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We consider the problem of finding the density of ones in a configura-
tion  obtained  by  n  iterations  of  a  given  cellular  automaton  (CA)  rule,
starting  from  a  disordered  initial  condition.  While  this  problem  is  in-
tractable in full generality for a general CA rule, we argue that for some
sufficiently simple classes of rules it is possible to express the density in
terms  of  elementary  functions.  Elementary  CA  rules  (k ! 2,  r ! 1)
asymptotically emulating identity are one example of such a class,  and
density formulas have been previously obtained for several of them. We
show how to  obtain  formulas  for  density  for  two  further  rules  in  this
class,  160  and  168,  and  postulate  likely  expressions  for  density  for
eight  other  rules.  Our  results  are  valid  for  arbitrary  initial  density.  Fi-
nally,  we  conjecture  that  the  density  of  ones  for  CA  rules  asymptoti-
cally emulating identity always approaches the equilibrium point expo-
nentially fast. 

1. Introduction

Cellular  automata  (CAs)  are  often  viewed  as  computing  devices.  An
initial configuration is taken as an input of the computation, and, af-
ter a number of iterations of the CA rule, the resulting final configura-
tion constitutes the output of the computation.

In  many  practical  problems,  especially  in  mathematical  modeling,
we are not interested in all the details of the configuration, but rather
in  certain  aggregate  properties,  such  as,  for  example,  the  density  of
ones.  A  very  common  question  can  then  be  formulated  as  follows.
Suppose we generated an initial configuration with a given density of
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ones p œ @0, 1D, such that each site is independently set to 1 with prob-
ability  p  and to  0  with  probability  1 - p.  We then iterate  a  given bi-
nary rule n times over this configuration. What is the density of ones
(denoted by cn) in the resulting configuration? Using signal processing
terminology,  we  want  to  know  the  “response  curve,”  the  density  of
the output as a function of the density of the input. 

Numerical  studies  of  the  density  cn  assuming  p ! 0.5  were  first
conducted by S. Wolfram. In [1], he presented a table showing c¶  for
all “minimal” CA rules, in many cases postulating exact rational val-
ues of c¶.  In [2],  H. Fukś obtained formulas for density cn  for many
elementary  CA  rules,  starting  from  initial  density  c0 ! 0.5.  Some  of
these formulas were proved, but most were conjectures based on pat-
terns appearing in sequences of preimage numbers. 

In later years, building on the ideas outlined in [2], exact formulas
for cn  have been rigorously derived for several CA rules, for example,
rules 14, 172, 140, and 130 [3–6]. In the first two cases, the formulas
for cn  were proved for p ! 1 ê 2, while in the last two cases they were
proved for arbitrary p. 

For  a  given  CA  rule,  the  difficulty  of  finding  the  density  cn  very
strongly  depends  on  the  rule.  Generally,  the  more  complex  the
dynamic of the rule is, the more difficult it is to obtain the exact for-
mula for cn.  One exception to this is  surjective CA rules (among ele-
mentary  CAs  these  are  rules  15,  30,  45,  51,  60,  90,  105,  106,  150,
154,  170,  and  204).  Some  of  them  exhibit  very  complex  spatiotem-
poral behavior, yet it is well-known that the symmetric Bernoulli mea-
sure (p ! 1 ê 2) is invariant under the action of a surjective rule; thus,
for  all  of  them  cn ! 1 ê 2  for  p ! 1 ê 2  (cf.  [7]  for  a  review  of  this
result). 

One  class  of  rules  for  which  cn  is  easy  to  obtain  is  idempotent
rules,  that  is,  rules  for  which  the  global  function  F  has  the  property

F2 ! F (the rule applied twice yields the same result as applied once).
The notion of  idempotence can be generalized further by considering

kth-level emulators of identity, for which Fk+1 ! Fk for some k. These
are called emulators of identity because after k  iterations, further ap-
plication  of  the  rule  is  equivalent  to  application  of  the  identity  [8].
And finally, the notion of asymptotic emulation of identity can be in-

troduced,  such that Fk+1  and Fk  are not identical,  but become closer
and closer as k Ø ¶, as defined in [2]. Rules asymptotically emulating
identity  will  be the main subject  of  this  paper.  While  the dynamic of
these  rules  is  not  overly  complicated,  it  is  still  far  from being  trivial.
In  some  sense,  they  resemble  finitely  dimensional  dynamical  systems
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in the neighborhood of a hyperbolic fixed point, where orbits starting
from  the  stable  manifold  converge  to  the  fixed  point  exponentially
fast.  In  asymptotic  emulators  of  identity,  convergence  to  the  equilib-
rium state is  also exponentially fast,  as we will  subsequently see.  For
all  the  above reasons,  CA rules  asymptotically  emulating identity  are
an ideal testbed for attempts to compute cn. The goal of this paper is
to  show  that  the  problem  of  finding  cn  for  these  rules  is  indeed
tractable, and that their formulas for density exhibit remarkable simi-
larity to each other. 

2. Preliminaries and Definitions

Let  " ! 80, 1<  be  called  an  alphabet,  or  a  symbol  set,  and  let

X ! "!. A finite sequence of elements of ", b ! b1 b2 … , bn, will be
called a block (or word) of length n. The set of all blocks of elements
of " of all possible lengths will be denoted by "¯.

For  r œ !,  a  mapping  f : "2 r+1 # "  will  be  called  a  cellular  au-

tomaton rule of radius r. Corresponding to f , we also define a global

mapping  F : X Ø X  such  that  HF HxLLi ! f Hxi-r, … , xi, … , xi+rL  for
any x œ X. 

