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This paper presents a new framework for asynchrony. This has its ori-
gins in our attempts to better harness the internal decision-making pro-
cess  of  cellular  automata  (CA).  Thus,  we  show  that  a  max-plus  alge-
braic  model  of  asynchrony  arises  naturally  from  the  CA  requirement
that a cell receive the state of each neighbor before updating. The signif-
icant  result  is  the  existence  of  a  bijective  mapping  between  the  asyn-
chronous system and the synchronous system classically used to update
CA.  Consequently,  although  the  CA  outputs  look  qualitatively  differ-
ent,  when  surveyed  on  !contours"  of  real  time,  the  asynchronous  CA
replicates  the  synchronous  CA.  Moreover,  this  type  of  asynchrony  is
simple—it  is  characterized  by  the  underlying  network  structure  of  the
cells,  and  long-term  behavior  is  deterministic  and  periodic  due  to  the
linearity of max-plus algebra. The findings lead us to proffer max-plus
algebra  as:  (i)  a  more  accurate  and  efficient  underlying  timing  mecha-
nism  for  models  of  patterns  seen  in  nature;  and  (ii)  a  foundation  for
promising extensions and applications. 

Introduction  1.

A  cellular  automaton  (or  CA,  where  we  also  abbreviate  the  plural
!cellular automata" to CA, allowing the context to save confusion) is
a  discrete  dynamical  system,  consisting  of  an  array  of  identical  cells,
each  possessing  a  state.  The  states  evolve,  according  to  some  local
rule,  in  discrete  time  steps.  The  first  CA  models  were  synchronous,
where all cells update once on each time step, and the foundations of
the  study  of  these  CA  were  laid  by  Wolfram  in  the  1980s  [1,  2].  A
popular application of such CA is the construction of models of natu-
ral  growth  processes  such  as  seashell  patterns  and snowflakes  [3,  4].
Figure  1  (right)  shows  a  CA pattern  typically  examined  by  Wolfram
inscribed  on  a  seashell;  the  similarity  to  the  real  seashell  pattern  (on
the  left)  is  evident.  A  natural  extension  is  the  introduction  of  asyn-
chronous  update  times.  Indeed,  in  terms  of  seashell  patterns,  Gunji
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demonstrated that different asynchronous update methods yield differ-
ent  patterns,  leading  to  the  conjecture  that  asynchrony  is  intrinsic  to
living systems [5].  

Figure 1. Seashell patterns: left is real; right is generated by a CA [3].

A  preliminary  observation  of  asynchronous  CA  was  made  in  [6],
where  the  authors  compared  the  properties  of  synchronous  CA with
two types  of  CA that  iterate  asynchronously.  Subsequent  studies  em-
ployed the methods of  [6]  as  special  cases  to conduct  specific  studies
into  asynchronous  CA [7–11].  Many of  these  authors  attest  to  asyn-
chrony  as  being  stochastic  in  nature.  This  is  a  general  viewpoint  in
light of their applications:  such asynchrony relies on continuous time
[11]  and is  also  likely  to  be  more  robust  [7,  9,  11],  thereby aiding  a
better description of biological phenomena. For example, given a sys-
tem of coupled cells, the update of cell states depends on a predefined
probability  [6,  11].  This  consequently  also  led  Schönfisch  and
de Roos  to  conjecture  that  while  synchronous  updating  can  produce
periodic  orbits,  asynchronous  systems  will  only  yield  patterns  that
converge to a fixed point or patterns that are chaotic [11]. 

The  argument  for  asynchronous  updating$s  being  stochastic  has
been challenged by authors such as Cornforth et al.  [12].  They claim
that such probabilistic updating schemes are used because of the over-
simplification  of  biologically  inspired  models.  They  further  argue  for
mimicking appropriate aspects of nature more closely to create better
computational  models.  Thus,  the  authors  have  drawn  attention  to  a
large class of behaviors of natural processes, in which the updating is
asynchronous but not stochastic [13]. 

Moreover,  underlying  a  synchronous  update  scheme  is  the  notion
of  a  !global  clock,"  in  the  sense  that  it  assigns  the  same update  time
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to all cells. In recent years, the disadvantages of synchrony in this con-
text  have  been  exposed  [14].  On the  other  hand,  a  remedy  has  been
presented from the perspective of parallel computing devices, wherein
such a distribution of a global signal proves costly. Thus, the proposal
is to allow cells to determine their own update time through local in-
teractions  (see  [14]  and  the  references  therein,  including  [15]).  Al-
though  the  storage  cost  is  higher,  this  scheme  points  toward  a  more
natural form of computation. 

In  [1],  Wolfram  explored  synchronous  CA  on  a  one-dimensional
lattice, where cells take the Boolean states 1 or 0. The CA state of cell
i was dependent on the states of three connected cells, called the neigh-
borhood of i. These three-cell neighborhood CA were termed elemen-
tary cellular automata (ECA). 

The ECA may be regarded as special cases of random Boolean net-
works.  The  different  types  of  these  networks  were  first  classified  by
Gershenson  in  2002  [16].  The  types  considered  included  asyn-
chronous random Boolean networks (ARBNs), in which nodes are se-
lected  to  be  randomly  updated  at  each  time  step,  and  deterministic
ARBNs  (DARBNs),  where  the  node  to  be  updated  is  selected  deter-
ministically.  Gershenson  talked  of  DARBNs  as  being  more  advanta-
geous because of their modeling capabilities, which are more straight-
forward  than  ARBNs  that  rely  on  the  stochasticity  of  asynchronous
phenomena.  Gershenson  further  proposed  DARBNs  as  better  repre-
sentations  of  the  famous  genetic  regulatory  networks  of  Kauffman
[17], as they are asynchronous but do not rely on stochastic methods. 

Following  on  from  Gershenson$s  idea  of  using  determinism  as  a
more !model-friendly" form for asynchrony, a goal of this paper is to
exploit  this avenue by presenting a new, deterministic framework for
asynchrony.  No  matter  how  well  they  match  the  real  system,  we
claim  that  the  essence  of  many  interesting  and  important  asyn-
chronous processes is lost by using probabilistic updating schemes. 

