
Complex Behavior in Long-Distance
Cellular Automata

Lucas Kang
Thomas Jefferson High School for Science and Technology

The purpose of this study was to systematically explore the behavior of
one-dimensional long-distance cellular automata (LDCAs). Basic char-
acteristics of LDCAs are explored, such as universal behavior, the
prevalence of complexity with varying neighborhoods, and qualitative
behavior as a function of configuration. It was found that rule 73 could
potentially be Turing universal through the emulation of a cyclic tag sys-
tem, and that a connection between the mathematics of binary trees
and Eulerian numbers might provide insight into unsolved problems.

1. Introduction

Cellular automata (CAs) have been used for decades as mathematical
idealizations of physical systems in which space and time are discrete
and in studies of self-organizing physical, chemical, and biological
phenomena [1–5]. A cellular automaton (CA) consists of an array of
cells in some number of dimensions that generates a new state, follow-
ing a simple evolutionary rule in each successive step [1, 2]. In the
world of computational science, several classifications of CAs have
risen to prominence, ranging from one- to three-dimensional au-
tomata to those of even higher dimension. (A survey of CA classifica-
tion is available in [6].) However, Wolfram’s classification of elemen-
tary CAs (ECAs) has become one of the most widely known forms of
evolving computational systems and has arguably revolutionized the
exploration of CAs [1]. The purpose of this paper is to study the com-
plexity of one-dimensional CAs in configurations other than that of
Wolfram’s ECA. A new class of long-distance CAs (LDCAs) was ex-
plored whose properties are not governed by ECAs. LDCAs, which
are briefly described in Wolfram’s notes, are considered a generaliza-
tion of one-dimensional elementary rules that encompasses all possi-
ble neighborhood configurations [1]. It was demonstrated that certain
LDCAs possess interesting qualities and are candidates for computa-
tional universality, which implies that they may be used to solve prob-
lems in other fields of research [1, 7].

ECAs are defined as the simplest class of one-dimensional CAs and
have two possible states for each cell (0 or 1). These states are placed

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 p p
in an array, so that every cell dictates the condition of a particular
part of the system. This array, which can be finite or infinite in
length, when taken from a one-dimensional CA or ECA can be
thought of as resembling a tape of a Turing machine, so it will be re-
ferred to as such through the extent of this paper [1, 2]. The evolution
of an array is the collective evolution of all individual cells, which is
dependent only on the values of each cell’s neighborhood. The neigh-
borhood is defined as containing the cell itself and all immediately ad-
jacent sites; in one-dimensional CAs, the neighborhood consists of
three adjacent cells. As a result, the evolution of any ECA can be de-
scribed through a table of evolutionary steps, specifying the state a
given cell will have in the next generation, based on the values of the
cell to its left, the cell to its right, and the target cell itself. For every

ECA, there must exist 23 = 8 such steps in a table, and because there
are two possible outcomes (0 or 1) of every step, there exists a total of

28 = 256 total tables to describe ECAs. Each of these tables is said to
be a “rule” of evolution and so there exist 256 defined ECAs, ranging
from rule 1 to rule 256 [1].

Research on ECAs often involves specific forms or cases of one-
dimensional CAs. The case of time offsets in CAs (especially ECAs)
evolution has been explored, notably by Alonso-Sanz [8–11] and Le-
tourneau [12, 13]. But although related, spatial offsets have been rela-
tively unstudied in the past.

LDCAs, a class of spatially offset ECA rules, use spaced sample
cells, unlike ECAs, and are described by the notation LDCA-x-y-n,
where x and y represent the amount of spacing between the cell and
its left and right neighbors, and n denotes the length of the initial tape
(for tapes of finite size). The values for x and y must always be
greater than 0, and since the tape of a finite LDCA is cyclic, x + y is
unrestricted. In this experiment, LDCA-1-2 was studied, so as to form
a basis for a systematic exploration with larger x and y values
(Figure!1). While many compendiums of classifications of CAs exist,
there exists no formal experimentation on the properties and applica-
tions of LDCAs, specifically LDCA-1-2 [6, 14, 15].

Figure 1. The layout of the three sampled cells and one output cell in an ECA
(left), and a corresponding image for the configuration of LDCA-1-2-n (right).

