37, 12} | 285 | {10, 21, 1
178 | {7, 12, 9 | 214 | (14, 8, 19} |250 | (14, 37, 5} | 286 | {12, 34, 7
179 | {14, 24, 8} | 215 | (15, 9, 35} | 251 | (15, 41, 1} | 287 |16, 47, 30}
Table 2. (continues).

411
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RN Tuples RN Tuples RN Tuples RN Tuples
288 | {7,12, 3} |324] {5,10,3} |[360 | {8, 14, 10} [396 {3, 2, 0}
289 {5, 3, 4} 325 | (6,12, 1} 361 | {8, 5,12} 397 | {14, 35, 8}
290 {5, 1,7} 326 [{10, 11, 19} | 362 |{11, 26, 29} | 398 {7, 6, 0}
291 | 5,5 1) [327| 16,9, 12) |363 | (17, 19, 8} |399 [{12, 29, 14}
292 | 12,2,00 [328] 5, 1,91 |364] (8, 12,3} |400] 6,7, 2
293 | 19, 18, 14] |329 | 19 5, 20] |365 | 19,2, 81 |401| (7. 10, 6]
294 | 15,6, 00 |330] .4 21 |366]| (7221 |402] 155,10
295 [ (17, 57, 8} |331 | (6, 10, 41 |367 |[{19, 15, 12} |403 | (4, 3, 1}
296 | 16, 1,9 |332 |{10, 18, 28} | 368 | (5.2, 71 |404 | (7, 12, 7)
297 | 3, L 1] |333] (7.5, 8 |369] (10,8, 24 |405 |17, 52, 32)
298 | 14 6, 2] |334 |(11, 17, 15) |370 | (11, 28, 11} | 406 | (9, 16, 11)
299 | {7, 14,4} 335 ] {16, 12, 8} |371 |{13, 11, 24} 407 |{13, 26, 27}
300 | {5, 8,10} |336 | (8,3, 13} |372 [{11, 25, 13} | 408 {6, 6, 3}
301 | {8, 14, 14} |337 | {5, 10, 1} |373 [{21, 54, 30} | 409 {6, 7, 4}
302 | {15, 3, 29} |338 {4, 1, 0} 374 {11, 27, 28} | 410 | {14, 9, 15}

}

}

}

}

{
{

{
303 [(19, 14, 57} | 339 [(11, 17, 18} 375 [120, 37, 48} [411 |16, 29, 51}
304 | {9, 12, 10} | 340 [{14, 14, 29} 376 [110, 26, 13} [412 | 18, 8, 7)
305 | 5,6, 4 341 (1,1, 1y [377 [114, 23, 18} [413 | {13, 30, 30}
306 | (4,4,2 [342] 19,20, 7y [378 117, 28, 10} | 414 | {14, 20, 7}
307 | 16,6, 8 [343 | {10, 26, 1} [379 | 120, 6, 24} [415 |20, 41, 57}
308 | (7,5, 15} 344 | (7, 14, 13} [380 | (14, 6, 37} |416 | (7,5, 0)
309 | (10, 4, 27} |345 | {10, 25, 1} [381 | {13, 35, 1} [417 | (8, 14, 1)
310 | 16,5, 7 [346 | (11,5, 15) [382] (17, 56,7} |418 | 18,7, 7)
311 | {10, 13, 1} [347 | (12, 20, 18} [ 383 | (26, 86, 87} |419 | (12, 26, 1}
312 [{11, 26, 21} [348 | (11, 28, 5} [384 | 6, 11,2} [420] (5,3, 2)
313 | (8,11, 6} [349 | (20,28, 1) [385] (7,14, 8} [421| 16, 3, 6)
314 | (11, 3, 15} [350 | (10, 26,7} [386 | 16, 5,3} [422| 19,7, 17}
315 [{10, 27, 14} [351 | (20, 56, 57} [387 | 8, 15, 8} 423 | (11, 13, 1}
316 |16, 12, 37y [352 | 17, 14,21 [388 ] 15,8, 31 [424 ] (10, 4, 15)
317 [120, 37, 321 [353 | 15,8, 81 [389 [ 16, 10, 12} [425 | (7, 3, 14}
}
}