As a real example, consider Figure 1 again, showing a seashell pat-
tern;  it  is  interesting  to  see  that  the  same  pattern  (and  many  other
such seashell patterns, as well as growth processes such as snowflakes
[4]) may be replicated quite accurately by a CA model. Traditionally,
some  difference  between  the  two  versions—real  and  CA—would  be
ascribed to a fault,  random or otherwise,  such that  a  better  approxi-
mation  may  be  obtained  by  adding  stochastic  asynchrony  in  the  CA
rule.  As  alluded  to  by  Cornforth  et  al.  [12],  such  asynchrony  has
tended  to  simplify  these  dynamics  into  a  probability  (or  the  like)  of
cells  updating their  states.  Inspired by the  ideas  of  !local  clocks  over
global clocks" in [14] and [15], we will get into the heart of the mat-
ter and study the pattern of exchanges that take place locally, that is,
before any data is transferred between cells. 
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Network Description of the Cellular Automaton Lattice  1.1
Our work views each cell  in  a one-dimensional  lattice  as  a  processor
that receives input from its neighborhood. Having received this input,
the  processor  computes  its  new  state  (as  a  function  of  the  input
states), then sends a corresponding output to its connected neighbors.
This type of information exchange can be represented by the digraph
in Figure 2, where each node represents a processor, and directed arcs
between nodes indicate the direction of information transfer.  

Figure  2  shows  three  arcs  pointing  to  each  node,  indicating  that
there  are  three  processors—therefore  three  neighbors  (including  i  it-
self)—sending information to each process i.  Thus, the neighborhood
size n of each node is n % 3; we also refer to such a neighborhood as
an  n-neighborhood  (or  n-nbhd).  The  figure  particularly  shows  that
each  processor  sends  output  to  itself  as  well  as  to  its  left  and  right
neighbors.  We refer  to  this  type of  network as  a  regular  n-nbhd net-
work  or simply a regular network if n  is understood. Thus, the regu-
lar 3-nbhd network describes the lattice for the ECA, where cells  are
depicted by nodes. For this reason, we use the terms cell and node to
mean the same thing. 

Figure 2. Digraph representing a regular 3-nbhd network.  

It  is  also  assumed  that  there  is  a  processing  delay  associated  with
each  nodal  computation  of  CA  state.  Moreover,  we  incorporate  a
transmission delay, which is the time taken for a CA state to be trans-
mitted  to  other  cells  that  require  it.  These  two  parameters  are  the
means  by  which  we  obtain  asynchrony:  a  divergence  from  classical
(synchronous)  CA models,  since  there  the  computations  are  assumed
to occur instantaneously. 

Contents  1.2
In  Section  2,  we  review  the  ECA,  a  classical  synchronous  model  of
CA,  which  is  later  used  to  present  our  asynchronous  model.  In  Sec-
tion  3,  we  show  how  max-plus  algebra  provides  a  natural  way  to
mathematically  model  asynchronous  CA.  By  covering  related  graph
theoretical  techniques  and  known  proven  results,  we  also  show  that
this  asynchronous  system is  periodic,  characterized  by  the  connectiv-
ity of the underlying network. It will be seen from the depth of theory
covered  that  a  max-plus  algebraic  model  of  asynchrony  is  more  be-
spoke and addresses all the intricacies of the internal dynamics within
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a cell (not just the external). Nevertheless, those already familiar with
max-plus algebra may skim over Sections 3.1 and 3.2, noting the few
places where we mention the link to our system. The !contour plot" is
introduced  as  a  framework  for  this  asynchrony  in  Section  3.  This  is
followed by  Section  4,  which  shows  the  effect  of  the  max-plus  asyn-
chrony on cellular automata. We finish with concluding remarks.  

Synchronous Cellular Automata   2.

Let si  denote the state of cell i. The index i denotes the position of the
cell  in  the  one-dimensional  Euclidean  plane,  so  that  the  state  of  the
CA at a given time t & ' is represented by the string s1(t) s2(t) * sN(t)
or  the  vector  s(t) % (s1(t), s2(t), * , sN(t)),  where  N  is  the  size  of  the
lattice.  The ECA assigns a symmetrical  neighborhood of three nodes,
where  node  i  is  contained  in  its  own  neighborhood  (as  in  Figure  2).

Here,  the  CA  rule  is  a  function  f : +0, 1,3 - +0, 1,  given  by

si(t . 1) % f (si/1(t), si(t), si.1(t)). An example of such a CA rule is the
following:

si(t . 1) % 0
j%i/1

j%i.1

sj(t) mod 2. (1)

The  rule  in  equation  (1)  was  named  ECA  rule  150  by  Wolfram  [2],
and this is how we refer to it throughout the paper. 

Consider a regular 3-nbhd network of 20 cells (connected in a ring
such that end cells are adjacent). If each cell is depicted by a square—
colored if si % 1, clear if si % 0—then the output produced after each
of 30 iterations of equation (1) is shown in Figure 3. For fixed t,  the
CA state  s1(t) * s20(t)  represents  a  horizontal  line  of  cell  states,  and
the initial CA state is 

si(0) %
1 if i 1 10

0 otherwise.
(2)

Such an  output  as  Figure  3  is  referred  to  as  a  space-time pattern  (or
plot). It is evident that the absence of transmission and processing de-

lays means that the tth  update of each cell occurs at the same time as

the tth update of every other cell, that is, synchronously.  

State Transition Graph   2.1
Figure 3 displays periodic behavior. In other words, for each time step
t, the CA yields a state s(t), which is seen again after a few more time
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Figure 3. CA  pattern  produced  by  ECA  rule  150.  Time  travels  vertically
down; cells are labeled on the x axis. 

steps.  Given  the  initial  CA  state  s(0)  and  the  CA  rule  f ,  an  orbit  of

s(0)  is  the  sequence  of  states  obtained  by  applying  f  on  s(0)  sequen-

tially. If f  is applied k times, we represent this as 

f k(s((0)) % f (f (2 f

k times

(s(0)))).

We define periodic behavior as follows.  

Definition 1.  Consider  the  CA  rule  f  and  network  size  N.  Let

s(k) % f k(s(0)) for all k 3 0, where s(k) is a CA state represented by a
14N vector. For some t 3 0, if there exists a finite number p & 5 such
that s(t . p) % s(t), then the set of states 

+s(t), s(t . 1), * , s(t . p / 1),

is called a periodic CA orbit, where p is the CA period of the orbit.  

