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The  dynamics  of  the  rule  54  one-dimensional,  two-state  cellular  au-
tomaton (CA) are a discrete analog of a space-time dynamics of excita-
tions  in  a  nonlinear  active  medium  with  mutual  inhibition.  A  cell
switches  its  state  0  to  state  1  if  one  of  its  two  neighbors  is  in  state  1
(propagation of a perturbation), and a cell remains in state 1 only if its
two  neighbors  are  in  state  0.  A  lateral  inhibition  is  because  a  1-state
neighbor causes a 1-state cell  to switch to state 0. The rule produces a
rich spectrum of space-time dynamics, including gliders and glider guns
just  from four  primitive  gliders.  We  construct  a  catalog  of  gliders  and
describe  them  by  tiles.  We  calculate  a  subset  of  regular  expressions
YR54  to  encode  gliders.  The  regular  expressions  are  derived  from  de
Bruijn  diagrams,  tile-based  representation  of  gliders,  and  cycle  dia-
grams sometimes. We construct an abstract machine that recognizes reg-
ular  expressions  of  gliders  in  rule  54  and  validate  YR54.  We  also  pro-
pose a way to code initial configurations of gliders to depict any type of
collision  between  the  gliders  and  explore  self-organization  of  gliders,
formation  of  larger  tiles,  and  soliton-like  interactions  of  gliders  and
computable devices. 

1. Preliminaries

Cellular automata (CAs) are renowned for the simplicity of their rules
and  the  complexity  of  their  space-time  evolution.  Rule  54  is  among
the  most  famous  rules  that  exhibit  nontrivial  space-time  dynamics.

!
Complex Systems, 23 © 2014 Complex Systems Publications, Inc. 

https://doi.org/10.25088/ComplexSystems.23.3.259



 p  y
The  rule  belongs  to  complexity  class  IV  in  Wolfram’s  classification
[1,!2].

Rule  54  has  always  attracted  considerable  interest  from computer
scientists,  mathematicians,  and  physicists,  and  thus,  compared  to
other elementary cellular automaton (ECA) rules, is well investigated.
Boccara et al. [3] enumerated a number of gliders in rule 54 and char-
acterized a glider gun. They applied statistical analysis to study the sta-
bility  of  gliders.  Hanson and Crutchfield  [4]  introduced a  concept  of
“computational  mechanics,” or  designing of  finite-state  machines  de-
rived from language representations  and motion equations  of  filtered
gliders. Another exploration of rule 54 with automatic filters was pre-
sented  by  Wuensche  in  [5].  Wolfram  [6]  exhibited  glider  collisions
with  long  periods  of  after-development  and  several  filters  for  detect-
ing gliders and defects, and Martin [7] designed an algebraic group of
order four to represent  collisions between basic  gliders.  A number of
new glider guns, self-organization by structures, collisions, and glider-
based  logic  gates  were  reported  in  [8].  Guan  [9]  develops  a  descrip-
tion of rule 54 dynamics with Bernoulli shift and symbolic sequences.
Redeker [10] discusses how a flexible time can be represented in evolu-
tions of rule 54. An exhaustive analysis about solitons in rule 54 was
presented  in  [11],  and  a  projection  of  rule  54  affected  with  memory
was studied in  [12].  Initial  analysis  of  glider  representation with rule
54 by de Bruijn and cycle diagrams was given in [13] (see also [14]).

2. Rule 54

A  one-dimensional  cellular  automaton  (CA)  is  represented  by  an  in-
finite  array  of  cells  xi  where  i œ !  and  each  x  takes  a  value  from  a
finite alphabet S. Thus, a sequence of cells 8xi< of finite length n repre-
sents a string or global configuration c on S. The set of finite configu-
rations, represented as Sn, is denoted by F. The CA evolution is given
by a sequence of configurations 8ci< on F:  

(1)F IctM Ø ct+1,

where t is time and every global state of c is defined by a sequence of
cells.  Also  the  cells  of  each  configuration  ct  are  updated  at  the  next

configuration ct+1 simultaneously by a local function j as follows:

(2)jI… , xi-1
t , xi

t, xi+1
t , …M Ø xi

t+1.

A  one-dimensional  CA  can  be  described  by  two  parameters  Hk, rL
[1],  where  k ! †S§  is  a  number  of  states  and  r  is  a  neighborhood  ra-
dius. ECAs are defined by parameters Hk ! 2, r ! 1L.
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In  all  constructs  described in  the  paper,  we apply  periodic  bound-
ary  conditions  to  obtain  finite  configurations  of  F  by  concatenating
the first cell with the last one to form a ring. 

The local transition function j of ECA rule 54 follows:

jR54 !
1 if 101, 100, 010, 001

0 if 111, 110, 011, 000.

The binary sequence 00110110 represents rule number 54 in deci-
mal  notation.  Initially  jR54  presents  an initial  probability  of  50% to
each state, and thus the frequency to appear is the same. 

HaL HbL HcL

HdL
Figure 1. Exemplar scenarios of space-time evolution in rule 54 with 100 cells
for  100  generations.  (a)  A  single  state  of  S  dominates  the  initial  condition.
(b)!A single  cell  is  in  state  1;  all  other  cells  are  in  state  0.  (c)  Periodic  back-
ground. (d) Random initial condition with an initial density of 50% on 1000
cells for 500 generations (a filter is applied).  

Figure 1 displays some typical snapshots with rule 54. We have cho-
sen classic or specific initial conditions in order to capture different be-
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haviors.  Indeed,  this  set  of  figures  can  represent  several  CA  classes:
(a)  could represent class I  with a uniform evolution,  (b)  and (c)  class
II with periodic evolutions, and (d) class IV with complex dynamics. 