A  block  evolution  operator  corresponding  to  f  is  a  mapping

f : "¯ # "¯  defined as  follows.  Let  r œ !  be  the  radius  of  f ,  and let

a ! a1 a2 … an œ "n  where n ¥ 2 r + 1. Then fHaL  is a block of length
n - 2 r defined as 

(1)
f HaL ! f Ha1, a2, … , a1+2 rL

f Ha2, a3, … , a2+2 rL… f Han-2 r, an-2 r+1, … , anL.
For  example,  let  f  be  a  rule  of  radius  1,  and  let  b œ "5,  so  that

b ! b1 b2 b3 b4 b5.  Then  f Hb1 b2 b3 b4 b5L ! a1 a2 a3,  where
a1 ! f Hb1, b2, b3L,  a2 ! f Hb2, b3, b4L,  and  a3 ! f Hb3, b4, b5L.  If

f HbL ! a,  then  we  will  say  that  b  is  a  preimage  of  a,  and  write

b œ f-1 HaL. Similarly, if fn HbL ! a, then we will say that b is an n-step
preimage of a, and write b œ f-n HaL.

The appropriate mathematical description of an initial distribution
of configurations is a probability measure m  on X  [7, 9–11]. Suppose
that the initial distribution is a Bernoulli measure mp, so all sites are in-
dependently set to 1 or 0, and the probability of finding 1 at a given
site  is  p,  while  the  probability  of  finding  0  is  1 - p.  It  can  then  be
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shown [4]  that  the  probability  Pn HbL  of  finding  a  block  b  at  a  given
site after n iterations of rule f  is given by 

(2)PnHbL ! ‚
aœf-n HbL

P0HaL.
Note that equation (2) is site independent, and this is because the ini-
tial  measure  mp  is  shift  invariant.  We  will  define  cn,  the  density  of
ones, to be the expected value of a site,

(3)cn ! PnH1L ÿ 1 + PnH0L ÿ 0 ! PnH1L.
This yields the expression for density

(4)cn ! ‚
aœf-n H1L

P0HaL.
Since  the  initial  distribution  is  the  Bernoulli  distribution  mp,

P0 HaL ! pÒ1 HaL H1 - pLÒ0 HaL,  where  Ò1 HaL  and  Ò0 HaL  denote,  respec-

tively, the number of ones (zeros) in b. We then obtain

(5)cn ! ‚
aœf-n H1L

pÒ1 HaL H1 - pLÒ0 HaL.

In  order  to  conveniently  write  equation  (5),  we  will  introduce  the
notion of a density polynomial [12]. Let the density polynomial associ-
ated with a binary string b ! b1 b2 … bn be defined as 

(6)YbHp, qL ! pÒ1 HbL qÒ0 HbL.
If A is a set of binary strings, we define the density polynomial associ-
ated with A as

(7)YAHp, qL ! ‚
aœA

YaHp, qL.
Density cn can thus be written as

(8)cn ! Yf-n H1LHp, 1 - pL ! Yf-n H1LHc0, 1 - c0L.
In what follows, we will keep using variables p and q for density poly-
nomials, understanding that in order to obtain cn,  we need to substi-
tute q ! 1 - p, and that p is the initial density, p ! c0.

The  problem  of  finding  the  density  cn  is  thus  equivalent  to  the
problem of finding the density polynomial for the set f-n H1L. In order
to  do  this,  detailed  knowledge  of  the  structure  of  f-n H1L  is  needed,
which is usually very difficult to obtain. However, for reasonably sim-
ple rules it is often possible, as we will shortly see. 
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3. Asymptotic Emulators of Identity

We  will  now  define  the  class  of  rules  we  wish  to  consider,  namely
rules  asymptotically  emulating  identity.  Let  f  be  a  CA rule  of  radius

m, g a rule of radius n, and k ! max 8m, n<. Let the distance between

rules f  and g be defined as 

(9)
d Hf , gL ! 2-2 k-1 ‚

bœ!2 k+1

†f HbL - gHbL§,
where  for  b ! b1 b2 … b2 k+1  and  rule  f  of  radius  r  we  define

f HbL ! f Hbk+1-r, … , bk+1+rL.  This  simply  means  that  f HbL  is  the
value of the local function on the neighborhood of the central symbol
of  b;  for  example,  for  b ! b1 b2 b3 b4 b5 b6 b7  and  r ! 1,
f HbL ! f Hb3, b4, b5L. It can be shown that the distance defined above
is a metric in the space of CA rules [2].

The  composition  f È g  of  two  CA rules  f  and  g  can  be  defined  in
terms of their corresponding global mappings F and G, as a local func-
tion of F ÈG,  where HF ÈGL HxL ! F HG HxLL  for x œ X.  We note that if

f  is a rule of radius r,  and g  of radius s,  then f È g  is a rule of radius
r + s. For example, the composition of two radius-1 mappings is a ra-
dius-2 mapping: 

(10)
Hf È gL Hx-2, x-1, x0, x1, x2L !

f Hg Hx-2, x-1, x0L, g Hx-1, x0, x1L, g Hx0, x1, x2LL.
Multiple composition will be denoted by

(11)
f n ! f È f È! È f

n times

.

We say that a CA rule f  asymptotically emulates rule g if

(12)lim
nØ¶

dIf n+1, g È f nM ! 0.

We will  be primarily interested in emulators of identity,  for which
we take as g  the local  function of an identity rule (e.g.,  rule 204).  In
[2], it has been found that rules 13, 32, 40, 44, 77, 78, 128, 132, 136,
140,  160,  164,  168,  172,  and  232  asymptotically  emulate  identity.
This list has been obtained by a mixture of computer experiments and
rigorous  methods;  thus,  it  should  be  treated  as  conjectural,  although
the evidence in favor of the correctness and completeness of this list is
quite  strong.  It  should  be  stressed,  however,  that  no  general  method
for verifying asymptotic emulation is known. 
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Typical spatiotemporal patterns produced by these rules are shown
in Figure 1. All these rules eventually reach an all-zero state or a fixed
point that corresponds to vertical strips in the spatiotemporal patterns
(as in the case of rule 232, Figure 1(d)). 