318 [ (15, 41, 36} [ 354 | {10, 18, 9} [390 | (12, 26, 9} [426 | 19, 3, 3}
319 [(22, 38, 30} [ 355 (12, 29, 35y [391 | {7, 13, 12} [427 | {16, 37, 1}
320 | {7,3,7 |36 110,25, 95 [392] (7, 11, 51 [428 | {14, 35, 5}
321 | (10, 8, 18} [357 [ (7, 12, 14} [393 | 5,6, 87 |429 [(17, 13, 12}
322 | 19, 18,2} [358 [(14, 34, 10} [394 | (10, 18, 2} [430 | {15, 9, 26}
323 | 16,3, 1} [359 [(14, 24, 27y [395 | (14, 34, 4} |431 [(22, 15, 42}

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
432 {6, 5, 5} 468 {13, 28, 23} | 504 | {17, S6, 13} | 540 {4, 2, 0}
433 {11, 24, 24} |469 | {11, 3, 6} |S505 [{22, 41, 18} 541 |{12, 13, 12}
434 {6, 8, 0} 470 {15, 38, 13} | 506 | {17, 3, 39} |[542 {9, 6, 0}
435 |{13, 18, 24} [ 471 | {21, 50, 27} [ 507 |{25, 82, 35} | 543 | {16, 12, 6}
436 | (8,7,91 |472| (6, 11, 7} 508 [123, 12, 41} | 544 | (7, 11, 0}
437 |14, 38, 24} | 473 | (10, 16, 18} | 509 |35, 15, 35} | 545 | 5, 7, 4}
438 | (18, 53, 9} |474 | (7, 15, 3] | 510 |(23, 68, 19} | 546 | {9, 13, 16}
439 | (8,2, 4} |475| 8, 17, 1} 511|130, 98, 72} | 547 | 19, 10, 8
440 | (6,2, 11} |476 |(14, 37, 13} |[512 | (7, 15, 2} |548 | 5,6, 7)
441 | (10, 2, 27) 477 | (18, 6, 57} |513 | 19, 3, 41 |49 | 15, 10, 6]
442 | (11, 4, 23} |478 | (22, 76, 7} |514 | 9, 6, 21} |50 | (7, 7, 11
443 | (10, 16, 8) 479 | (16, 6, 6] |515 | (6, 11, 6] |51 | (11, 14, 4]
444 1 {12, 8, 11} [480 | {9, 6,22} |516 | {8,6, 11} [552 {6, 4, 7}
445 {23, 10, 57} 481 | {9, 17,8} [517 | {5, 2,8} 553 | {6, 12, 4}
446 | {15, 6,0} |[482 ] {12,3,17} 518 | {7, 3, 15} |[554 {5, 1, 3}
447 1{23, 68, 57} | 483 | {12, 8, 24} |[519 {5, 9, 8} 5§55 | {11, 9, 18}
448 {5, 2, 3} 484 {20, 10, 15} | 520 {7, 7, 2} 556 {9, 9, 2}
449 {7, 6, 4} 485 {16, 41, 51} | 521 {6, 5, 6} 557 | 8, 12, 1}
450 {5, 4, 2} 486 |{14, 23, 15} | 522 | {10, 21, 3} [558 | {10, 8, 19}
451 {4, 2, 6} 487 ({11, 19, 30} | 523 | {7, 12, 6} |559 [{14, 15, 12}
452 {5, 7, 3} 488 | {14, 28, 3} |[524 ] {10, 11, 2} [560 | {9, 15, 0}
453 {6, 4, 6} 489 | {13, 15, 4} | 525 {6, 8, 1} 561 {3, 2, 1}
454 | {7, 11, 3} |490 ] {10, 3,9} |[526 | {7,11,7} |[562 {5, 5, 3}
455 {8, 6, 8} 491 | {24, 83, 1} |527 ] {10, 6, 12} [563 | {7, 9, 12}
456 | {8, 8, 13} |492 |{12, 29,17} | 528 | {9, 17, 5} |564 |{10, 11, 15}
457 | {17, 2, 51} |493 | {19, 59, 54} | 529 {5, 4, 1} 565 [ {14, 35, 24}
458 {11, 14, 13} | 494 | {22, 3, 59} | 530 {5, 8, 9} 566 | {11, 7, 23}
459 | (11, 18, 12} 495 | (17, 6, 12} |531 | (6,6, 6} |567 | (12, 17, 1)
460 | (8, 11, 11} | 496 | (10, 6, 11} |532 | {6, 10, 5} |568 | 5, 4, 3}
461 | (13, 23, 27) |497 | (13, 29, 8) | 533 | (10,5, 4] |69 | (12 26, 8]
462 | (16, 33, 5) |498 | (15, 6, 29) |34 | 8,5, 131 |570 | (10, 21, 9]
463 |{11, 12, 27} | 499 | (20, 30, 30} | 535 | (14, 10, 4} |571 (11, 29, 14}
464 | 15,9, 9 |500 |(13. 35, 13] | 536 | 8, 14, 21 |572 |112, 34, 10
465 | (10, 21, 4] | 501 | (23. 6, 65) 537 | 16,7, 61 |573 |112 29, 30]
466 | (15, 44, 9) | 502 | (15, 41, 7} 538 | 5. 3,31 |574 |113, 12, 23]
467 120, 27, 48) | 503 | (16,47, 1] |539 | (12, 8, 6] |575 | 121, 38, 24