94 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

It was observed that LDCAs, due to their separated sample cells,
provide functions that ECAs cannot and theoretically can be used to
model chaotic systems in which every evolutionary step possesses an
inherent random input. This is the case because as an ECA rule is ap-
plied in configurations LDCA-x-1 or LDCA-1-y on a tape of random
initial conditions, for 1 < x or y < n - 4, its behavior can be thought
of as that of a two-cell CA, while the third, more remote cell provides
a seemingly unrelated and potentially random source of input. This
form of evolution, in which an outside effect or random input actively
modifies a system, is observed in maps of electrical activity where neg-
ligible but existent charges affect components, biological systems such
as angiogenesis where capillary growth is predictable but nondeter-
ministic, and chaos theory’s butterfly effect, in which a relatively
small initial change can affect a larger outcome. Additionally, when
the CA’s configuration approaches LDCA-x-y, for 1 < x or y < n - 4,
the result can be unrecognizable in comparison to standard ECAs.

LDCAs also have the distinct property of possessing repetitive state
transition diagrams. When applying an ordered list of all 256 ECA
rules to an LDCA-x-y-n such that x + y = 0 Hmod nL or x + y = x or y

Hmod nL, then the rules will generate a series of repeated state transi-
tion diagrams. If the LDCA samples only the target cell and one other
cell, so that x + y = 0 Hmod nL, then the table of rules will create two
distinct lists of diagrams with four rules each that will be alternated
(Figure 2). If the LDCA samples one cell from anywhere on the tape
and one from the same cell as the center cell, so that x + y = x or y

Hmod nL, then there are two possible outcomes. If x = n and therefore
x + y = y Hmod nL, then the repeated lists of state transition diagrams

will be four rules in length (Figure 3). If y = n and so x + y = x

Hmod nL, then the lists will be eight rules in length (Figure 4). And if
the LDCA samples all three cells from the same cell so that x + y = 0

Hmod nL and -x + y = 0 Hmod nL, then each repeated list of diagrams
will have two rules each (Figure 5).

Figure 2. ECA rules in LDCA-1-4-5. Since x + y = 0 Hmod nL, the state transi-
tion diagrams repeat in groups of four [16].

Complex Behavior in LDCAs 95

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

Figure 3. ECA rules in LDCA-5-1-5. Since x + y = y Hmod nL, the state transi-
tion diagrams repeat in groups of four [16].

Figure 4. ECA rules in LDCA-1-5-5. Since x + y = x Hmod nL, the state transi-
tion diagrams repeat in groups of eight [16].

Figure 5. ECA rules in LDCA-5-5-5. Since x + y = 0 Hmod nL and -x + y = 0Hmod nL, the state transition diagrams repeat in groups of two [16].

2. Rules 73 and 109

The two-color, two-state CA that was studied in the LDCA-1-2 config-
uration is known as rule 73 according to Wolfram’s numbering
scheme [1]. Rule 73 is one of two purely class 4 CAs in LDCA-1-2
and was suspected of computational universality.

In the evolution of rule 73 (Figure 6), each cell is in one of two
states 80, 1< and, because the rule is being applied to an LDCA-1-2
configuration, every cell synchronously updates itself according to the

96 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

g y y y p g
value of itself and its nearest neighbors, according to the function
FHCi-1, Ci, Ci+2L [17]:

F H1, 1, 1L = 0 F H1, 1, 0L = 1 F H1, 0, 1L = 0 F H1, 0, 0L = 0
F H0, 1, 1L = 1 F H0, 1, 0L = 0 F H0, 0, 1L = 0 F H0, 0, 0L = 1.

Figure 6. This table depicts the evolutionary substitution rules of rule 73.
Rules 73 and 109 are equivalent through both left-right and color equivalence.

Figure 7 shows examples of the four classes of CAs in LDCA-1-2.
It is notable that rules 8, 21, 45, and 73 behave differently than their
ECA counterparts. Rule 73 is presented as the example of a class 4
CA in LDCA-1-2.

Rule 8 Rule 21 Rule 45 Rule 73

Figure 7. These four images exemplify class 1, 2, 3, and 4 behavior in
LDCA-1-2 through rules 8, 21, 45, and 73, respectively.

Interestingly, rule 73 is equivalent to rule 109 through both left-
right and color equivalence, which means that the two rules are identi-
cal after either one’s color is inverted and evolution is mirrored
horizontally (Figure 8). This entails that studying either rule implies
the exploration of the other. Rule 109 evolves according to the func-
tion GHCi-1, Ci, Ci+2L, where G is the following function [18]:

G H1, 1, 1L = 0 G H1, 1, 0L = 1 G H1, 0, 1L = 1 G H1, 0, 0L = 0
G H0, 1, 1L = 1 G H0, 1, 0L = 1 G H0, 0, 1L = 0 G H0, 0, 0L = 1.

Figure 8. This table depicts the evolutionary substitution rules of rule 109.
Rules 109 and 73 are equivalent through both left-right and color equivalence.

