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There  are  two  different  motivations  of  this  study:  retrospective-
prospective differential inclusions and differential connection tensors in
networks  of  both  continuous-time  nonsmooth  functions  and  time  se-
ries,  and several  consequences:  control  of  dynamical  systems by differ-
ential  connectionist  tensors,  detection  by  a  “trendometer”  of  all  local
extrema  of  differentiable  functions,  but  “wild”  as  the  sum  of  three
sines,  as well  as of economic and financial time series.  It  provides us a
“trend reversal” of the Fermat rule, using the zeros of the derivative for
finding all the local extrema of any numerical function of one variable.
Instead, the extrema of the primitive of a function allow us to find ze-
ros  of  the  function.  Once  detected,  the  trendometer  measures  the
“jerkiness” of their trend reversals. It provides an efficient econometric
tool  for  detecting  crisis  (e.g.,  the  dot.com  and  subprime  crises),  the
dates of the trend reversals, and their jerkiness, helping qualitative ana-
lysts to focus their attention on the dates when quantitative jerkiness of
the extrema is high. 

The differential connection matrix plays for evolutions (and discrete
time  series)  a  dynamic  role  analogous  to  the  static  role  played  by  the
covariance matrix of a family of random variables measuring the covari-
ance entries between two random coefficients. Covariance matrices deal
with random variables. Differential connection tensors deal with tempo-
ral  series  or  continuous-time  evolutions.  They  are  therefore  different
and  cannot  be  compared,  since  they  deal  with  different  mathematical
universes. 
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1. Motivations

There are two different motivations of this study.

1.1 Retrospective-Prospective Differential Inclusions
The first motivation follows the plea of Efim Galperin in [1, 2] for us-
ing  “retrospective”  derivatives  instead  of  “prospective”  derivatives,
universally chosen since their introduction by Newton and Leibniz, at
a  time  when  physics  became  predictive  and  deterministic:  the

“prospective  derivatives”  D xHtL  being  (more  or  less  weak)  limits  of
prospective (future) difference quotients (on positive durations h > 0) 

“h xHtL :=
xHt + hL - xHtL

h

are “physically nonexistent,” because they are not yet known at time
t. Whereas the retrospective (past) difference quotients

“h xHtL :=
xHtL - xHt - hL

h

may be known for some positive durations and should be taken into
account. This has been pointed out by Jiri Buquoy, who in 1812 for-
mulated the equation of motion of a body with variable mass, which
retained  only  the  attention  of  Poisson  before  being  almost  forgotten.
See [3–5] among the precursors in this area. 

This  is  an  inescapable  issue  in  life  sciences,  since  the  evolutionary
engines  evolve  with  time,  under  contingent  and  tychastic  uncertainty
and,  in  most  cases,  cannot  be  recreated  (at  least,  for  the  time,  since
synthetic biology deals with this issue). See, for instance, [6]. Popper’s
recommendations  are  valid  for  physical  sciences,  where  experimenta-
tion  is  possible  and  renewable.  However,  the  quest  of  the  instant
(temporal  window  with  0  duration)  has  not  yet  been  experimentally
created (the smallest measured duration is of the order of the yoctosec-

ond [10-24  seconds]). Furthermore, our brains deal with observations
that are not instantaneous, but, in the best case, are perceived after a
positive transmittal duration. 

For overcoming these situations, Fermat, Newton, Leibniz, and bil-
lions  of  human brains  have  invented instants  and passed to  the  limit
when  duration  of  temporal  windows  goes  to  0  to  reach  such  an  in-
stant. This is actually an approximation of reality by clever mathemat-
ical  constructions  of  objects  belonging  to  an  ever-evolving  “cultural
world,” actually, an inductive approximation, whereas (deductive) ap-
plication  refers  to  approximate  derivatives  of  the  idealized  world  by
difference  quotients,  which are  closer  to  the  actual  perception of  our
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brains  and  capabilities  of  digital  computers.  Derivatives  are  not  per-
ceived, but were invented, simplifying reality by passing to the limit in
a mathematical paradise. 

Therefore, for differentiable functions in the classical sense, the lim-
its  of  retrospective  and prospective  difference  quotients  may coincide
when we pass to the limit. But this is no longer the case when evolu-
tions are no longer differentiable in the classical sense, but derivatives
may still exist for “weaker” limits, such as limits in the sense of distri-
butions or graphical limits in set-valued analysis (see [7, Section 18.9,
p.  769]).  Even  if  we  restrict  our  analysis  to  Lipschitz  functions,
Rademacher’s  theorem  states  that  Lipschitz  maps  from  one  finite-
dimensional  vector  space  to  another  are  only  almost  everywhere  dif-
ferentiable.  Although small,  the  set  of  elements  that  are  not  differen-
tiable  is  interesting  because  Lipschitz  maps  always  have  set-valued
graphical  derivatives.  Hence  we  have  to  make  a  detour  by  recalling
what are meant by retrospective and prospective graphical derivatives
of  maps  as  well  as  set-valued  maps  and  nondifferentiable  (single-
valued) maps. 

Therefore, we devote the first part of this study to a certain class of
viable evolutions governed by functional (or history-dependent) differ-
ential inclusions 

x£HtL œ GJt, xHtL, D xHtLN
where D xHtL is the retrospective derivative (or derivative from the left
since,  at  this  stage,  we consider  evolutions  defined on !).  Retrospec-

tive-prospective  differential  inclusions  x£HtL œ GJt, xHtL, D xHtLN  de-

scribe predictions of evolutions based on the state and on the known
retrospective velocity at each chronological time. As delayed differen-
tial equations or inclusions, they are particular cases of functional (or
historical, path-dependent, etc.) differential equations (see [8–11], sum-
marized in [12, Chapter 12], [13, 14], etc.). As for second-order differ-
ential  equations,  initial  conditions  xHt0L  at  time  t0  must  be  provided,
as well as (retrospective) initial velocities for selecting evolutions gov-
erned  by  retrospective-prospective  differential  equations  and  inclu-
sions.  Differentiable  evolutions  governed  by  such  systems  boil  down
to  solutions  to  implicit  differential  equations  and  inclusions  of  the
form x£HtL œ GHt, xHtL, x£HtLL. 

1.2 Differential Connection Tensors in Networks
The  second  motivation  emerged  from  the  study  of  propagation
through  “junctions  of  a  network,”  such  as  crossroads  in  road  net-
works, banks in financial networks, synapses in neural networks, and
others.
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1.2.1 Neural Network: The Hebbian Rule

If we accept that in formal neuron networks, “(evolving) knowledge”
is  coded  as  “synaptic  weights”  at  each  synapse,  their  collection  de-
fines a “synaptic matrix” that evolves and thus becomes the “state of
the network.” 