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
576 | {10, S5, 11} [612 {4, 3, 0} 648 [{13, 14, 11} (684 | {9, 20, 10}
S77 1 {6, 8, 12} |613 | {11, 11, 8} |649 | {5, 10,4} |685 | {12, 7, 6}
578 | {9, 5,13} |614 {6, 6, 2} 650 | {6, 12,2} |686 | {11, 28, 2}
579 {5, 3, 1} 615 | {10, 12, 6} |651 | {14, 10, 8} |687 | {10, 26, 4}
580 | 17, 10, 3} |616 | (7. 5, 10} |652 |(11, 28, 10} | 688 | {7, 14, 16}
581 | 15, 1,6} |617 [(11, 13, 27} |653 | {10, 11, 8} |689 | {14, 8, 38
582 | 15,5,7) |618 | (10, 4, 23} |654 | 16,9, 3} |690 | {10, 25, 5}
}
}

583 [ (12, 10, 4} [619 [(17, 25, 35} [655 | {12, 34, 4} [691 | (14, 34, 1
ss4 | 5,500 [e20] 16,520 [656] 5,3, 7 [e92]111,5, 10
sss | (2,1, 1) [e21 [(14, 38, 14} [657 | 15,1, 88 [693 |16, 25, 38}
586 | 19, 18, 19} [622 [110, 13, 17} [658 | 19, 5, 15} [694 | (14, 5, 223
587 [(15, 20, 351 | 623 | (24, 12, 81 [659 [i11, 11, 24} [695 [ (12, 20, 35}
588 | 4,3,2 [624 [(10, 12, 16} [660 | 3,1,2} [696 | (12, 34, 23
589 [(12, 15, 27} [ 625 [112, 11, 20} [661 | 14,6, 13 [697 | (11, 28, 8}
590 [(17, 57, 10y 626 | 18, 8, 10} [662 | (6, 10,7} [698 | 121, 19, 5}
591 |26, 91, 24} | 627 | (8, 11, 14} [663 | {15, 3, 32} [699 | (20, 28, 44}
592 | 16,3,7 |628 [113, 30, 11} [664 | 19, 7,3} [700 |{10, 26, 10}
593 | t6,1,8 [629 | {11, 3, 12} [665 [i11, 20, 14} | 701 | {17, 28, 38}
594 | 3,1,0 |630 [{10, 27, 16} [666 | (7, 5,3} |702 |23, 77, 36}
595 | (7,5, 1y |e31| (18,6, 8 [667 114, 13, 42} | 703 | (20, 56, 1)
596 | 4, 1,2} |[e32 |11, 12, 22 [ 668 | (11, 17, 29} | 704 | (6, 11, 0}
597 | 19,20, 1} |633 [(24, 47, 20} [669 | (11, 13, 6} |705 | 16, S, 8)
598 | (7,14, 7y |634 [{14, 20, 10} [670 | {16, 12, 49} | 706 | {5, 8, 0}
599 | (15, 13, 1} | 635 [(20, 61, 54} [671 [(18, 24, 27} | 707 | (7, 13, 8}
600 | {5, 8,2 [636 [{18, 24, 40} [672 | (8, 3, 10} |708 | {11, 24, 7}
601 [{11, 18, 20} [637 | (15, 41, 42} 673 | (10, 26, 6} |709 |(10, 18, 20}
602 | {8, 14, 0y [638 |(22, 41, 21} 674 | (5, 10,2} |710 | (14, 35, 0}
603 | (10, 2, 12} [639 |28, 55, 84} 675 | (11, 28, 4} | 711 | (12, 29, 6}
604 | {15, 3, 26} [640 | (7, 15, 15} [676 | (5, 1, 101 [712] ¢6, 8, 10}
605 [121, 63, 44} 641 | 15,9, 41 [e77] 14,1, 6 [713 112, 22, 14
606 [{13, 26, 16} [642 | 17,5, 7y [e78 [ 117, 9, 26} [714 | (7, 12, 2}
607 [126, 95, 30y [ 643 [(11, 25, 12} [679 | 111, 17, 13 [715 | (13, 37, 1

