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The purpose of this study was to systematically explore the behavior of
one-dimensional  long-distance  cellular  automata  (LDCAs).  Basic  char-
acteristics  of  LDCAs  are  explored,  such  as  universal  behavior,  the
prevalence  of  complexity  with  varying  neighborhoods,  and  qualitative
behavior as a function of configuration. It was found that rule 73 could
potentially be Turing universal through the emulation of a cyclic tag sys-
tem,  and  that  a  connection  between  the  mathematics  of  binary  trees
and Eulerian numbers might provide insight into unsolved problems.

1. Introduction

Cellular automata (CAs) have been used for decades as mathematical
idealizations of physical systems in which space and time are discrete
and  in  studies  of  self-organizing  physical,  chemical,  and  biological
phenomena [1–5].  A cellular  automaton (CA) consists  of  an array of
cells in some number of dimensions that generates a new state, follow-
ing  a  simple  evolutionary  rule  in  each  successive  step  [1,  2].  In  the
world  of  computational  science,  several  classifications  of  CAs  have
risen  to  prominence,  ranging  from  one-  to  three-dimensional  au-
tomata to those of even higher dimension. (A survey of CA classifica-
tion is available in [6].) However, Wolfram’s classification of elemen-
tary CAs (ECAs) has become one of the most widely known forms of
evolving  computational  systems  and  has  arguably  revolutionized  the
exploration of CAs [1]. The purpose of this paper is to study the com-
plexity  of  one-dimensional  CAs  in  configurations  other  than  that  of
Wolfram’s  ECA. A new class  of  long-distance CAs (LDCAs)  was ex-
plored  whose  properties  are  not  governed  by  ECAs.  LDCAs,  which
are briefly described in Wolfram’s notes,  are considered a generaliza-
tion  of  one-dimensional  elementary  rules  that  encompasses  all  possi-
ble neighborhood configurations [1]. It was demonstrated that certain
LDCAs  possess  interesting  qualities  and  are  candidates  for  computa-
tional universality, which implies that they may be used to solve prob-
lems in other fields of research [1, 7]. 

ECAs are defined as the simplest class of one-dimensional CAs and
have two possible states for each cell (0 or 1). These states are placed
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in  an  array,  so  that  every  cell  dictates  the  condition  of  a  particular
part  of  the  system.  This  array,  which  can  be  finite  or  infinite  in
length,  when  taken  from  a  one-dimensional  CA  or  ECA  can  be
thought of as resembling a tape of a Turing machine, so it will be re-
ferred to as such through the extent of this paper [1, 2]. The evolution
of  an array is  the  collective  evolution of  all  individual  cells,  which is
dependent only on the values of each cell’s neighborhood. The neigh-
borhood is defined as containing the cell itself and all immediately ad-
jacent  sites;  in  one-dimensional  CAs,  the  neighborhood  consists  of
three adjacent cells. As a result, the evolution of any ECA can be de-
scribed  through  a  table  of  evolutionary  steps,  specifying  the  state  a
given cell will have in the next generation, based on the values of the
cell  to its left,  the cell  to its right,  and the target cell  itself.  For every

ECA, there must exist 23 = 8 such steps in a table, and because there
are two possible outcomes (0 or 1) of every step, there exists a total of

28 = 256 total tables to describe ECAs. Each of these tables is said to
be a “rule” of evolution and so there exist 256 defined ECAs, ranging
from rule 1 to rule 256 [1]. 

Research  on  ECAs  often  involves  specific  forms  or  cases  of  one-
dimensional  CAs.  The  case  of  time  offsets  in  CAs  (especially  ECAs)
evolution has  been explored,  notably  by Alonso-Sanz [8–11]  and Le-
tourneau [12, 13]. But although related, spatial offsets have been rela-
tively unstudied in the past.

LDCAs,  a  class  of  spatially  offset  ECA  rules,  use  spaced  sample
cells,  unlike  ECAs,  and  are  described  by  the  notation  LDCA-x-y-n,
where  x  and y  represent  the  amount  of  spacing between the  cell  and
its left and right neighbors, and n denotes the length of the initial tape
(for  tapes  of  finite  size).  The  values  for  x  and  y  must  always  be
greater  than 0,  and since the tape of  a  finite  LDCA is  cyclic,  x + y  is
unrestricted. In this experiment, LDCA-1-2 was studied, so as to form
a  basis  for  a  systematic  exploration  with  larger  x  and  y  values
(Figure!1).  While  many  compendiums  of  classifications  of  CAs  exist,
there exists no formal experimentation on the properties and applica-
tions of LDCAs, specifically LDCA-1-2 [6, 14, 15].