Recall  that  the  tensor  product  p ! q  of  two vectors  p := HpiLi œ !!

and q := IqjMj œ !! is the rank-one linear operator 

p ! q œ ! I!!, !!M : x # Xp, x\ q,

the entries of which (in the canonical basis) are equal to Ipi qjMi,j. Don-

ald Hebb introduced in 1949 [15] the Hebbian learning rule prescrib-
ing that the velocity of the synaptic matrix is proportional to the ten-
sor  product  of  the  “presynaptic  activity”  and “postsynaptic  activity”
described by the propagation of nervous influx in the neurons.

Hence, denoting the synaptic matrix W  of synaptic weights, the ba-
sic  question  was  to  minimize  a  “matrix  function”  W œ !HX, XL #
EHWxL  where  x œ X := !!  and  E : X # !,  a  differentiable  function,
are given. Remembering (see [16, Proposition 2.4.1, p. 37 and Chap-
ter 2]) that the gradient with respect to W  is equal to the tensor prod-
uct  E£HWxL! x,  the  gradient  method  leads  to  a  differential  equation
of the form 

(1)W£HtL " -aE£HWHtL xL! x,

which  governs  the  evolution  of  the  synaptic  matrix  (the  synapse  x  is
fixed  and  does  not  evolve).  Connectionist  matrices  and  tensors  have
also  been  used  for  defining  the  complexity  of  a  connectionist  matrix
(by its distance to the identity matrix) and its connections with decen-
tralization issues in [17], and in [18] and [19] for studying the regula-
tion of the evolution of the architecture of a network by connectionist
tensors operating on coalitions of actors.

1.2.2 Differential Connection Tensors

However, we take into account the evolution t # xHtL œ X of the prop-
agation in networks (such as the propagation of nervous influx, traf-
fic,  financial  product,  etc.).  If  the evolution is  Lipschitz,  retrospective
and prospective derivatives exist at all times, so that we can define the

tensor  product  D xHtL! D xHtL  of  their  retrospective  and  prospective
velocities: we shall call it the differential connection tensor of the evo-
lution xH ÿ L at time t.

It  plays the role of  a trendometer  measuring the trend reversal  (or
monotonicity reversals) at junctions: the differential connection tensor
describes the trend reversal between the retrospective and prospective
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trends  when  they  are  strictly  negative,  the  monotonicity  congruence
when they are strictly positive, and the inactivity when they vanish. In
neural  networks,  for  instance,  this  is  an inhibitory effect  or  trend re-
versal  in  the  first  case,  an  excitatory  or  trend  congruence  in  the  sec-
ond case,  and inactivity of a synapse:  in this case,  one at least  of the
propagations  of  the  nervous  influx  stops.  The  absolute  value  of  this
product measures in some sense the jerkiness of the trend reversal at a
junction of the network. 

For  individual  evolutions  (continuous-  or  discrete-time  numerical
functions), the trendometer detects all their local extrema. Instead, the
extrema  of  the  primitive  of  a  function  allow  us  to  find  zeros  of  the
function. Once detected, the trendometer measures the “jerkiness” of
their  trend reversals.  It  provides  an efficient  econometric  tool  for  de-
tecting crisis (the dot.com and subprime crises), the dates of the trend
reversals,  and  their  jerkiness,  helping  qualitative  analysts  to  focus
their attention on the dates when quantitative jerkiness is high. 

We are also tempted to control  (pilot,  regulate,  etc.)  the evolution
of propagation in the network governed by a system 

(2)x£HtL " gHxHtL, uHtLLwhere uHtL œ UJD xHtL! D x HtLN
controlled  by  differential  connectionist  tensors  at  junctions  of  the
network. We recall  that the evolutions governed by (Marchaud) con-
trolled  systems are  Lipschitz  under  the  standard assumption,  but  not
necessarily  differentiable.  For  example,  in  order  to  govern the  viabil-
ity of the propagation in terms of the inhibitory, excitatory, and stop-
ping  behavior  at  the  junctions  of  the  network,  some  constraints  are
imposed on the evolution of the differential connection tensors. Exam-
ples  of  retrospective-retrospective  differential  equations  are  provided
by tracking or controlling differential connection tensors of the evolu-
tions,  requiring  that  evolutions  governed  by  differential  equations

x£HtL " f Ht, xHtLL  satisfy  constraints  of  the  form  D xHtL! D xHtL œ
CHt, xHtLL.  These  control  systems  are  examples  of  retrospective-
prospective differential inclusions.

These considerations extend to “multiple synapses” when we asso-
ciate with each subset S of branches j meeting at a junction the tensor
products !jœSxj

£HtL of the velocities at the junction (see [20] and the lit-

erature on S -P neural systems, [7, Section 12.2], as well as [18, 21,
22] and the literature on the regulation of networks). 

1.3 Organization of the Study
Section 2 defines retrospective and prospective (graphical)  derivatives
of  tubes  and  evolutions,  their  differential  connection  tensor
(Definition 1).  They are the ingredients  for introducing retrospective-
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prospective differential inclusions. The viability theorem (Theorem 1)
is adapted for characterizing viable tubes under such differential inclu-
sions,  using  characterizations  linking  the  retrospective  and  prospec-
tive  derivatives  of  the  tube.  When  these  conditions  are  not  satisfied,
we restore the viability by introducing the retrospective-prospective vi-
ability kernel of the tube under the retrospective-prospective differen-
tial inclusion (Section 2.3). 

Section 3 studies the regulation of viable evolutions on tubes by im-
posing constraints on their differential connectionist tensors. 

Section  4  explains  how the  trendometer  can  be  used  for  detecting
minima  and  extrema  of  differentiable  functions  and  thus,  zeros  of
their derivatives, including those functions that display a “wild behav-
ior,” such as the sum of three sines. 

Section  5  illustrates  how  the  tensor  trendometer  was  used  for
detecting  the  dynamic  correlations  between  time  series,  for  example,
the time series of the prices of the 40 assets of the CAC 40 stock mar-
ket index (see [23, Chapter 2] for a more detailed study). 

