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Small-world  networks  permeate  modern  society.  In  this  paper  we  pre-
sent  a  methodology  for  creating  and  analyzing  a  practically  limitless
number  of  networks  exhibiting  small-world  network  properties.  More
precisely, we analyze networks whose nodes are Facebook groups shar-
ing  a  common  word  in  the  group  name  and  whose  links  are  mutual
members in any two groups. By analyzing several numerical characteris-
tics  of  single  networks  and  network  aggregations,  we  investigate  how
the small-world properties  scale  with a coarsening of  the network.  We
show  that  Facebook  group  networks  have  small  average  path  lengths
and large  clustering  coefficients  that  do not  vanish  with  increased net-
work  size,  thus  exhibiting  small-world  features.  The  degree  distribu-
tions cannot be characterized completely by a power law, and the clus-
tering coefficients are significantly larger than what would be expected
for  random  networks,  while  the  average  shortest  paths  have  consis-
tently  small  values  characteristic  of  random graphs.  At  the  same  time,
the average connectivity increases as a power of the network size, while
the  average  clustering  coefficients  and average  path  lengths  do not  ex-
hibit a clear scaling with the size of the network. Our results are some-
what  similar  to  what  has  been  found  in  previous  studies  of  the  net-
works of individual Facebook users. 

1. Introduction

In the past few years there has been a great interest in studying the ba-
sic  topology  of  a  variety  of  networks  such  as  the  World  Wide  Web
[1], signal transduction networks [2], subway systems [3], railway net-
works  [4],  and  more  recently,  Facebook  [5,  6].  These  efforts  have
seen the emergence of a very specific type of network, the small-world
network,  in  which  most  nodes  are  not  neighbors  of  one  another  but
can  be  reached  in  a  small  number  of  steps.  The  concept  of  a  small
world made its way into the realm of academia via the work of the so-
cial  psychologist  Stanley  Milgram  [7,  8].  Physicists  entered  the  fray
with  the  development  of  the  aptly  named  Watts–Strogatz  network
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model  [9],  which  replaced  the  previously  uncontested  random  graph
model  of  Erd!s  and  Rényi  [10].  In  the  Erd!s–Rényi  model,  the  links
between  nodes  are  generated  independently  with  the  same  probabil-
ity. The Watts–Strogatz model starts with a ring lattice, and each link
is rewired with a given probability p. If p ! 1, the Erd!s–Rényi model
is obtained, while p ! 0 yields the ring lattice. Watts and Strogatz con-
sidered two numerical characteristics associated with the network: the
characteristic  path  length  and  the  clustering  coefficient  [9].  They
showed that for very small values of p and for large enough values of
p,  the two numerical  characteristics  tend to have similar  magnitudes.
However, for intermediate values of p, the two numerical characteris-
tics  tend  to  be  at  opposite  ends  of  their  range,  @0, 1D,  namely  small
characteristic path length and large clustering coefficient. That behav-
ior  corresponds  to  small-world  networks.  More  recently,  Serra  et  al.
[11] introduced the equal number of links algorithm to generate small-
world networks starting from a regular lattice,  by randomly rewiring
some connections. That study aimed at analyzing the dynamics of in-
teracting  oscillators  or  automata.  It  was  found  that  key  dynamical
properties  (i.e.,  number of  attractors,  size  of  basins of  attraction) are
modified by rewiring;  for  example,  there is  a  decrease in the number
of attractors that are reached. On the other hand, Aguirre et  al.  [12]
described  an  algorithm  for  generating  a  small-world  graph  with  a
higher  number  of  biconnected  components  than  lattices  have,  which
is  useful  for  modeling hierarchical  multi-agent  networks  or  the  inter-
net.  It  was  shown  that  these  kinds  of  networks  present  a  slower
descent in their characteristic path length; however, no significant dif-
ference was observed in the clustering coefficient behavior in compari-
son to a ring-lattice approach.

The applications of these models are all around us: the neural net-
works  in  our  brains,  the  ecosystems of  rain  forests,  the  future  of  the
stock market, the dynamics of epidemics, and the internet, to name a
few. For example, in a study by Barabási, Albert, and Hawoong [1], it
was  found that  the  World  Wide  Web is  in  fact  a  scale-free  network;
that  is,  the  connectivity  has  a  power-law  distribution  with  a  heavy
tail.  Later  studies  would find that  several  small-world networks have
scale-free  topologies.  In  [13]  Albert  and  Barabási  provide  a  compre-
hensive  treatment  of  networks  and  include  the  parameters  of  many
small-world networks of a diverse variety. Small-world networks have
become  quite  mainstream  with  books  such  as  Watts’  Six  Degrees
[14],  and  Barabási’s  Bursts  [15]  and  Linked  [16].  Latora  and  Mar-
chiori  [3]  made the  leap from theory  to  experiment  by  considering  a
complex network where the nodes are train stations and the edges are
stations connected by track. In their own terminology, they found the
Boston subway to be locally and globally efficient, tantamount to be-
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ing  a  small-world  network.  The  Indian  railway  network  was  also
found to exhibit small-world properties by Sen et al. [4].