Rule  54  is  a  discrete  analog  of  an  active,  nonlinear,  one-dimen-
sional medium. Assume each cell is a micro-volume, which takes two
states: resting (0) and excited (1). When a single micro-volume is per-
turbed,  its  corresponding  cell  takes  state  1.  The  perturbation/activa-
tion  spreads  to  neighbors  of  the  initially  excited  micro-volume:8100, 001, 101< Ø 1. For example, the transition 100 Ø 1 encodes the
following activation mechanism: if the left neighbor of a resting cell is
excited, the resting cell  excites.  Transition 000 Ø 0 indicates the sim-
ple  fact  that  the  medium  could  not  activate  itself;  that  is,  excitation
cannot develop from a totally resting medium. 

The  three  most  interesting  transitions  are  8111, 110, 011< Ø 1.
They  encode  the  following  fact:  if  an  excited  micro-volume  has  at
least  one  excited  neighboring  micro-volume,  then  this  micro-volume
returns to a resting state.  This  can be interpreted as  a mutual  inhibi-
tion.  Each  excited  micro-volume  inhibits  excitation  of  its  excited
neighboring micro-volume. These features of rule 54 make it  also in-
teresting  from neurophysiology  and  machine  vision  (one-dimensional
artificial retina) points of view. 

3. Representation of Gliders in Rule 54  

This  section  discusses  approaches  toward  a  description  of  gliders  in
rule  54.  These  approaches  use  tiling  theory  [15],  de  Bruijn  diagrams
[16, 17], and cycle diagrams [18].  

3.1 Tiles in Rule 54  
Gliders in rule 54 can be represented by polygons as rhomboids. The
periodic background, called ether, is represented in rule 110 for a fam-
ily of triangles [19, 20], although with some differences from rule 54. 

A  plane  of  tiles  "  is  a  countable  family  of  closed  sets
" ! 8T0, T1, …< covering the plane without intervals or intersections
[15]  (the  “plane”  is  the  Euclidian  plane  !ä!  in  elementary  geome-
try).  Therefore,  this  can  be  defined  as  a  join  of  sets  (called  a  mo-
saic!" ): 

(3)" ! Ê
i!0
n

Ti " n œ !0
+;

consequently,  every  set  is  disjoint  Ti › Tj.  Thus,  the  set  of  tiles  for

rule 54 is represented as "R54. Figure 2 displays a number of mosaics
of "R54.  
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Table 1 shows relations between tiles in rule 54. A row represents
the tile type and a column represents the size of a tile. There are a lim-
ited number of kinds but an infinite number of sizes. 

Rule  54  can  be  studied  as  a  tiling  problem  (as  was  proposed  in
rule!110 by McIntosh [19,  21]).  Figure  2  shows the  relation of  "R54
for the first nine polygons, which is summarized in Table 1. If one re-
lation  is  missing,  this  means  that  such  a  polygon  cannot  be  con-
structed for rule 54. 

Figure  3  displays  the  composition  for  the  periodic  background  in
rule 54. It is composed of two tiles: T1 and T3

a. Arrows indicate possi-
ble  directions  in  which  a  glider  could  emerge.  Solid  arrows  display
known gliders and dotted arrows display possible unknown gliders. 

Figure 2. Examples  of  tiles  !R54  derived  from  space-time  configurations  in
rule 54.

T 0 1 2 3 4 5 6 7 8 ! 
a " " " " " " " " " ! 
b " " " " " ! 
g " " " " " ! 
h " " " " ! 

Table 1. Relation of tiles !R54 in rule 54.    
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Figure 3. Periodic background in rule 54 is composed with two tiles of the set
!R54: T1 and T3

a.  

3.2 Gliders in Rule 54  
A glider is a compact group of nonquiescent states traveling along the
CA lattice.  To represent gliders in rule 54, we follow the notation of
Boccara et al. [3].  

Rule 54 has two identical primitive gliders traveling in opposite di-

rections:  w  glider  (Figure  4(a))  and  w  glider  (Figure  4(b)),  traveling
with the speed of light, that is, translating one cell per iteration. Two
stationary gliders  can be interpreted as  still  life  configurations in one
dimension. They are gliders go (Figure 5(a)) and ge (Figure 5(b)).

This way, we can display each glider, enumerating their properties.
Figure  6  gives  a  systematic  representation  of  gliders  in  rule  54,  and
Table 2 summarizes most basic properties. 

Let  e1  and  e2  represent  glider  phases  in  the  periodic  background.

Thus we have four gliders:  w,  w,  go,  ge;  and a compound glider:  the
glider gun. The speed vg  of  a glider is  evaluated using the period be-
tween displacements. Column Cap in Table 2 shows if a glider is able
to cover the full space without gaps. 
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HaL HbL
Figure 4. Tiles description for primitive gliders in rule 54.  

HaL HbL
Figure 5. Tiles description of composed gliders in rule 54. Both gliders are still
life configurations because they are stationary.  

Structure vg Lineal Volume Cap

e1 2 ê 2 = 1 4 T

e2 2 ê 2 = 1 4 T

w 2 ê 2 = 1 2 P

w -2 ê 2 = -1 0–4 P

go 0 ê 4 = 0 6–2 T

ge 0 ê 4 = 0 7–3 T

glider gun 0 ê 32 = 0 14–4 P

Table 2. Properties of gliders in rule 54.    
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Figure 6. Classification  of  gliders  in  rule  54.  We  illustrate  every  glider  and
packages, extensions, and compositions of them.  
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Rule 54 exhibits a relatively small number of gliders, which makes
it  particularly  attractive  for  discretization  and  formal  representation.
We can obtain an exact representation of gliders in rule 54 and show
how to construct  specific  initial  conditions based on glider  phases.  A
phase  means  a  unique  string  that  represents  the  glider  in  the  initial
condition. Therefore, a finite number of different strings represent the
set of valid strings where a glider can be initialized [22]. 