Section  6  defines  differential  connectionist  tensors  of  set-valued
maps (Section 6.1) and gathers some other classes of differential con-
nection  tensors  besides  the  ones  of  the  evolutions  t # xHtL  or  tubes

t KHtL  from !  to !!,  which provided the first  source of motivations
for  studying  differential  connection  tensors.  Other  specific  examples
are  the  differential  connection  tensors  of  numerical  functions

V : !! # !  (Section  6.2)  and  tangential  connection  tensors  of  retro-
spective  and  prospective  tangents  (Section  6.3).  These  issues  are  the
topics of forthcoming studies. 

2. Retrospective-Prospective Differential Inclusions

2.1 Prospective and Retrospective Derivatives of Tubes and 
Evolutions

A tube is the nickname of a set-valued map K : t œ ! KHtL Õ X. Since
there  are  only  two  directions  +1  and  -1  in  !,  the  prospective  (left)
and retrospective (right) derivatives of a tube K at a point Ht, xL of its
graph are defined by 

(3)

v œ D KHt, xL if and only if lim inf
hØ0+

d v,
KHt + hL - x

h
" 0,

v œ D KHt, xL if and only if lim inf
hØ0+

d v,
x - KHt - hL

h
" 0.
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Actually,  there  is  a  third one,  0,  where D KHt, xL H0L  and D KHt, xL H0L
are  the  retrospective  and  prospective  tangent  cones  studied  in  Sec-
tion!6.3 (see Definition 3 in the general case).

Definition  1.  The  differential  connection  tensor  of  a  tube  KH ÿ L  at
x œ KHtL is defined by 

(4)
" v œ D KHt, xL, " v œ D KHt, xL,

aKHt, xL Av, vE := v ! v.

In  particular,  an  evolution  xH ÿ L  is  a  single-valued  tube  defined  by
KHtL := 8xHtL<,  so  that  we  can  define  its  graphical  prospective  deriva-

tive  D xHtL  (from  the  right)  and  retrospective  derivative  D xHtL  (from
the left), respectively (see illustrations in Section 5). 

2.2 Retrospective-Prospective Differential Inclusions
Recall  that  whenever  an  evolution  t # xHtL  is  viable  on  a  neighbor-

hood  of  t0  on  a  tube  KHtL,  then  D xHt0L œ D KHt0, t0L  and

D xHt0L œ D KHt0, t0L.
Since  we  know  only  retrospective  derivatives,  forecasting  future

evolution  can  be  governed  by  prospective  differential  inclusion

D xHtL œ FHt, xHtLL  depending  only  on  time  and  state,  but  also  by  the

particular  case  of  history-dependent  evolutions  D xHtL œ
GJt, xHtL, D xHtLN  depending  on  time,  state,  and  the  retrospective

derivatives. This could be the case for system-controlling the differen-
tial  connectionist  tensors  of  the  evolutions,  for  instance  (see  Sec-
tion!3). 

Theorem  1.  Let  us  assume  that  the  map  Ht, x, vL œ !äXäX
GHt, x, vL Õ X  is  Marchaud (closed  graph,  convex  valued,  and  linear
growth) and that the tube t KHtL is closed. Then the “tangential con-
dition” 

(5)" v œ D KHt, xL, GIt, x, vM › D KHt, xL " «

is  equivalent  to  the  “viability  property”:  from  any  initial  state

x0 œ KHt0L  and initial retrospective velocity v0 œ D KHt0, x0L  there ex-
ists at least one evolution xH ÿ L governed by the retrospective-prospec-

tive  differential  inclusion  D xHtL œ GJt, x HtL, D xHtLN  satisfying

xHt0L " x0 and D xHt0L " v0 and viable in the tube KH ÿ L.
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Complex Systems, 23 © 2014 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.23.2.117



Proof.  The proof  is  an adaptation of  the  proof  of  the  viability  Theo-
rem 19.4.2 [7, p. 782, based on Theorems 11.2.7, p. 447 and 19.3.3,
p. 777]. We just indicate the modifications to be made. 

We  construct  approximate  solutions  by  modifying  Euler’s  method
to  take  into  account  the  viability  constraints,  then  deduce  from
available estimates that a subsequence of these solutions converges in
some sense to a limit, and finally, check that this limit is a viable solu-

tion  to  the  retrospective-prospective  differential  inclusion  (D x HtL œ
GJt, xHtL, D xHtLN). 

1. By  assumption,  there  exists  r > 0  such  that  the  neighborhood
!r := GraphHKL › HHt0, x0L + rH@-1, +1DäBLL  of  the  initial  conditionHt0, x0L is compact. Since G is Marchaud, the set 

"r := 9F It, x, vM= + B, and T :=
r

!"r¥
is also compact. We next associate with any h the Euler approximation 

(6)vj
h :=

xj+1
h - xj

h

h
œ GIj h, xj

h, vj-1
h Mwhere vj-1

h :=
xj

h - xj-1
h

h

starting from It0, x0, v0M.
2. [7, Theorem 11.2.7, p. 447] implies that for all ! > 0, 

(7)
$ hH!L > 0 such that " Ht, xL œ #r, " h œ @0, hH!LD,
xj

h + hGIjh, xj
h, vj-1

h M œ KIjh, xj
hM + !B.

Since 

"xj
h - x0# § ‚

i!0

i!j-1 "xi+1
h - xi

h# § ‚
i!0

i!Jh-1

h ±vj
hµ § !"k¥,

the discrete evolution is viable in !r  on the interval @0, TD. Denoting by

xh, vh, and vh  the linear interpolations of the sequences xj
h, vj

h, and vj
h,

we infer that there exists a constant a > 0 such that 

(8)
Jth, xh, vh, vN œ GraphHGL + !a,

Ith, xhM œ GraphHKL + !a,

and that there exists a constant b > 0 such that the a priori estimates 

(9)max ±xh¥¶, ±“h
xh¥¶, ±“h

xh¥¶O § b

are satisfied.
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3. They imply the a priori estimates of the convergence theorem [7, Theo-
rem 19.3.3, p. 777], which states the limit of a converging subsequence
is  a  solution  to  the  retrospective-prospective  differential  inclusion,  vi-

able in GraphHKL. ·
2.3 Retrospective-Prospective Viability Kernels

Naturally, the “tangential assumption” (5) is not necessarily satisfied,
so that we have to adapt the concept of a viability kernel to the retro-
spective-prospective case. 

Definition 2. The viability kernel of the tube KH ÿ L is the set of initial con-

ditions  It0, x0, v0M œ !äKHt0LäD KHt0, x0L  from  which  starts  at  least
one  viable  evolution  t # xHtL œ KHtL  to  the  retrospective-prospective
differential inclusion in the sense that 

(10)
HiL D xHtL œ GJt, xHtL, D xHtLN
HiiL D xHtL œ D KHt, xHtLL and D xHtL œ D KHt, xHtLL.