Figure 1. The layout of the three sampled cells and one output cell in an ECA
(left), and a corresponding image for the configuration of LDCA-1-2-n (right).
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It  was  observed  that  LDCAs,  due  to  their  separated  sample  cells,
provide  functions  that  ECAs cannot  and theoretically  can be  used to
model  chaotic  systems  in  which  every  evolutionary  step  possesses  an
inherent random input. This is the case because as an ECA rule is ap-
plied in configurations LDCA-x-1 or LDCA-1-y on a tape of random
initial  conditions,  for  1 < x  or  y < n - 4,  its  behavior  can be  thought
of as that of a two-cell CA, while the third, more remote cell provides
a  seemingly  unrelated  and  potentially  random  source  of  input.  This
form of evolution, in which an outside effect or random input actively
modifies a system, is observed in maps of electrical activity where neg-
ligible but existent charges affect components, biological systems such
as  angiogenesis  where  capillary  growth  is  predictable  but  nondeter-
ministic,  and  chaos  theory’s  butterfly  effect,  in  which  a  relatively
small  initial  change  can  affect  a  larger  outcome.  Additionally,  when
the CA’s configuration approaches LDCA-x-y, for 1 < x or y < n - 4,
the result can be unrecognizable in comparison to standard ECAs.

LDCAs also have the distinct property of possessing repetitive state
transition  diagrams.  When  applying  an  ordered  list  of  all  256  ECA
rules to an LDCA-x-y-n such that x + y = 0 Hmod nL or x + y = x or y

Hmod nL,  then the  rules  will  generate  a  series  of  repeated state  transi-
tion diagrams. If the LDCA samples only the target cell and one other
cell,  so that  x + y = 0 Hmod nL,  then the table  of  rules  will  create  two
distinct  lists  of  diagrams  with  four  rules  each  that  will  be  alternated
(Figure 2).  If  the LDCA samples  one cell  from anywhere on the tape
and  one  from the  same  cell  as  the  center  cell,  so  that  x + y = x  or  y

Hmod nL, then there are two possible outcomes. If x = n and therefore
x + y = y  Hmod nL,  then  the  repeated  lists  of  state  transition  diagrams

will  be  four  rules  in  length  (Figure  3).  If  y = n  and  so  x + y = x

Hmod nL,  then  the  lists  will  be  eight  rules  in  length  (Figure  4).  And if
the LDCA samples all three cells from the same cell so that x + y = 0

Hmod nL  and  -x + y = 0  Hmod nL,  then  each  repeated  list  of  diagrams
will have two rules each (Figure 5).

Figure 2. ECA rules in LDCA-1-4-5. Since x + y = 0 Hmod nL,  the state transi-
tion diagrams repeat in groups of four [16]. 
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Figure 3. ECA rules  in LDCA-5-1-5.  Since x + y = y  Hmod nL,  the state  transi-
tion diagrams repeat in groups of four [16].

Figure 4. ECA rules in LDCA-1-5-5. Since x + y = x  Hmod nL,  the state transi-
tion diagrams repeat in groups of eight [16].

Figure  5. ECA rules  in  LDCA-5-5-5.  Since  x + y = 0  Hmod nL  and  -x + y = 0Hmod nL, the state transition diagrams repeat in groups of two [16].

2. Rules 73 and 109

The two-color, two-state CA that was studied in the LDCA-1-2 config-
uration  is  known  as  rule  73  according  to  Wolfram’s  numbering
scheme  [1].  Rule  73  is  one  of  two  purely  class  4  CAs  in  LDCA-1-2
and was suspected of computational universality.

In  the  evolution  of  rule  73  (Figure  6),  each  cell  is  in  one  of  two
states  80, 1<  and,  because  the  rule  is  being  applied  to  an  LDCA-1-2
configuration, every cell synchronously updates itself according to the
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value  of  itself  and  its  nearest  neighbors,  according  to  the  function
FHCi-1, Ci, Ci+2L [17]:

F H1, 1, 1L = 0 F H1, 1, 0L = 1 F H1, 0, 1L = 0 F H1, 0, 0L = 0
F H0, 1, 1L = 1 F H0, 1, 0L = 0 F H0, 0, 1L = 0 F H0, 0, 0L = 1.

Figure  6. This  table  depicts  the  evolutionary  substitution  rules  of  rule  73.
Rules 73 and 109 are equivalent through both left-right and color equivalence.