This paper is concerned with characterizing real-world examples of
the  small-world  network phenomenon,  starting  with  features  such as
clustering,  degree  distribution,  or  average  path  length  for  one  of  the
most  expansive  networks:  Facebook.  Previous  analysis  of  Facebook
has  focused  on  individuals  [5,  6].  The  work  in  [5]  confirms  “six  de-
grees of separation” to be present in the Facebook graph, along with
high  local  clustering.  That  is,  Facebook,  at  the  level  of  individual
users,  seems to be a small-world network, and the degrees of separa-
tion would later  be reduced to four [6].  We supplement the previous
research by focusing on groups rather than individuals. There is much
to  be  learned  about  networks  by  studying  expansive  social  networks
such as Facebook, but small-world properties have been seen and ana-
lyzed in networks with as few as 43 nodes [17]. We are interested in
understanding the impact of aggregation of individuals into groups on
the main statistics of the network. It has been noted that the nature of
small-world graphs makes it difficult for many coarsening approaches
to retain the relevant properties of the original graph [18]. In order to
be able to perform a comparison with the previous results in the litera-
ture,  we  use  similar  topology  statistics  [13,  19]  and  information  on
connectivity  or  degree  distribution,  clustering  coefficients,  average
shortest  paths,  and  network  density.  We  use  the  average  shortest
paths  and  clustering  coefficients  to  characterize  small-world  net-
works, as is done in [9, 17]. In this regard, we create several networks
composed of Facebook groups with a common keyword in their titles
and  compare  the  parameters  of  each  to  find  common  characteristics
and observe how they change with other parameters such as, but not
limited  to,  the  number  of  nodes,  graph  density,  and  degree  distribu-
tion.  We  compare  our  results  to  the  corresponding  ones  for  random
networks or other Facebook studies. We show that an aggregation of
Facebook  users  into  groups  and  of  groups  into  further  smaller  cate-
gories of groups does not change the basic small-world features. Thus
Facebook  exhibits  a  scaling  invariance  of  properties.  At  the  same
time, we note some differences between networks representing differ-
ent interests, such as politics versus sports. 

Basically,  in  this  paper  we  generate  a  coarsening  of  the  Facebook
network by classes of personal interests of Facebook users based on a
number  of  keywords  for  each  area  of  interest  under  consideration.
The links  are  generated by individuals  common to different  keyword
groups. This type of coarsening is shown to preserve small-world fea-
tures that have been noted in [5,  6] at the Facebook user level.  Simi-
larly  to  [5],  we show that  a  strict  power law may not  be  the  best  fit
for the degree distribution of the Facebook network. Thus, this prop-
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erty is also preserved by the coarsening of the network. We show that
the average connectivity increases as a power of the network size with
approximation,  while  the  average  clustering  coefficients  and  average
path lengths do not exhibit  a clear scaling with the number of nodes
of the network. 

There  are  two complementary  elements  to  this  paper:  the  descrip-
tion of  the  social  network under  consideration and the mathematical
network analysis. Although the first element will be described in suffi-
cient detail, the main focus is the mathematical analysis. 

The organization of this paper is as follows. Section 2 lays the foun-
dation for the mathematics needed for analysis. Section 3 describes in
detail  how  we  create  our  networks  from  the  data  pulled  from  Face-
book.  We present  the  results  of  our  analysis,  including  visualizations
and statistical approaches, in Section 4 and end with conclusions and
ideas for future work in Section 5. 

2. Mathematical Background

In this section we provide a brief overview of the mathematical tools
needed to analyze the networks in this paper. We also review the nu-
merical characteristics of random and small-world networks.

2.1 The Facebook Group Network and Significant
Numerical Measures

Let us denote by G ! 8x1, x2, … , xN< a network with N nodes. Each
node xi  is assumed to be linked to ki œ 80, 1, … N - 1< other nodes in
the network, called its inputs or neighbors. The parameter ki  is called
the connectivity or degree of  node xi.  If  ki ! 0, then the node is  iso-
lated. Here we deal with undirected networks; that is, if node xj  is an

input to node xi, then xi is an input to xj. G can be viewed as a graph

with vertices x1, x2, … , xN and edges Ixi, xjM, i, j ! 1, 2, … N.

The actual Facebook network considered in this study is described
as follows. 

Definition 1.  Let  Fw  be  the  set  of  (public)  Facebook  groups  with  the
word w  in  the  group’s  title.  These  groups  represent  the  nodes  of  the
network, and consequently each node xi  is basically the set of people
belonging to that group. Then we can define the set of links/edges be-
tween the nodes of this network as 

Lw ! 9Ixi, xjM œ FwäFw xi › xj ! «, i, j ! 1, 2, … , N, i ! j=.
Furthermore,  two  nodes  xi  and  xj  are  said  to  be  adjacent  nodes  if
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Ixi, xjM œ Lw.  Thus,  we  construct  Gw,  a  network  with  nodes  Fw  and

edges Lw, as defined.

For  example,  if  w ! food,  then  we  consider  all  the  groups  that
have  the  word food in  their  title.  Two possible  group titles  could  be
“Food and  wine”  and  “All  about  food.”  These  would  be  two nodes
in the network. If they share common members, then there is an edge
between them. The main reason for constructing such networks is  to
be  able  to  identify  possible  commonalities  as  well  as  differences  be-
tween the structure and properties of networks that are all social, but
represent  different  types  of  personalities  and interests.  We would  ex-
pect to see some impact of the type of common interest of the groups,
represented  by  the  common  word.  For  instance,  we  find  that  the
w ! bieber (Justin Bieber, Canadian singer-songwriter, musician, pro-
ducer,  and  actor,  born  1994,  http://en.wikipedia.org/wiki/Justin_
Bieber) network is a lot more connected and clustered than, for exam-
ple, the w ! math network, not to mention much, much larger. Often
some  differences  are  intuitive:  the  graph  Fbieber  is  large  and  con-
nected,  while  the  graph  Fbiology  is  almost  nonexistent.  This  is  most

likely due to the different populations represented by the two groups,
as well as the types of personalities and personal interests of the indi-
viduals  belonging  to  these  groups:  some  are  interested  in  being  in  a
music group related to their personal preference for music, others in a
biology group perhaps related to their professional life. The choice of
keyword affects the return drastically, and the resultant graph is sub-
ject  to  various  factors,  both intuitive  and otherwise.  It  is  our  goal  to
analyze the impact of these common interests on the numerical charac-
teristics  of  Facebook  group  networks  in  order  to  decide  if  the  net-
works  possess  small-world  characteristics  and  to  identify  differences
or similarities between groups with possibly unrelated interests, repre-
senting  different  segments  of  the  population  and  different  personali-
ties.  To  this  end,  the  most  common  numerical  characteristics  to  be
analyzed  are  the  degree  distribution,  average  clustering  coefficient,
and associated path lengths of the network [4–6, 9, 13]. We now re-
call their definitions.