Complex Behavior in LDCAs 97

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

3. Computational Universality

Universality was a major factor in the choosing of rule 73; it was sug-
gested that class 4 CAs might be capable of universal computation in
1984 [7], and rule 73 is one of two purely class 4 automata in
LDCA-1-2, with the other being rule 109. (Both rules 73 and 109 are
defined as class 2 rules in the ECA rule space, but when evolved as
LDCA-1-2, they exhibit purely class 4 behavior. They have also been
shown to possess class 4 behavior in other contexts [14].) Besides ex-
ploring the properties and characteristics of rule 73, this study will
also attempt to demonstrate the universality of rule 73.

Universal computational systems are those that are theoretically ca-
pable of emulating any other system [1, 7, 19]. This means that a
singular system would be capable of behaving as any other mathemati-
cally definable system, which has significant implications in computa-
tional science. Such systems usually require an encoding and decoding
process, in order to translate information and behavior [19]. For
example, Boolean logic systems, or computer programs, are universal,
but only after the system being emulated has been coded in binary,
and the result of the program has been translated back into the lan-
guage of the original system.

Church’s effective calculability, Turing’s computability, Post’s
canonical systems, Kleene’s general recursive functions, and
Smullyan’s elementary formal systems have all resulted in the exact
same computational capability. This phenomenon has led to the gener-
ally accepted thesis that these systems are capable of carrying out any
specifiable procedure whatsoever [19, 20]. The proving of a computa-
tional system’s universality is usually done through the emulation of
another system previously known to be universal. As a result of the
Church–Turing thesis, Turing machines have been defined as univer-
sal. Then in 2004, Cook proved that cyclic tag systems could success-
fully emulate universal Turing machines and were therefore universal
[1, 19]. While several CAs have been shown or suspected to be univer-
sal, the most commonly known example is that of the ECA rule 110,
which was shown to emulate a universal cyclic tag system [19].

4. Methodology: Visualization

The shift from ECAs to LDCA-1-2 brings several changes to rule 73,
including the way that it is visualized (Figure 9). When the evolution
of rule 73 in LDCA-1-2 is plotted normally, gliders, or particles as
they will be referred to in this paper, tend to blend into the back-
ground or become difficult to distinguish as they collide.

98 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

Figure 9. Here it can be seen that LDCA 73 possesses several stationary parti-
cles (vertical lines in the picture on the left). When the plot of rule 73’s evolu-
tion is skewed, however, collisions between gliders and the resulting particles
become more apparent.

While it is standard to plot the tape of a CA so that cell i of a previ-
ous state is directly above cell i in the next state, the evolution of
LDCA-1-2 was skewed so that the position of cell i in time step x cor-
responds to that of cell i - 1 in x + 1. This was done through a rota-
tion function:

Table[Nest[RotateRight, #[[i]], i - 1], {i, 1, Length[#]}] &
CellularAutomaton[…]

When rule 73 was evolved in LDCA-1-y for y greater than 2, it was
graphed with an i Ø i - y + 1 skew. This aided in the visualization of
rule 73 in various LDCA configurations, but became less meaningful
as rule 73 approached chaotic behavior in LDCA-1-5 and beyond
(Figure 10).

In this study, it was assumed that all calculations and plots regard-
ing rule 73 in LDCA-1-2 are developed with an i Ø i - 1 skew.

Complex Behavior in LDCAs 99

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

LDCA-1-1 LDCA-1-2 LDCA-1-3 LDCA-1-4 LDCA-1-5

Figure 10. As the y value in LDCA-1-y was increased, rule 73 approached
purely chaotic, or class 3, behavior. Despite applying an increasing skew, it
was difficult to identify localized structures in the evolution.

5. Methodology: Block Emulation

Block emulation is a form of emulation that can be used to find emula-
tions of CAs in different rule spaces. By substituting certain blocks in
a certain CA, a simpler or more complicated automaton can be cre-
ated, which may emulate other rules or a different computational sys-
tem. The main idea is to encode one cell of rule A into n blocks of
cells of rule B. By replacing corresponding blocks according to a set
of rules, one can transform a cellular automaton of one rule into a
replica of another rule [1]. With this concept, it can be shown, for ex-
ample, that rule 22 is able to emulate rule 90. However, this type of
emulation is not possible in all cases. Some rules with blocks up to a
certain block size, rule 30 for example, are not able to emulate any
fundamental rules at all through block emulation.