We provide a viability characterization of retrospective-prospective
viability kernel tubes: 

Proposition 1. Let us consider the control system 

(11)

HiL t£HtL " 1

HiiL x£HtL œ GItHtL, xHtL, vHtLM
HiiiL ±v£HtLµ § c ±GIt, x, vMµ

where vHtL œ coJD KHtHtL, xHtLLN.
Then the viability kernel of the graph GraphJDKH ÿ LN of the derivative

tube KH ÿ L  coincides with the retrospective-prospective viability kernel
of the tube.

Proof. The viability kernel of the control system (11) is the set of ini-

tial triples It0, x0, v0M such that x0 œ KHt0L and v0 œ D KHt0, x0L, from

which  starts  an  evolution  t # It0 + t, xHtL, vHtLM  of  the  control  system

such  that  xHtL œ KHtHtLL  and  vHtL œ coJD KHtHtL, xHtLLN.  Setting

x¯HtL := xHt - t0L  and  v¯HtL := vHt - t0L,  we  observe  that

x¯HtL œ GIt, x¯HtL, v¯HtLM,  v¯HtL œ D KHt, x¯HtLL,  and  x¯HtL œ KHtL.  We

thus  infer  that  D x¯HtL œ D KHt, x¯HtLL.  Since  x¯HtL  is  viable  in  the
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tube,  we  also  infer  that  D x¯HtL  actually  belongs  to  D KHt, x¯HtLL.
Hence  It0, x0, v0M  belongs  to  the  retrospective-prospective  viability

kernel of the tube KH ÿ L. ·
When the control system is Marchaud, we obtain the following con-

sequences. 

Theorem  2.  Let  us  assume  that  the  set-valued  map

G : It, x, vM GIt, x, vM  is  Marchaud  and  that  the  graph  of

coJD KHt, xLN is closed. Then the retrospective-prospective viability ker-

nel of the tube KH ÿ L under the D xHtL œ GJt, xHtL, D xHtLN is closed and

inherits properties of viability kernels. 

3. Control By Differential Connectionist Tensors

We study the tracking at each date t of the differential connection ten-

sor  D xHtL! D xHtL  of  evolutions  governed  by  a  differential  inclusion
x£HtL œ FHt, xHtLL.

For  that  purpose,  we  introduce  a  connection  mapHt, xL CHt, xL Õ !HX, XL.  We  are  looking  for  evolutions  xH ÿ L  gov-
erned by the differential inclusion satisfying the constraints on the dif-
ferential connection tensors 

(12)" t ¥ 0, D xHtL! D xHtL œ CHt, xHtLL.
This  is  a  problem  analogous  to  the  search  of  the  slow  evolutions

governed  by  control  systems  (solutions  governed  by  controls  of  the
regulation map with minimal norm): see [24] or [12, Theorem 6.6.3,
p. 229]. 

We  follow  the  same  strategy  by  introducing  the  set-valued  map
SKHt, x, vL defined by 

(13)GIt, x, vM := 9w œ FHt, xL such that v ! w œ CHt, xL=.
Theorem  3.  We  assume  that  F  is  Marchaud,  that  the  tube  KH ÿ L  is
closed, and that 

(14)

HiL the graph of Ht, xL CHt, xL Õ
!HX, XL is closed and its images are convex

(ii) " Ht, xL œ GraphHKL, " v œ D KHt, xL,
$ w œ FHt, xL › D KHt, xL such that v ! w œ CHt, xL.
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For  any  t0,  for  any  x0 œ KHt0L,  for  any  v0 œ D KHt0, x0L,  there
exists at least an evolution xH ÿ L governed by the differential inclusion
x£HtL œ FHt, xHtLL  starting  at  x0  viable  in  the  tube  KH ÿ L  such  that

v0 ! D xHt0L œ CHt0, x0L and satisfying the differential connection ten-
sor constraints 

(15)" t ¥ t0, D xHtL! D xHtL œ CHt, xHtLL
and the retrospective-prospective viability property

(16)" t ¥ t0, D xHtL! D xHtL œ D KHt, x HtLL! D KHt, xHtLL.
Proof.  The set-valued map G  satisfies  the assumptions of  Theorem 1
in  such  a  way  that  there  exists  one  evolution  xH ÿ L  governed  by

D xHtL œ GJt, xHtL, D xHtLN  viable  in  the  tube  KH ÿ L.  Therefore,

D xHtL œ D KHt, xHtLL for all t ¥ t0. Consequently, 

(17)D xHtL! D xHtL œ CHt, xHtLL,
and since the evolution is viable in the tube KH ÿ L, that

D xHtL œ D KHt, x HtLL and D xHtL œ D KHt, xHtLL.
The theorem ensues. ·

For instance, we can choose 

(18)C It, x, vM := v such that sup
wœF Ht,xL supHi,jL viIvj - wjM § 0 .

In other words, the entries vi vj minimize the entries vi wj of the dif-

ferential connection tensors when the velocities w œ FHt, xL. 
[25,  Proposition  6.5.4,  p.  226]  implies  that  the  connection  con-

straint  map  has  a  closed  graph  and  convex  values  whenever  the  set-
valued map F is lower semicontinuous with convex compact images. 

We could just as well require that the entries of the differential con-

nection  tensor  maximize  the  entries  v
`
i vj

`
 and  minimize  the  entries

vi wj  of  the  differential  connection  tensors  when  the  velocities

w œ FHt, xL range over the right-hand side of the differential inclusion.

Or  require  that,  for  some  pairs  Hi, jL,  the  entries  vi

`
vj

`
 minimize  vi wj

and for  the  other  pairs,  that  they  maximize  vi wj  when the  velocities

w œ FHt, xL range over the right-hand side. 
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4. Detecting Extrema and Measuring Their Jerkiness

The  question  arises  whether  it  is  possible  to  detect  the  connection
dates when the monotonicity of one evolution of a finite family of evo-
lutions is followed by the reverse (opposite) monotonicity of other evo-
lutions,  in  order  to  detect  the  influence  of  each  evolution  on  the  dy-
namic behavior of other evolutions. When the two evolutions are the
same, we obtain their reversal dates when the evolutions achieve their
extrema. The differential connection tensor measures the jerkiness be-
tween two functions, smooth or not smooth (temporal series) provid-
ing the trend reversal dates of the differential connection tensor.