Figure 7 shows examples of the four classes of CAs in LDCA-1-2.
It is notable that rules 8, 21, 45, and 73 behave differently than their
ECA  counterparts.  Rule  73  is  presented  as  the  example  of  a  class  4
CA in LDCA-1-2.

Rule 8 Rule 21 Rule 45 Rule 73

Figure  7. These  four  images  exemplify  class  1,  2,  3,  and  4  behavior  in
LDCA-1-2 through rules 8, 21, 45, and 73, respectively. 

Interestingly,  rule  73  is  equivalent  to  rule  109  through  both  left-
right and color equivalence, which means that the two rules are identi-
cal  after  either  one’s  color  is  inverted  and  evolution  is  mirrored
horizontally  (Figure  8).  This  entails  that  studying  either  rule  implies
the exploration of the other. Rule 109 evolves according to the func-
tion GHCi-1, Ci, Ci+2L, where G is the following function [18]:

G H1, 1, 1L = 0 G H1, 1, 0L = 1 G H1, 0, 1L = 1 G H1, 0, 0L = 0
G H0, 1, 1L = 1 G H0, 1, 0L = 1 G H0, 0, 1L = 0 G H0, 0, 0L = 1.

Figure  8. This  table  depicts  the  evolutionary  substitution  rules  of  rule  109.
Rules 109 and 73 are equivalent through both left-right and color equivalence.
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3. Computational Universality

Universality was a major factor in the choosing of rule 73; it was sug-
gested that class 4 CAs might be capable of universal computation in
1984  [7],  and  rule  73  is  one  of  two  purely  class  4  automata  in
LDCA-1-2, with the other being rule 109. (Both rules 73 and 109 are
defined  as  class  2  rules  in  the  ECA  rule  space,  but  when  evolved  as
LDCA-1-2, they exhibit purely class 4 behavior. They have also been
shown to possess class 4 behavior in other contexts [14].) Besides ex-
ploring  the  properties  and  characteristics  of  rule  73,  this  study  will
also attempt to demonstrate the universality of rule 73.

Universal computational systems are those that are theoretically ca-
pable  of  emulating  any  other  system  [1,  7,  19].  This  means  that  a
singular system would be capable of behaving as any other mathemati-
cally definable system, which has significant implications in computa-
tional science. Such systems usually require an encoding and decoding
process,  in  order  to  translate  information  and  behavior  [19].  For
example, Boolean logic systems, or computer programs, are universal,
but  only  after  the  system  being  emulated  has  been  coded  in  binary,
and  the  result  of  the  program has  been  translated  back  into  the  lan-
guage of the original system. 

Church’s  effective  calculability,  Turing’s  computability,  Post’s
canonical  systems,  Kleene’s  general  recursive  functions,  and
Smullyan’s  elementary  formal  systems  have  all  resulted  in  the  exact
same computational capability. This phenomenon has led to the gener-
ally accepted thesis that these systems are capable of carrying out any
specifiable procedure whatsoever [19, 20]. The proving of a computa-
tional  system’s  universality  is  usually  done  through  the  emulation  of
another  system  previously  known  to  be  universal.  As  a  result  of  the
Church–Turing  thesis,  Turing  machines  have  been  defined  as  univer-
sal. Then in 2004, Cook proved that cyclic tag systems could success-
fully emulate universal Turing machines and were therefore universal
[1, 19]. While several CAs have been shown or suspected to be univer-
sal, the most commonly known example is that of the ECA rule 110,
which was shown to emulate a universal cyclic tag system [19].

4. Methodology: Visualization

The shift from ECAs to LDCA-1-2 brings several changes to rule 73,
including the way that it  is  visualized (Figure 9).  When the evolution
of  rule  73  in  LDCA-1-2  is  plotted  normally,  gliders,  or  particles  as
they  will  be  referred  to  in  this  paper,  tend  to  blend  into  the  back-
ground or become difficult to distinguish as they collide. 
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Figure 9. Here it can be seen that LDCA 73 possesses several stationary parti-
cles (vertical lines in the picture on the left). When the plot of rule 73’s evolu-
tion is skewed, however, collisions between gliders and the resulting particles
become more apparent. 