In an effort to see what rule 73 in LDCA-1-2 emulated, block emu-
lation was utilized in the 3 ê 2 rule space. To begin, rule 73 was con-
verted to a rule in the 3 ê 2 rule space, and all evolutionary rules in
rule 73 that return a black cell were found:

F H1, 1, 1L = 0 F H1, 1, 0L = 1 F H1, 0, 1L = 0 F H1, 0, 0L = 0
F H0, 1, 1L = 1 F H0, 1, 0L = 0 F H0, 0, 1L = 0 F H0, 0, 0L = 1.

Then, all corresponding configurations of cells in the 3 ê 2 rule
space were found. In 3 ê 2, the cells are formatted as a, b, c, d, with
the CA sampling cells a, b, and d. Since cell c remains unsampled, it
can be either 1 or 0 in the translation from ECA to 3 ê 2. Therefore:

100 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

F3ê2 H1, 1, 0, 0L = 1 F3ê2 H1, 1, 1, 0L = 1

F3ê2 H0, 1, 0, 1L = 1 F3ê2 H0, 1, 1, 1L = 1

F3ê2 H0, 0, 0, 0L = 1 F3ê2 H0, 0, 1, 0L = 1.

Next, all of the possible inputs were converted into base 10:

H1, 1, 0, 0L Ø 12 H1, 1, 1, 0L Ø 14H0, 1, 0, 1L Ø 5 H0, 1, 1, 1L Ø 7H0, 0, 0, 0L Ø 0 H0, 0, 1, 0L Ø 2.

The sum was taken of 2 to the power of each of the results to get
rule!20645:

212 + 214 + 25 + 27 + 20 + 22 = 20 645.

Finally, a comparison between rule 20645 in 3 ê 2 and rule 73 in
ECAs confirmed that they were identical rules (Figure 11).

Figure 11. A comparison between rule 73 in LDCA-1-2 (left) and rule 20645
in the 3 ê 2 rule space (right) with equivalent initial conditions. These two
rules are identical (hence the identical evolutions) and can be derived from
one another by converting from an ECA rule space to the 3 ê 2 rule space and
vice versa. As always, the LDCA-1-2 is plotted with an i Ø i - 1 skew.

6. Methodology: Neighbor-Dependent Substitution System

Substitution systems form the backbone of most computational sys-
tems, but cannot in general emulate CAs. However, when substitution
systems have rules that depend not only on the color of a single ele-

Complex Behavior in LDCAs 101

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

y p y g
ment, but also on the color of at least one of its neighbors, they dis-
play more complicated behavior [1]. In order to utilize this behavior,
we must be able to identify the current state of a CA with an array or
string of values and construct a substitution system for its behavior
that is closed under evolution (so that as substitutions occur, no re-
sults arise that cannot be interpreted). Neighbor-dependent substitu-
tion systems are known to emulate certain CAs and could be helpful
in proving the universality of rule 73 [1] (Figure 12).

Figure 12. Neighbor-dependent substitution systems that emulate rules 90
(left) and 30 (right). The systems shown are examples of neighbor-dependent
substitution systems with highly uniform rules that always yield one cell and
correspond directly to known CAs [16].

7. Results: Characteristics of Rule 73

After a brief exploration of rule 73, several interesting phenomena
were found, two of which follow. First, for rule 73 being evolved in
an LDCA-1-y configuration, as y increases in value from 1, complex
behavior arises at y = 2 and is extinguished after y = 3, giving rise to
pseudo-chaotic behavior (Figure 13). An analysis of rule 73’s behav-
ior for y > 3 revealed that the Gaussian distribution of all possible
states of rule 73 was not normally distributed. This implies that the
chaotic nature of rule 73 at high values of y is not random, but rather
is complex.

Increasing the value of y also results in a secondary effect
(Figure!14). When viewing the state transition diagrams, one notices a
repetition of structure, not unlike that mentioned in the introduction.

102 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

LDCA-1-1 LDCA-1-2 LDCA-1-3 LDCA-1-4 LDCA-1-5

Figure 13. While evolving rule 73 in an LDCA-1-y configuration, as y in-
creases in value from 1, complex behavior arises and is extinguished, giving
rise to chaotic behavior that resembles white noise. The Gaussian distribution
of all possible states is not normally distributed in these chaotic states, which
implies that the chaotic nature of rule 73 at high values of y is not random,
but is complex and difficult to perceive.

Figure 14. As rule 73 is applied in different configurations, the effect of having
a high y value becomes apparent through state transition diagrams. Given
rule 73 applied as LDCA-1-y-n, the state transition diagrams are repeated
with a period of n as the y value increases, since the tape is cyclic [16].