Definition 2.  If  k1, k2, … , kN  are  the  connectivity  values  of  the  nodes
x1, x2, … xN,  respectively,  the  connectivity  distribution  is  given  by
the probability distribution function f HxL ! PHki ! xL for any i, where
x œ 81, 2, … N - 1<. 
Definition 3.  The  clustering  coefficient  of  a  node  xi,  denoted  Ci,  is  a
measure of transitivity. That is, it measures how connected the inputs
of a node are. More precisely, if node xi has ki inputs, then there exist
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at  most  1 ê 2 kiHki - 1L  links  between  these  ki  inputs.  Ci  is  defined  as
the  fraction of  the  number  of  the  links  that  actually  exist  in  the  net-
work with respect to the total number of possible links. Then the aver-
age clustering coefficient for a network with N nodes is 

(1)C !
1

N
‚
i!1

N

Ci.

If  k
`

! 8x œ Fw degree HxL ! k<,  where  k œ 81, 2, … , N - 1<,  then  the

average clustering coefficient of nodes with degree k is

(2)CHkL !
1

†k` § ‚xœk
`
Cx, k ! 1, 2, … , N - 1,

where †k` § denotes the cardinality of set k
`
.

Definition 4.  Given  two  nodes  xi  and  xj,  the  shortest  path  connecting

them, li j, is given by the minimal number of links that lead from xi  to

xj  (or vice versa since we are dealing with an undirected network, so

that li j ! lj i). The average path length is 

(3)Xl\ !
1

NHN - 1L ‚i!j

li j.

By  construction,  we  eliminated  nodes  with  k ! 0  (isolated  nodes),
which  means  each  network  is  comprised  of  one  or  more  subgraphs/
subnetworks  where  every  node  in  each  subgraph  has  k ¥ 1.  In  that
case,  the  average  path  length  of  the  network  is  determined  as  the
mean of the average path lengths of each subgraph.  

A  small-world  network  is  characterized  by  the  following  proper-
ties: 

1. The average shortest path length scales with ln N [13].

2. The network exhibits clustering higher than random networks [13, 20].

Based on previous studies [9, 20, 21], these two requirements provide
a  good  metric  for  assessing  real-world  networks  that  exist  between
complete  order  and  randomness.  An  ordered  network  is  basically  a
ring lattice in which the nodes are placed on a circle, and each node is
connected to its k  nearest neighbors. With this idea in mind, we pro-
vide  a  brief  review  of  the  models  for  random  and  small-world
networks.
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2.2 Random Graph Models
A  random  network  is  a  network  in  which  some  specific  parameters,
such  as  the  number  of  edges  or  the  average  connectivity,  take  fixed
values, but the network is random in other respects. There are several
models for generating random graphs, the most common one being to
maintain the number of nodes and edges constant while randomly as-
signing  the  edges  [22].  Arguably  the  most  widely  studied  type  of
model for the construction of a random network is GHN, pL, where N
is the number of nodes of the network, and p is the (fixed) probability
of constructing an edge between any two nodes. These networks have
become  known  as  Erd!s–Rényi  networks  [10],  due  to  the  eminent
works  of  the  namesakes.  The  connectivity  for  GHN, pL  networks  fol-
lows a binomial distribution,

(4)frandHkL ! N - 1
k

pkH1 - pLN-1-k.

The average clustering coefficient is

(5)Crand !
Xk\
N

,

while the average shortest path length scales as follows [13]

(6)lrand ~
ln N

ln Xk\ .

Therefore,  for a GHN, pL  network, as N Ø ¶,  we see that Crand  van-

ishes  and  lrand  scales  as  ln N.  Thus,  property  1  of  small-world  net-
works  is  fulfilled.  However,  despite  the  fact  that  there  is  a  relatively
small path length between any two nodes, the random graphs lack the
inherent  nontrivial  clustering  of  a  small-world  network  described  by
property 2.

2.3 Small-World Network Models
In an effort to capture the transitivity of actual small-world networks
and retain average shortest paths characteristic of random graphs that
scale  with  ln N,  the  Watts–Strogatz  model  was  developed  [9].  More
precisely, starting with a ring lattice, each edge is rewired with proba-
bility  p,  excluding  self-inputs  and  duplicate  edges.  When  there  is  no
chance of  an edge’s  being rewired p ! 0, we obtain an ordered/regu-
lar  network.  It  exhibits  high  clustering,  fulfilling  property  2,  but  has
long  path  lengths,  so  it  is  not  a  small-world  network.  At  p ! 1,  a
Watts–Strogatz  network  is  exactly  a  random  network  and  thus  has
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short path lengths to fulfill property 1 but little to no transitivity, so it
is  not  a  small-world  network.  For  a  significant  range  of  values  of
0 < p < 1,  the  networks  created  with  the  Watts–Strogatz  model  can
fulfill both properties 1 and 2, so they are small-world networks.

The  degree  distribution  for  the  Watts–Strogatz  small-world  model
is Poisson with parameter k p and the clustering coefficient is 

(7)C !
3 Hk - 2L

4 Hk - 1L + 8 k p + 4 k p2
,

while the average shortest path has been shown to scale with ln N just
like random networks [22].