The  differential  connection  matrix  plays  for  evolutions  (and  dis-
crete time series) a dynamic role analogous to the static role played by
the covariance matrix of a family of random variables measuring the
covariance  entries  between  two  random coefficients.  Covariance  ma-
trices deal with random variables. Differential connection tensors deal
with  temporal  series  or  continuous-time  evolutions.  They  are  there-
fore different and cannot be compared, since they deal  with different
mathematical universes.  This study is devoted to evolutions governed
by differential inclusions. 

In  other  words,  we replace  in  our  analysis  the  dependence  of  ran-
dom variables  on random events  by the dependence of  evolutions on
time. 

The  differential  connection  tensor  software  provides  at  each  date
the coefficients of the differential connection tensor. 

For instance, for individual evolutions, the trendometer detects the
local extrema of numerical functions (Figure 1). 

For  the  sake  of  comparison  with  the  example  of  [26],  we  display
the  trendometer  applied  to  this  function  on  the  interval  @0, 250D
(Figure 2). 

HaL
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HbL
Figure 1. The trendometer  can be  applied to  detect  and measure  the  strength
of  minima  and  maxima  of  differentiable  functions,  such  as  the  sum

t œ @0, 75D # sinHxL + sinJ 2 xN + sinJ 3 xN  of  three  trigonometric  func-

tions,  as  suggested  in  [26,  p.  146],  displaying  two  regularly  spaced  families.
They  thus  detect  the  zeros  of  its  derivative  t # cosHxL +

2 cosJ 2 xN + 3 cosJ 3 xN.  (a) Displays the graph of this function and

the vertical bars indicate the values at which the function reaches its extrema.
(b) Displays the jerkiness of the extrema at the dates when they are reached.

HaL

HbL
Figure 2.  
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Figure  3  displays  the  abscissa  and  ordinates  of  the  function  in
terms of decreasing jerkiness of their extrema. 

By using a piecewise interpolation between the extrema, we obtain
a “trend skeleton” summarizing the function (Figure 4). 

Stephen  Wolfram  states  [26]:  “Among  all  the  mathematical  func-
tions  defined,  say,  in  Mathematica,  it  turns  out  that  there  are  also  a
few—not traditionally common in natural sciences—which yield com-
plex curves which do not appear to have any explicit  dependence on
representations  of  individual  numbers.”  This  complexity,  such  as
chaos  produced  by  iterated  maps,  is  linked  to  the  fact  that  viability
kernels  of  compact  spaces  under  disconnecting  maps  (inverses  of
Hutchinson  maps)  are  uncountable  Cantor  sets  (see  [7,  Theo-
rem!2.9.10, p. 80]). 

HaL

HbL
Figure 3.  
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Figure 4.  

The trendometer provides us a “trend reversal” of the Fermat rule.
Instead of using the zeros of the derivative for finding all the local ex-
trema  of  any  numerical  function  of  one  variable,  the  extrema  of  the
primitive  of  a  function  detected  by  the  trendometer  allow  us  to  find
the zeros of the function. 

5. Applications of the Trendometer to Time Series

Since  we  can  define  the  retrospective  and  prospective  derivatives  of
tubes, and thus, of evolutions, we do not need to assume that the evo-
lutions depend upon continuous time, but on discrete time: the evolu-
tions  become (discrete)  time series,  discussed  in  the  “technical  analy-
sis” of economic and financial time series.

As an illustration,  we use the tensor trendometer  for  detecting the
dynamic correlations between (see [23]): 

1. the two time series of prices and volumes of wheat

2. the 40 price series of the CAC 40 from 1990 to 2013

5.1 Differential Connection Matrix between Prices and Volumes
We describe the results obtained when we consider only two series for
displaying meaningful figures.

The  entry  of  the  first  row and  the  first  column  is  the  jerkiness  of
the  trend  reversal  of  the  price;  the  first  row and  second  column,  the
monotonicity  jerkiness  between  price  and  volume;  the  second  row
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and  first  column,  the  monotonicity  jerkiness  volume  and  price;  and
the second row and second column, the jerkiness of the trend reversal
of the volume. 

The selected series  (Figure  5)  are  those  of  an asset  price  and daily
volume,  which  is  the  number  of  units  of  commodities,  or  of  shares
traded of commodities, or securities exchanged during a daily session
(not to be confused with the value of their transactions). The volume
is  believed  to  be  an  important  activity  indicator  because  it  measures
the interest of investors. 

Figure 5. This  figure  displays  the  series  of  “settlement  prices”  of  wheat  and
the volume of exchanges on the London Commodity Market from December
19, 2004 to April 4, 2005 around the date of January 10, 2005, when an im-
portant  discontinuity  of  the  volume  happened  (from  7534  to  12842  units).
The number of dates is reduced for the visibility of this graphical representa-
tion of the series of differential connection tensors. 

At each date, the connection tensor displays the jerkiness measures
among  and  between  the  two  series.  For  instance,  on  December  7,
2004, three weeks before the big discontinuity, all four coefficients of
the differential connection tensor are different from zero:

(19)
0, 39 33

1, 80 153
.
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At  the  discontinuity  date,  a  small  decrease  of  prices  was  followed
by a large increase in volume, as indicated by the differential connec-
tion: 

(20)
0, 2 0

2654 0
.

Figure 6 displays the dates at which at least the monotonicity of a
series is followed by the reversal of itself and/or another series.

Figure 6. In order to represent the detection of the different entries of the dif-
ferential  connection tensor  between the  price  and volume series  at  each date
of  the  temporal  window,  we  indicate  by  vertical  bars  between  0  and  1  the
trend reversal  dates  of  the  price  series  and by  vertical  bars  between 0  and 4
the  trend  reversal  dates  of  the  volume  series,  which  occupy  the  diagonal  of
the  differential  connection  tensor.  The  vertical  bars  between  0  and  2  detect
the  dates  when  the  monotonicity  behavior  of  the  price  precedes  the  mono-
tonicity behavior of the volume, whereas vertical bars between 0 and 3 detect
the  dates  when  the  monotonicity  behavior  of  the  volume  is  followed  by  the
monotonicity behavior of the price.

A statistical study over the period from 05/01/2000 to 30/09/2013
shows the proportions between the following dates: 

1. trend reversal dates of the price series: 26% 

2. trend reversal dates between price and volume series: 24% 

3. trend reversal dates between volume and price series: 22% 

4. trend reversal dates of the price series: 28% 
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5.2 Explaining the 2000 and 2008 Financial Crisis with the 
Trendometer

In this section we analyze the 40 prices of the CAC 40 index and the
trendometer providing dynamic correlations between these prices. For
instance, on August 6, 2010, the prices are displayed in Figure 7. 