8. Results: Particles

The gliders or particles that exist in rule 73 move with four different
velocities (0, 1 ê 4, 2 ê 5, and 1) over a constant background
(Figure!15). A single block of background is represented by 101100,
110010, or 001011 and has an evolutionary period of 3 and a spatial
period of 6. In the naming convention for rule 73 in LDCA-1-2, a sin-
gle block of background is represented with a “ - ”, half of a back-
ground block is denoted with a “ ’ ”, and a single particle is a letter
(its name).

There are several particles in rule 73 that act as the building blocks
for larger constructs and compound particles. These are called funda-
mental particles, and are the main focus of this exploration. All funda-
mental particles are organized and labeled by velocity and phase shift

Complex Behavior in LDCAs 103

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 p g y y p

(or mass), with the mass ranging in value from 0 to +6 and represent-
ing the number of cells that the background is shifted to the right by
the presence of the particle (Figure 16).

Figure 15. An image of the background of rule 73 in LDCA-1-2. The back-
ground resembles a surface tessellated with L-shaped units; a single row of
background is represented by 101100, 110010, or 001011 and has period 3
(vertically) and spatial period 6 (horizontally). This image is scaled and parti-
tioned, to better show the structures of cells in the background.

Particle Velocity Mass Period Particle Velocity Mass Period

A 0 0 3 F 1 2 2

B 0 5 3 F 1 3 4

C 1 ê 4 1 8 G 1 0 2

D 2 ê 5 4 5 H 1 3 2

E 2 ê 5 2 15

Figure 16. Table of all fundamental particles in rule 73 in the LDCA-1-2 con-
figuration. All fundamental particles are organized and labeled by velocity,
phase shift (or mass), and period. The mass ranges in value from 0 to +6 and
represents the number of cells that the background is shifted to the right by
the presence of the particle.

The structures in Figures 17 through 19 represent the nine funda-
mental particles and are listed in order of increasing velocity. Particles
A, B, and C have velocities of 0 and 1 ê 4. Particles D and E are the

only fundamental particles with velocity 2 ê 5. Particles F, F, G, and H
travel with velocity 1, or at the speed of light.

104 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

Figure 17. Particles A, B, and C; velocities 0, 0, and 1 ê 4.

Figure 18. Particles D and E; velocities 2 ê 5, 2 ê 5.

Figure 19. Particles F, F, G, and H; velocities of 1 for all.

Complex Behavior in LDCAs 105

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

However, merely placing two fundamental particles next to each
other on a tape cannot create certain compound particles. For exam-
ple, in the cases of G’G and G’H, the second particle in the pair must
be shifted vertically by one evolutionary step (Figures 20 and 21).

Figure 20. Particles B’B, G’G, H’H, G’H, and H’G. These are unique com-
pound particles that must be formed by vertically shifting one of the two
particles before placing them adjacent.

Figure 21. Particles GG, HH, GH, and HG. These are documented due to
their prevalence in collisions and systems made from rule 73.

9. Results: Collisions

This study found all viable collisions between pairs of fundamental

particles A, B, C, D, E, F, F, G, and H. These do not include repeated
or compound particles such as AA, ... FF, GG, G’G, HH, H’H, GH,
HG, G’H, or H’G.

Some collisions were found to have varying resulting particles, due
to their reactants interacting at different distances away from each
other. Any collision between two fundamental particles in which the
spacing between the particles does not affect the result is denoted by
A_B for any particles A and B. The “_” in between particles’ names
implies that the spacing in between the particles does not affect the
outcome of the collision. However, in the collisions that have integers
between the particles’ names, the integer represents the number of
spaces between the two particles in that specific collision. A space is a
full spatial period of the background and consists of six consecutive
cells. The integer must first be evaluated in a modular function that is

106 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 g
specific to the collision. Figure 22 shows a table of all viable collisions
between fundamental particles.

Particle A Particle B Particle C Particle D Particle E

A_C B_C C_D D_F E0F

A_D B_D C_E D0 F E1F

A_E B_E C_F D1 F E2F

A_F B_F C_ F D_G E0 F

A0 F B0 F C_G D_H E1 F

A1 F B1 F C_H E2 F

A_G B_G E0G

A_H B_H E1G

E2G

E_H

Figure 22. Table of all possible collisions between fundamentals.

10. Discussion: Block Emulation

Using rule 20645 in the 3 ê 2 rule space, several rules that rule 73 can
emulate through block emulation were identified, with blocks ranging
in size from 0 to 16 cells [21]. To search the emulated rules for signs
of universality, the rule numbers for ECA rules 110 and 193 were
identified in the 3 ê 2 rule space (Figure 23). Using the procedure in
Section 5, it was found that rule 110 is equivalent to rule 232903/2,
and rule 193 is equivalent to rule 614453/2.