While it is standard to plot the tape of a CA so that cell i of a previ-
ous  state  is  directly  above  cell  i  in  the  next  state,  the  evolution  of
LDCA-1-2 was skewed so that the position of cell i in time step x cor-
responds to that  of  cell  i - 1 in x + 1. This  was done through a rota-
tion function:

Table[Nest[RotateRight, #[[i]], i - 1], {i, 1, Length[#]}] & 
CellularAutomaton[…]

When rule 73 was evolved in LDCA-1-y for y greater than 2, it was
graphed with an i Ø i - y + 1 skew. This  aided in the visualization of
rule  73 in  various  LDCA configurations,  but  became less  meaningful
as  rule  73  approached  chaotic  behavior  in  LDCA-1-5  and  beyond
(Figure 10).

In this study, it was assumed that all calculations and plots regard-
ing rule 73 in LDCA-1-2 are developed with an i Ø i - 1 skew.
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LDCA-1-1 LDCA-1-2 LDCA-1-3 LDCA-1-4 LDCA-1-5

Figure  10. As  the  y  value  in  LDCA-1-y  was  increased,  rule  73  approached
purely  chaotic,  or  class  3,  behavior.  Despite  applying  an  increasing  skew,  it
was difficult to identify localized structures in the evolution.

5. Methodology: Block Emulation

Block emulation is a form of emulation that can be used to find emula-
tions of CAs in different rule spaces. By substituting certain blocks in
a  certain  CA,  a  simpler  or  more  complicated  automaton  can  be  cre-
ated, which may emulate other rules or a different computational sys-
tem.  The  main  idea  is  to  encode  one  cell  of  rule  A  into  n  blocks  of
cells  of  rule  B.  By  replacing  corresponding  blocks  according  to  a  set
of  rules,  one  can  transform  a  cellular  automaton  of  one  rule  into  a
replica of another rule [1]. With this concept, it can be shown, for ex-
ample,  that rule 22 is  able to emulate rule 90.  However,  this  type of
emulation is not possible in all cases. Some rules with blocks up to a
certain  block  size,  rule  30  for  example,  are  not  able  to  emulate  any
fundamental rules at all through block emulation.

In an effort to see what rule 73 in LDCA-1-2 emulated, block emu-
lation was utilized in the 3 ê 2 rule space. To begin, rule 73 was con-
verted  to  a  rule  in  the  3 ê 2  rule  space,  and  all  evolutionary  rules  in
rule 73 that return a black cell were found:

F H1, 1, 1L = 0 F H1, 1, 0L = 1 F H1, 0, 1L = 0 F H1, 0, 0L = 0
F H0, 1, 1L = 1 F H0, 1, 0L = 0 F H0, 0, 1L = 0 F H0, 0, 0L = 1.

Then,  all  corresponding  configurations  of  cells  in  the  3 ê 2  rule
space  were  found.  In  3 ê 2,  the  cells  are  formatted  as  a,  b,  c,  d,  with
the CA sampling cells  a,  b,  and d.  Since cell  c  remains unsampled,  it
can be either 1 or 0 in the translation from ECA to 3 ê 2. Therefore:
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F3ê2 H1, 1, 0, 0L = 1 F3ê2 H1, 1, 1, 0L = 1

F3ê2 H0, 1, 0, 1L = 1 F3ê2 H0, 1, 1, 1L = 1

F3ê2 H0, 0, 0, 0L = 1 F3ê2 H0, 0, 1, 0L = 1.

Next, all of the possible inputs were converted into base 10:

H1, 1, 0, 0L Ø 12 H1, 1, 1, 0L Ø 14H0, 1, 0, 1L Ø 5 H0, 1, 1, 1L Ø 7H0, 0, 0, 0L Ø 0 H0, 0, 1, 0L Ø 2.

The  sum  was  taken  of  2  to  the  power  of  each  of  the  results  to  get
rule!20645:

212 + 214 + 25 + 27 + 20 + 22 = 20 645.

Finally,  a  comparison  between  rule  20645  in  3 ê 2  and  rule  73  in
ECAs confirmed that they were identical rules (Figure 11).

 

Figure 11. A comparison between rule  73 in LDCA-1-2 (left)  and rule  20645
in  the  3 ê 2  rule  space  (right)  with  equivalent  initial  conditions.  These  two
rules  are  identical  (hence  the  identical  evolutions)  and  can  be  derived  from
one another by converting from an ECA rule space to the 3 ê 2 rule space and
vice versa. As always, the LDCA-1-2 is plotted with an i Ø i - 1 skew.