Figure 7.  

At  each date,  it  provides the 40ä40 matrix displaying the qualita-
tive jerkiness for each pair of series when the trend of the first one is
followed  by  the  opposite  trend  of  the  second  one.  Figure  8  provides
the first 10ä10 jerkiness entries, for the sake of readability. 

Figure 8.  

The diagonal  entries  detect  the trend reversal  of  each temporal  se-
ries. 

In  order  to  analyze  further  the  evolutionary  behavior  of  the
CAC!40, we present the analysis of the CAC 40 index only, but over
the period from 03/01, 1990 to 09/25, 2013. Figure 9 displays the se-
ries of the CAC 40 indexes (closing prices). The vertical bars indicate
the reversal dates, and their height displays their jerkiness. 
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Figure 9.  

The  2000  internet  crisis  (around  May  4,  2000)  and  the  2008
“subprime”  crisis  (around  October  10,  2008)  are  detected  and  mea-
sured by the trendometer (Figure 10). 

HaL
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Figure 10.  

Figure 11 displays the velocities of the jerkiness between two consec-
utive trend reversal dates,  a ratio involving the variation of the jerki-
ness and the duration of the congruence period (bull and bear). 

Figure 11.  
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Figure  12  displays  the  classification  of  trend  speeds  and  absolute
value of the accelerations by decreasing jerkiness. 

HaL

HbL
Figure 12.  

The analysis of this series shows that often the jerkiness at minima
(bear  periods)  is  higher  than  the  ones  at  maxima  (bull  periods).  For
the CAC 40, the proportion of “bear jerkiness” (57%) is higher than
“bull  jerkiness”  (43%).  A possible  explanation  is  a  mimetic  one:  the
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fear  of  bear  periods  propagates  and  amplifies  selling  of  shares,
whereas investors may wait to regain confidence in bull phases. 

Table  1  provides  the  first  dates  by  decreasing  jerkiness.  The  most
violent are those of the subprime crisis (in bold), then the ones of the
year 2006, and next, the dates of the internet crisis (in italics). 

Remark 1. The trendometer has no predictive power, but is an attempt
to  analyze  the  past.  For  predictions,  the  VIMADES Extrapolator  has
been developed for forecasting temporal series. This extrapolator is a
discrete version of historical differential inclusion (or functional, path-
dependent,  etc.),  which  depends  on  the  history  of  the  evolution  and
its derivatives, and not only on the past evolution (see [9–11] summa-
rized  in  [12,  13]).  For  instance,  the  velocity  at  each  instant  depends
also  on  the  velocity,  acceleration,  and  jerk  of  the  past  evolution  for
taking into account its trends. In the absence of a consensual criterion
for comparing different forecasting mechanisms, there is no claim that
this  extrapolator  provides  better  or  worse  results  than  other  ones.  It
has been used in economics and finance whenever the future has to be
taken into account (see [23, 27]). 

6. Open Problems: Differential Connection Tensors of Maps

The  core  of  this  study  was  the  study  of  connection  tensors  of  evolu-
tions, that is, maps from ! to !n. But the concept of differential con-
nection tensors can be extended to maps, single-valued or set-valued,
from !p  to  !n.  They may be  useful  for  investigating  other  problems
using these maps.

6.1 Prospective and Retrospective Derivatives of Set-Valued Maps
We summarize the concept of graphical derivatives.

Definition  3.  Consider  a  set-valued  map  F : X Y  from a  finite-dimen-
sional  vector  space X  to  another  one,  Y.  Let  Hx, yL œ GraphHFL  be  an
element of its graph. We denote in this study by 

1. retrospective  derivative  D FHx, yL : X Y  associating  with  any  direction
u œ X the set of elements v œ Y satisfying 

(21)lim inf
h#0+,uh#u

d v,
y - FHx - h uhL

h
# 0

2. prospective  derivative  D FHx, yL : X Y  associating  with  any  direction
u œ X the set of elements v œ Y satisfying 

(22)lim inf
h#0+,uh#u

d v,
FHx + h uhL - y

h
# 0.
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Date Jerkiness Date Jerkiness Date Jerkiness 
10/10/2008 94507,21 03/01/2001 15153,31 17/02/2000 10025,57 
23/01/2008 57315,90 11/09/2002 15111,43 28/10/2002 9962,69 
07/05/2010 53585,50 10/03/2000 15055,45 01/09/1998 9917,22 
05/12/2008 44927,23 10/08/2011 15011,24 15/02/2008 9905,51 
03/10/2008 43319,41 27/08/2002 14958,41 19/04/1999 9887,67 
19/09/2008 37200,13 22/11/2000 14768,91 26/10/2001 9556,17 
05/04/2000 34609,80 03/04/2000 14280,35 29/06/2000 9470,44 
21/01/2008 34130,42 03/04/2001 14003,47 25/02/2000 9438,07 
16/10/2008 29794,42 18/07/2002 13813,67 27/03/2001 9436,84 
21/11/2008 28840,69 19/12/2000 13743,01 15/05/2000 9411,84 
04/12/2000 27861,03 12/03/2003 13707,93 04/10/2011 9409,14 
12/11/2001 26039,07 12/09/2008 13682,85 17/01/2000 9398,39 
22/03/2001 25128,11 01/12/2008 13207,66 11/08/1998 9320,83 
27/04/2000 24577,70 29/10/1997 13085,95 20/11/2007 9291,91 
17/03/2008 24416,22 04/03/2009 12845,84 05/10/1998 9277,96 
14/10/2008 24007,60 14/03/2007 12801,09 29/07/1999 9253,97 
05/08/2002 22021,61 24/06/2002 12658,98 04/12/2007 9200,48 
14/09/2001 21658,15 02/08/2012 12628,14 04/02/2000 9093,25 
10/08/2007 21252,50 24/05/2000 12456,94 02/10/2002 8959,94 
13/11/2000 20662,32 10/05/2000 12411,27 13/09/2000 8897,37 
22/01/2008 20184,96 28/07/2000 12145,83 10/05/2010 8877,39 
14/08/2002 20052,16 23/02/2001 11960,59 30/09/2002 8845,61 
28/10/1997 19720,61 04/11/2008 11904,50 04/11/1998 8843,75 
14/06/2002 19114,56 08/06/2006 11773,65 09/08/2011 8833,20 
06/11/2008 18900,51 30/10/2001 11733,86 11/06/2002 8832,22 
03/08/2000 18621,37 15/10/2001 11630,50 07/07/2000 8797,60 
29/10/2002 18550,19 24/03/2003 11294,44 16/01/2001 8778,74 
08/10/1998 18307,12 15/03/2000 11232,52 27/04/1998 8721,52 
02/05/2000 18087,38 17/09/2007 10948,51 19/02/2008 8327,20 
21/09/2001 17771,78 13/08/2007 10933,30 20/11/2000 8299,90 
11/09/2001 17660,69 25/10/2001 10809,42 03/07/2002 8289,95 
16/08/2007 17398,86 02/10/2008 10720,31 28/06/2000 8258,67 
16/05/2000 17228,62 23/10/2002 10675,86 28/06/2010 8137,05 
04/04/2000 16958,95 25/08/1998 10673,02 31/01/2000 8093,58 
18/10/2000 16761,07 30/03/2009 10672,64 21/11/2000 8074,23 
29/09/2008 16502,34 24/01/2008 10352,96 28/01/2009 8049,26 
08/08/2007 16048,09 20/03/2001 10294,67 26/02/2007 8038,76 
21/03/2003 15703,11 14/12/2001 10253,40 31/01/2001 8033,95 
18/09/2008 15506,17 31/07/2007 10134,80 26/11/2002 7933,90 
22/05/2006 15470,19 26/04/2000 10093,65 08/08/2011 7821,87 
05/09/2008 15406,87 02/09/1999 10080,12 18/05/2010 7793,80 