Figure 23. Rules 110 (top) and 193 (bottom) are equivalent and universal.
They are rules 232903/2 and 614453/2, respectively.

This form of block emulation was continued until the block size
was 30 cells, but none of the emulated rules were 23290 or 61445, so
no desired result was generated. Additionally, as the emulation ap-
proached a block size of 40 cells, the estimated runtime jumped in-

Complex Behavior in LDCAs 107

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

p j p
credibly high, and the block emulation became limited by the amount
of physical memory available. This prevented consistency in results
with any block larger than 30 cells and greatly handicapped the feasi-
bility of proving the universality of rule 73 through this method. Fig-
ure 24 shows all of the rules that rule 20645 emulates up to a block
size of 16 cells.

20645

0 42306 48474

20645

0

20645

0

20645

0

20645

0 27030 38505 52428 61680

20645

0 52428

20645

27030 42306 52428 61680

20645

52428

20645

20645

52428

20645

0 255 52428 61680

20645

0 52428

Figure 24. A diagram for all of the rules in the 3 ê 2 rule space that rule 20645
emulates up to a block size of 16 cells. Each tree of rules represents a different
block size, ranging from 0 to 4 cells on the first row, 5 to 9 cells on the
second row, 10 to 13 cells on the third row, and 14 to 16 cells on the last
row![21].

11. Discussion: Neighbor-Dependent Substitution System

Despite the constraints of the previous method, universality can be
proven in a variety of other ways. For example, the neighbor-depen-
dent substitution system [1] was considered. A particle detector that
was created for rule 73 in LDCA-1-2 returns a string of particle
names and background that resembles A----B--------C-GG-----H-G at

108 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 g
any evolutionary step. Following suit, a neighbor-dependent substitu-
tion system could be constructed that takes a similar string as an in-
put and substitutes pairs of colliding particles with their outputs. The
program should continue to collide particles until there are no legiti-
mate pairs of particles left and then return a list of past states at every
collision.

In the neighbor-dependent substitution system, the spacing be-
tween any consecutive particles in a collision was replaced with an
integer signifying the number of background rows and evaluated with
modular functions, so that large numbers of background cells would
not cause the program to malfunction. For every spacing-dependent
collision, the substitution system would classify the result of the colli-
sion using the integer between the particles and replace the pair with
a corresponding result sandwiched between two additional spacing
values, to account for background that was lost as the string was mod-
ulated. Then after every substitution, any adjacent numbers of back-
ground cells in the string were added so that they behaved as a singu-
lar spacing. The modular function that was applied to the spacing
was either mod 2 or mod 3, depending on the pair of particles in-
volved.

Unfortunately, this neighbor-dependent substitution system proves
inconclusive. The set of rules that dictated the substitutions in the sys-
tem should have stayed restricted to certain usable collisions, since
some collisions resulted in a particle generator that created an infinite
number of products. However, the rules were unable to stay re-
stricted, as particles that had been excluded from the list eventually
resulted from collisions and were added to the rule set. New collisions
had to be added to the substitution system, and ultimately, the
neighbor-dependent substitution system failed to simplify any string
of particles.

12. Discussion: Collision System

Finally, collision G’G_B’B (which returns particles B’B and G) and col-
lision G_B’B (which returns particle G’G) were considered. Using
these collisions, a system was constructed that consists of two differ-
ent substitution rules {{AB Ø B1C}, {CBØA}}, in which alternating
rows of G’G and G are colliding with B’B (Figure 25).

In every collision, the G or G’G output is released with a three-cell
shift to the right, while the B’B output is shifted six cells to the left.
This means that for every pair of G_B’B and G’G_B’B collisions, B
has an overall shift of six cells to the right, and the resulting G parti-
cle is shifted six cells to the right.

Complex Behavior in LDCAs 109

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

Figure 25. A chain of collisions between alternating rows of G’G and G with
B’B [3]. The system consists of two different substitution rules {{AB Ø B1C},
{CB Ø A}}.

As is observable, there are three points in total (on Figure 26)
where all the particles that are colliding with B’B are particle G’G
(except for the G that annihilates the B’B at the end), and they are all
converted at once into particle G. At those points, the first B’B con-
verts three G’G particles, the second converts five, and the third con-
verts seven. These G’G conversion collisions count consecutive odd
numbers as the system progresses, in the pattern 3, 5, 7, … 2 n + 1.
Additionally, counting the collisions between the G’G conversion
points reveals interesting results, as can be seen in this chronological
list of collisions, where each number represents how many collisions
the B’B particle endures at that relative location (“*” is a G’G conver-
sion point):

1 2 1 * 1 2 1 3 1 2 1 * 1 2 3 2 1 4 1 2 3 2 1 * 1 2 3 4 3 2 1 5 1
2 3 4 3 2 1 * ….