608 | {9, 11, 11} [644 | {9, 18, 7y [680 | (10, 3, 26} | 716 (14, 34, 19}
609 | 16, 6,4 |645 110,24, 1} [681 ] (9, 3,20y |717 [120, 11, 32}
610 | (5, 6,9 |e46]| (6,3, 11} 682 | (1,1, 05 |718 [(13, 18, 29}
611 {12, 18, 27} 647 | 16, 4, 41 [683 | 123, 34, 8} | 719 [(14, 20, 27}

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
720 {7, 15, 9} 756 | {17, 28, 41} |792 {3, 3, 2} 828 | {11, 12, 3}
721 {8, 7, 14} 757 | {17, 31, 54} | 793 | {12, 19, 4} |[829 |{14, 20, 30}
722 {8, 5, 7} 758 | {23, 73, 64} 794 | {12, 8, 0} [830 {20, 41, 16}
723 19,7, 1) |759 | (20,6, 18) |795 | (13, 18, 14} | 831 |25, 47, 80}
724 | (11, 26, 3} |760 | (14, 6,31} |796 | (7, 6, 11} |832| 15,9, 2}
725 | {12, 30, 32) | 761 | (15, 6, 35) |797 | (13, 3, 18} |833 | (7, S, 12}
726 | (17, 46, 11) | 762 | (13, 35, 7} | 798 | (12, 29, 22} | 834 | {10, S, 19}
727 | {17, 19, 48} |763 | {20, 65, 48} |799 |{13, 12, 35} | 835 | (8, 14, 6}
728 | {8,17,7} |764 | {17, 56, 10} |800 | {6,8,7} [836 | {8,7, 0}
729 | {14, 5,12} |765 | (31, 80, 32} [801 | {6, 7, 8 |837 ({14, 33, 12}
730 | {9, 21, 3} | 766 [{35, 134, 21} | 802 | {7, 10, 13} |838 | {14, 9, 9}
731 {9, 2, 6) 767 | {23, 68,4} |803 | (8,9, 18 |839 |{10, 21, 20}
732 | (7,2,00 |768| (7,2,5) |804]| (5,5,5 |s40]| (5,3, 10)
733 | {11, 4,27} |769 (6,2, 1) 805 [{11, 20, 30} | 841 |{15, 27, 27}
734 {19, 8,49} |770 [ (5,2, 10} |806 | {4,4,0F [842] ({6, 3,3}
7351 {25, 15,27y |771 | {9, 11,1} |807 |{19, 37, 20} | 843 | {18, 50, 4}
736 {5,2,5) 7721 {6, 5,11} |808 [{10, 11, 23} [ 844 | {9, 7, 10}
737 | {12, 34,8} |773 | {11, 6,20} |809 | {7, 12, 12} |845 | (13, 4, 6}
738 | {10, 8, 16} |774 {8, 4, 10} 810 | {11, 14, 16} | 846 [{11, 13, 19}
739 | {13,38,4} |775 | {8, 15,12} |811 |{17, 50, 57} | 847 | {25, 8, 93}
740 | {10, 2, 23} |776 {5, 4, 5} 812 | {11, 18, 7} | 848 | {10, 4, 11}
741 | {11, 28, 14} | 777 {5, 8, 6} 813 | {9, 16, 18} |[849 | {11, 22, 6}
742 | {13, 11, 13} |778 {6, 10, 2} 814 | {20, 44, 7} 850 | {7, 3, 11}
743 | {19, 24,20} |779 | (8,5, 18} |815 ] {13, 26, 1} |851 | {17, 9, 35}
744 {11, 6, 9} 780 | {12, 11, 10} |816 | {6, 6, 10} |852 {9, 3, 0}
745 | {21, 10, 27} | 781 {7, 4, 6} 817 {7, 8, 8} 853 | {23, 25, 1}
746 | {20, 43, 40} | 782 4, 2, 2} 818 | {6, 7, 10} |854 | {16, 25,7}
747 | {28, 98, 51} | 783 {9, 6, 6} 819 [ ({19, 16, 38} | 855 | {17, 28, 4}
748 | (10, 16, 5) | 784 | 15,7, 01 |820 | {14, 19, 9} |856 | {14, 8, 3}
749 | (11, 27, 1} | 785 | 19, 13, 6] |821 | (14,9, 6} |857 |{17, 34, 24}
750 | {18, 55, 50) |786 | (5, 6, 2) |822 | (13, 23, 22} | 858 | {17, 40, 2}
751 132, 110, 93} | 787 | {8, 10, 4} |823 |{14, 23, 32} | 859 ({18, 53, 38}
752 | {10, 26, 16} |788 | {6, 4, 11} |824 |{10, 12, 28} | 860 | {15, 9, 17}
753 | {12, 8,32} |789 | ({11,3,8} [825] {8,8,18} |861 | {28,9,77)
754 | {20, 34, 10} |790 | {12, 11, 13} |[826 | {13, 30, 0} |862 ({24, 68, 25}
755 | {14, 23, 38} |791 | {10, 8,27} |827 |{18, 45, 54} | 863 ({22, 15, 27}