6. Methodology: Neighbor-Dependent Substitution System

Substitution  systems  form  the  backbone  of  most  computational  sys-
tems, but cannot in general emulate CAs. However, when substitution
systems have  rules  that  depend not  only  on the  color  of  a  single  ele-
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ment,  but also on the color of  at  least  one of  its  neighbors,  they dis-
play more complicated behavior [1].  In order to utilize this behavior,
we must be able to identify the current state of a CA with an array or
string  of  values  and  construct  a  substitution  system  for  its  behavior
that  is  closed  under  evolution  (so  that  as  substitutions  occur,  no  re-
sults  arise  that  cannot  be  interpreted).  Neighbor-dependent  substitu-
tion systems are known to emulate  certain CAs and could be helpful
in proving the universality of rule 73 [1] (Figure 12).

Figure  12. Neighbor-dependent  substitution  systems  that  emulate  rules  90
(left) and 30 (right). The systems shown are examples of neighbor-dependent
substitution systems with highly uniform rules that always yield one cell  and
correspond directly to known CAs [16].

7. Results: Characteristics of Rule 73

After  a  brief  exploration  of  rule  73,  several  interesting  phenomena
were  found,  two of  which  follow.  First,  for  rule  73  being  evolved  in
an LDCA-1-y  configuration,  as  y  increases  in  value  from 1,  complex
behavior arises at y = 2 and is extinguished after y = 3, giving rise to
pseudo-chaotic  behavior  (Figure  13).  An  analysis  of  rule  73’s  behav-
ior  for  y > 3  revealed  that  the  Gaussian  distribution  of  all  possible
states  of  rule  73  was  not  normally  distributed.  This  implies  that  the
chaotic nature of rule 73 at high values of y is not random, but rather
is complex.

Increasing  the  value  of  y  also  results  in  a  secondary  effect
(Figure!14). When viewing the state transition diagrams, one notices a
repetition of structure, not unlike that mentioned in the introduction.
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Figure  13. While  evolving  rule  73  in  an  LDCA-1-y  configuration,  as  y  in-
creases  in  value  from 1,  complex  behavior  arises  and  is  extinguished,  giving
rise to chaotic behavior that resembles white noise. The Gaussian distribution
of all possible states is not normally distributed in these chaotic states, which
implies  that  the chaotic  nature of  rule  73 at  high values  of  y  is  not  random,
but is complex and difficult to perceive.

Figure 14. As rule 73 is applied in different configurations, the effect of having
a  high  y  value  becomes  apparent  through  state  transition  diagrams.  Given
rule  73  applied  as  LDCA-1-y-n,  the  state  transition  diagrams  are  repeated
with a period of n as the y value increases, since the tape is cyclic [16].

8. Results: Particles

The gliders or particles that exist in rule 73 move with four different
velocities  (0,  1 ê 4,  2 ê 5,  and  1)  over  a  constant  background
(Figure!15).  A  single  block  of  background  is  represented  by  101100,
110010, or 001011 and has an evolutionary period of 3 and a spatial
period of 6. In the naming convention for rule 73 in LDCA-1-2, a sin-
gle  block  of  background  is  represented  with  a  “  -  ”,  half  of  a  back-
ground block is  denoted with a “ ’  ”,  and a single particle  is  a letter
(its name).

There are several particles in rule 73 that act as the building blocks
for larger constructs and compound particles. These are called funda-
mental particles, and are the main focus of this exploration. All funda-
mental particles are organized and labeled by velocity and phase shift
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(or mass), with the mass ranging in value from 0 to +6 and represent-
ing the number of cells that the background is shifted to the right by
the presence of the particle (Figure 16). 

Figure  15. An  image  of  the  background  of  rule  73  in  LDCA-1-2.  The  back-
ground  resembles  a  surface  tessellated  with  L-shaped  units;  a  single  row  of
background is  represented by 101100,  110010,  or  001011 and has  period 3
(vertically) and spatial period 6 (horizontally). This image is scaled and parti-
tioned, to better show the structures of cells in the background.

Particle Velocity Mass Period Particle Velocity Mass Period

A 0 0 3 F 1 2 2

B 0 5 3 F 1 3 4

C 1 ê 4 1 8 G 1 0 2

D 2 ê 5 4 5 H 1 3 2

E 2 ê 5 2 15

Figure 16. Table of all fundamental particles in rule 73 in the LDCA-1-2 con-
figuration.  All  fundamental  particles  are  organized  and  labeled  by  velocity,
phase shift (or mass), and period. The mass ranges in value from 0 to +6 and
represents  the  number  of  cells  that  the  background is  shifted  to  the  right  by
the presence of the particle.