HaL

HbL

HcL

HdL

Figure 1. Spatiotemporal  pattern  produced  by  rules  (a)  160,  (b)  168,  (c)  40,
and (d) 232, starting with a random initial condition.

For  all  these  rules,  formulas  for  densities  for  cn  for  p ! 1 ê 2 have
been postulated in [2], and some of these formulas were subsequently
proved, as illustrated in Table 1. The general formulas for density, for
arbitrary  c0,  have  been  previously  reported  for  only  four  of  them:
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Rule cn Proof 

13 
7

16
- H-2L-n-3 

32 2-1-2 n [2]

40 2-n-1 

44 
1

6
+

5

6
2-2 n 

77 
1

2
 [2]

78 
9

16

128 2-1-2 n [13]

132 
1

6
+

1

3
2-2 n [13]

136 2-n-1 [13]

140 
1

4
+ 2-n-2 [5]

160 2-n-1 this paper 

164 
1

12
-

1

3
4-n +

3

4
2-n 

168 3n 2-2 n-1 this paper 

172 
1

8
+

1

40ÿ22 n J10 - 4 5 N J1 - 5 Nn +

J10 + 4 5 N J1 + 5 Nn
 [4]

232 
1

2
 

Table 1. Density of  ones cn  for  disordered initial  state  (c0 ! 0.5)  for  elemen-
tary  rules  asymptotically  emulating identity.  For  rules  for  which the  proof  is
known,  the  source  of  the  proof  is  given.  All  other  formulas  are  conjectures
based on preimage patterns from [2].

rules 128, 132, 136, and 140. For all four cases, proofs of the formu-
las are known. Below we show these formulas, citing the proof source
as well. 

† Rule 128 (in [13], cn has been obtained for rule 254, identical with con-
jugated and reflected rule 128) 

(13)cn ! c0
2 n+1.

† Rule 132 (in [13], cn has been obtained for rule 222, identical with con-
jugated and reflected rule 132) 

(14)cn ! H1 - c0L2 c0 +
H1 - c0L c0

3

1 + c0

+ 2
c0

1 + c0

c0
2 n+1.
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† Rule 136 (in [13], cn has been obtained for rule 238, identical with con-
jugated rule 136) 

(15)cn ! c0
n+1.

† Rule  140  (in  [5],  cn  has  been  obtained  for  a  more  general  case  of  the
asynchronous version of  rule  140;  here  we take the  special  case  of  the
synchrony rate equal to 1) 

(16)cn ! c0H1 - c0L + c0
n+2.

We will show that using the concept of density polynomials, formu-
las  for  cn  for  arbitrary  c0  can  be  constructed  for  many  other  rules
asymptotically emulating identity.  In two cases,  namely for rules 160
and 168, we give formal proofs for density formulas. For many other
cases,  we will  describe how to “guess” the correct  formula for  cn  by
setting up a recursive equation for density polynomials. 

4. Rule 160

The first rule we wish to consider is rule 160. From now on, we will
use subscripts with Wolfram numbers to identify concrete local func-
tions and corresponding block evolution operators,  for example, f160

and f160 for rule 160.
Rule  160  is  defined  by  f160 H1, 1, 1L ! f160 H1, 0, 1L ! 1,  and

f160 Hx1, x2, x3L ! 0 for all other values of x1, x2, x3. This can be sim-

ply  written  as  f Hx1, x2, x3L ! x1 x3.  Rule  160  is  one  of  those  few

rules for which expressions for f n  can be explicitly given, as Proposi-
tion 1 attests. 

Proposition 1. For elementary CA rule 160 and for any n œ ! we have 

(17)f160
n Hx1, x2, … , x2 n+1L ! ‰

i"0

n

x2 i+1.

Proof.  We give proof by induction. For n ! 1, equation (17) is  obvi-
ously  true,  as  mentioned.  Suppose  now  that  equation  (17)  holds  for

some n, and let us compute f n+1. We have 

f160
n+1 Hx1, x2, … , x2 n+3L ! f160Hf160

n Hx1, … , x2 n+1L,
f160

n Hx2, … , x2 n+2L, f160
n Hx3, … , x2 n+3LL !

f160 ‰
i"0

n

x2 i+1, ‰
i"0

n

x2 i+2, ‰
i"0

n

x2 i+3 !

8 H. Fukś and J. M. G. Soto
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‰
i"0

n

x2 i+1 ‰
i"0

n

x2 i+3 ! ‰
i"0

n

x2 i+1 ‰
i"1

n+1

x2 i+1 !

x1 ‰
i"1

n

x2 i+1 ‰
i"1

n

x2 i+1 x2 n+3 ! ‰
i"0

n+1

x2 i+1,

where  we  used  the  fact  that  xi
2 ! xi  if  xi œ 80, 1<.  Equation  (17)  is

thus valid for n + 1, and this concludes the proof by induction. ·
Proposition 2 is a direct consequence of equation (17). 

Proposition 2.  Block  b1 b2 … b2 n+1  is  an  n-step  preimage  of  1  under
rule 160 if and only if bi ! 1 for every odd i. 

This means that we have n + 1 ones and n arbitrary symbols in the
preimage of 1; therefore, 

(18)Yf168
-n H1LHp, qL ! pn+1 Hp + qLn.

The density of ones cn ! Pn H1L is thus

(19)cn ! Yf168
-n H1LHc0, 1 - c0L ! c0

n+1,

and for c0 ! 1 ê 2,

(20)cn ! 2-n-1.

No matter what the initial density, cn  exponentially converges to 0 as
n Ø ¶.

5. Rule 168

Rule 168 is defined by f168H1, 1, 1L ! f168H1, 0, 1L ! f168H0, 1, 1L ! 1,

and f168 Hx1, x2, x3L ! 0 for all other values of x1, x2, x3. Its dynam-
ics and preimage structure are considerably more complex than those
of  rule  160.  Nevertheless,  upon  careful  examination  of  preimages  of
1,  it  is  possible  to  discover  an interesting  pattern  in  these  preimages,
described in Proposition 3.