Some small-world networks have been shown to exhibit another in-
teresting property,  along with high clustering and short  path lengths.
Networks such as the internet, collaboration networks, ecological net-
works, cellular networks, citation networks, and the community of ac-
tors exhibit power-law degree distributions [13]. 

Definition 5. A scale-free network obeys a power-law connectivity distri-
bution. That is, the connectivity of a node is determined by a shape pa-
rameter and a scaling factor with the probability distribution function 

(8)f HkL !
k-g

zHgL , k ! 1, 2, … , N,

where  zHgL ! ⁄x!1
N 1 ê xg  is  the  truncated  Riemann  z  function,  also

called  the  scaling  factor.  The  shape  parameter  of  the  distribution  is
g > 0.

For  scale-free  networks,  the  usual  range  is  2 < g § 3,  while
1 < g < 2  is  typical  for  biological  networks  (genes,  proteins,
metabolism, and ecological networks) [13]. 

The power-law distributions exhibit a scale invariance. That is, 

(9)f HbkL !
HbkL-g
zHgL ! HbL-g f HkL,

where  b  is  a  constant.  Because  of  this  property,  such  networks  have
become known as scale-free networks.

In  this  paper  we  generate  many  Facebook  group  networks  and
compute  their  numerical  measures  in  comparison  to  the  values  de-
scribed above for random, small-world, and scale-free networks. With
this  in  mind,  we  proceed  to  our  discussion  of  network  construction
and analysis. 
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3. Network Creation Methodology

Facebook is arguably the most influential social network in human his-
tory [23]. With approximately 900 million users and over 125 billion
friend  connections,  Facebook  is  available  in  more  than  70  languages
(these  numbers  were  available  on  Facebook  in  March  2012)  and  is
larger  than  any  network  before  it,  permeating  every  corner  of  the
globe and every walk of life. Naturally, massive amounts of data facili-
tate  a  quest  for  knowledge  and  meaning.  Several  authors  have  man-
aged  to  analyze  Facebook  as  a  network  whose  nodes  are  individuals
and whose links are friendships [5, 6], identifying small-world proper-
ties. Those papers focus on individual users and analyze snapshots of
the network at a certain point in time, thus focusing on the topologi-
cal aspects of the network. Our work follows a similar approach at a
Facebook  group  level.  Other  authors  have  focused  on  characteristics
of  information  spread  and  information  replication  through  the  Face-
book  network  [24]  at  the  basic  level  of  a  “meme”  (designating  an
idea or message that spreads and evolves analogously through commu-
nication) or in an aggregate fashion, inducing a coarsening of the net-
work.  In  [24]  the  focus  is  on  the  dynamical  evolution  of  the  memes
over  time  and  a  statistical  assessment  of  the  impact  of  mutations  on
the actual messages as they are replicated by users and friends. The au-
thors  use  a  genetic  network  approach.  Although  our  work  does  not
consider  the  dynamical  aspects  of  Facebook,  it  does  provide  a  new
way  of  coarsening  a  Facebook  subnetwork  generated  by  common
group  interests.  Our  approach  is  to  use  “guided  search”  to  find  and
analyze networks created from the latent data of the Facebook social
graph  that  has  interesting  properties,  for  example,  high  clustering  or
short  average  path  length.  The  size  of  Facebook,  combined with  pri-
vacy  restrictions,  poses  a  serious  hindrance  for  attaining  interesting
data characteristic of an actual social  network. In this section we de-
scribe a methodology for analyzing coherent, self-contained Facebook
subnetworks of a tractable size. 

The idea of analyzing Facebook groups is an intuitive continuation
of  the  logic  behind  small-world  networks.  Groups  are  collections  of
people  connected  via  a  common  context,  a  set  of  facts  and  circum-
stances  that  surround  a  situation,  event,  or  concept.  Naturally,  to
move  beyond  a  set  of  isolated  groups,  it  must  be  assumed  that  the
average  person  belongs  to  multiple  groups.  This  is  feasible,  as  not
many  people  would  choose  to  define  themselves  by  a  single  context.
To this end, in order to analyze Facebook groups, we must operate un-
der  a  small  number  of  restrictions.  First,  the  method  for  retrieving
groups of a common context is limited to a search for groups with a
single word in the group’s title. For example, if we decided to form a
network  of  groups  with  “word”  in  the  title,  we  might  have
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Fword ! 8word, Words, I love words, WORD!!!, ...<. Furthermore, we
can  combine  search  results  of  multiple  words  to  create  multiword
networks.  To  develop  multiword  networks  as  networks  defined  by  a
unifying context, we combined words that could define a community,
circle  of  acquaintances,  or  field  of  interest.  For  example,  to  create  a
network  from  the  words  foo  and  bar,  we  might  have  Ffoo ! 8foo,
FOOD!,  foobar?  No  Fools,  FOOBAR!!!,…<  and  Fbar ! 8Bar
Hopping, baristas unite, No Holds Barred!!, FOOBAR!!!, foobar?…<,
from which we could form Ffoobar ! Ffoo ‹ Fbar. 

Recall that two nodes of our group networks are adjacent or linked
if they contain at least one mutual member. This procedure generates
the  edges.  Once  all  the  edges  have  been  added,  the  networks  are
pruned  as  follows  in  order  to  reduce  the  skew of  data:  (1)  all  nodes
with  degree ! 0 (isolated  nodes)  are  removed;  and  (2)  every  node  of

every subgraph with average shortest path length l ! 1 is removed. 
We generate  networks  by using individual  keywords  as  well  as  by

combining multiple keywords to create larger networks with a unify-
ing context for statistical purposes and to understand network growth
and scaling. Not every word renders interesting results, but in general
every network larger than approximately 40 nodes exhibited the same
general degree distribution shapes, low average path lengths Hº2L, and
high clustering, on average about three times the clustering coefficient
for a random graph with the same number of nodes and edges. 