The structures  in  Figures  17  through 19  represent  the  nine  funda-
mental particles and are listed in order of increasing velocity. Particles
A,  B,  and  C have  velocities  of  0  and  1 ê 4.  Particles  D and E  are  the

only fundamental particles with velocity 2 ê 5. Particles F, F, G, and H
travel with velocity 1, or at the speed of light.
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Figure 17. Particles A, B, and C; velocities 0, 0, and 1 ê 4.

Figure 18. Particles D and E; velocities 2 ê 5, 2 ê 5.

Figure 19. Particles F, F, G, and H; velocities of 1 for all.
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However,  merely  placing  two  fundamental  particles  next  to  each
other on a tape cannot create certain compound particles.  For exam-
ple, in the cases of G’G and G’H, the second particle in the pair must
be shifted vertically by one evolutionary step (Figures 20 and 21). 

Figure  20. Particles  B’B,  G’G,  H’H,  G’H,  and  H’G.  These  are  unique  com-
pound  particles  that  must  be  formed  by  vertically  shifting  one  of  the  two
particles before placing them adjacent.

Figure  21. Particles  GG,  HH,  GH,  and  HG.  These  are  documented  due  to
their prevalence in collisions and systems made from rule 73.

9. Results: Collisions

This  study  found  all  viable  collisions  between  pairs  of  fundamental

particles A, B, C, D, E, F, F, G, and H. These do not include repeated
or compound particles  such as  AA, ...  FF,  GG, G’G,  HH, H’H, GH,
HG, G’H, or H’G.

Some collisions were found to have varying resulting particles, due
to  their  reactants  interacting  at  different  distances  away  from  each
other.  Any  collision  between  two fundamental  particles  in  which  the
spacing between the particles  does not  affect  the result  is  denoted by
A_B for  any  particles  A  and  B.  The  “_”  in  between  particles’  names
implies  that  the  spacing  in  between  the  particles  does  not  affect  the
outcome of the collision. However, in the collisions that have integers
between  the  particles’  names,  the  integer  represents  the  number  of
spaces between the two particles in that specific collision. A space is a
full  spatial  period  of  the  background  and  consists  of  six  consecutive
cells. The integer must first be evaluated in a modular function that is
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specific to the collision. Figure 22 shows a table of all viable collisions
between fundamental particles.

Particle A Particle B Particle C Particle D Particle E

A_C B_C C_D D_F E0F

A_D B_D C_E D0 F E1F

A_E B_E C_F D1 F E2F

A_F B_F C_ F D_G E0 F

A0 F B0 F C_G D_H E1 F

A1 F B1 F C_H E2 F

A_G B_G E0G

A_H B_H E1G

E2G

E_H

Figure 22. Table of all possible collisions between fundamentals.

10. Discussion: Block Emulation

Using rule 20645 in the 3 ê 2 rule space, several rules that rule 73 can
emulate through block emulation were identified, with blocks ranging
in size from 0 to 16 cells [21]. To search the emulated rules for signs
of  universality,  the  rule  numbers  for  ECA  rules  110  and  193  were
identified  in  the  3 ê 2  rule  space  (Figure  23).  Using  the  procedure  in
Section 5,  it  was found that  rule  110 is  equivalent  to  rule  232903/2,
and rule 193 is equivalent to rule 614453/2.

Figure  23. Rules  110  (top)  and  193  (bottom)  are  equivalent  and  universal.
They are rules 232903/2 and 614453/2, respectively.

This  form  of  block  emulation  was  continued  until  the  block  size
was 30 cells, but none of the emulated rules were 23290 or 61445, so
no  desired  result  was  generated.  Additionally,  as  the  emulation  ap-
proached  a  block  size  of  40  cells,  the  estimated  runtime  jumped  in-
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credibly high, and the block emulation became limited by the amount
of  physical  memory  available.  This  prevented  consistency  in  results
with any block larger than 30 cells and greatly handicapped the feasi-
bility of proving the universality of rule 73 through this method. Fig-
ure 24 shows all  of the rules that rule 20645 emulates up to a block
size of 16 cells.

20645

0 42306 48474

20645

0

20645

0

20645

0

20645

0 27030 38505 52428 61680

20645

0 52428

20645

27030 42306 52428 61680

20645

52428

20645

20645

52428

20645

0 255 52428 61680

20645

0 52428

Figure 24. A diagram for all of the rules in the 3 ê 2 rule space that rule 20645
emulates up to a block size of 16 cells. Each tree of rules represents a different
block  size,  ranging  from  0  to  4  cells  on  the  first  row,  5  to  9  cells  on  the
second  row,  10  to  13  cells  on  the  third  row,  and  14  to  16  cells  on  the  last
row![21].