This string of numbers can be thought of as an inorder traversal of
a series of binary trees [22]. When counting the number of collisions
in which B’B interacts with k number of particles, it is found that the

sums are of the form 2n-k+1. For example, the total number of colli-
sions in which B’B interacts with one particle, in between G’G conver-
sion points, follows the pattern 2, 4, 8, … 2n.

It was also found that counting the total number of interactions of
any type in between the G’G conversion points results in a progres-
sion of Eulerian numbers, which follows the series 4, 11, 26, 57, 120,
247, 502, … [23, 24]. Interestingly though, the interactions between
G’G conversion points do not define the standard Eulerian numbers
of series A008292 [25, 26], but instead correspond to the values of

110 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 p
the second column (k = 2) of the standard Euler triangle (which de-
fine series A000295) [24]. Thus, through the G, G’G, and B’B col-
lision system, sequence A000295 is inherently related to the mathemat-
ical properties of complete binary trees. This ability of rule 73 in
LDCA-1-2 to associate the behaviors of binary trees with Eulerian
numbers (in series A000295 of [24]) can in turn provide valuable in-
sight to unsolved problems such as those in [27] and lead to future
mathematical exploration.

Figure 26. Complete binary that dictates the progression of collisions in the
G’G and G with B’B collision system [22].

13. Future Research

In future research, it is suggested that the connections between binary
trees and Eulerian numbers be studied through the use of rule 73, not
exclusively through mathematical expression (as it has been studied in
the past). With an LDCA approach, we may be able to better
understand, both technically and conceptually, the mathematical na-
ture of both constructs and gain an insight into problems similar to
those presented by Baril and Pallo [27]. By utilizing the properties of
rule 73 in LDCA-1-2, it is possible that further mathematical explo-
ration could prove fruitful.

Complex Behavior in LDCAs 111

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

The compound particles of rule 73 should be studied in more de-
tail, so that a functioning neighbor-dependent substitution system
might be generated. With more complex gliders, the behavior of colli-
sions may be diverse enough that a defined set of rules can be used to
evolve and simplify a string of particles, which would mean that a
neighbor-dependent substitution system could become a viable option
to emulate other universal systems.

The block emulation of rule 73 as rule 20645 in the 3 ê 2 rule space
will be more feasible to study in the future. While the scope of this
study was limited by physical constraints, it is likely that future at-
tempts at proving the universality of rule 73 could make more
progress with the block emulation of rule 20645 with further code op-
timization and improved hardware and succeed in emulating rules
with block sizes much larger than six cells [21].

Besides making progress on methods already used in this study,
any more research that is done on rule 73 in LDCA-1-2 should have
an emphasis on the emulation of a cyclic tag system. In a cyclic tag
system, a standard tag system is applied to an initial condition in se-
quential order and in a cyclic fashion that loops back to the front of
the tape [19] (Figure 27). The discovery of the G, G’G, and B’B colli-
sion system is a large step forward in the process of emulating a cyclic
tag system with rule 73, since it contains types of collisions that were
used in Cook’s proof of universality for rule 110 [19].

Figure 27. An example of a CA (rule 110) emulating a universal cyclic tag sys-
tem [19]. Some of the collisions represented to the left bear resemblance to
the G’G, G, and B’B collisions that were found in this study.

Finally, it is advised that more research be conducted on the proper-
ties of LDCAs. The effects of changing rule 73’s configuration from
LDCA-1-1 (ECA) to LDCA-1-2 have been significant and have turned

112 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

 g
rule 73 into a potentially universal CA. In the future, additional re-
search should be conducted on the effects of different LDCA configu-
rations on universality. Hopefully, the exploration of LDCAs will
bring to light new possibilities and help further current knowledge of
evolving computation systems.

Further exploration of rule 73 in LDCA-1-2, uncovering of its appli-
cations to problems in other fields of research, and showing of its can-
didacy for computational universality will assist in the expansion and
improvement of modern computation and mathematical modeling.

References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002 pp. 23–60, 78–81, 95, 112, 187–192, 644–675, 865–866,
and 927.

[2] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of
Modern Physics, 55(3), 1983 pp. 601–644.
doi:10.1103/RevModPhys.55.601.