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
864 {6, 5, 0} 900 {5, 4, 9} 936 |{13, 28, 36} | 972 | {14, 31, 28}
865 | {12, 29, 4} 901 {6, 9, 1} 937 | {15, 34, 24} | 973 | {14, 23, 35}
866 | {11, 24, 0} 902 | {7, 4, 10} [938 | {10, 3, 3} 974 | {11, 19, 11}
867 {13, 23, 12} 1903 {4, 5, 1} 939 {17, 31, 20} | 975 | {32, 60, 68}
868 | 16,8,5) |904| (5,7,7v 940 [(15, 38,221 | 976 | (13, 6, 11)
869 | {14, 30, 30} | 905 | {12, 27, 20} | 941 | {17, 40, 42} | 977 | (14, 28, 18)
870 | (16, 24, 47} | 906 | 16, 4, 2} | 942 | (21, 23, 39} | 978 | (19, 53, 49}
871 | (13, 18, 6} |907 | (10, 8, 6} |943 (32, 9, 110} | 979 | (13, 15, 30}
872 | (7,15, 7} |908 | (7, 11, 9} |944 | (6, 11, 9} | 980 | (15, 34, 11}
873 | (10, 27, 1} 909 | (12, 8, 8} |945 | (12, 20, 6} | 981 | (10, 3, 6}
874 (12, 17, 13} | 910 | 18, 6,2} |946 | (10, 16, 2} | 982 | (22, 64, 19)
875 | (18, 8, 27} | 911 | (13, 12, 6} |947 | (14, 20, 24} | 983 [{32, 122, 60}
876 | (8,17, 5) |912| 18,8, 5 |948| (7, 15,5) | 984 | (12, 29, 25)
877 | {9, 21, 1} 913 | {11, 17, 6} |949 ({12, 17, 30} | 985 | {24, 77, 27}
878 {8, 2, 2} 914 | {17, 2,49} 1950 | {8, 17, 3} 986 | {19, 52, 13}
879 | {19, 8, 57} 915 [{19, 30, 18} | 951 ({25, 15, 57} | 987 | {19, 59, 62}
880 {6, 2, 9} 916 | {14, 4, 19} |952 |{14, 37, 19} | 988 | {16, 47, 13}
881 | {11, 2, 27} |917 |{11, 28, 20} | 953 | {18, 55, 1} 989 | {32, 21, 35}
882 | {10, 2, 25} | 918 [{11, 18, 25} | 954 [{20, 34, 26} | 990 | {17, 53,7}
883 [ {18, 16, 32} | 919 [{22, 56, 27} | 955 | {18, 6, 51} 991 {17, 6, 6}
884 | {11, 4, 19} 920 | {8, 11, 0} |956 [{17, 53, 13} | 992 | {10, 23, 2}
885 {20, 43, 12} 1921 {10, 17, 27} | 957 | {20, 65, 1} 993 | {16, 41, 8}
886 | {10, 13, 7} 922 | {14, 18, 9} [958 | {16, 6, O} 994 | {16, 6, 29}
887 | {18, 55, 44} 1923 | {13, 23, 4} 959 ({32, 110, 4} | 995 | {13, 29, 20}
888 | {12, 8, 3} |924 ({11, 19, 23} [960 | {9, 6, 16} 996 | {15, 6, 23}
889 {20, 10, 35} 1925 | {19, 43, 35} | 961 | {10, 23, 8} 997 | {18, 58, 14}
890 | {20, 65, 7} 926 |{11, 12, 15} | 962 | {11, 8, 10} 998 | {20, 30, 0}
891 |27, 14, 51} | 927 | (25, 47, 30} [963 | 19, 17, 14} | 999 | (25, 50, 65)
892 | (15, 6, 41} |928 | (5,9, 01 |964 | (12, 23, 5) | 1000 | {13, 6, 17}
893 | (20, 6, 65} |929 | (14, 33, 8} |965 | (12, 3, 14} | 1001 | (26, 6, 77}
894 [ (25, 15, 94} | 930 [ {13, 22, 37} | 966 | (12, 8, 16} | 1002 | (20, 15, 64)
895 [123, 68, 72} | 931 [ {10, 21, 12} | 967 [ {13, 29, 32} | 1003 | {22, 64, 4)
896 | 1(6,2,3) |932| (15,37, 0} |968 | (15, 6, 17} | 1004 | (15, 41, 13}
897 | (5,2, 1) |933 [(15, 44, 12} | 969 | (26, 10, 35} | 1005 | (25, 82, 65)
898 | (7, 6, 15} |934 [{13, 15, 15} | 970 | {16, 41, 10} | 1006 | (16, 47, 7}
899 | (8, 4, 14} |935 |22, 23, 57} | 971 | (25, 89, 68} | 1007 | (17, 53, 1)