11. Discussion: Neighbor-Dependent Substitution System

Despite  the  constraints  of  the  previous  method,  universality  can  be
proven in  a  variety  of  other  ways.  For  example,  the  neighbor-depen-
dent  substitution  system  [1]  was  considered.  A  particle  detector  that
was  created  for  rule  73  in  LDCA-1-2  returns  a  string  of  particle
names  and  background  that  resembles  A----B--------C-GG-----H-G  at
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any evolutionary step. Following suit,  a neighbor-dependent substitu-
tion system could be constructed that  takes  a  similar  string as  an in-
put and substitutes pairs of colliding particles with their outputs. The
program should continue to collide  particles  until  there  are  no legiti-
mate pairs of particles left and then return a list of past states at every
collision. 

In  the  neighbor-dependent  substitution  system,  the  spacing  be-
tween  any  consecutive  particles  in  a  collision  was  replaced  with  an
integer signifying the number of background rows and evaluated with
modular  functions,  so  that  large  numbers  of  background cells  would
not  cause  the  program  to  malfunction.  For  every  spacing-dependent
collision, the substitution system would classify the result of the colli-
sion using the integer between the particles and replace the pair with
a  corresponding  result  sandwiched  between  two  additional  spacing
values, to account for background that was lost as the string was mod-
ulated.  Then  after  every  substitution,  any  adjacent  numbers  of  back-
ground cells in the string were added so that they behaved as a singu-
lar  spacing.  The  modular  function  that  was  applied  to  the  spacing
was  either  mod  2  or  mod  3,  depending  on  the  pair  of  particles  in-
volved. 

Unfortunately,  this  neighbor-dependent  substitution  system  proves
inconclusive. The set of rules that dictated the substitutions in the sys-
tem  should  have  stayed  restricted  to  certain  usable  collisions,  since
some collisions resulted in a particle generator that created an infinite
number  of  products.  However,  the  rules  were  unable  to  stay  re-
stricted,  as  particles  that  had  been  excluded  from  the  list  eventually
resulted from collisions and were added to the rule set. New collisions
had  to  be  added  to  the  substitution  system,  and  ultimately,  the
neighbor-dependent  substitution  system  failed  to  simplify  any  string
of particles. 

12. Discussion: Collision System

Finally, collision G’G_B’B (which returns particles B’B and G) and col-
lision  G_B’B  (which  returns  particle  G’G)  were  considered.  Using
these collisions,  a  system was constructed that  consists  of  two differ-
ent  substitution  rules  {{AB  Ø  B1C},  {CBØA}},  in  which  alternating
rows of G’G and G are colliding with B’B (Figure 25). 

In every collision, the G or G’G output is released with a three-cell
shift  to  the  right,  while  the  B’B  output  is  shifted  six  cells  to  the  left.
This  means  that  for  every  pair  of  G_B’B  and  G’G_B’B  collisions,  B
has an overall shift of six cells to the right, and the resulting G parti-
cle is shifted six cells to the right.
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Figure 25. A chain of collisions between alternating rows of G’G and G with
B’B [3].  The system consists of two different substitution rules {{AB Ø  B1C},
{CB Ø A}}.

As  is  observable,  there  are  three  points  in  total  (on  Figure  26)
where  all  the  particles  that  are  colliding  with  B’B  are  particle  G’G
(except for the G that annihilates the B’B at the end), and they are all
converted  at  once  into  particle  G.  At  those  points,  the  first  B’B  con-
verts three G’G particles, the second converts five, and the third con-
verts  seven.  These  G’G  conversion  collisions  count  consecutive  odd
numbers  as  the  system  progresses,  in  the  pattern  3, 5, 7, … 2 n + 1.
Additionally,  counting  the  collisions  between  the  G’G  conversion
points  reveals  interesting  results,  as  can be  seen in  this  chronological
list  of  collisions,  where  each  number  represents  how many  collisions
the B’B particle endures at that relative location (“*” is a G’G conver-
sion point):

1 2 1 * 1 2 1 3 1 2 1 * 1 2 3 2 1 4 1 2 3 2 1 * 1 2 3 4 3 2 1 5 1 
2 3 4 3 2 1 * ….