As an example, consider the underlying network of size 4 as given
in Figure 4. We give the CA rule in words: the new state of each cell is
the  sum of  the  states  (mod 2)  of  its  neighborhood cells  on  the  previ-
ous time step,  where the neighborhood of  cell  i  comprises  those cells
whose outgoing arc points to i. (Note that this rule is an extension of
ECA rule 150 to arbitrary lattices.) For small N, as is the case here, it
is useful to represent each system state as a vertex in a digraph. Thus,

there  is  an  arc  from  CA  state  si  to  CA  state  sii  if  and  only  if
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f 6si7 % sii.  The  digraph  is  known  as  a  state  transition  graph  (STG).
For  the  system  in  question,  the  STG  is  given  in  Figure  5.  Each  CA

state  is  shown  in  string  form,  where  the  ith  digit  represents  the  CA

state of the ith node. 

Figure 4. Size 4 network of CA cells.  

Figure 5. STG of  ECA rule  150 generalized  to  a  lattice  of  size  4  (namely  the
network given in Figure 4).  

To  determine  the  evolution  of  the  CA,  we  can  follow  the  arcs  in
Figure 5. It can be seen that all initial CA states asymptotically evolve
into  four  periodic  orbits,  represented  as  circuits  in  the  STG.  Two  of
these  (states  0000  and  1001)  are  period-1  orbits  (or  fixed  points  in
conventional  dynamical  systems  language),  and  two  are  period-3  or-
bits; all other states are transient. Such an STG is an artifact of a syn-
chronous CA. 
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Asynchronous Model   3.

Consider  a  synchronous  CA.  Due  to  the  synchrony,  it  is  possible  to
draw  horizontal  lines  in  the  corresponding  space-time  pattern  such
that  each  line  represents  the  update  times  of  all  cells  at  some  fixed
time.  The  CA is  a  discrete  time,  dynamical  system,  so  the  horizontal
lines may be drawn in sequence, evenly spaced, as in Figure 6(a). We
call such a space-time plot a contour plot, and each horizontal line is
referred  to  as  a  contour.  The  contour  plot  may  be  thought  of  as  a
frame on which the  CA states  are  overlaid  and simulated.  Now con-
sider  altering  these  contours  so  that  cells  do  not  necessarily  update
synchronously.  The  corresponding  contour  plot  may  then  look  like
Figure  6(b),  which  shows  the  contours  having  variable  shapes—
updates occur asynchronously. We shall return to the contour plot af-
ter looking at how our asynchronous model may produce it. 

(a) (b)

Figure 6. (a)  Synchronous  and  (b)  asynchronous  contour  plots.  The  contours
indicate  update  times  of  cells  and  act  as  a  frame  on  which  the  CA  may  be
evolved. Both lattices are connected as a regular 3-nbhd network of 20 cells.
Time is  on  the  vertical  axis,  and the  horizontal  axis  represents  the  cell  posi-
tions.  In  (a),  contours  are  horizontal.  In  (b),  update  k  of  all  cells  is  repre-
sented by contour k (counting from the top).  

We  present  the  asynchronous  model  as  follows.  Consider  a  cell  i
contained  in  a  regular  n-nbhd  network  of  N  cells.  The  cell  carries  a
CA state (1 or 0) that changes with time, depending on the rules that
we employ. Thus, we can plot points on the real line corresponding to
when  these  changes  occur.  The  real  line  represents  time,  and  the

points  are  the  update  times  of  the  CA state.  Let  xi(k)  denote  the  kth

update time for cell i. We also refer to k as a cycle number. Once each

cell in the neighborhood of cell  i  has completed its kth  cycle, it  sends
the updated state to i. The transmission of such a state from cell j to i

takes transmission time  8ij(k).  The update of cell  i  takes a processing
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time,  and it is represented in the kth  cycle by 9i(k).  If n % 3, we have

the following iterative scheme for the (k . 1)th update time of cell i:

xi(k . 1) % max :xi/1(k) . 8i,i/1(k),

xi (k) . 8i,i(k), xi.1(k) . 8i,i.1(k); .9i(k . 1).
(3)

This sequence of interactions yielding a state change is depicted in Fig-
ure 7.  Notice that we have now expanded on the simpler notion of in-
tercellular  communication  by  focusing  more  closely  on  intracellular
communication, that is, the communication within a cell itself. This is
the  key  to  our  study of  asynchrony,  and it  has  arisen  naturally  from
the requirement that a CA cell know the states of its neighbors. 

Figure 7. The processes internal to the kth state change at cell i. Real time trav-
els  vertically  down.  Arrows  indicate  the  destination  of  the  sent  state.  Labels
on arrows indicate the time taken for the corresponding process.  

We refer to these internal processes as events. In Figure 7, there are
two significant types of events:  !receive"  and !send."  The three times
xi/1(k),  xi(k),  and  xi.1(k)  are  send  event  times  (i.e.,  when  the  corre-
sponding CA states are sent). The time 

max :xi/1(k) . 8i,i/1(k), xi(k) . 8i,i(k), xi.1(k) . 8i,i.1(k);

is when node i  receives the aforementioned send states; it is therefore
a receive event.  Once received,  node i  processes its  new CA state (by
applying  a  CA  rule  on  the  received  states);  this  takes  time  duration
9i(k . 1). Once processed, node i sends its state to connected nodes at
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i            
time xi(k . 1);  this  is  another  send event.  Note  that  we make no dis-
tinction  between  update  times  and  events;  both  are  the  same.  How-
ever,  we  formally  refer  to  xi(k . 1)  as  the  update  time  of  i,  as  intro-
duced earlier.  

Note 1. This  idea  of  a  network  depicting  events  in  a  space-time  dia-
gram is not too dissimilar from Wolfram$s causal network [25, Chap-
ter 9]. We shall delve into this relationship later.  

Preliminaries: Max-Plus Algebra and Graph Theory   3.1
The max operation enables one to interpret equation (3) in max-plus
algebra.  This  is  useful  because  it  converts  a  nonlinear  system  into  a
linear system in this new algebra, which subsequently shares many im-
portant  features  with  conventional  linear  algebra.  Particularly  novel
applications include the modeling of railway network timetables [18],
manufacturing  processes  [19],  and  even  cellular  protein  production
[20].  In  presenting  max-plus  algebra,  we  borrow  most  notation  and
terminology from [18].  