Table 2. (continues).
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RN Tuples RN Tuples RN Tuples RN Tuples
1008 [{17, 56, 16} [ 1012 | {17, 3, 36} | 1016 | {23, 71, 7} | 1020 [{23, 68, 34}
1009 | {21, 35, 1} | 1013 | {20, 15, 8} | 1017 |{28, 52, 44} | 1021 [{23, 15, 35}
1010 [{22, 38, 36} [ 1014 | {23, 15, 5} | 1018 |{26, 15, 53} | 1022 [{30, 98, 19}
1011 ({25, 50, 18} | 1015 [{32, 21, 77} | 1019 | {23, 15, 20} | 1023 {1, 0, 1}

Table 2. Iota-delta tuples {m, a1, ay} for totalistic CAs with the Neumann
neighborhood: first part.

4. The lota-Delta Function and Outer Totalistic Two-Dimensional
Cellular Automata

On the other hand, by definition, outer totalistic CAs uniquely deter-
mine the value of a given cell in the next time step by the cell’s value
and the sum of the cells in its neighborhood template, excluding from
the sum the cell itself [1]. This way, as in the case of totalistic CAs,
the number of cells in the neighborhood template is not important
since the value of a given cell in the next time step is dependent on
only two variables, namely: the value of the cell itself and the sum of
its neighbors. This way, the iota-delta evolution rule is of the form:

C;:;} =L5§” [alﬁ+az CZ’/+Q3], (5)

in which @ is the value of the sum of the neighbors of the cell of inter-
est, excluding the value of the latter ( }e ]-). An equation of the form
of equation (5) is applicable to every outer totalistic two-dimensional
CA with any type of neighborhood template. In the case of a Neu-

210

mann neighborhood, a total of outer totalistic rules are available.

On the other hand, for a Moore neighborhood, an astronomical 218
different rules exist. Since the complete lists of iota-delta representa-
tions of totalistic two-dimensional CAs with both Neumann and
Moore neighborhoods have been presented, the lists concerning outer
totalistic rules are omitted. Section 5 shows that by knowing the iota-
delta representations of a totalistic CA, the rules for outer totalistic
representations easily follow.

Even though the complete list of outer totalistic rules is suppressed,
one of the most famous two-dimensional CAs of this class is discussed
in Section 4.1: the Game of Life [3].