3.3 De Bruijn Diagram  
For  a  one-dimensional  CA of  order  Hk, rL  and a  finite  alphabet  given

S,  its  de  Bruijn  diagram is  defined  as  a  directed  graph  with  k2 r  ver-

tices and k2 r+1  edges. Vertices are labeled with elements of the alpha-
bet  of  length  2 r,  that  is,  neighborhood  states.  An  edge  is  directed
from vertex i to vertex j if and only if the 2 r - 1 final symbols of i are
the  same  as  2 r - 1  initial  symbols  in  j,  forming  a  neighborhood  of
2 r + 1 states represented by i ù j. In this case, the edge connecting i to
j is labeled by jHi ù jL (the value of the neighborhood defined by the lo-
cal function) [23, 26].  

Thus, the de Bruijn diagram can be constructed as follows: 

(4)Mi,j !
1 if j ! k i, k i + 1, … , ki + k - 1 Imod k2 rM
0 otherwise.

Module  k2 r ! 22 ! 4  represents  the  number  of  vertices  in  the  de
Bruijn  diagram,  and  j  takes  values  from  k * i ! 2 i  to

Hk * iL + k - 1 ! H2 * iL + 2 - 1 ! 2 i + 1.  The  vertices  (indexes  of  M)
are labeled by fractions of neighborhoods beginning with 00, 01, 10,
and  11;  the  overlap  determines  each  connection.  Figure  7  displays
rule 54’s matrix evolution and its de Bruijn diagram. 

Paths  in  the  de  Bruijn  diagram  may  represent  chains,  configura-
tions,  or  classes  of  configurations  in  the  evolution  space.  Also,  frag-
ments of the diagram itself are useful in discovering periodic blocks of
strings, pre-images, codes, and cycles [17, 23]. 

After  the  de  Bruijn  diagram is  completed,  we  can calculate  an  ex-
tended de Bruijn diagram [17].  An extended de Bruijn diagram takes
into  account  more  significant  overlapping  of  neighborhoods.  Thus,

we  represent  MR54
H2L  by  indexes  i ! j ! 2 r * n,  where  n œ !+.  The  de

Bruijn  diagram  grows  exponentially,  order  k2 rn
,  for  each  MR54

HnL ;  the
basic de Bruijn diagram is obtained for n ! 1 (Figure 7). 
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MR54 =
0 1 . .
. . 1 0
. . 0 0

Figure 7. De Bruijn diagram of rule 54.  

An  important  indication  derived  from  de  Bruijn  diagrams  is  that
the set of regular expressions YR54  describes all possible strings to ini-
tialize  gliders  in  rule  54.  Of  course,  this  representation  does  not  in-
clude codes to initialize packages or groups of gliders.  Therefore,  the
number of sequences w in the set YR54  is the union of the periods for
every glider, as follows: 

(5)YR54 ! Ê
i!1
p

wi,g " Hwi œ S* Ô g œ GL,
where  #  is  the  whole  set  of  gliders  in  rule  54  and  p > 0  its  period.
This way, we can speak of a regular language LR54 that is constructed
from the expressions of YR54. We notice that this language is a subset
of the whole language in rule 54, because it  is  defined by regular ex-
pressions  derived  from  gliders.  Therefore,  the  regular  language  LR54
is defined as follows:  

(6)
LR54 ! 8w w operating under the basic rules : ÿ,

+ , * from YR54<.
Let  us  calculate  de  Bruijn  diagrams for  gliders  w  and w  with  per-

iodic background. Table 2 shows that these gliders move two cells at

each  time  step.  Then  the  extended  de  Bruijn  diagram of  order  MR54
H2L

would  be  necessary  to  extract  a  cyclic  structure  of  gliders  (all  ex-
tended de Bruijn diagrams are calculated with NXLCAU21, free soft-
ware  developed  by  H.  V.  McIntosh  [24]).  These  diagrams  can  show
all possible relations, but cycles are important for us to detect gliders
or other periodic patterns. 

Figure 8 displays de Bruijn diagrams with shift registers to the rightH+ L or to the left H- L. A glider can be identified as a cycle, and the glid-
er’s interaction will be a connection with other cycles. Diagram H2, 2L
(x-displacements, y-generations), displays periodic strings moving two
cells  to  the  right  in  two  time  steps,  that  is,  the  period  between  dis-
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placement in the periodic background of a w glider. This way, we can
enumerate each string for every structure in this domain. 

† Periodic background e is fixed as: 

† vertices H1, 2, 4, 6L ª e1 # 1000 

† vertices H13, 11, 7, 14L ª e2 # 1110 

† w glider is placed as: 

† vertices H1, 2L ª w1 # 10 

† vertices H12, 6L ª w2 # 00 
† w glider is placed as: 

† vertices H1, 3, 7, 14L ª w1 # 1110 

† vertices H13, 10, 4, 8L ª w2 # 1000 

Figure 8. De  Bruijn  diagrams  determining  primitive  gliders,  periodic  back-
ground, and other meshes H0, 2L, H4, 1L, H-4, 1L in rule 54.  

The  periodic  background  in  phase  one  represents  the  string  1000
and  in  phase  two  the  string  1110.  Also,  this  diagram  has  a  positive
orientation  of  cycles  and  shows  the  relations  of  vertices  H1, 2, 4, 6L
and H13, 11, 7, 14L that represent all possible phases where a w glider
may  be  initialized.  However,  the  existence  of  this  glider  is  related  to
both cycles. 