Define < % /= and e % 0, and denote by 'max the set '> +<,. For
elements a, b & 'max, define operations ? and @ by 

a? b % max(a, b) and a@ b % a . b.
The  set  'max  together  with  the  operations  ?  and  @  is  what  we
refer  to  as  max-plus  algebra  and  it  is  denoted  by  Amax %
('max, ?, @, <, e).  < % /=  is  the  !zero"  (i.e.,  B x & 'max,
< @ x % x@ < % <,  and  < ? x % x? < % x),  while  e % 0  is  the  !unit"
element (i.e., B x & 'max, e@ x % x@ e % x).  
Amax  is  associative  and  commutative  over  both  operations  ?  and

@,  while  @  is  distributive  over  ?.  (In  addition,  ?  is  idempotent  in
Amax,  so  that  max-plus  algebra  is  a  commutative  and  idempotent
semiring.) 

In  this  paper,  we  remove  the  dependence  on  k  of  the  processing
and transmission times, so that equation (3) is written 

xi(k . 1) %
max :xi/1(k) . 8i,i/1, xi(k) . 8i,i, xi.1(k) . 8i,i.1; . 9i.

(4)

We can now write this in max-plus algebra:  

xi(k . 1) % :68i,i/1 @ xi/1(k)7 ?

68i,i @ xi(k)7 ? 68i,i.1 @ xi.1(k)7; @ 9i.
(5)

We often save space and clarify the presentation by omitting @, much
as in conventional algebra. Thus, x@ y C x y and equation (5) can be
written as  

xi(k . 1) % 9i :8i,i/1 xi/1(k) ? 8i,i xi(k) ? 8i,i.1 xi.1(k);. (6)
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Since @ is distributive over ?, we can write this as  

xi(k . 1) %
9i 8i,i/1 xi/1(k) ? 9i 8i,i xi(k) ? 9i 8i,i.1 xi.1(k).

(7)

To represent a max-plus power, we follow from the associativity of @
and define, for x & 'max,  

x@n %
def

x@ x@2@ x
n times

(8)

for all n & 5 with n D 0. For n % 0, we define x@0 % e ( % 0).  
Max-plus algebra extends naturally to matrices, and this allows the

concurrent modeling of the update times for all nodes. Denote the set
of n4m matrices with underlying max-plus algebra by 'max

n4m. The sum
of matrices A, B & 'max

n4m, denoted by A?B, is defined by 

EA?BFij % aij ? bij, (9)

where  aij % EAFij  and  bij % EBFij.  In  the  same  vein,  for  matrices

A & 'max
n4l  and B & 'max

l4m , the matrix product A@B is defined by  

EA@BFij %?k%1
l ai k @ bk j % max

k&+1,* ,l,
:ai k . bk j;. (10)

For G & ', the scalar multiple G@A is defined by  

EG @AFij % G@ aij. (11)

As in  classical  matrix  manipulation,  the  max-plus  matrix  addition
? is associative and commutative, while the matrix product @ is asso-
ciative  and distributive  with respect  to ?;  it  is  usually  not  commuta-
tive. Similarly, the operation @ has priority over ?. 

The elements of  'max
n %

def
'max

n41  are called vectors.  A vector is  usu-
ally written in bold,  as in x,  while  the vector with all  elements equal
to e is called the unit vector and is denoted by u. 

We  are  now  able  to  define  matrix-vector  products.  The  product
A@ x, where A & 'max

n4m and x & 'max
n , is 

EA@ xFi %?k%1
m ai k @ xk % max

k&+1,* ,m,
+ai k . xk,. (12)

Moreover,  for  the  square  matrix  A & 'max
n4n ,  denote  the  kth  power  of

A by A@k, defined by  

A@k %
def

A@A@2@A
n times

(13)
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for  all  k & 5  with  k D 0.  For  k % 0,  we  set  A@0 %
def

E(n, n),  the  iden-
tity  matrix  whose  diagonal  elements  equal  e  and  all  of  whose  other
elements are <.  

Having  established  the  preliminaries  above,  a  system  of  N  such
equations as (7) can now be given in the form 

x(k . 1) % P@ x(k), (14)

where x(k) % (x1(k), x2(k), * , xN(k))H. P is the N4N matrix defined
by A9 @T, where  

A9 %

91 < 2 <

< 92 2 <

I J I
< < 2 9N

and  

T %

811 812 < < 2 < 81 N

821 822 823 < 2 < <

I J I
< < 2 < 8N/1,N/2 8N/1,N/1 8N/1,N

8N,1 < 2 < < 8N,N/1 8N N

.

A9  is  referred  to  as  the  processing  matrix  and  T  is  the  transmission

matrix.  We  call  equation  (14)  a  max-plus  system  (of  dimension  N),
where the vector x(k) is the state of the system. P is called the timing
dependency  matrix  of  the  network  of  cells.  Note  that  here,  the  term
!state"  refers  to  update  time  and  is  not  to  be  confused  with  !CA
state."  Nevertheless,  the  context  should  make  this  distinction  clear.
The name timing dependency matrix (along with the later  timing de-
pendency graph) is inspired by its use in another novel application of
Amax to the timing of digital hardware [21].

To a network of cells, we associate a digraph, such as in Figure 2.
In  general,  we  define  a  digraph  as  K % (V, E),  consisting  of  a  set  V
and  a  set  E  of  ordered  pairs  (a, b)  of  V.  (Often,  we  refer  to  the  di-
graph simply as a graph, which, in turn, also refers to the !network"
of  our  application.)  The  elements  of  V  are  called  vertices  or  nodes,
and those of E are arcs. 

An arc (a, b) is also denoted a b, and we refer to an arc a a as a self-
loop.  For  the  arc  a b,  a  is  the  start  node  and  b  is  the  end  node;  a  is
also referred to as the predecessor node of b, while b is the successor
of a. 
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By  assigning  real  numbers  (called  weights)  to  the  arcs  of  a  graph
K % (V, E), we obtain a weighted graph. The weighted adjacency ma-

trix of K over 'max is the matrix W & 'max
n4n  whose (i, j)th  entry wij  is

nonzero ( D <) if and only if j is a predecessor of i. We also refer to W
as a max-plus adjacency matrix.  Given W & 'max

n4n ,  we denote the as-
sociated  network  as  K(W).  Thus,  P  in  equation  (14)  is  a  max-plus
adjacency matrix of the regular 3-nbhd network, since the network is
exactly  that  shown  in  Figure  2  augmented  with  arc  weights  9i 8ij.  In
fact,  since  our  particular  max-plus  system concerns  update  times,  we
call  K(P)  the  timing  dependency  graph  of  the  system.  The  neighbor-
hood of a node may now be defined in terms of the adjacency matrix. 