4.1 A Special Two-Dimensional Outer Totalistic Cellular Automaton
with the Moore Neighborhood: Game of Life

By means of equation (5), the Game of Life CA (rule 224 following

the numbering system defined in [1]) has its evolution rule described
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in terms of the iota-delta function as:
Citi =0)* [14T+6C) ;+9]. (6)

Despite the apparent simplicity of equation (6), applying it to a
two-dimensional lattice causes the well-known Game of Life patterns
to emerge. Section 5 introduces the concept that the iota-delta func-
tion is a basis for two-dimensional CA transition rule space.

5. The lota-Delta Function as a Basis for Two-Dimensional Cellular
Automata

In order to better understand this section, consider the possible inputs
and outputs of the evolution of a two-dimensional totalistic CA with
a Neumann neighborhood, as given in Table 3.

Inputs (o) | 0 1 2 3 4 5
Outputs | B1 |B2 B3 |Ba [Bs |Bs

Table 3. Inputs and outputs of the evolution rules of totalistic CAs with a
Neumann neighborhood.

It is clear from Table 3 that the number of a given rule is simply
given as:

6
RN = Z wlpg (7)

w=1

As a special case, consider the inputs and outputs of the evolution
of the rules 29, g = 0, 1, ..., 5, as in Table 4.

Inputs (o) [0 (1 (2 (3 [4 |5 |RN
Outputs 110 [0 |JO [O |O
0|1 1]0 (0 |0 [O
0|0 |1 (0 0 [O
0|0 0 (1 ]0 {0 8
00 10 (O |1 [0 | 16
0|0 10 (O O (1 | 32

Table 4. Inputs and outputs of the 29, g = 0, 1, ..., 5, evolution rules of to-
talistic CAs with a Neumann neighborhood.
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From Table 4 it is possible to notice that each of the rules de-
scribed has a unitary output for only one of the given input states.
This way, the iota-delta representation of the evolution of each rule in
Table 4 has the property of a unitary Lagrange polynomial, which is
1 in a given point and 0 in others.

Unitary Lagrange polynomials are the basis for interpolating poly-
nomials; that is, by means of linearly combining the unitary Lagrange
polynomials, every interpolating polynomial for a given set of data is
obtained.

By drawing a parallel between interpolating polynomials and CA
evolution rules, then every evolution rule can be expressed as a combi-
nation of the iota-delta bases. The iota-delta bases are, on the other
hand, the iota-delta representation of the evolution of rules 29,
qg=0,1, ..., T, in which T is the total number of inputs. Mathemati-
cally, let B be a vector whose components are the outputs of the evolu-

tion rule. Also, let 1§ be the vector whose components are the basis
evolution rules. Thus, every evolution rule (ER in the equations) is the
projection of «§ over S (dot product). This result is easily expressed as:

0

Z Qu,s Vs T ¥y O+1
s=1

T
ER[B, T| =w6.8= ) Buwtds™ : (8)

w=1

in which Q is the number of variables on which the evolution rule de-
pends. In the case of totalistic CAs, O = 1. On the other hand, for
outer totalistic CAs Q = 2, and for elementary CAs O = 3. Also, v; is

the jth variable on which the evolution rule depends, j = 1, ..., O. Fi-
nally, e, ; is the coefficient of the /™ variable on which the iota-delta
evolution rule of rule 29 depends, g =0, 1, ..., T.

In order to illustrate the applicability of the methodology de-

scribed, two extended neighborhood templates are considered in Sec-
tions 5.1 and 5.2.

5.1 lota-Delta Bases for Two-Dimensional Cellular Automata with
Extended Neumann and Moore Neighborhoods
Consider Figure 1, in which both extended Neumann and Moore
neighborhoods are presented.

The o values range from 0 to 13 and from 0 to 25 for extended
Neumann and Moore neighborhoods, respectively. This means we
have to find 14 and 26 iota-delta bases for each, respectively. Table 5
shows the coefficients for obtaining the bases for both extended Neu-
mann and Moore neighborhoods.
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RN | Tuples EN Tuples EM RN Tuples EN | Tuples EM

T | (13,3, 4) 122, 3, 4) 8192 |13, 38,2} |130, 103, 23)

2 | 19,2,22) | (20, 68, 11} 16384 X (30, 103, 33

7 [ 110,27,21 |30, 107, 47) 32768 X 127,93, 53
(11,29,2] |28, 101, 53) 65536 X 123,73, 0

16 | (13, 24,39) | 126, 95, 59) 131072 X 123,73, 10}
32 | (1L, 6,5 | 32, 128,5) 262144 X 127,93, 83)