4. Network Visualization and Analysis

This section contains the main results obtained by analyzing the Face-
book group networks. We divide the section into two subsections that
focus on network visualizations and numerical characteristics.

4.1 Network Visualization
In Figures 1 through 9 we start our analysis by providing a visualiza-
tion of several  networks.  In each figure we generate the nodes of  the
network and the links between them. The visualizations are rendered
via  an  implementation  of  the  Fructerman–Reingold  force-directed
algorithm  [25],  which  tends  to  create  highly  clustered  “cores.”  We
also  provide  the  keywords  used  to  generate  the  networks,  as  well  as
the numerical  characteristics:  the  number of  nodes  N,  the  number of
links L, the average connectivity Xk\, the average clustering coefficient
C, and the average path length l. Observe the high density of the links
in the networks anime, bieber, and muslim, for which we also provide
an enlarged view of the core, as opposed to the very sparse army and
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navy networks.  We note as  of  now that  the numerical  characteristics
of  the  anime,  bieber,  and muslim networks  indicate  small-world  net-
work features.

Figure 1. Facebook groups network created from groups with the word anime

in  the  title.  The  numerical  characteristics  are  N ! 276,  L ! 9770,

C ! 0.708, l ! 1.837, Xk\ ! 70.797, indicating short path lengths and a clus-
tering  coefficient  larger  than  the  corresponding  one  for  a  random  network

with similar topological aspects, Crand ! 0.257, lrand ! 1.319. 

Figure 2. An enlarged depiction of the core of Figure 1. 
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Figure 3. Plot  of  bieber  network.  The numerical  characteristics  are  N ! 117,

L ! 1714, C ! 0.646, l ! 1.903, Xk\ ! 29.299, indicating short path lengths
and  a  clustering  coefficient  larger  than  the  corresponding  one  for  a  random

network with similar topological aspects, Crand ! 0.25, lrand ! 1.41. 

Figure 4. An enlarged depiction of the core of Figure 3. 
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Figure 5. Plot of muslim network. The numerical characteristics are N ! 233,

L ! 4326, C ! 0.564, l ! 2.121, Xk\ ! 37.133, indicating short path lengths
and  a  clustering  coefficient  larger  than  the  corresponding  one  for  a  random

network with similar topological aspects, Crand ! 0.159, lrand ! 1.508. 

Figure 6. An enlarged depiction of the core of Figure 5. 

Visualization  is  an  important  aspect  to  consider  when  analyzing
networks. For example, the army network of Figure 7 may seem only
slightly  different  from  the  navy  network  depicted  in  Figure  8.  Yet,
when  visualized  using  the  Fructerman–Reingold  force-directed  algo-
rithm [25] (Figures 9 and 10), it becomes evident that while the army
network is  a  single,  moderately  clustered  network,  the  navy  network
is composed of two isolated subgraphs. The two main features of the
Fructerman–Reingold  force-directed  algorithm  are:  (1)  vertices  con-
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nected by an edge should be drawn near  each other;  and (2)  vertices
should not be drawn too close to each other. In general, how close ver-
tices should be placed depends on how many there are and how much
space is available. All vertices repel each other, but connected vertices
attract.  This  leads  to  vertices  with  low  connectivity  being  overcome
by  repelling  forces  and  a  core  of  highly  connected  vertices  forming
near the center of the graph. In this fashion, the model is driven, but
not  entirely  constrained,  by  the  physical  analogy  of  a  collection  of
charged particles connected by springs. 

Figure 7. Plot of army network where the nodes are randomly distributed on

a  ring.  The  numerical  characteristics  are  N ! 48,  L ! 189,  C ! 0.434,
l ! 2.32, Xk\ ! 7.875. It is difficult to gain much knowledge from a graph of
this size, but it is useful when analyzing the behaviors of network parameters
as N is increased. 

Figure 8. Plot of navy network where the nodes are randomly distributed on a

ring.  The  numerical  characteristics  are  N ! 20,  L ! 31,  C ! 0.504,
l ! 1.83, Xk\ ! 3.1. This is another example of a small network. It serves as a
good conceptual comparison to Figure 7, due to its generating keyword. 
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Figure 9. Plot of army network using the Fructerman–Reingold force-directed
algorithm. 

Figure 10. Plot  of  navy  network  using  the  Fructerman–Reingold  force-
directed algorithm. 

Now, observe that the individual group networks presented in Fig-
ures 1 through 9 are fairly small. To make sure that our networks are
large enough for a more accurate analysis, we have combined individ-
ual  keywords  into  categories  and  then  created  larger  networks  from
these categories.  The categories  that  will  be used in further graphical
representations are presented in Table 1. 

Figures 11 and 12 show what a larger network actually looks like
and  the  complexity  that  manifests  by  doubling  the  number  of  nodes
and adding more related groups. Other multiword graphs display com-
parable  levels  of  complexity,  but  it  should  be  noted  that  the  three
cores  evident  in  Figures  11  and  12  are  characteristic  of  the  Religion
multiword  graph  force-directed  rendering  and  may  or  may  not  be
seen in other graphs. The multiword graph Sports is presented in Fig-
ures 13 and 14 for comparison. Although the cores look slightly differ-
ent in the Religion versus Sports visualizations, it is the mathematical
analysis that will shed more light upon the similarities and differences
between them. However, such visualizations allow us to have a picto-
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rial view of the networks under consideration. We also notice the im-
pact  of  increasing  the  network  size  on  the  level  of  visual  complexity
of the networks. 