[3] S. Maerivoet and B. de Moor, “Cellular Automata Models of Road Traf-
fic,” Physics Reports, 419(1), 2005 pp. 1–64.
doi:10.1016/j.physrep.2005.08.005.

[4] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Sys-
tems, Cambridge: Cambridge University Press, 1998 pp. 1–18.

[5] G. Ermentrout and L. Edelstein-Keshet, “Cellular Automata Approaches
to Biological Modeling,” Journal of Theoretical Biology, 160(1), 1993
pp. 1–37.

[6] G. Martinez, “A Note on Elementary Cellular Automata Classification,”
Journal of Cellular Automata, 8(3–4), 2013 pp. 233–259.

[7] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[8] R. Alonso-Sanz, Cellular Automata with Memory, Philadelphia: Old
City Publishing, 2008 pp. 1–60.

[9] R. Alonso-Sanz and L. Bull, “Elementary Cellular Automata with Mini-
mal Memory and Random Number Generation,” Complex Systems,
18(2), 2009 pp. 195–213.
http://www.complex-systems.com/pdf/18-2-2.pdf.

[10] R. Alonso-Sanz and M. Martín, “Elementary Cellular Automata with
Memory,” Complex Systems, 14(2), 2003 pp. 99–126.
http://www.complex-systems.com/pdf/14-2-1.pdf.

Complex Behavior in LDCAs 113

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

[11] R. Alonso-Sanz and M. Martín, “Two-Dimensional Cellular Automata
with Memory: Patterns Starting with a Single Site Seed,” International
Journal of Modern Physics C, 13(1), 2002 pp. 49–65.
doi:10.1142/S0129183102002973.

[12] P. Letourneau, “Statistical Mechanics of Cellular Automata with Mem-
ory,” Master of Science thesis, Theoretical Physics, The University of
Calgary, 2006, pp. 1–31.

[13] P. Letourneau. “Elementary Cellular Automata with Memory.”
NKS2006 Wolfram Science Conference. (Feb 21, 2014)
http://www.wolframscience.com/conference/2006/presentations/materials
/letourneau.pdf.

[14] H. Zenil and E. Villarreal-Zapata, “Asymptotic Behavior and Ratios of
Complexity in Cellular Automata,” International Journal of Bifurcation
and Chaos, 23(9), 2013 p. 1350159. doi:10.1142/S0218127413501599.

[15] S. Wolfram, “Cellular Automata,” Los Alamos Science, 9, 1983
pp.!2–21.

[16] S. Wolfram, Theory and Applications of Cellular Automata, Singapore:
World Scientific, 1986 pp. 485–557.

[17] “Rule 73” from Wolfram|Alpha—A Wolfram Web Resource.
http://www.wolframalpha.com/input/?i=Rule+73.

[18] “Rule 109” from Wolfram|Alpha—A Wolfram Web Resource.
http://www.wolframalpha.com/input/?i=Rule+109.

[19] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40.
http://www.complex-systems.com/pdf/15-1-1.pdf.

[20] R. Penrose, “Algorithms and Turing Machines,” in The Emperor’s New
Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford:
Oxford University Press, 1989 pp. 30–73.

[21] J. Riedel, “Quantifying Emulation for Computation Universality in Cel-
lular Automata,” project from Wolfram Science Summer School, 2013.
http://www.wolframscience.com/summerschool/2013/alumni/riedel.html.

[22] A. A. Puntambekar, Data Structures, Pune, India: Technical Publi-
cations, 2010 pp. 254–273.

[23] M. Abramowitz and I. A. Stegun, eds., “Bernoulli and Euler Polynomi-
als and the Euler–Maclaurin Formula,” in Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables, 9th print-
ing, New York: Dover, 1972 pp.°804–806.

[24] N. J. A. Sloane. “Eulerian Numbers.” The On-Line Encyclopedia of Inte-
ger Sequences. (Feb 22, 2014) http://oeis.org/A000295.

[25] J. H. Conway and R. K. Guy, The Book of Numbers, New York: Coper-
nicus, 1996 pp.°110–111.

114 L. Kang

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

[26] N. J. A. Sloane. “Triangle of Eulerian Numbers.” The On-Line Encyclo-
pedia of Integer Sequences. (Feb 22, 2014) http://oeis.org/A008292.

[27] J. L. Baril and J. M. Pallo, “The Pruning-Grafting Lattice of Binary
Trees,” Theoretical Computer Science, 409(3), 2008 pp. 382–393.
doi:10.1016/j.tcs.2008.08.031.

Complex Behavior in LDCAs 115

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.2.93

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