Definition 2.  Let  W  be  the  max-plus  adjacency  matrix  of  a  digraph  of
connected cells. The neighborhood of i is Li % :j wij D <;. 

Definition 3. Let p % +a1, a2, * , an, be a sequence of arcs. If there are
vertices  v0, v1, * , vn  (not  necessarily  distinct)  such  that  aj % vj/1 vj

for  j % 1, * , n,  then  p  is  called  a  walk  from  v0  to  vn.  A  walk  for
which the aj  are distinct is called a path. Such a path is said to consist

of  the  nodes  v0, v1, * , vn  and  to  have  length  n,  which  is  denoted
MpNl % n. 

If vn % v0, then the path is called a circuit. If the nodes in the cir-
cuit are all distinct (i.e., vi D vk  for i D k), then it is called an elemen-
tary circuit. 

We define the weight MpNw of a path p as the sum of the weights of
all arcs constituting the path. The average weight of p is MpNw O MpNl. For
a circuit, we refer to this quantity as the average circuit weight. 

Definition 4. For a graph K % (V, E), node j & V  is said to be reachable
from  node  i & V,  denoted  i - j,  if  there  exists  a  path  from  i  to  j.
Graph K is strongly connected if i - j for any two nodes i, j & V. 

Moreover, matrix A & 'max
n4n  is called irreducible if K(A) is strongly

connected; if a matrix is not irreducible, it is called reducible. Thus, in
our max-plus system of equation (14), matrix P is irreducible. 

Definition 5. Denote the cyclicity of a graph K by PK. 

Q If K is strongly connected, then PK  equals the greatest common divisor

of  the  lengths  of  all  elementary circuits  in  K.  If  K  consists  of  only  one
node without a self-loop, then PK is defined to be one. 

Q If K is not strongly connected, then PK  equals the least common multi-

ple  of  the  cyclicities  of  all  maximal  strongly  connected  subgraphs
(MSCSs) of K. (See Appendix A for definition of MSCSs.) 
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Definition 6.  Let  A & 'max
n4n  be  irreducible.  The  cyclicity  of  A,  denoted

P(A), is defined as the cyclicity of the critical graph of A. 

When the matrix is understood, the cyclicity is also denoted by P. 

Asymptotic Behavior of the Max-Plus System   3.2
Let  x(0)  represent  the  initial  state  of  all  cells.  Then  we  can  rewrite
equation (14) as  

x(k . 1) % P@ P@2 P@ x(0) % P@(k.1) @ x(0) (15)

or, equivalently,  

x(k) % P@k @ x(0). (16)

Given  x(0),  the  sequence  of  vectors  +x(k) : k & 50,,  obtained  by  iter-
ating equation (16), is referred to as the orbit of x(0). A study of such
sequences is provided in greater scope in [18, Chapters 3 and 4]. We
detail the topics relevant for this work, with some well-known results
expanded upon in Appendix B.  

Definition 7.  Let  A & 'max
n4n .  If  R & 'max  is  a  scalar  and  v & 'max

n  is  a
vector that contains at least one finite element such that 

A@ v % R@ v, (17)

then R is called an eigenvalue of A, and v is an eigenvector of A associ-
ated with eigenvalue R.  

For  a  system with irreducible  P  such as  equation (14)  (or  (16)),  it
turns out that there is only one eigenvalue, and it is equal to the maxi-
mal  average  weight  of  elementary  circuits  in  K(P)  (see  Appendix  B,
Theorem  2).  Such  circuits  with  maximal  average  weight  are  called
critical, and the critical graph of P is the graph consisting only of criti-
cal circuits in K(P). 

Definition 8. Let A & 'max
n4n . For some k 3 0, consider the set of vectors 

x(k), x(k . 1), x (k . 2), * & 'max
n ,

where  x(k) % A@k @ x(0)  for  all  k 3 0.  The  set  is  called  a  (periodic)
regime if there exists S & 'max and a finite number T & 5 such that  

x(k . T) % S@ x(k).

The period of the regime is T. 

Suppose  the  initial  vector  x(0)  is  an  eigenvector  of  A.  Then
x(k . 1) % R @ x(k)  for  k 3 0,  so  that  the  period  is  one.  Thus,  larger
periods are obtained when the system is not initialized to an eigenvec-
tor. The remainder of Section 3 explores this in more detail. We start
with the following crucial theorem of max-plus algebra. 
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Theorem 1.  Let  A & 'max
n4n  be  an  irreducible  matrix  with  eigenvalue  R

and cyclicity P. Then there is a kU such that 

A@(k.P) % R@P @A@k

for all k 3 kU.  

Proof. See [18, Theorem 3.9]. V
Let P % P(P).  For an indication of the asymptotic behavior of our

system, we apply this theorem to observe the state at epoch k . P for
k 3 kU: 

x(k . P) % P@(k.P) @ x(0) %

R@P @ P@k @ x(0) % R@P @ x(k),
(18)

where R@P  is  read as  R4P  in  terms of  classical  algebra.  This  guaran-
tees the periodic behavior of the max-plus system, where P is the up-
per bound on the period. More specifically, the period T is dependent
on  the  choice  of  x(0)  and,  since  we  have  seen  that  the  system  must
also  be  periodic  with  period  P,  we  have  that  T  is  a  factor  of  P.  We
saw earlier that if x(0) is not an eigenvector, then T W 1; we now also
know that such a period T will not be larger than P.  

We  can  use  the  above  to  show  that  the  vectors  x(k)  in  a  regime
turn out to be eigenvectors of P@P associated with eigenvalue R4P: 

R@P @ x(k) %
from above

P@(k.P) @ x(0) %

P@P @ P@k @ x(0) % P@P @ x(k).
(19)

In fact, given x(0) and corresponding period T, vectors in a regime are
also eigenvectors of P@T; this can be shown in the same way as above. 

We now define  a  measure  for  the  average  delay  between consecu-
tive event times xi(k) and xi(k . 1). 

Definition 9.  Let  +xi(k) : k & 5,  be  an  orbit  of  xi(0)  in  'max.  Assuming
that it exists, the quantity Xi, defined by 

Xi % lim
k-=

xi(k)

k
,

is called the cycle time of i.  