Table 1.  

The  retrospective  and  prospective  difference  quotients  of  F  atHx, yL œ GraphHFL are defined by 

“h FHx, yL HuL :=
y - FIx - h uM

h
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and

“h FHx, yL HuL :=
FIx + h uM - y

h
.

Whenever  the  set-valued  map  F  is  Lipschitz,  the  retrospective  and
prospective  difference  quotients  are  bounded,  and  thus,  a  relatively
compact set, since the dimension of the vector spaces is finite. In this
case, the derivatives are not empty.

We can reformulate the definition of the (contingent) derivative by
saying that it is the upper Painlevé–Kuratowski limit of the difference
quotients, 

(23)" u, D FHx, yL HuL " Limsup
h#0+,uhØu

“h FHx, yL HuhL;
that is, the retrospective (resp. prospective) derivatives are the limits v

of vh œ “h FHx, yL HuhL (resp. of i.e., the limits of vh œ “h FHx, yL HuhL).
Taking  the  tensor  product  of  both  the  retrospective  and  prospec-

tive derivatives allows us to define the differential connection matrix.

Definition 4. The differential connection tensor aFHx, yL AIu, uM, Iv, vME of

retrospective  and  prospective  derivatives  of  F  at  Hx, yL œ GraphHFL  is
defined by 

(24)
" Iu, uM, v œ D FHx, yL HuL, v œ D FHx, yL HuL,
aFHx, yL AIu, uM, Iv, vME := v ! v.

Remark 2. A normalized version of the differential connectionist tensor
is defined by 

(25)

" Iu, uM, v œ D FHx, yL HuL, v œ D FHx, yL HuL,
aFHx, yL AIu, uM, Iv, vME :=

v ! v

!v ¥ ! v¥ .

The  normalized  version  is  not  that  useful  whenever  we  are  inter-
ested in the signs of the entries of the connection matrix.

Remark  3.  The prospective  difference  quotient  “h FHx, yL HuL  and retro-

spective difference quotient “h FHx, yL HuL define their second-order dif-
ference quotients 
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(26)

“2 FHx, yL Iu, uM :=
“h FHx, yL HuL - “h FHx, yL HuL

h
"

FIx + h uM + FIx - h uM - 2 y

h2
.

The  Painlevé–Kuratowski  upper  limit  of  “2 FHx, yL Iu, uM  defines  the
retrospective-prospective  second-order  graphical  derivative  of  F  atHx, yL œ GraphHFL by:

(27)
D2 FHx, yL Iu, uM :=

Limsup
h#0+,uhØu,uhØu

“2 FHx, yL Iuh, uhM.
The  differential  connectionist  tensor  replaces  the  difference  between
the retrospective and prospective derivatives by their tensor products.
We refer to [25, Section 5.6,  p.  315] for other approaches of higher-
order graphical derivatives to set-valued maps.

Remark  4.  In  1884,  Giuseppe  Peano  proved  in  [28]  that  continuous
derivatives are the limits 

lim
hØ0

xHt + hL - xHt - hL
2 h

"
1

2

lim
hØ0+

xHtL - xHt - hL
h

+ lim
hØ0

xHt + hL - xHtL
h

of both the retrospective and prospective average velocities (difference
quotients) at time t. We follow his suggestion by taking the average of

the prospective difference quotient “h FHx, yL HuL and retrospective dif-

ference quotient “h FHx, yL HuL 
(28)

“2 h FHx, yL HuL + “h FHx, yL HuL
2 h

,

and taking their Painlevé–Kuratowski limits

(29)
Limsup

h#0+,uhØu
“h FHx, yL HuhL +

Limsup
h#0+,uhØu

“h FHx, yL HuhL
in  order  to  define  Peano  graphical  derivatives  of  F  at  Hx, yL œ
GraphHFL depending on pairs Iu, uM of directions.
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6.2 Differential Connections Tensors of Numerical Functions
When  V : x œ X # VHxL œ 8-¶< ‹!‹ 8+¶<  is  an  extended  numeri-
cal function on !,  it  can also be regarded as a set-valued map (again
denoted by) V : X ! defined by

(30)VHxL :=
8VHxL< if VHxL œ ! Hi.e., x œ Dom HVLL
« if not.

A slight modification of [25, Theorem 6.1.6, p. 230] states that 

(31)
D VHxL HuL " BDÆ VHxL HuL, D! VHxL HuLF
D VHxL HuL " BDÆ VHxL HuL, D! VHxL HuLF

where

(32)

DÆ VHxL HuL :=

lim inf
hØ0+

VIx + h uM - VHxL
h

Hepiderivative of VL
D! VHxL HuL :=

lim sup
hØ0+

VIx + h uM - VHxL
h

Hhypoderivative of VL

DÆ VHxL HuL := lim inf
hØ0+

VHxL - VIx - h uM
h

" -D! VHxL I-uM
D! VHxL HuL := lim sup

hØ0+

VHxL - VIx - h uM
h

" -DÆ VHxL I-uM.
Definition 4 implies that 

(33)
" Iu, uM, v œ D VHxL HuL, v œ D VHxL HuL,
aV Hx, yL AIu, uM, Iv, vME := v v

since  tensor  products  of  real  numbers  boil  down  to  their
multiplication.