Proposition 3. Let An be a set of all strings of length 2 n + 1 ending with
1 such that,  counting  from the  right,  the  first  pair  of  zeros  begins  at

the  kth  position  from  the  right,  and  the  number  of  isolated  zeros  in
the  substring  to  the  right  of  this  pair  of  zeros  is  m,  satisfying
m < k - n - 1.  Moreover,  let  Bn  be  the  set  of  all  strings  of  length
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2 n + 1 ending with 1 that do not contain 00. Block b œ "2 n+1  is  an
n-step preimage of 1 under rule 168 if and only if b œ An ‹ Bn. 

In  lieu  of  a  formal  proof,  we  will  present  a  discussion  of  the  spa-
tiotemporal dynamics of rule 168 and explain how it leads to Proposi-

tion  3.  First  of  all,  let  us  note  that  f168
-1 H1L ! 8011, 101, 111<.  This

means that if a block b  ends with 1, its preimage must also end with
1,  and,  by  induction,  its  n-step  preimage  must  end  with  1  as  well.
This  explains that  ending with 1 is  a  necessary condition for being a
preimage of 1, and elements of both An and Bn have that property. 

Next, let us note that a block b  can be considered as consisting of
blocks of zeros of various lengths separated by blocks of ones of vari-
ous lengths. Suppose that a given block contains one isolated zero and
to the left of it a pair of adjacent zeros, as depicted in Figure 2. When
the rule is iterated, the block 00 will increase its length by moving its
left boundary to the left, while its right boundary will remain in place.
The isolated zero, on the other hand, simply moves to the left, as illus-
trated in Figure 2. When the boundary of the growing cluster of zeros
collides with the isolated zero, the isolated zero is annihilated, and the
boundary  of  the  cluster  of  zeros  jumps  one  unit  to  the  right.  Two
such collisions are shown in Figure 2, marked by circles. 

Figure 2. Collision of “defects” in CA rule 168. 

Armed with this information, we can now attempt to describe con-
ditions that a block must satisfy in order to be an n-step preimage of
1. If a block of length 2 n + 1 is an n-step preimage of 1, then either it
contains a block of two or more zeros or not. If it does not and ends
with 1, then it necessarily is a preimage of 1. This is because when the
rule  is  iterated,  all  isolated  zeros  move  to  the  left,  and  after  n  itera-
tions we obtain 1, as shown in Figure 3 (left). Blocks of this type con-
stitute elements of Bn. 

10 H. Fukś and J. M. G. Soto
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101101101101011101101 101111001111011101111 10111100111101110

1101101101011101101 1111000111011101111 1111000111011101

01101101011101101 11000011011101111 110000110111010

101101011101101 000001011101111 00000101110101

1101011101101 0000011101111 0000011101011

01011101101 00001101111 00001101011

011101101 000101111 000101011

1101101 0001111 0001011

01101 00111 00011

101 011 001

1 1 0

Figure 3. Examples of blocks of length 21 for which 10 iterations of f168 pro-
duce 1 (left and center) and 0 (right).

If, on the other hand, there is at least one cluster of adjacent zeros
in  a  block  of  length  2 n + 1,  then  everything  depends  on  the  number
of isolated zeros to the right of the rightmost cluster of zeros. Clearly,
if  there are not too many isolated zeros,  and the rightmost cluster of
zeros  is  not  too  far  to  the  right,  then  the  collisions  of  isolated  zeros
with the boundary of the cluster of zeros will not be able to move the
boundary  sufficiently  far  to  change  the  final  outcome,  which will  re-
main 1. This situation is illustrated in Figure 3 (center). Blocks of this
type are elements of An. 

Obviously, the balance of clusters of zeros and individual zeros is a
delicate  one,  and  if  there  are  too  many  isolated  zeros,  they  may
change the final outcome to 0, as in Figure 3 (right). 

The  question  is  then,  what  is  the  condition  for  this  balance?  To

find this  out,  suppose that  we have a string b œ "2 n+1,  and the first

pair of zeros begins at the kth  position from the right. If there are no
isolated zeros in the substring to the right of  this  pair,  then we want
the end of the rightmost cluster of zeros to be not further than just to
the  right  of  the  center  of  b.  Since  the  center  of  b  is  at  position n + 1
from the right, we want k > n + 1. 

If there are m isolated zeros in the substring to the right of this pair
of zeros, we must push the boundary of the rightmost cluster of zeros
m  units  to  the  left,  because  these  isolated  zeros,  after  colliding  with
the  rightmost  cluster  of  zeros,  will  move  the  boundary  to  the  right.
The  condition  should,  therefore,  be  in  this  case  k > n + 1 + m,  or,
equivalently, m < k - n - 1, as required for elements of An. · 

With  Proposition  3,  we  can  construct  density  polynomials  associ-
ated with both An  and Bn. Lemma 1 will be useful for this purpose. It
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             p p  

can be proved by well-known methods described in a typical book on
enumerative combinatorics [14]. 

Lemma 1.  The  number  of  binary  strings  a1 a2 … al  such  that
a1 ! al ! 1 and having only m isolated zeros is 

(21)
l - m - 1

m
.

Now  note  that  elements  of  the  set  An  described  in  Proposition  3
have the structure 

(22)
¯…¯
2 n-k

00 a1 a2 … ak-1,

where  the  string  a1 a2 … ak-1  has  only  isolated  zeros,  and
a1 ! ak-1 ! 1. Moreover,

k œ 8n + 2, n + 3, … , 2 n<.
Furthermore, the number of isolated zeros m must satisfy

m < k - n - 1,

meaning that

(23)m œ 80, 1, … , k - n - 2<.
Using  Lemma  1,  the  density  polynomial  of  the  set  of  strings  of  the
type in equation (22) with fixed k and m is therefore

(24)

Hp + qL2 n-k q2 k - 1 - m - 1
m

qm pk-m-1 !