For  an  irreducible  system  such  as  ours,  the  vector
X % (x1, x2, * , xN)  of  cycle times is  unique (see Appendix B, Theo-
rem 3). Moreover, the irreducibility of P ensures that each element of
X is the same—specifically the eigenvalue of P, that is, 

lim
k-=

xi(k)

k
% R

for any initial condition x(0) & 'n (see Appendix B, Lemma 2).  
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Thus, since X is independent of the initial condition, we relate it to
our timing dependency graph by calling it  the cycle time vector of P.
P is irreducible in this paper, so we let X % Xi  for any i, and therefore
refer to the cycle time vector of irreducible P simply as the cycle time
of P. 

As  a  compact  summary  of  this  subsection,  we  have  shown  that
asynchrony due to an irreducible max-plus system always leads to pe-
riodic  behavior,  and  it  is  characterized  by  the  circuit(s)  in  K(P)  with
largest average weight. Section 3.3 addresses the impact of the above
theory on the asynchronous time framework of the contour plot intro-
duced earlier. 

The Contour Plot   3.3
Figure 7 can be seen as a Hasse diagram of events. We say that events
are causally related if they are contained in the same chain. For exam-
ple,  the  !send"  events  at  times  xi/1(k / 1),  xi(k / 1),  and  xi.1(k / 1)
are not causally related since they are not contained in a chain—there
is no path of directed arcs connecting any of the three events. Conse-
quently, these three events form an antichain. (For a formal definition
of  a  Hasse  diagram,  including  chains  and  antichains,  we  refer  the
reader to Appendix D.) By connecting those elements in the same an-
tichain, we obtain a piecewise linear plot of the vector x(k), which we
define next.  

Definition 10.  Consider  the  vector  x(k).  A contour  is  the  plot  obtained
by connecting (i, xi(k))  to  (i . 1, xi.1(k))  with a  straight  line  for  each
i, (i % 1, * , N). 

Creating  a  contour  for  each  k  gives  a  pictorial  representation  of
vectors  x(k)  as  a  function of  k.  We call  this  a  contour plot.  Figure 6
displays  the  contour  plots  of  a  size  20  system,  where  the  sequence
+x(0), x(1), x(2), *,  represents  the  contours  (counting  k  from  the
top).  For  this  reason,  we  interchangeably  refer  to  the  vector  x(k)  as

!the kth  contour"  from now on. Between successive contours, we can
imagine there being drawn the internal processes of those in Figure 7. 

Consider  an  example  system with  x(0) % u  that  yields  the  follow-
ing periodic behavior: x(k . 1) % 5@ x(k) for k 3 3. The contours for
this  system  would  represent  vectors  in  the  periodic  regime
+x(k) x(k . 1) % 5@ x(k), x(0) % u, k 3 3,.  The  period  of  a  regime
and cyclicity are related by 1 Y T Y P. Thus, if P % 1 in this example,
then T % P % 1, so that no other period can be obtained for all initial
states x(0).  Therefore,  each contour in the contour plot has the same
shape (separated by five  time units)  as  k - =;  we call  this  a  limiting
shape  of  the  contours  or  a  limiting  contour.  For  a  larger  period,  we
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obtain a different set of limiting contours. In particular, we obtain dif-
ferent limiting contour plots for the cases T % 1, 2, * , P, each depen-
dent on the choice of x(0). We will formalize this in Section 4. 

The idea of a limiting shape in contours suggests a change of coor-

dinates: given the irreducible matrix P & 'max
N4N with eigenvalue R, let 

x(k) % R@k @ y(k). (20)

We can think of R@k  as a diagonal matrix or the product of R@k  and
the identity matrix E(N, N). The advantage of this is that such a diag-
onal  matrix  is  invertible,  its  inverse  being  the  diagonal  matrix  with

diagonal  entries  equal  to  R@/k.  Using  this  property,  we  rearrange
equation (20) to obtain  

y(k) % R@/k @ x(k). (21)

In other words, y(k) is the limit to which the vectors x(k) / R k tend as

k - =. By studying the asymptotic behavior of y(k) itself, we can de-
duce the shape of the limiting contour.  

The  original  system  follows  the  recurrence  relation

x(k . 1) % P@ x(k)  for  some  x(0) & 'max
N .  Substitute  equation  (20)

into this to obtain 

R@(k.1) @ y(k . 1) % P@ R@k @ y(k). (22)

Interpreting R@k as a diagonal matrix again yields  

y(k . 1) % R@/(k.1) @ P@ R@k @ y(k) %

R@/1 @ P@ y(k) % P
Z
@ y(k),

(23)

where  P
Z
% R@/1 @ P  represents  the  normalized  matrix  of  P,  equiva-

lently obtained by subtracting the eigenvalue of P from each of its en-

tries.  The  communication  graph  of  P
Z

 is  the  same  as  that  for  P  (but

with different arc weights), so that P
Z
 is also irreducible. However, the

maximum average circuit weight of K(P
Z
), hence the eigenvalue of P, is

zero.  

Moreover,  it  can  be  shown  that  P  and  P
Z

 have  the  same  cyclicity

(i.e., P(P
Z
) % P(P) % P). Theorem 1 tells us of the asymptotic behavior

of  the  powers  of  an  irreducible  matrix.  Apply  this  to  P
Z

 to  obtain

P
Z @(k.P)

% 0@P @ P
Z @k

% P
Z @k

 for k 3 kU. Thus, using equation (23), 

y(k . P) % P
Z @(k.P) @ y(0) % P

Z @k
@ y(0) % y(k). (24)
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So the limiting contour y(k)  is periodic with period P(P).  In fact, like

x(k),  y(k)  is  periodic  with  period  T,  dependent  on  x(0),  where  T  is  a
factor of  P.  Note that  this  period now conforms with the traditional
dynamical  systems  definition  of  a  period,  in  that  the  sequence
+y(k) k & 50, is not monotonically increasing, in contrast to the origi-

nal sequence +x(k) k & 50,.  
Loosely  speaking,  Section  3.3  has  shown  that  there  is  no  unique

shape to the limit of a contour plot. This yields an interesting feature
of  the  max-plus  asynchronous  model:  the  asynchrony  is  related  not
only to the timing dependency graph but also to the system$s starting
point in time. 

The Eigenspace in Max-Plus Algebra  3.4
The  set  of  all  eigenvectors  of  A & 'max

n4n  associated  to  eigenvalue  R  is
the eigenspace  of A.  For max-plus asynchrony, the importance of the
eigenspace  is  demonstrated  through  its  links  to  the  contour  plot,  as
shown next.  