64 | 112,8,7) | 130, 10, 59} 524288 X (30, 103, 83)
128 | {12,29,0] | (27, 10,39 | 1048576 X 132, 3, 61)
256 |{11,25,21) | (23, 10,9] | 2097152 X 126, 6, 10
512 | (13, 17,23) | 123, 10, 82) | 4194304 X 128, 6, 10}
1024 | (11,2,7) | 127,10,9) | 8388608 X 130, 6, 10
2048 | (10,2,5] | 130,10,9) 16777216 X 120, 3, 7)
4096 | 19,21,2] |30, 10, 112} | 33554432 X 122,76, 0)

Table 5. Tuples of coefficients {m, a1, @} for obtaining the bases for both ex-
tended Neumann (EN) and Moore (EM) neighborhoods.

The values in Table 5 can be inserted in equation (8) in order to
provide every totalistic two-dimensional CA with both extended Neu-
mann and Moore neighborhoods. Also, let Ty be the number of in-
puts for a given CA. Now, let T, be the number of inputs for another
given CA with the same number of variables (O = Qj). Thus, if
T, = Ty, then the first T bases of the second CA can also be used as
bases for the first one. This follows from the Lagrange polynomial
property of the iota-delta bases.

5.2 lota-Delta Bases for Two-Dimensional Outer Totalistic Cellular
Automata from Bases for Totalistic Ones

We now wonder whether or not bases for totalistic CAs can be used
to obtain outer totalistic CAs. In fact, this can be easily accomplished
by considering the evolution rule of the outer totalistic CA as the sum
of two evolution rules for totalistic CAs. Each of the totalistic rules

corresponds to a hypothetical rule in which the cell value CZ ; is kept
constant. Mathematically, the outer totalistic rule is given as:
ERouter [ﬁ; T] =

‘ : 9
(1-Cp ) ER[B,, T-1]+C) ;ER B, T~ 1], ©)

in which By is the output values vector when CZ = 0, and B is the

output values vector when CZ i= 1. Since the central value in the tem-
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plate has been taken out of the summation, each of the remaining evo-
lution rules turns out to have only T — 1 input values. Also, based on
the fact that bases for CAs with more inputs than a given one can be
used as bases for the latter, the totalistic bases suit the need.

As an example, consider the Game of Life evolution rule. It has
been shown that such an evolution rule is expressible as in equa-
tion (6). On the other hand, consider Table 6, in which the outer total-
istic rule is separated into two totalistic rules.

Inputs (o)
Outputs when CZ,/. equals [0 [1]2]3]|4|5]6]|7]|8|RN
0 oljofoj1fojofojofo] 8
1 ojofr)1fojofojofo| 12

Table 6. Game of Life decomposition.

By means of Table 6, it is easily seen that the Game of Life is a
combination of rules 8 and 12. Rule 8 is a basis itself. Rule 12, on the
other hand, is the combination of two bases, namely: the basis con-
cerning rule 4 and that concerning rule 8. Thus, by means of equa-
tion (9) and Table 2, the evolution of the Game of Life CA is given as:

Citi =(1-C ;)ERg + C} jERy, =
(1-Cj, ;) ERg + Cj, (ER4 +ERg) = (10)
ERg + C}, ;ER4 65 [6 T + 51+ C}, ;165 [6 7+ 15].

The given procedure can be extended to every other two-dimen-
sional CA by finding the bases of such a space. Thus, any two-dimen-
sional CA can be evolved by means of an iota-delta rule.

I 6. Conclusions

In the last half century, cellular automata (CAs) have been deeply
studied by the scientific community. In general, researchers have been
worried about the patterns produced by a given CA rule. The latter
were taken into account only to implement the former, but not as a
true information source about the phenomena simulated. In continu-
ous dynamical systems, partial differential equations are the evolution
rules and also carry important information about the phenomena un-
der study.

In the present paper, the iota-delta function has been used to ex-
press the evolution rules of two-dimensional totalistic and outer total-
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istic CAs with a set of neighborhood templates. Also, the concept of
iota-delta bases for the evolution rules space has been introduced.
This latter concept enables representing every two-dimensional CA in
terms of suitable iota-delta bases.
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