Hp + qL2 n-k q2 k - m - 2
m

qm pk-m-1.

This yields the density polynomial associated with the set An,

(25)

YAn
Hp, qL !

‚
k"n+2

2 n ‚
m"0

k-n-2 Hp + qL2 n-k k - m - 2
m

qm+2 pk-m-1,

which, by changing index j to k ! n + j + 2, becomes

(26)

YAn
Hp, qL !

‚
j"0

n-2 ‚
m"0

j Hp + qLn-j-2 n + j - m

m
qm+2 pn+j-m+1.
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For the set Bn, the associated density polynomial is

(27)YBn
Hp, qL ! ‚

m"0

n 2 n + 1 - m
m

qm p2 n+1-m.

The  resulting  density  polynomial  for  n-step  preimages  of  1  is,
therefore,

(28)

YAn‹Bn
Hp, qL ! Yf168

-n H1L Hp, qL !

‚
j"0

n-2 ‚
m"0

j Hp + qLn-j-2 n + j - m

m
qm+2 pn+j-m+1 +

‚
m"0

n 2 n + 1 - m
m

qm p2 n+1-m.

This expression, while complicated, can be written in a closed form. It
can namely be shown by induction (we omit the proof) that it sums to

(29)Yf168
-n H1LHp, qL ! pn+1 Hp + 2 qLn.

If the initial density is p ! c0, q ! 1 - c0, we obtain

(30)
cn ! Yf168

-n H1LHc0, 1 - c0L !

c0
n+1 Hc0 + 2 - 2 c0Ln ! c0

n+1 H2 - c0Ln.

For the symmetric case, c0 ! 1 ê 2,

(31)cn ! Yf168
-n H1L

1

2
,

1

2
!

3n

22 n+1
.

As in the case of rule 160, the density exponentially converges to 0 as
n Ø ¶.

As  an  interesting  additional  remark,  note  that  by  substituting
p ! q ! 1 into Yf168

-n H1L Hp, qL we obtain card f168
-n H1L; thus, 

(32)card f168
-n H1L ! card An + card Bn ! Yf168

-n H1LH1, 1L ! 3n.

Density  polynomials  are  thus  useful  not  only  for  determining  densi-
ties, but also to enumerate n-step preimages in CAs. The above result,
card f168

-n H1L ! 3n, has been observed in [2], but no proof was given.

6. Rule 40

In  the  previous  two  examples  (rules  160  and  168),  we  were  able  to
gain  detailed  understanding  of  the  structure  of  preimages  of  1  and
therefore  also  compute  the  density  of  ones  in  a  rigorous  way.  In  the
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  p   y      g  y   
next  example  this  will  not  be  the  case,  but  we  will  show  that  even
then we can often conjecture what the expressions for cn are. The con-
jecture will be based on patterns present in density polynomials. Such
patterns can often be readily observed when a first few density polyno-
mials are generated with the help of a computer program.

Let  us  now  consider  rule  40,  for  which  f40H0, 1, 1L !
f160H1, 0, 1L ! 1,  and  f40 Hx1, x2, x3L ! 0  for  all  other  values  of
x1, x2, x3. The first 10 density polynomials for preimages of 1, gener-
ated by a computer program, are

Yf40
-1 H1L Hp, qL ! 2 p2 q,

Yf40
-2 H1L Hp, qL ! p4 q + 3 p3 q2,

Yf40
-3 H1L Hp, qL ! 3 p5 q2 + 5 p4 q3,

Yf40
-4 H1L Hp, qL ! p7 q2 + 7 p6 q3 + 8 p5 q4,

Yf40
-5 H1L Hp, qL ! 4 p8 q3 + 15 p7 q4 + 13 p6 q5,

Yf40
-6 H1L Hp, qL ! p10 q3 + 12 p9 q4 + 30 p8 q5 + 21 p7 q6,

Yf40
-7 H1L Hp, qL ! 5 p11 q4 + 31 p10 q5 + 58 p9 q6 + 34 p8 q7,

Yf40
-8 H1L Hp, qL ! p13 q4 + 18 p12 q5 + 73 p11 q6 + 109 p10 q7 +

55 p9 q8,

Yf40
-9 H1L Hp, qL ! 6 p14 q5 + 54 p13 q6 + 162 p12 q7 + 201 p11 q8 +

89 p10 q9,

Yf40
-10 H1L Hp, qL ! p16 q5 + 25 p15 q6 + 145 p14 q7 + 344 p13 q8 +

365 p12 q9 + 144 p11 q10,

Yf40
-11 H1L Hp, qL ! 7 p17 q6 + 85 p16 q7 + 361 p15 q8 + 707 p14 q9 +

655 p13 q10 + 233 p12 q11.

Upon  closer  inspection  of  these  polynomials,  we  suspect  that  they
can  perhaps  be  recursively  generated.  Denoting  for  simplicity
Un Hp, qL ! Yf40

-n H1L Hp, qL,  suppose  that  they  satisfy  the  second-order

difference equation,

(33)UnHp, qL ! aHp, qLUn-2 + bHp, qLUn-1,

where a Hp, qL  and b Hp, qL  are some unknown functions. Polynomials
satisfying such a relation are known as generalized Lucas polynomials.
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Knowing our first four polynomials, we can write equation (33) for
n ! 3 and n ! 4,

(34)
U3 Hp, qL ! a Hp, qLU1 + b Hp, qLU2,

U4 Hp, qL ! a Hp, qLU2 + b Hp, qLU3.

This constitutes a system of two linear equations with two unknowns:
a Hp, qL  and  b Hp, qL.  Solving  this  system,  we  obtain  aHp, qL !
p2 qHp + qL  and  b Hp, qL ! p q,  meaning  that  the  recurrence  equa-
tion!(33) takes the form

(35)UnHp, qL ! p2 qHp + qLUn-2 + p q Un-1,

where  U0 Hp, qL ! p,  U1 Hp, qL ! 2 p2 q.  We  verified  that  equa-
tion!(35) holds for up to n ! 12, thus it can strongly be suspected that
it is valid for any n.