Consider  the  recurrence  relation  x(k . 1) % P@ x(k)  and  its  corre-
sponding  contour  plot.  We  have  already  established  that  the  vectors

in a regime are eigenvectors of P@P(P). In other words, each contour is

an eigenvector  of  P@P(P).  Taking linear  combinations  of  eigenvectors

enables the construction of the eigenspace of P@P(P) (see Appendix C).
This  eigenspace  is  the  set  of  all  possible  periodic  regimes  (i.e.,  of  all
periods T, 1 Y T Y P(P), obtained for all initial states x(0)), which cor-
responds to the set of all contour plots that can be obtained. 

Theorem  4  (Appendix  C)  gives  a  method  for  constructing  the

eigenspace  of  an  irreducible  matrix.  Let  B % P@P(P).  Applying  Theo-
rem  4  to  irreducible  B  will  yield  its  eigenspace  and  consequently  all
possible contour plots for the system x(k . 1) % P@ x(k). 

Note 2. If  P  is  irreducible,  then  it  is  not  necessarily  the  case  that

B % P@P(P)  will  also  be  irreducible.  Nevertheless,  in  a  highly  con-
nected  lattice  such  as  the  regular  network  of  this  paper,  it  is  more
likely that B is irreducible. If B is reducible, then methods other than
Theorem 4 must  be  employed.  One such method is  Howard$s  policy
improvement scheme (see [18] or [22]).

Lemma 1. Consider a max-plus system having irreducible timing depen-
dency  matrix  P  with  cyclicity  P.  For  T  fixed  (1 Y T Y P),  period  T
regimes are not necessarily unique. 

Proof.  Each  contour  in  the  periodic  regime  is  an  eigenvector  of
P@T.  By  taking  linear  combinations  of  eigenvectors,  it  is  possible  to
construct linearly independent eigenvectors of P@T such that the corre-
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 y p  g       
sponding  contours  are  also  linearly  independent.  Thus,  there  is  no
unique periodic regime of period T. V

The top of Figure 6(a) shows the limiting contours of a size 20 sys-
tem.  The  contours  depict  a  period  1  regime  and  therefore  have  the
same  shape.  Lemma  1  says  that  if  P W 1  for  that  system,  then  other
shapes  of  limiting  contour  may  be  possible  for  T % 1  periodic
regimes.  In  other  words,  the  limiting  contour  plot  is  not  necessarily
fixed, despite T.X$s being fixed. The significance of this is that a corre-
sponding CA is  asymptotically  not unique,  but dependent on the ini-

tial time x(0); this can affect the time xi(k) of the kth  update at node i
relative to xj(k) (at node j), even when the !pattern" of consecutive up-

date  times  (x(k), x(k . 1), * , x(k . T), *)  is  independent  of  x(0)
(since the cycle time is independent of x(0)). 

Cellular Automata in Max-Plus Time   4.

We  now  present  the  first  formalism  for  implementing  a  CA  asyn-
chronously, such that update times are determined by a max-plus sys-
tem.  

Contour Plot as a Foundation for Cellular Automata   4.1
Let si(k) denote the CA state of node i at epoch k. We are concerned
with Boolean CA states, so that si(k) & +0, 1,. The unit k is as used in
the  max-plus  model,  which  updates  the  times  x(k).  Thus,  to  be  pre-
cise, si(k)  is the CA state of node i  at time xi(k).  The CA state of the

system is represented by the string s1(k) s2(k) * sN(k), which can also
be read as the state of all nodes on contour k. As a consequence, just
as we represented the vector x(k)  by a contour,  we can represent the
CA state s(k) by the same contour but with the addition that the coor-
dinates  (i, xi(k))  now  display  the  state  si(k)  (e.g.,  in  colored  form,
where  two  different  colors  are  used  to  distinguish  the  two  states  1
and 0).  

Recall the main events that are internal to node i; they occur within
cycle  k.  These  events  are  grouped  in  two  categories:  !receive"  and
!send."  Once  the  receive  CA states  have  all  arrived,  node  i  applies  a
CA  rule  on  this  set,  to  obtain  the  new  state  si(k).  If  all  nodes  have
neighborhood  size  n,  the  applied  CA  rule  is  the  function
f : +0, 1,n - +0, 1,, and the new state si(k) is calculated as 

si(k) % f 6sLi
(k / 1)7. (25)

A Max-Plus Model of Asynchronous Cellular Automata 331

Complex Systems, 23 # 2014 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.23.4.313



Cellular Automaton Space-Time Plot  4.2

The classical  one-dimensional CA is synchronous,  so that the kth  up-
date time of each cell is the same. Consequently, we can think of such
a system as  having a  contour plot  that  contains  only  horizontal  con-
tours. Updates of the CA state of the system take place every one time
unit,  thereby  giving  the  synchronous  CA a  cycle  time  of  1.  The  time
between contours in this system is thus of duration one, although no
such duration is depicted; for example, if si(k) % 1 for all k, then this
is shown as a continuous vertical colored block in position i. 

Despite  varying  contour  shapes  dictating  the  varying  time  gaps
between  contours,  it  is  simple  and  intuitive  to  construct  the  space-
time plot for CA in max-plus time. To illustrate, we use the example
of  a  regular  3-nbhd  network  with  size  N % 10.  Let  the  positive
(diagonal) entries in matrix A9  be represented by the vector ! of pro-

cessing times. We choose the entries in ! at random with equal proba-
bility from all integers between 1 and 30, while the nonzero entries in
T  are  selected  likewise  from  the  integers  between  1  and  10.  Taking
the initial time x(0) % u, we obtain a contour plot of update times by
iterating the max-plus system. We now address the CA state by assign-
ing  the  depicted  space  between  contours  as  memory:  for  each  node,
the  CA  state  remains  fixed  until  the  time  of  update,  which  corre-
sponds to a contour. For node i, the time ti  that elapses between con-
tours implies that the storing of the CA state in memory can be repre-
sented  as  a  vertical  block  of  length  ti  (which  is  colored  accordingly,
depending on the CA state). Correspondingly, this may be depicted in
a space-time plot,  the  construction of  which is  shown in three  stages
in Figure 8. 