Diagrams H0, 2L,  H4, 1L,  and H-4, 1L  display three different periodic
backgrounds that cannot coexist with gliders but can cover the whole
evolution space. 
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Rule  54  has  a  particular  characteristic  because  the  periodic  back-
ground needs a displacement to preserve the existence of gliders. Fig-
ure  8  shows  four  cycles,  three  of  them  self-contained  and  one  that
starts  with  a  stable  state.  Evolution  fragments  in  the  same  picture
show what kinds of  gliders  are defined by these cycles.  For example,
we  can  see  a  large  cycle  following  the  vertices  H1, 2, 5, 11, 13,
14, 12, 6L.  This  cycle  is  equivalent  to  the  periodic  string  10111000,

which produces an evolution space covered with just a pair of w glid-
ers.  Finally,  a  fourth  cycle,  represented  by  the  cycle  0,  determines  a
transition  between two different  patterns,  known as  “fuse  configura-
tions”  [17].  The  periodic  background  is  formed  by  a  cycle  of  length
four, and the existence of gliders is determined by other cycles. There-
fore, we can see that the problem of representing gliders by de Bruijn
diagrams is reduced to the classification of cycles. 

To represent gliders go  and ge,  we should construct de Bruijn dia-

grams of order MR54
H4L , because the gliders have period 4 (see Table 2).

These  gliders  can  be  considered  as  still  life  configurations  because
they are stationary structures. 

Figure  9  shows  the  full  de  Bruijn  diagram H0, 4L  used  to  calculate
go  and ge  gliders. There are four main cycles: two largest cycles repre-
sent  phases  of  go  and  ge  plus  its  periodic  background,  and  two
smaller  cycles  characterize  two different  periodic  patterns  in  rule  54,
including the stable state. 

Again, to extract phases we shall follow routes in the diagram and
enumerate all the routes, that is, their regular expressions. The larger
cycles  contain internal  cycles  that  represent  each glider  phase.  So the
periodic  background  is  represented  by  two  cycles  and  they  relate  all
possible phases for go and ge gliders. 

The  left  cycle  in  the  diagram  of  Figure  9  represents  the  whole
phases of gliders go  and ge  with the periodic background e1  and ver-
tices  H17, 34, 68, 136L,  and the  right  cycle  represents  phases  with the
periodic  background e2  and vertices  H221, 187, 119, 238L.  Therefore,
we can extract periodic sequences to encode gliders traveling alone or
in trains of gliders. Encoding samples are provided with some strings:

† String  1010001001000  encodes  go-ge,  where  both  gliders  are  in
phase  three  (f3)  and  have  periodic  background  in  phase  one  (e1)
(Figure!10(a)).

† String 111000 encodes go glider in phase four (f4) with a periodic back-
ground in phase two (e2) (Figure 10(b)).

† String  10000010  encodes  trains  of  two  go  gliders  covering  the  whole
evolution  space.  To  reach  this  configuration  it  is  necessary  to  use  two
different phases, f1 and f3 of go glider (Figure 10(c)).
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Figure 9. De Bruijn diagram representing stationary gliders.  

† String  1111110111110000111000  produces  a  sophisticated  pattern
with singular and compound gliders and periodic background ge-go-ge-
e2-go (Figure 10(d)). 

Thus, we can calculate systematically all periodic patterns for eachHx, yL position in the de Bruijn diagrams. Figure 11 shows the full evo-
lutions to 10 generations. Indeed, symmetries are preserved during its
evolutions  with  displacements,  and  some positions  are  dominated  by
the stable  state.  Of course,  we can find the periodic  background and
basic  gliders  in  several  positions  where  they  match  with  this  period
and other interesting periodic patterns that emerge in rule 54. 

The  complete  description  of  regular  expressions  representing  glid-
ers in rule 54 is provided in Table 3. This set of regular expressions is
implemented in the OSXLCAU21 system [25].
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HaL HbL

HcL HdL
Figure 10. Evolutions encoded from cycles in the de Bruijn diagram shown in
Figure 9.  

e w w 

e1 ! 1000 wHf1L ! e1-10-e2 wHf1L ! e1-e2 

e2 ! 1110 wHf2L ! e2-00-e1 wHf2L ! e2-e1 

2 wHf1L ! e1-10111000-e1 2 wHf1L ! e1-11101000-e1 

2 wHf2L ! e2-11101000-e2 

go ge 

go(A,f1) ! e1-100000-e1 ge(A,f1) ! e1-1000000-e1 
go(A,f2) ! e2-111110-e2 ge(A,f2) ! e2-000-e2 
go(B,f1) ! e1-10-e1 ge(B,f1) ! e1-100-e1 
go(B,f2) ! e2-00-e2 ge(B,f2) ! e2-1111110-e2