This string of numbers can be thought of as an inorder traversal of
a series of binary trees [22].  When counting the number of collisions
in which B’B interacts with k number of particles, it is found that the

sums are of the form 2n-k+1.  For example, the total number of colli-
sions in which B’B interacts with one particle, in between G’G conver-
sion points, follows the pattern 2, 4, 8, … 2n.

It was also found that counting the total number of interactions of
any  type  in  between  the  G’G  conversion  points  results  in  a  progres-
sion of Eulerian numbers, which follows the series 4, 11, 26, 57, 120,
247,  502,  … [23,  24].  Interestingly  though,  the  interactions  between
G’G  conversion  points  do  not  define  the  standard  Eulerian  numbers
of  series  A008292  [25,  26],  but  instead  correspond  to  the  values  of
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the  second  column  (k = 2)  of  the  standard  Euler  triangle  (which  de-
fine  series  A000295)  [24].  Thus,  through  the  G,  G’G,  and  B’B  col-
lision system, sequence A000295 is inherently related to the mathemat-
ical  properties  of  complete  binary  trees.  This  ability  of  rule  73  in
LDCA-1-2  to  associate  the  behaviors  of  binary  trees  with  Eulerian
numbers (in series A000295 of [24]) can in turn provide valuable in-
sight  to  unsolved  problems  such  as  those  in  [27]  and  lead  to  future
mathematical exploration. 

Figure  26. Complete  binary  that  dictates  the  progression  of  collisions  in  the
G’G and G with B’B collision system [22].

13. Future Research

In future research, it is suggested that the connections between binary
trees and Eulerian numbers be studied through the use of rule 73, not
exclusively through mathematical expression (as it has been studied in
the  past).  With  an  LDCA  approach,  we  may  be  able  to  better
understand,  both  technically  and  conceptually,  the  mathematical  na-
ture  of  both  constructs  and  gain  an  insight  into  problems  similar  to
those presented by Baril  and Pallo [27].  By utilizing the properties of
rule  73  in  LDCA-1-2,  it  is  possible  that  further  mathematical  explo-
ration could prove fruitful. 
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The  compound  particles  of  rule  73  should  be  studied  in  more  de-
tail,  so  that  a  functioning  neighbor-dependent  substitution  system
might be generated. With more complex gliders, the behavior of colli-
sions may be diverse enough that a defined set of rules can be used to
evolve  and  simplify  a  string  of  particles,  which  would  mean  that  a
neighbor-dependent substitution system could become a viable option
to emulate other universal systems. 

The block emulation of rule 73 as rule 20645 in the 3 ê 2 rule space
will  be  more  feasible  to  study  in  the  future.  While  the  scope  of  this
study  was  limited  by  physical  constraints,  it  is  likely  that  future  at-
tempts  at  proving  the  universality  of  rule  73  could  make  more
progress with the block emulation of rule 20645 with further code op-
timization  and  improved  hardware  and  succeed  in  emulating  rules
with block sizes much larger than six cells [21]. 

Besides  making  progress  on  methods  already  used  in  this  study,
any more research that is  done on rule 73 in LDCA-1-2 should have
an  emphasis  on  the  emulation  of  a  cyclic  tag  system.  In  a  cyclic  tag
system, a standard tag system is  applied to an initial  condition in se-
quential  order and in a cyclic fashion that loops back to the front of
the tape [19] (Figure 27). The discovery of the G, G’G, and B’B colli-
sion system is a large step forward in the process of emulating a cyclic
tag system with rule 73, since it contains types of collisions that were
used in Cook’s proof of universality for rule 110 [19]. 

Figure 27. An example of a CA (rule 110) emulating a universal cyclic tag sys-
tem  [19].  Some  of  the  collisions  represented  to  the  left  bear  resemblance  to
the G’G, G, and B’B collisions that were found in this study. 

Finally, it is advised that more research be conducted on the proper-
ties  of  LDCAs.  The  effects  of  changing  rule  73’s  configuration  from
LDCA-1-1 (ECA) to LDCA-1-2 have been significant and have turned
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rule  73  into  a  potentially  universal  CA.  In  the  future,  additional  re-
search should be conducted on the effects of different LDCA configu-
rations  on  universality.  Hopefully,  the  exploration  of  LDCAs  will
bring to light new possibilities and help further current knowledge of
evolving computation systems.

Further exploration of rule 73 in LDCA-1-2, uncovering of its appli-
cations to problems in other fields of research, and showing of its can-
didacy for computational universality will assist in the expansion and
improvement of modern computation and mathematical modeling. 
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