Category Keywords
Religion islam, muslim, bible, atheist, catholic, christian, god, allah, 

mormon, pagan, pope 
Politics republican, romney, vote, government, politic, election, 

democrat, obama, senate 
Hobby art, gun, fish, collect, craft, comic, cook, eat, hunt, stamp 
Sexes boy, man, gay, girl, lesbian, male, woman 
Anime naruto, bleach, dragonball, DBZ, OnePiece, Gundam, anime, 

saiyan, sasuke
Minorities africa, white, black, american, china, asian, hispanic, latin, 

greek, KKK, nazi
Science physics, fractal, chaos, nuclear, math, science 
Music bieber, gaga, beyonce, spears, kesha, kardashian, MTV 
Sports basketball, soccer, football, baseball, golf, tennis, 

bowling, swim
Computer ipad, ipod, android, PC, mac, computer 

Table 1. Ten categories of keywords used in the mathematical analysis of Face-
book group networks.

Figure 11. Plot of the Religion network. The individual keywords used are is-
lam,  muslim,  bible,  atheist,  catholic,  christian,  god,  allah,  mormon,  pagan,
and  pope.  The  numerical  characteristics  are  N ! 1558,  L ! 39 547,

C ! 0.543, l ! 2.723, Xk\ ! 50.766. 
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Figure 12. An enlarged  depiction  of  the  core  of  Figure  11.  Observe  the  three
smaller cores and notice the density of links.

Figure 13. Plot of the Sports network. The individual keywords used are bas-
ketball, soccer, football, baseball, golf, tennis, bowling, and swim. The numeri-

cal  characteristics  are  N ! 342,  L ! 10 356,  C ! 0.715,  l ! 2.403,Xk\ ! 60.561. 
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Figure 14. An enlarged depiction of the core of Figure 11. 

Now that we have a pictorial view of some of the networks under
consideration,  we  focus  on  the  numerical  characteristics  and  identify
some  mathematical  similarities  and  differences  between  the  cate-
gories.  We observe that  the studied networks exhibit  average cluster-
ing  coefficients  three  to  10  times  larger  than  those  for  random  net-
works,  while  maintaining  relatively  small  values  of  the  average  path
length.  Thus  we  claim  that  both  small-world  properties  1  and  2  are
satisfied for Facebook group networks. We provide details in what fol-
lows and refer to power-law distributions as well. 

4.2 Numerical Characteristics
First let us look at the degree distribution for the networks of Table 1,
indicated accordingly in the titles of Figure 15. For each network, we
generate  the  distribution  of  the  connectivity  values  k  and  we  present
the  results  on  log-log  plots.  Observe  that  for  smaller  networks,  the
plots are not as structured. However, for larger networks, it is appar-
ent that the distribution is decreasing with increased connectivity and
has a mild curvature, which means that it appears to be somewhat lin-
ear,  which  would  be  typical  for  power-law  distributions.  We  do  not
observe a pronounced peak typical for random networks. As a matter
of fact, we have used the generalized Pareto fit tool of MATLAB [26]
to  fit  a  power-law  distribution  to  several  degree  distributions.  One
sample  is  shown in  Figure  16 for  the  Religion network,  which is  the
largest in this analysis. The fit is not performed on a log-log scale, as
seen from the graph. The parameters are g, the power, and z, which is
the truncated Riemann zeta function as described in equation (8). Ob-
serve that the best fit for all the data points yields 1 < g < 2, but very
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Figure 15. The  distribution  of  the  connectivity  values  in  log-log  plots  for  the
10 networks of Table 1, in decreasing order of network size. Each graph has
the same general shape. As expected, the networks with more nodes render a
log-log plot, as the plot appears to degrade at N º 350. Although the graphs
appear  to  be  mostly  linear,  the  distributions  cannot  be  characterized entirely
by a power-law decay. In general,  the plots adhere to a power law for small
values of k  but then seem to decrease more quickly than a power law would
predict  for  large  values  of  k.  This  is  seen  with  more  precision  in  Figure  16,
where we attempt to fit a Pareto distribution to the degree distribution of the
individual networks.

close  to  1,  and  that  the  actual  data  tail  seems  to  be  lighter  than  the
estimated distribution. Thus, if we were to fit only the tail, we would
obtain  larger  g  values,  which  would  be  closer  to  what  was  found  in
the literature for various biological networks, for example. In Table 2
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we present the fitted parameters for the largest networks. All of them
yield similar results. Using a t  distribution for small samples, we find
a  95%  confidence  interval  for  the  average  g  to  be  H0.934, 1.499L.
Barabási  and  Albert  provide  parameter  values  for  several  networks
with  power-law  degree  distributions  in  [13].  It  is  interesting  to  note
that the networks with similar values for g Hº1L are the Ythan estuary
and Silwood park networks,  both  of  which are  undirected  ecological
networks.  On  the  other  hand,  other  internet  networks  have  been
shown to exhibit a power-law scaling factor 2 < g < 3 [13]. Recently,
a  study  of  the  social  graph  of  active  Facebook  users  did  not  yield  a
strict power-law distribution for the degree distribution [5]. The same
phenomenon is  observed here  for  group networks,  so a  strict  power-
law fit may not be the most appropriate approach to Facebook degree
distributions. But both the individual user network [5] and our aggre-
gated  network  exhibit  some  similarities  of  the  degree  distributions,
namely  the  monotonicity,  the  curvature,  the  fairly  small  degrees  of
typical  users,  or  the  rather  large  variance  of  degrees.  From  this  per-
spective,  the  scaling  of  the  Facebook  network  from  users  to  groups
formed as in this paper leads to invariant properties of the degree dis-
tributions. This holds mostly for aggregated networks of large enough
size, like the first five graphs of Figure 15.