Table 3(a). Set of regular expressions for gliders in rule 54.    
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Gun 

gun(A,f1) # e1-1111111100-e1 

gun(A,f2) # e2-1000000001-e1 

gun(B,f1) # e1-11100000010010-e2

gun(C,f1) # e1-10001000011100-e2

gun(C,f2) # e2-010001-e1 

gun(D,f1) # e1-1111010010-e2 

gun(D,f2) # e2-1000011111-e1 

gun(E,f2) # e2-11100100000010-e2 

gun(A2,f1) # e1-10001111000011-e1

gun(A2,f2) # e2-10000100-e1 

gun(B2,f1) # e1-111001111110-e2 

gun(C2,f1) # e1-11000000-e1 

gun(C2,f2) # e2-10010000-e2 

gun(D2,f1) # e1-11111100-e1 

gun(D2,f2) # e2-100000011110-e2

gun(E2,f1) # e1-111000010000-e1 

gun(A3,f1) # e1-10011100-e2 

gun(A3,f2) # e2-11110001-e1 

gun(B3,f1) # e1-100001010010-e2 

gun(B3,f2) # e2-01111111-e1 

gun(C3,f1) # e1-110000000010-e2 

gun(C3,f2) # e2-100100000011-e1 

gun(D3,f1) # e1-1111110000-e1 

gun(D3,f2) # e2-1000000100-e2 

gun(E3,f1) # e1-1110000111-e1 

gun(E3,f2) # e2-10001001000010-e2

gun(A4,f2) # e2-1111110011-e1 

gun(B4,f1) # e1-10000001-e1 

gun(B4,f2) # e2-00010010-e2 

gun(C4,f1) # e1-10011111-e1 

gun(C4,f2) # e2-111100000010-e2

gun(D4,f1) # e1-01000011-e1 

gun(D4,f2) # e2-011100-e1 

gun(E4,f1) # e1-110001-e2 

gun(E4,f2) # e2-1001010000-e1 

Table 3(b). Set of regular expressions for gliders in rule 54.    
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Figure 11. Periodic patterns in rule 54 calculated with extended de Bruijn dia-
grams  for  10  generations.  Each  square  Hx, yL  (small  snapshot  evolution)  dis-
plays its respective pattern.  
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3.4 The Scalar Diagram in Rule 54  
The scalar subset diagram is derived from the de Bruijn diagram. The
scalar subset diagram represents an abstract machine to verify what se-
quences  belong  to  the  language  produced  by  rule  54.  Also  the  dia-
gram can calculate Garden of Eden  configurations and other proper-
ties, as was demonstrated by McIntosh in [16, 17]. A Garden of Eden
configuration  is  a  configuration  that  cannot  be  achieved  from  any
other  configuration in  the  evolution of  a  CA. This  is  a  configuration
without ancestors.

The subset diagram has 2k2 r
 vertices. If  all  the configurations of a

certain length have ancestors,  then all  extended (with additional cells
added  on  both  ends)  configurations  must  have  ancestors.  Otherwise,
they  describe  configurations  in  the  Garden  of  Eden  and  represent
paths going from the maximum set to the minimum one. 

Nodes are grouped into subsets. A node should be composed of the
subsets  that  can be arrived at  through systematic  departures  from all
the nodes in any given subset. The result is a new graph, with subsets
for nodes and links summarizing all the places that can be traveled to
from all the different combinations of starting points. Sometimes, but
far from always, the possible destinations narrow down as progress is
made; in any event, all the possibilities have been cataloged. 

Let us define the subset diagram following [16, 17]. Let a and b be
vertices,  S  a  subset,  and †S§  the  cardinality  of  S.  Then the  subset  dia-
gram is defined as follows: 

(7)‚
i

HSL !

f S ! f

9b edgei Ha, bL= S ! 8a<
Ê

aœS
Si HaL †S§ > 1.

Three important properties are given here:  

1. If there is a path from the maximum subset to the minimum one, then
there  exists  a  similar  path  starting  from  some  smaller  subset  to  the
empty  one.  On  the  other  hand,  if  all  the  unitary  classes  do  not  have
edges  going  to  the  empty  set,  then  there  are  no  configurations  in  the
Garden of Eden. 

2. Given  an  origin  and  a  destination,  there  is  always  a  subset  containing
the  accessible  destination  and  another  subset  containing  the  origin;
also, the destination can have additional vertices. 

3. The subset  diagram is  not  connected,  and it  is  interesting to  know the
accessible  greatest  subset  as  well  as  the  smallest  one  from  a  given
subset. 

The important  convention in  constructing  the  diagram is  that  if  it
seems there should be a link toward a certain node and if there is no
such link, the link must be drawn to the empty set instead. This con-
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vention assures every label of having a representation at every node in
the subset diagram. 

Vertices  of  the  subset  diagram  are  formed  by  the  combination  of
each subset formed from the states of the de Bruijn diagram (a power
set).  Below  we  discuss  the  de  Bruijn  diagram—expressing  the  local
function j—symbolized in two matrices [17]. 

Symbolic  de  Bruijn  matrices  Dk,s  or  Ds  are  characterized  by  k

states  and  s  number  of  states  in  the  partial  neighborhood.  Thus  for
rule 54 we have the following symbolic matrices: 

D2,2 !

0 1 . .

. . 1 1

0 1 . .

. . 1 0

!

0 . . .

. . . .

0 . . .

. . . 0

+

. 1 . .

. . 1 1

. 1 . .

. . 1 .

.

Therefore,  for  any  ECA  order  H2, 1L  we  have  four  sequences  of
states in the de Bruijn diagram enumerated as 80<, 81<, 82<, and 83<. All
the  possible  subsets  are  80, 1, 2, 3<,  80, 1, 2<,  80, 1, 3<,  80, 2, 3<,81, 3, 2<,  80, 1<,  80, 2<,  80, 3<,  81, 2<,  81, 3<,  83, 2<,  83<,  82<,  81<,  80<,
and 8<.  In these subsets,  four unitary classes can be distinguished; the
incorporation of the empty set guarantees that all subsets have at least
one image, although this one does not exist in the original diagram. 

In  order  to  determine  the  type  of  union  between  the  subsets,  the
state  in  which  each  sequence  evolves  must  be  reviewed  to  know  to-
ward which states (subsets that form it) this subset can be connected;
this way the relation for rule 54 is constructed in Table 4. The corre-
sponding scalar subset diagram for rule 54 is shown in Figure 12. 