Assuming,  therefore,  that  the  linear  difference  equation  (35)  is
valid for any n,  we can now solve it  by standard methods. The solu-
tion is 

(36)

UnHp, qL ! -
p qK-2 p - q + 5 q2 + 4 p q O
5 q2 + 4 p q Kq + 5 q2 + 4 p q O

-
2 p2 q + 2 p q2

q + 5 q2 + 4 p q

n

-

p qK2 p + q + 5 q2 + 4 p q O
5 q2 + 4 p q Kq - 5 q2 + 4 p q O

-
2 p2 q + 2 p q2

q - 5 q2 + 4 p q

n

.

The  density  cn  can  now be  computed  by  taking  cn ! Un Hc0, 1 - c0L,
after simplification and rationalization yielding 
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(37)

cn !
1

2
c0 -

3

2

c0 5 - 6 c0 + c0
2

c0 - 5

1

2
1 - c0 + 5 - 6 c0 + c0

2 c0

n
+

1

2
c0 +

3

2

c0 5 - 6 c0 + c0
2

c0 - 5

1

2
1 - c0 - 5 - 6 c0 + c0

2 c0

n
.

In the symmetric case c0 ! 1 ê 2, we obtain, after simplification, 

(38)cn ! 2-n-1.

For  the  symmetric  case  c0 ! 1 ê 2,  it  is  also  possible  to  obtain  the
same  expression  for  cn  by  a  different  method.  It  can  be  shown  (we
omit the proof here) that the generalized Lucas polynomials Un Hp, qL
defined by equation (35) can be written in the form 

(39)UnHp, qL ! Yf40
-n H1LHp, qL ! ‚

k"1

n+1

Tn+1,k p2 n+2-k qk-1,

where the values of Tn,k form the triangle 

0, 2

0, 1, 3

0, 0, 3, 5

0, 0, 1, 7, 8

0, 0, 0, 4, 15, 13

0, 0, 0, 1, 12, 30, 21

0, 0, 0, 0, 5, 31, 58, 34

0, 0, 0, 0, 1, 18, 73, 109, 55

0, 0, 0, 0, 0, 6, 54, 162, 201, 89

0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144.

This  triangle  is  known  as  the  skew  triangle  associated  with  the
Fibonacci numbers [15]. The coefficients Tn,k  can be generated by the

recursive procedure [15],
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(40)

Tn,k ! Tn-1,k-1 + Tn-2,k-1 + Tn-2,k-2,

Tn,k ! 0 if k < 0 or k > n,

T0,0 ! 1,

T2,1 ! 0.

Let us now compute cn for the symmetric initial condition c0 ! 1 ê 2,

(41)cn ! Yf40
-n H1L

1

2
,

1

2
! 2-2 n-1 ‚

k"1

n+1

Tn+1,k.

Define now

(42)Sn ! ‚
k"1

n

Tn,k,

so that

(43)cn ! 2-2 n-1 Sn+1.

Using the recursion definition of T, we obtain

(44)‚
k"1

n

Tn,k ! ‚
k"1

n

Tn-1,k-1 + ‚
k"1

n

Tn-2,k-1 + ‚
k"1

n+1

Tn-2,k-2;

hence,

(45)Sn ! Sn-1 + 2 Sn-2.

From the definition of T Hn, kL, we know that S1 ! 1 and S2 ! 2, and
therefore  the  solution  of  the  second-order  difference  equation  (45)  is
Sn ! 2n; hence,

(46)cn ! 2-2 n-1 ÿ 2n ! 2-n-1,

the same as in equation (38), as expected.

7. Rules 232, 13, 32, 77, 78, 172, and 44

Elementary CA rule 232 is a special case of the “majority voting rule”
with radius 1, defined as

(47)f232Hx1, x2, x3L ! majority 8x1, x2, x3<,
or,  more  explicitly,  f232 H1, 1, 1L ! f232 H1, 1, 0L ! f232 H1, 0, 1L !
f232H0, 1, 1L ! 1,  and  for  all  other  values  of  x1, x2, x3,

f232 Hx1, x2, x3L ! 0.
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We proceed in a similar fashion as in the case of rule 40. The first
few density polynomials are

Yf40
-1 H1L Hp, qL ! 3 q p2 + p3,

Yf40
-2 H1L Hp, qL ! p5 + 5 p4 q + 8 p3 q2 + 2 p2 q3,

Yf40
-3 H1L Hp, qL ! p7 + 7 p6 q + 19 p5 q2 + 24 p4 q3 + 11 p3 q4 +

2 p2 q5,

Yf40
-4 H1L Hp, qL ! p9 + 9 p8 q + 34 p7 q2 + 69 p6 q3 + 79 p5 q4 +

47 p4 q5 + 15 p3 q6 + 2 p2 q7,

Yf40
-5 H1L Hp, qL ! p11 + 11 p10 q + 53 p9 q2 + 146 p8 q3 +

251 p7 q4 + 275 p6 q5 + 187 p5 q6 + 79 p4 q7 +

19 p3 q8 + 2 p2 q9,

! ,

and  again,  upon  closer  inspection  it  turns  out  that  they  are  general-
ized  Lucas  polynomials.  Denoting  Un Hp, qL ! Yf132

-n H1L Hp, qL,  these

polynomials satisfy

(48)
UnHp, qL !
-p q Hp + qL2 Un-2Hp, qL + Ip2 + 3 p q + q2MUn-1Hp, qL.

The solution of equation (48) is

(49)

UnHp, qL !

p2Hp + 2 qL Ip2 + 2 p q + q2Mn
p2 + p q + q2

-
Hp - qL Hp qLn+1

p2 + p q + q2
.