Therefore,  for any pair  Iu, uM,  the subset  of  differential  connection
tensors of retrospective and prospective directions is equal to 

(34)
D VHxL HuL! D VHxL HuL :=

9v v=Iv,vMœBDÆ VHxL HuL,D! VHxL HuLFäBDÆ VHxL HuL,D! VHxL HuLF.
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Definition 5. A pair Iu, uM of directions u œ X and u œ X is a reversal di-
rection pair of V at x œ DomHVL if 

(35)DÆHxL HuLDÆHxL HuL " D!HxL I-uMD! VHxL I-uM < 0.

A direction  u œ X  is  a  reversal  direction  of  V  at  x  if  the  diagonal
pair Hu, uL is a reversal direction pair. 

This  means  that  a  positive  (resp.  negative)  retrospective  epideriva-

tive of V  at x in the direction u is followed by a negative (resp. posi-

tive)  prospective  epiderivative  in  the  direction u,  or  respectively,  that
a positive (resp. negative) retrospective hypoderivative in the direction

-u  is  followed  by  a  negative  (resp.  positive)  prospective  hypoderiva-

tive in the direction -u. 

Recall  that  if  V  achieves  a  local  minimum  at  x,  the  Fermat  rule
states that 

(36)" u œ X, DÆ VHxL HuL ¥ 0 and " u œ X, D! VHxL HuL § 0,

and if it achieves a local maximum at x, that

(37)" u œ X, D! VHxL HuL § 0 and " u œ X, DÆ VHxL HuL ¥ 0.

These conditions are not sufficient for characterizing local extrema:
convexity  or  many  second-order  conditions  provide  sufficient  condi-
tions. 

Recall  that  the prospective epidifferential  (or  prospective epidiffer-

ential  subdifferential)  #ÆVHxL  of  a  function  V  at  x  is  the  set  of  ele-

ments  pÆ œ X¯  such  that  for  any  v œ X,  ZpÆ, v^ § DÆ VHxL HvL.  In  the

same way, we define the retrospective epidifferential (or retrospective

epidifferential  subdifferential)  #ÆVHxL  of  a  function  V  at  x  as  the  set

of elements pÆ œ X¯  such that for any v œ X, ZpÆ, v^ § DÆ VHxL HvL. It
is  equal  to  prospective  hypodifferential  (or  prospective  superdifferen-

tial)  #!VHxL,  the  set  of  elements  p! œ X¯  such  that  for  any  v œ X,

Zp!, v^ ¥ D! VHxL HvL. 
6.3 Tangential Connection Tensors

The tangent spaces to differentiable manifolds being vector spaces, di-
rections arriving at a point (we may call them retrospective) and direc-
tions starting from this point (prospective)  belong to the same vector
space. This is no longer the case when the subset is any (closed) subset
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p     g        y  

K Õ X  of  a  finite-dimensional  vector  space  X.  However,  we  may  re-
place vector spaces by cones.

We are indebted to the historical studies [29] (in which the authors
quote Maurice Fréchet stating that “Cette théorie des “contingents et
paratingents” dont l’utilité a été signalée d’abord par M. Beppo Levi,
puis  par  M.  Severi,  mais  dont  on  doit  à  M.  Bouligand  et  ses  élèves
d’en avoir entrepris l’étude systématique.”) and [30].  Since Francesco
Severi  and  Georges  Bouligand,  a  whole  menagerie  of  tangent  cones,
the definitions of which depend upon the limiting process,  have been
proposed (among many monographs, see [25] and [31], for instance).
At some points, the tangent cones are not vector spaces, and the oppo-
site of some tangent directions may no longer be tangent. 

We suggest regarding the (contingent) tangent cone as the prospec-
tive  tangent  cone  to  K  at  x œ K  defined  by  the  Painlevé–Kuratowski
upper limits 

(38)

TKHxL := Limsuph#0+

K - x

h
:=

v œ X such that lim inf
h#0+

dKIx + h vM
h

" 0 ,

with which we associate the retrospective tangent cone (backward evo-
lutions  and  negative  tangents  have  been  introduced  in  [32,  33]  for
characterizing  lower  semicontinuous  (viscosity)  solutions  to  Hamil-
ton–Jacobi–Bellman equations)

(39)

TKHxL := Limsuph#0+

x - K

h
:=

v œ X such that lim inf
h#0+

dKIx - h vM
h

" 0

satisfying TKHxL := -TKHxL. It is natural to consider their tensor prod-

uct Ix - h vM! Ix + h vM. The signs of its entries detect the “blunt” and
“sharp” elements  of  the  boundary  in  the  same directions  (trend con-
gruence) or in opposite directions (trend reversal).

6.4 Toward Cellular Automata
Can connections between differential inclusions and cellular automata
be made?

Rules  in  cellular  automata  are  indeed  discrete  dynamical  systems,
specifying the successor of any given state, and its inverse provides the
states  of  its  preceding states  (it  may be set-valued).  The (topological)
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   p g   y     p g
vector space structure, as well as the “mutational structure” of metric
spaces (see for instance [34, 35]),  allows not only defining successors
of a state (flows or semi-groups), but also comparing the state and its
successor  through  the  concept  of  (average)  velocity.  Hence,  differen-
tial  equations  provide semi-groups;  the  converse  being true under  se-
vere assumptions (linear or monotone infinitesimal generators,  which
can be extended to mutational spaces). 

Since the concept of velocity is missing in cellular automata (to our
knowledge), it is difficult to “transfer” the ideas of this study that use
retrospective  and  prospective  velocities  for  defining  retrospective-
prospective  differential  inclusions:  they  provide  systems  with  history
xn+1 " f Hxn, xn-1L.  The concept of differential  connection tensors re-
quires the vector space structure and tensorial algebra. 

The question boils down to the definition of velocities in cellular au-
tomata,  that  is,  a  way  to  compare  and  measure  pairs  Hxn-1, xnL  of
two  successive  states  of  an  evolution  independently  of  any  rule
(velocities  do  that)  and  to  define  order  relations  on  “velocity”  pairs
for defining monotonic behavior and trend reversals. 

Can we define velocities in cellular automata? As far as the authors
know, this question remains open. 
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