Each  connection  is  defined  from  its  relation  between  subsets  (see
Table 4). We must distinguish four levels of subsets. Also, we should
observe that a residual of the de Bruijn diagram can be founded in the
subset  diagram.  This  is  because  a  unit  class  is  precisely  the  nodes  of
the original diagram. 

At  first  glance,  we  can  see  that  some  relations  are  more  frequent
than others. There are nodes without any inputs, or nodes with most
types  of  connections  including  self-loops.  However,  more  interesting
are cycles of different lengths. They are important to recognize words
or sequences that a CA could recognize, as a general machine for this
language. 

A small subset diagram may be deduced from its original diagram.
This diagram shall include only vertices with cycles, the universal and
empty  set,  and the  subset  of  cardinality  one,  yielding  a  new diagram
that will be more practical for our proposes. The reduction gives a yet
smaller diagram, shown in Figure 12. 
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Subset Node Link with 0 Link with 1
0,1,2,3 15 9 14
1,2,3 14 9 14
0,2,3 13 9 6
0,1,3 11 9 6
0,1,2 7 1 14
2,3 12 9 6
1,3 10 8 12
1,2 6 1 14
0,3 9 9 6
0,2 5 1 2
0,1 3 1 14
3 8 8 4
2 4 1 2
1 2 0 12
0 1 1 2
f 0 0 0

Table 4. Relation between states of the subset diagram in rule 54.    

Once the subset diagram has been formed, if a path leads from the
universal  set  to the empty set,  that is  conclusive evidence that such a
path exists nowhere in the original diagram. 

Figure 12. The scalar subset diagram of rule 54.  

3.4.1 Garden of Eden Configurations in Rule 54  

We know that  the  local  function  j  of  rule  54  has  an  injective  corre-
spondence exploring its subset diagram. With this correspondence, we
can  find  paths  in  the  subset  diagram  representing  Garden  of  Eden
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configurations. In this manner, we can obtain two minimal configura-
tions that calculate Garden of Eden configurations for rule 54, repre-
sented  by  the  strings  101010  and  01010.  Of  course,  concatenations
and  compositions  of  these  strings  will  produce  a  more  extended
Garden of Eden configuration.  

3.4.2 An Abstract Machine for Rule 54  

A practical  application of  the  subset  diagram is  that  it  can recognize
any  valid  string  in  rule  54.  Another  way  to  verify  if  a  string  derived
from  the  de  Bruijn  diagram,  cycle  diagram,  or  tiles  representation  is
to evaluate such a string in the subset diagram, in the same way as reg-
ular language is recognized in classic automata theory [27, 28].  

In  order  to  verify  this  property,  it  is  necessary  to  take  a  sequence
from the set of regular expressions YR54  and check for a route match
into  the  subset  diagram.  Otherwise,  if  such  a  string  does  not  follow
any route, then it does not belong to LR54. 

4. Cycle Diagrams  

Another way to get periodic structures in rule 54 is to calculate cycle
diagrams (or attractors), similar to what Wuensche [18] did by deriv-
ing an ECA classification based in basins of attraction properties.  

In this section, we explore some cases with particular evolutions or
attractors. 

Figure 13 (left) determines a cycle diagram for a configuration with
16 cells.  This  attractor has a  root  cycle  of  four states  with a total  of
6432 vertices. If you choose a leaf (vertex 50795), then it is the peri-
odic configuration that will evolve during 32 generations to reach the
attractor,  which  is  precisely  the  periodic  background  configurations.
Figure 13 (right) determines a cycle diagram for a configuration with
15  cells,  it  has  an  attractor  with  just  one  state,  the  stable  state,  that
can  be  reached  after  21  generations  starting  with  the  configuration
vertex 11491, this attractor has 1583 vertices. 

Figure 14 displays a basin of attraction for configurations with 23
cells. We show this attractor to demonstrate the complex behavior of
rule  54.  It  is  determined  by  asymmetric  long-transient  attractors.
They imply the existence of gliders and nontrivial behavior. 
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Figure 13. Cycle  diagrams  calculating  periodic  background  from  their  at-
tractors with l # 16 (left) and l # 15 (right).  

Figure 14. Basin of attractors in rule 54 for rings with 23 cells.  
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Figure  15  shows  a  “meta-glider,”  meshes,  or  agar  configuration
(an agar configuration comes from Conway’s CA Game of Life litera-
ture,  for  details  see  [29]).  The  meta-glider  in  this  figure  is  a  periodic
structure moving to the left (composed of one T8, two T4, and one T2

tiles); it is preserved during a triple permanent collision of three w glid-
ers.  We  have  selected  vertex  7577,  which  needs  20  generations  to
reach the attractor that represents this meta-glider, which corresponds
to 169 vertices. The full attractor is composed of 1274 vertices. 

Figure 15. A cycle diagram of 13 cells calculating a meta-glider or agar config-
uration in rule 54.  