Figure 16. Pareto  fit  for  the  degree  distribution.  The  estimated  shape  pa-
rameter g  is close to 1. However, the tail of the graph is actually lighter than
the  estimated  fit.  (N = 1558,  Xk\ = 50.7664,  ksi = 1 ê 2.7523,  and
gamma = 1.0082).

At the same time, we provide a box plot representation of the val-
ues of the scaled connectivity values k ê N for each of the 10 networks
of  Table 1,  for  an easier  comparison of  the connectivity  with respect
to the network size. This is shown in Figure 17, including the median,
the  first  and  third  quartiles,  and  the  outliers.  Observe  that  only  the
Sports network exhibits a significant departure from the overall trend
of  small  median,  indicating  small  connectivity  for  most  nodes.  How-
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ever,  this  is  one  of  the  smallest  networks  considered,  and  thus  we
need  further  analysis  with  larger  networks  under  this  category.  We
should mention here that both the ANOVA and Kruskal–Wallis tests
for checking if the distributions represented in Figure 17 are the same
yield p values close to zero even for fewer than 10 categories. 

Keyword Category N x g 
Anime 839 0.4889 0.9354 
Sexes 853 0.2533 1.3875 
Hobby 929 0.1922 1.4237 
Politics 1117 0.3025 1.3258 
Religion 1558 0.3633 1.0082 

Table 2. Parameters  of  Pareto  distribution,  pHxL ! xHgL x-g,  fitted  to  several
multiple keyword networks.

Figure 17. Box  plot  for  the  k ê N  values  associated  with  the  networks  of
Table!1. 

Finally, in reference to the degree distribution, in Figure 18 we plot
the  average  connectivity  Y ! Output ! Xk\  as  a  function  of

T ! Target ! N on a log-log plot. The plot clearly exhibits a positive
correlation,  and  linear  regression  analysis  yields
logHXk\L ! 0.6 logHNL + 0.19,  thus  the  average  connectivity  increases
as  a  power  of  the  network size,  and slower  than N,  which  is  typical
for random graphs. The correlation coefficient is R ~ 0.78, which in-
dicates a moderate linear relationship between N and Xk\. 

We  conclude  here  that  the  degree  distribution  of  group  networks
exhibits a monotonic decrease at a fairly steep rate with increased con-
nectivity,  partially  fitted  by  a  straight  line,  which  corresponds  to  a
power-law distribution. Most groups have a rather small connectivity
in  comparison  to  the  size  of  the  network.  For  smaller  networks,  like
Music,  Sports,  and  Computer,  these  results  are  not  very  accurate,  so
more analysis with an increased number of keywords in each category
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will be needed in the future, paired with a more in-depth search for a
best fit of the degree distribution. 

Figure 18. Log-log plot of Xk\ versus N for all the networks considered in this
analysis,  including  single  and  multiple  keywords.  The  fitted  line  shows

Xk\ ! N0.6. 

Now  let  us  look  at  the  clustering  coefficient  defined  in  equa-

tion"(2).  We  compute  C HkL  for  all  possible  connectivity  values  k  in
each network and plot them against k on a log-log scale in Figure 19.
What  we  find  is  similar  to  other  small-world  network  studies  [4,  5],
where each plot exhibits an approximately logarithmic decay for large
values of k. 

Again  we  provide  a  box  plot  representation  of  the  values  of  CHkL
for  each  of  the  10  networks  of  Table  1  for  an  easier  comparison  of
the average connectivity values for different degrees. This is shown in
Figure  20.  We  note  the  differences  between  categories  of  networks,
which  are  confirmed by  both  ANOVA and Kruskal–Wallis  tests  that
lead to almost null p values. We note that overall the values are larger
than the corresponding average clustering coefficients of random net-
works, thus indicating small-world networks. In fact, the average clus-
tering coefficients  for  the  networks  listed in  Table  1  are,  on average,
14 times larger than the average clustering coefficients of random net-
works. 
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Figure 19. The  average  clustering  coefficient  CHkL  against  the  degree  k  on  a
log-log scale for the 10 networks of Table 1,  in decreasing order of network
size.  In  general,  each  plot  indicates  an  approximate  logarithmic  decay  for
large  k.  These  results  are  similar  to  other  studies  of  small-world  networks
[4,!5].  Observe  that  the  largest  network,  Religion,  provides  the  most  orderly
plot, which is to be expected. 
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Finally, in reference to the clustering coefficients, we present a plot

of the average clustering coefficient C versus the network size N in Fig-
ure  21  (top  graph,  blue  dots)  for  all  the  networks  considered  in  this
study,  not  only  the  10  large  networks  constructed  by  aggregating
smaller networks corresponding to the various categories. Most of the
networks  considered  in  this  study  have  fewer  than  400  nodes.  We

plot on the same graph the corresponding values Crand  for clustering
coefficients of a random network with the same number of nodes and
edges  (top  graph,  red  circles).  We  can  notice  immediately  that  the
Facebook  values  are  clearly  higher  than  those  for  random networks,
fulfilling  property  2  of  small-world  networks.  Not  only  that,  but  by

focusing only on the Facebook data for C in Figure 22 we note an in-

teresting result, as the Indian railway network has exhibited C  values
that  remain relatively  constant  as  the  network size  increases  [4].  Fig-
ure 22 has too few data points to definitively decide on the behavior

of C for large networks; however, to some extent it appears to steady

out around C º 0.5 for larger values of N. This suggests that we need
more sample networks with a large number of nodes, which will be a
subject  for  future  research.  At  the  same  time,  we  will  devise  a  more
systematic  procedure  for  increasing  the  network  size.  For  example,
adding keywords one by one for a slower increase of the network, be-
sides  expanding  the  selection  of  keywords  and categories  based  on  a
dictionary search. These will be subjects for future research. 

Figure 20. Box plot of the average clustering coefficients for individual connec-
tivity values CHkL associated with the networks of Table 1.