The  density  cn  can  now be  computed  by  taking  cn ! Un Hc0, 1 - c0L,
yielding

(50)cn !
c0

2 H2 - c0L
c0

2 - c0 + 1
+

H2 c0 - 1L c0 Hc0 - 1L Hc0 H1 - c0LLn
c0

2 - c0 + 1
.

We can see that cn exponentially converges to c¶, where

(51)c¶ !
c0

2 H2 - c0L
c0

2 - c0 + 1
.

For  c0 ! 1 ê 2,  the  second  term  in  equation  (50)  vanishes  and
c¶ ! 1 ê 2; thus, we obtain cn ! 1 ê 2, in agreement with Table 1. 
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There are six other rules for which we were able to obtain expres-
sions  for  cn  in  the  same  way,  except  that  the  order  of  the  difference
equation  for  density  polynomials  was  not  always  2,  like  in  equa-
tion!(48),  but  it  was  sometimes  lower  or  (most  of  the  time)  higher.
For these rules, which are 13, 32, 77, 78, 172, and 44, we give the re-
currence formula for the density polynomial,  followed by the expres-
sion for cn obtained by solving that recurrence equation. 

† Rule 13: 

(52)
UnHp, qL !

q p Hq + pL4 Un-3Hp, qL + Iq2 + p q + p2M Hq + pL2 Un-2Hp, qL,

(53)

cn !
H1 - c0L3 H-1 + c0Ln

c0 - 2
+

c0
2Ic0

2 - 2 c0 + 2M H-c0Ln
c0 + 1

+
Ic0

3 - 2 c0
2 + c0M2 - 1

Hc0 - 2L Hc0 + 1L .

† Rule 32: 

(54)UnHp, qL ! p q Un-1Hp, qL,
(55)cn ! c0

n+1 H1 - c0Ln.

† Rule 77: 

(56)
UnHp, qL ! Hp + qL2 q2 p2 Un-3 Hp, qL +

Ip4 + 2 q p3 + q2 p2 + 2 q3 p + q4MUn-2 Hp, qL +
2 p q Un-1 Hp, qL,

(57)

cn !
c0

3 I-c0
2Mn

c0
2 + 1

-
H1 - c0L3 I- H1 - c0L2Mn

c0
2 - 2 c0 + 2

-

c0
5 - 3 c0

4 + 3 c0
3 - 2 c0

2 + c0 - 1

Ic0
2 + 1M Ic0

2 - 2 c0 + 2M .

† Rule 78: 

(58)

UnHp, qL ! Hp + qL6 q2 p2 Un-5Hp, qL -
Hp + qL4 q2 p2 Un-4Hp, qL - Ip2 + q2M Hp + qL4 Un-3Hp, qL +
Ip2 + q2M Hp + qL2 Un-2Hp, qL + Hp + qL2 Un-1Hp, qL,
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(59)

cn !
1 + c0 - c0

2 + c0
4 - 2 c0

5 + c0
6

Hc0 + 1L H2 - c0L +

1

2

I2 c0
2 + 1 - 2 c0M c0 H1 - c0L Hc0 - 1Ln

2 - c0

-

1

2
H2 c0 - 1L c0

2 c0
n -

1

2

H1 - c0L c0
2 H-c0Ln

c0 + 1
+

1

2
H1 - c0L H2 c0 - 1L H1 - c0Ln.

The above is valid for n > 1.

† Rule 172: 

(60)
UnHp, qL ! -p q Hq + pL4 Un-3 Hp, qL -

Hq + pL2 p2 Un-2 Hp, qL + Hq + pL Hq + 2 pLUn-1 Hp, qL,

(61)

cn ! Hc0 - 1L2 c0 -
1

12 c0 - 16

K3 c0 - 4 + 4 c0 - 3 c0
2 O Kc0 - 2 + 4 c0 - 3 c0

2 O
c0

1

2
c0 -

1

2
4 c0 - 3 c0

2
n

+
1

12 c0 - 16

K3 c0 - 4 - 4 c0 - 3 c0
2 O K-c0 + 2 + 4 c0 - 3 c0

2 O
c0

1

2
c0 +

1

2
4 c0 - 3 c0

2
n

.

† Rule 44: 

(62)
UnHp, qL ! - Hp + qL2 q2 p4 Un-4Hp, qL +

q2 p4 Un-3Hp, qL + Hp + qL2 Un-1Hp, qL,

(63)

cn !
Ic0

2 - c0 + 1M c0 Hc0 - 1L
c0

3 - c0
2 - 1

-

1

3

c0

1 + c0
2 H1 - c0L Ial1

n + Hb + i gL l2
n + Hb - i gL l3

nM,
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where

l1 ! c0
4ê3 H1 - c0L2ê3, l2,3 ! °

1

2
c0

4ê3 H1 - c0L2ê3 K!1 + i 3 O,
and

a ! - H1 + c0L I1 + c0 - c0
2M - 1 - c0

3

c0
2ê3 D,

b ! - H1 + c0L I1 + c0 - c0
2M + 1

2

1 - c0
3

c0
2ê3 D,

g ! -
3

2

1 - c0
3 JD - 2 1 - c0

3 H2 - c0L I1 + c0
2MN

c0
2ê3 ,

D ! c0
3 I2 - c0

3M - 1 - c0
3 Hc0 - 2L I1 + c0

2M.

8. The Remaining Rule

Among  15  CA  rules  asymptotically  emulating  identity,  we  either
proved or conjectured general expressions for cn for 14 of them. In all
cases,  exponential  convergence to c¶  can be observed. What remains
is only rule 164, for which we were not able to find a closed-form ex-
pression  for  density  polynomials.  We  have  attempted  to  find  recur-

rence equations up to 6th  order for this rule,  to no avail.  We suspect
that the reason for this is the dynamics of rule 164, far more compli-
cated  than  for  other  rules  considered  in  this  paper.  In  Figure  4(a),  it
can  clearly  be  seen  that  the  spatiotemporal  pattern  generated  by  this
rule exhibits  the characteristic  triangles  of  varying size.  Similar  trian-
gles are frequently observed in complex “chaotic” rules.