For the following cycles or attractors diagrams we can list  a num-
ber of periodic strings as well. In this case, every primitive glider may
be reproduced from different cycles, as Table 5 shows. The Length col-
umn  indicates  the  attractor  period,  the  Cycle  column  indicates  the
number  of  components  selected  that  have  the  same  cycle  length,  the
Total Vertices column is the total number of nodes for each attractor
(including  branches  and  leaves),  and  the  Structures  column describes
the number of periodic structures evolving with these strings. 
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Length Cycle
Total
Vertices Structures

4 4 4 T3 andT2 tiles
6 4 5 ge glider
8 4 14 ge gliders joined

6 28 ge glider with aT2
9 4 44 ge-go gliders joined

27 45 T4 transporting aw
(extensible as a T5 in rule 110)

10 30 90 two T4 tiles joined

11 4 125 go glider with a T6 tile
11 55 packages of T4 tiles

99 231 meta-glider (w-T5-T6-T4-T2 tiles)
12 10 124 periodic background (2T6-2T3-T2 tiles)

12 102 2w gliders
13 4 406 (ge-go) gliders concatenated

169 1274 meta-glider (T8-2T4-T2 and w gliders)
14 112 805 meta-glider (T8-3T4-T2 tiles)

15 330 7680 meta-glider (T5-2T6-T4-T2 tiles)

16 6 116 periodic background (T6-T2 tiles)

8 8 w gliders

14 944 meta-glider (w-go-w gliders)

16 2896 2w gliders
40 1246 meta-glider (T8-5T6-2T2-3T4-T5 tiles)

Table 5. Cycle diagrams calculating periodic structures in rule 54.    

5. A Way to Encode Gliders in Rule 54  

We can encode gliders in regular expressions via the gliders’ phase rep-
resentations:  

(8)Ò1 HÒ2, piL,
where Ò1  represents a glider of rule 54 of the set of gliders #R54, Ò2
represents  its  block  of  phases,  and pi  is  a  phase  determined  for  each
block of phases, where i ! 81, 2<. All sets of phases for gliders in rule
54 are detailed in Table 3.

The displacement for each glider g  in #R54  is represented with the
following equation: 

(9)dg ! 2 * l p m - 2 * r p m.
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All periodic structures have a period length defined by the amount
of  margins  l p m  and  r p m,  given  the  number  of  tiles  and  contact
points in the structure (see Table 2). Therefore the period of gliders is
determined as 

(10)pg ! 2 * l p m + 2 * r p m,

and the speed of gliders in rule 54 is determined as  

(11)vg !
2 * l p m - 2 * r p m

2 * l p m + 2 * r p m
.

Collisions  between  gliders  have  a  maximum  level  that  is  deter-
mined by the number of margins l p m and r p m, although they could

not all be viable collisions. This way, a glider with l m s contact points
and another glider with r p m contact points have the next number of
possible collisions: 

(12)c § lpm * r p m,

where c represents the maximum number of possible collisions.  
Frequently,  however,  gliders  have  contact  and  noncontact  points

where the maximum level is not fulfilled. Simplifying the equation, we
obtain the number of collisions between two gliders gi  and gj,  where

i ! j, which is represented by the following equation: 

(13)c ! ¢Jl p mgi
* r p mgj

N - Jr p mgj
* l p mgi

N¶.
Therefore,  following  is  the  set  of  regular  expressions  and  codific-

ation in phases for gliders in rule 54 (see Table 3). We are able to cod-
ify  easily  the  initial  conditions  to  control  and  synchronize  collisions
between gliders. In the next sections we select some problems, such as
construction of gliders by collisions, unlimited growth, holes, solitons,
and some simple computable devices. 

5.1 Self-Organization by Glider Reaction  
In [8] we show how to construct all gliders in rule 54 from collisions
between gliders. This problem is referred to as glider self-organization
by collisions in complex systems [31]. Figure 16 displays the produc-
tion of primitive gliders in rule 54, and Table 6 shows encoding of the
collisions. 
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Collisions
Glider By Gliders By Sequences 

w go,w e1*04 n-2 e2* " n > 0 

w w,go e1*04 n e2* " n > 0 

go w,w e1*10n e1* " n > 0 and odd 
ge e1*10n e1* " n > 0 and even 

glider gun w,2 ge or 2 ge,w 

glider gunn w,ge,2 ge or 2 ge,ge,w 

Table 6. Collision sequence for glider production in rule 54.    

We can  choose  between  production  by  gliders  or  by  sequences.  If

we  want  to  produce  a  w  glider,  then  we  need  to  collide  a  go  glider

with  a  w  glider  and  so  on.  We  enumerate  each  expression  to  repro-
duce every collision presented in Figure 16. 

1. w # n e1-w-010-w-n e2 (Figure 16(a)),

2. w # n e1-(go(A,f1) ˛ go(B,f1))-10 e1-w-n e2 (Figure 16(b)),

3. w # n e1-w-012-w-n e2 (Figure 16(c)),

4. w # n e1-w-8 e2-(go(A,f1) ˛ go(B,f1))-n e2 (Figure 16(d)),

5. go # n e1-w-010-w-n e1 (Figure 16(e)),

6. go # n e1-w-10 e2-w-n e1 (Figure 16(f)),

7. ge # n e1-w-012-w-n e1 (Figure 16(g)),

8. gun # n e1-ge(A,f1)-ge(B,f1)-4e1-w-n e2 (Figure 16(h)),

where n is a number of copies of the string.  
Of course, different parameters will yield a glider with different in-

tervals or a different number of gliders. 
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HaL HbL HcL

HdL HeL HfL

HgL HhL
Figure 16. Producing gliders by collisions in rule 54.  

5.2 Unlimited Growth  
A famous problem established in Conway’s Game of Life was the dis-
covery of a configuration that will grow permanently, into an infinite
evolution  space.  This  problem  was  solved  by  Gosper  and  colleagues
at MIT Artificial Intelligence Lab [30]. 

The same problem can be established in rule 54. Of course, the con-
struction  of  a  glider  gun  or  some  other  extension  is  sufficient  to
demonstrate  unlimited  growth  in  rule  54  (Figure  16(h)).  Here  we
show the production of double glider guns. 
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1. Double  glider  gun  #  n e1-2 w-8e1-2ge(A,f1)-2e1-2ge(A,f1)-8e1-2 w-n e1
(Figure 17(a)). 