Now,  regarding  the  average  path  length,  in  Figure  21  (bottom
graph)  we  plot  the  average  path  length  for  both  the  Facebook  net-
works  of  this  study  (blue  dots)  and  the  corresponding  random  net-
works  (red  circles).  The  plots  are  clustered  around  small  values,  and
the average path length does not seem to exhibit an increase with in-
creased  network  size.  Notice  the  similarity  between  the  Facebook
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plots  and  random  network  plots,  which  suggests  that  property  1  of
small-world networks is also satisfied. We also include a box plot of l,
the  average  path  length,  as  well  as  the  corresponding  distribution  in
Figure 23 for both Facebook networks and random networks. Notice
that  although  the  median  path  length  for  Facebook  groups  is  higher
than that  of  random networks,  the variation is  smaller,  so that  over-
all, the values for Facebook groups are slightly smaller than those for
random  networks.  In  general,  the  average  path  length  is  mostly  less
than three, which comes to supplement previous findings that the en-
tire Facebook network of active users exhibits an average path length
of about four [6], as opposed to the well-known six degrees of separa-
tion paradigm. Thus the Facebook group networks are indeed exam-
ples  of  small-world  networks.  In  order  to  offer  more  precise  state-
ments  regarding  the  distribution  of  average  path  length  as  shown  in
Figure 23 (right), we will have to generate a larger amount of data in
the future. However, notice that despite the differences in the two dis-
tributions, they both have more or less the same behavior, which em-
phasizes property 1. 

Figure 21. Average  clustering  coefficient  (top)  and  average  path  length
(bottom) as functions of N. The blue dots indicate the Facebook data and the
red  circles  indicate  the  corresponding  values  for  a  random network  as  listed
in Table 1. There is a clear difference for the clustering coefficients; however,
it is hard to notice essential differences for the path lengths. 
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Figure 22. Average  clustering  coefficient  as  a  function  of  N.  The  red  dotted
line depicts the average value and possible steady-state value for large N. 

Figure 23. Average path length box plot (left) and distribution (right) for both
the  Facebook  group  networks  and  random networks  with  the  same  number
of nodes and links. 

We conclude that the Facebook group networks exhibit features of
ordered networks and random networks. That is, they have large clus-
tering  coefficients  like  the  ring  lattice  networks  described  by  Watts
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and  Strogatz  [9]  that  do  not  vanish  with  increased  networks,  and
small average path lengths characteristic of random graphs [13]. Thus
we  conclude  that  the  networks  under  consideration  in  this  study  ex-
hibit small-world features. At the same time, the average connectivity
increases  as  a  power  of  the  network  size  with  approximation,  while
the average clustering coefficients and average path lengths do not ex-
hibit a clear scaling with N. 

In  the  future  we  plan  to  expand  this  analysis  to  more  and  larger
networks  and  to  supplement  it  with  a  more  in-depth  study  of  the
numerical  characteristics  presented  in  this  paper  and  other  suitable
measures. 

5. Conclusions and Future Work

In this paper we provided a study of the structure of Facebook group
networks.  We  generated  a  number  of  networks  using  keywords  for
group selection, and we linked groups with common members. We fo-
cused  on  a  number  of  measures  that  can  describe  the  structure  of
these  networks.  Our  networks  have  degree  distributions  that  cannot
be  entirely  characterized  by  a  power  law,  clustering  coefficients  that
are significantly larger than what would be expected for random net-
works,  and  consistently  small  values  for  the  average  shortest  paths,
characteristic  of  random  graphs.  That  is  to  say,  our  analysis  has
shown  that  Facebook  group  networks  are  small-world  networks.  A
unique  element  of  this  study  is  that  we  did  more  than  analyze  only
one  network  or  a  handful  of  networks;  we  analyzed  an  ensemble  of
real-world  networks  and  were  able  to  find  relationships  that  other-
wise could not have been found. Figures 18 and 22 attest to this fact
and suggest an interesting path to take in future studies.

Although our methodology for network construction is efficient, it
is not the only possibility. We chose keywords that would most likely
render  interesting  and  mostly  unambiguous  results  using  a  program-
matic approach. Our future work will expand this analysis to include
more  networks  with  larger  sizes,  in  order  to  be  able  to  generate  a
more  complete  statistical  analysis  of  Facebook  group  networks.  Fu-
ture  studies  should  include  other  measures  of  interest  such  as  effi-
ciency,  correlations,  or  spectral  properties,  as  well  as  more  sophisti-
cated statistical analyses. 

Moreover,  it  would  be  important  to  analyze  the  dynamics  of  the
networks  over  time,  since  Facebook  groups  could  be  added  or  re-
moved  from  the  networks,  based  on  the  natural  changes  that  occur,
and links readjusted. This would imply observing Facebook over a sig-
nificant  amount  of  time  to  have  sufficient  data  for  statistical  pur-
poses. 
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At  the  same  time,  it  would  be  of  interest  to  generate  a  dynamical
system  model  of  the  social  networks  described  here.  More  precisely,
we  can  define  some  meaningful  states  of  the  nodes  and  associated
rules  that  could  help  us  understand  the  complexity  of  this  kind  of
large-scale network. For instance, by focusing on the links in the net-
works,  which  are  created  based  on  individuals  who  are  common  to
multiple groups, we could put a weight on the influence of one group
over  another  group  (the  target)  in  terms  of  Facebook  messages  that
are posted in the target group by the common members during a unit
of time. By defining a suitable threshold function, a node could be la-
beled  as  active  or  inactive,  based on the  aggregated influences  of  the
individual input nodes through the common members. This could gen-
erate a Boolean network whose dynamics could be studied to provide
some insight on the impact of multiple memberships of individuals on
the activity of groups. 
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