In  order  to  shed  some  light  on  the  source  of  difficulty  in  finding
density  polynomials  for  rule  164,  in  Figure  5(a)  we  show the  preim-
age tree rooted at 1 for this rule. For the sake of comparison, we also
show  the  preimage  tree  for  rule  168,  for  which  density  polynomials
have been obtained in this paper. Preimage trees are constructed as fol-
lows. We start from 1 as a root of the tree and determine all its preim-
ages.  Then  each  of  these  preimages  is  connected  with  1  by  an  edge.
They constitute  level  1  of  the  preimage tree.  Then,  for  each block of
level  1,  we  again  compute  its  preimages  and  we  link  them with  that
block,  thus  obtaining  level  2.  Repeating  this  operation  ad  infinitum,
we  obtain  a  tree  such  as  the  one  shown in  Figure  5,  where  only  the
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first  three  levels  are  included.  Closer  inspection  of  this  figure  reveals
that the tree for rule 164 has a more complex topology than the tree
of rule 168, and that preimages belonging to individual levels do not
seem to exhibit any obvious pattern. This is in direct contradiction to
the  case  of  rule  168,  where  we  were  able  to  find  such  a  pattern,  de-
scribed in Proposition 3. 

HaL

HbL

Figure 4.  (a) Spatiotemporal pattern for rule 164, starting from a random ini-
tial condition with density 0.85. (b) Density cn as a function of n for rule 164.

A lattice with 105 sites and periodic configurations was used. Each point corre-
sponds to the average of 100 experiments. 

Nevertheless,  we  have  studied  the  behavior  of  cn  numerically  for
rule  164.  Figure  4(b)  shows  semi-logarithmic  plots  of  †cn - c¶§  as  a
function of n,  obtained by averaging 100 runs of simulations using a

lattice with 105  sites. The value of c¶  in each case has been taken as
the steady-state value, that is, the final value of cn  that was no longer
changing. From these plots it is clear that the graphs of †cn - c¶§  ver-
sus n closely follow straight lines in all cases, strongly suggesting that
the  approach  to  the  fixed  point  is  also  exponential,  just  like  for  the
other 14 rules. 
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HaL HbL
Figure 5. Preimage trees for (a) rule 164 and (b) rule 168.

9. Conclusion

We  have  demonstrated  that  density  polynomials  are  useful  for  com-
puting  the  density  of  ones  after  n  iterations  of  a  cellular  automaton
(CA)  rule  starting  from  a  Bernoulli  distribution.  In  many  CA  rules,
patterns  in  density  polynomials  can  be  detected  and  then  formally
proved,  such  as  in  the  case  of  rules  160 and 168.  In  other  cases,  we
can recognize in density polynomials known polynomial classes, such
as generalized Lucas polynomials, and then conjecture closed-form ex-
pressions for cn. Our results are summarized in Table 2. While at the
moment we do not have formal  proofs  of  the conjecture formulas,  it
is  hoped  that  such  proofs  can  eventually  be  constructed  using  meth-
ods similar to those presented here (for rules 160 and 168) or in [4].
Finally,  inspection of Tables 1 and 2 and the results  we obtained for
rules  considered in  this  paper  suggests  an  interesting  possible  conjec-
ture. 
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Conjecture 1.  For any CA rule asymptotically emulating identity,  the
density  of  ones  after  n  iterations,  starting  from  a  Bernoulli  distribu-
tion, is always in the form 

(64)cn ~ ‚
i"1

k

an li
n,

where ai, li  are constants that may only depend on the initial density
c0, and where †li§ § 1.

Note  that  some  of  the  li  can  be  complex,  and  then  they  come  in
conjugate pairs, like in rule 44 (equation (63)). When one of the li  is
equal to 1, then c¶ > 0; otherwise c¶ ! 0.

Rule cn Proof/conjecture 

13 equation (53) conjecture 

32 equation (55) conjecture

40 equation (37) conjecture

44 equation (63) conjecture

77 equation (57) conjecture

78 equation (59) conjecture

128 equation (13) proof [13]

132 equation (14) proof [13]

136 equation (15) proof [13]

140 equation (16) proof [5]

160 equation (19) proof 

164 unknown 

168 equation (30) proof 

172 equation (61) conjecture

232 equation (50) conjecture

Table 2. Density  of  ones  cn  for  arbitrary  initial  density  for  elementary  rules
asymptotically emulating identity.

Such behavior of  cn  strongly resembles  hyperbolicity in finitely di-
mensional dynamical systems. Hyperbolic fixed points are a common
type  of  fixed  points  in  dynamical  systems.  If  the  initial  value  is  near
the fixed point and lies on the stable manifold, the orbit of the dynam-
ical  system converges  to  the  fixed  point  exponentially  fast.  It  can  be
argued  that  the  exponential  convergence  to  equilibrium  observed  in
CAs  described  in  this  paper  is  somewhat  related  to  finitely  dimen-
sional  hyperbolicity.  We  suspect  that  the  finite-dimensional  map,
known  as  the  local  structure  map  [16],  which  approximates  the  dy-
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namics  of  a  given  CA,  should  posses  a  stable  hyperbolic  fixed  point
for every CA asymptotically emulating identity. This hypothesis is cur-
rently under investigation and will be discussed elsewhere. 

As a final remark, let us note that in this paper we discussed binary
rules  only.  It  would  be  equally  interesting  to  consider  rules  with  a
larger number of states k, for example, k ! 3, and check if the above
conjecture applies to them as well. The authors are planning to exam-
ine this issue in the near future. 
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[16] H.  Fukś ,  “Construction  of  Local  Structure  Maps  for  Cellular  Au-
tomata,”  Journal  of  Cellular  Automata,  7(5–6),  2013  pp.  455–488.
http://xxx.lanl.gov/abs/arXiv:1304.8035. 
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