2. Double  glider  gun  #  n e1-3 w-5 e2-ge(B,f2)-ge(A,f2)-ge(B,f2)-ge(B,f2)-

ge(A,f2)-ge(B,f2)-5 e2-3 w-n e1 (Figure 17(b)). 

HaL HbL
Figure 17. Double glider guns in rule 54 produced from multiple collisions of
(a) eight gliders, and (b) 12 gliders.  

5.3 Holes and Big Tiles  
In  [21]  McIntosh  determined  that  ECA rule  110  can  be  studied  as  a
tile problem. What is a largest tile produced via collision between glid-
ers in rule 54? Some answers are given in [8] via studying reactions be-
tween gliders. 

Figure 18(a) shows the construction of a T16  tile by synchronizing

multiple collisions between w, w, and ge  gliders. Figure 18(b) shows a
T33  tile  produced  by  a  chaotic  decomposition.  Codes  to  reproduce
these reactions are as follows: 

1. T16 # n e1-2 w-4e1-2ge(A,f1)-4e1-2 w(A,f1)-n e1 (Figure 18(a)). 

2. T33 = ne1-11001010100101010011100000100111011000001010010
10011110110011101110011000000101011010001110101010000001
010011000101101000-ne1 (Figure 18(b)). 
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HaL HbL
Figure 18. Big tiles emerging in rule 54. (a) T16  tile from six colliding gliders,
(b) T33 tile as a decomposition from a specific string.  

5.4 Memory Functions  
Rule  54  has  been  proved  to  be  a  “universal  dynamics  rule”  in  the
ECA memory (ECAM) classification of [12]. This means that rule 54
operated  with  some memory  functions  is  able  to  reach  any  Wolfram
class, including class IV, to which the memoryless rule 54 belongs [2]. 

Figure 19 presents evolutions of rule 54 with memory. Each snap-
shot illustrates four different behaviors. Figure 19(a) shows a uniform
evolution  with  rule  fR54 maj:6,  Figure  19(b)  a  periodic  behavior  with

rule fR54 maj:10,  Figure 19(c) a chaotic evolution with rule fR54 maj:3,

and Figure 19(d) a complex behavior with rule fR54 maj:8.  Of course,

every  memory function represents  a  different  evolution rule  but  with
elements of the original rule. 

5.5 Computing Potential  
In  [11]  we  show  how  a  number  of  solitonic  collisions  can  be  simu-
lated  in  rule  54.  These  solitons  can  be  manipulated  to  develop  some
basic  computable systems,  such as simple substitution systems.  In [8]
basic  logic  functions  were  simulated  from basic  collisions  in  rule  54.
So far no one has ever implemented an equivalent Turing machine in
rule  54.  However,  taking  advantage  of  codification  of  gliders  in  rule
54,  we  have  explored  some  basic  computable  functions  that  could
help us to emulate the Turing machine with rule 54 in the future.  
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HaL HbL

HcL HdL
Figure 19. Rule  54  affected  with  memory  functions.  (a)  ECAM  fR54 maj:6,

(b) ECAM fR54 maj:10, (c) ECAM fR54 maj:3, (d) ECAM fR54 maj:8.  

Some series  by reacting gliders  are  presented in  [6].  Here  we have
three cases. 

1. !n " n > 3 # n e1-2 ge(A,f1)-6e1-w-n e2 (Figure 20). 

2. Parity # n @go(A,f1)-go(B,f1)]-2e1-w-2 e2-n[go(A,f2)-go(B,f2)]
(Figure 21). 

3. Flip-flop # n e1-ge(A,f1)-2e1-4 w-n e1 (Figure 22). 
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Figure 20. ECA rule 54 evolution deriving a series that yields !n for n > 2.  

In Figure 20, starting from a collision among three gliders yields an
infinite  series  !n  for  n > 2 (without  limit  boundaries).  This  sequence
is defined by a vertical number of T6  tiles without some perturbation
that  evolves  on  each  collision.  Figure  21  displays  an  evolution  that
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simulates a parity function 2 k " k œ !. This parity is preserved by the
number  of  generations  or  by  the  number  of  T5  tiles  (go  gliders)
(without  limit  boundaries).  So,  Figure  22  shows  a  very  simple  flip-
flop  configuration  that  is  restricted  to  limit  boundaries.  All  previous
simulations need more than 1000 generations. 

Figure 21. ECA rule 54 evolution deriving a parity function.  
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Figure 22. ECA rule 54 evolution implements a simple flip-flop.  
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6. Final Remarks  

Cellular  automaton  gliders  are  analogs  of  optical  solitons,  kinks  in
polymer  chains,  excitation  in  molecular  arrays  (reaction  diffusion
computers [32], wave packets using slime mold to communicate infor-
mation to distant parts of the body [33]), and defects in micro-tubules
[34].  Also,  rule  54  per  se  is  a  discrete  analog  and  active  nonlinear
medium with lateral inhibition between micro-volumes. The lateral in-
hibition in the nervous system sharpens and strengthens sensor percep-
tion and is widely employed in vision and olfactory systems. Thus we
can speculate that rule 54 is a simplest abstract model of the affective
nervous  system.  The  gliders  then  play  the  role  of  propagating  action
potential  wave  packets,  and  glider  guns  symbolize  activity  in  the
sources of sensorial stimulation. As we can see, there are many analo-
gies of rule 54 behavior in physical and biological systems. And there-
fore, the behavior of these systems can be described by unique subsets
of  regular  expressions,  where  phase,  distance,  momentum,  position,
period, and speed are taken into consideration.  
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