At this juncture, it is important to distinguish between the variables
t and k. The term !time" (or !real time") now refers to a point t & '.;
it  can be thought  of  as  time as  we know it.  k  maintains  its  role  as  a
discrete epoch. Thus, node i carries a CA state for every point in real

time. If we denote the state of node i at real time t as si
(t), the CA state

of  node  i  can  now be  understood in  two ways:  si(k)  denotes  the  CA

state  on  contour  k,  and  it  is  discretely  dynamic,  while  si
(t)  represents

the  state  in  a  dynamical  system  with  a  continuous  underlying  real
time  t.  Thus,  for  example,  on  contour  k % 2,  if  t % 5.8,  we  have

si(2) % si
(5.8). 

Figure  8(d)  is  for  comparison  with  Figure  8(c),  and  it  shows  the
classical synchronous CA having the same initial time x(0), initial CA
state s(0),  and CA rule. While sharing initial conditions and CA rule,
the  states  s(t)  in  both patterns  will  generally  differ.  (This  can be seen
by simply drawing a horizontal line across both patterns at time t and
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reading off the state of each node at that time.) The difference in pat-
tern  is  clearly  due  to  the  asynchrony  of  the  max-plus  system  in  Fig-
ure 8(c). We show next that we can characterize this difference some-
what  and,  in  fact,  map the  synchronous  CA to  the  max-plus  CA via
the contour plot. 

Figure 8. Construction  of  the  CA  space-time  plot  in  max-plus  time.  The  CA
rule is ECA rule 150. The initial CA state on contour 0 is s5(0) % 1, si(0) % 0
for  i D 5.  State  0  is  colored  dark;  state  1  is  light.  In  all  figures,  the  vertical
axis denotes real time, traveling down. (a) Contour plot with CA states indi-
cated  on  each  contour.  (b)  CA  states  indicated  for  all  time  by  filling  spaces
between  contours  with  memory.  (c)  Contours  and  space  between  nodes  re-
moved  to  obtain  the  CA  space-time  plot.  (d)  Classical  (synchronous)  CA
space-time plot.  

Bijection   4.3
Recall  the  state  transition  graph.  In  Figure  8(d),  the  CA  period  is  6
and the periodic orbit is the following set:

+0000100000, 0001110000, 0010101000,
0110101100, 1000100010, 1101110110,. (26)

If  we  consider  the  CA  states  on  only  the  contours  in  Figure  8(c)
(which is  seen better  in Figure 8(a)),  we see that  they are exactly  the
same  as  the  states  in  Figure  8(d).  This  is  a  consequence  of  the  max-
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plus  model$s  requiring  all  neighborhood  states  to  arrive  before  pro-
cessing  new  CA  states.  Indeed,  this  notion  has  also  been  mentioned
(albeit  briefly)  in  [25,  p.  1035]  under  the  heading  of  !Intrinsic  syn-
chronization in cellular automata."  

Given the same initial CA state s(0) and CA rule, let [  and \ de-
note  the  orbit  of  s(0)  generated  in  the  synchronous  system  and  the
max-plus system, respectively. Let s[(k) denote the CA state after k it-

erations of the synchronous system; s\(k)  denotes the CA state after

k  iterations  of  the  max-plus  system.  The  model  uses  the  same  CA
rule,  applied  to  the  same  neighborhoods,  the  only  difference  being
that the time of application of the rule is different. Then, after k itera-
tions  of  both  systems,  we  clearly  have  s[(k) % s\(k).  This  defines  a
one-to-one  and  onto  mapping—a  bijection—between  [  and  \,  and
we  say  that  both  systems  have  the  same  STG  (defined  as  the  transi-
tions  between  states  on  contours).  Thus,  the  max-plus  system  need
not  evolve  the  CA  concurrently,  since  the  CA  plot  for  the  max-plus
system may be obtained from this mapping. 

In  summary,  the  STG provides  a  deterministic  form for  predicting
the behavior of the CA in max-plus time. Each state s\(k) in the STG
does  not  necessarily  correspond  to  a  state  in  real  time  t & ',  due  to
contours  not  necessarily  being  horizontal.  Nevertheless,  the  property
of memory can be applied to ascertain such real-time states. 

Conclusion  5.

We  have  shown  that  when  modeling  discrete  asynchronous  systems,
more  attention  needs  to  be  paid  to  the  internal  processes  of  a  cell.
This  has  resulted  in  the  uncovering  of  a  useful  theory—that  of  max-
plus algebra.  

Cellular  automata (CA) are naturally  well-suited to be modeled in
max-plus  time,  because  this  model  requires  update  on  knowledge  of
all  neighbors.  This  has  the  additional  benefit  of  cells  updating  only
when  they  are  ready.  Thus,  whereas  a  fixed,  periodic,  global  update
time  (as  in  the  synchronous  case)  can  be  slower  and less  energy  effi-
cient, a max-plus asynchronous model consumes only the time and en-
ergy that local neighborhoods require. 

The classical ECA corresponds to a strongly connected network in
our model. Thus, P  is irreducible, and this ensures periodic behavior,
which is  not  what  is  usually  associated  with  the  word !asynchrony."
We  comment  that  periodic  behavior  is  expected  also  when  P  is  re-
ducible;  in  this  case,  the  theory  is  similar  to  what  we  have  covered
here,  but  the  resultant  cycle  time  vector  is  not  necessarily  uniform
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[18]. We have therefore seen that not only is it an efficient system for
the timing of asynchronous CA, the max-plus system is also a simple,
deterministic, asynchronous model. 

We can get a visual sense of such periodicity via the contour plot,
which  couples  the  asynchronous  update  times  with  the  CA.  The

eigenspace of P@P(P) yields the range of contour plots that can be gen-
erated due to P; this enables us to get a sense of the range of the corre-
sponding  CA  space-time  patterns  that  are  possible.  By  identifying  a
bijection between synchronous and max-plus CA, we can further nar-
row the aforementioned range of CA patterns, since CA states on con-
tours  can  be  obtained  directly  from  the  synchronous  CA.  We  note
that  this  notion  of  memory  has  been  suggested  previously  (see  [14,
15, 25] and the references therein); this bijection is captured under the
topic of !causal invariance" in [25], wherein the same causal network
(i.e.,  structure  of  events—past  and  present)  emerges,  irrespective  of
CA states. In this paper, however, we have identified a numerical link
between the idea and the theory in the form of max-plus algebra. 

Importantly, the contour plot also allows one to see that the system
visits many more !interim" states (in memory) in real time—these are
transient  CA states  that  illustrate  the  local  dynamics.  Thus,  although
the  STG  is  the  same  as  the  synchronous  STG,  max-plus  CA  gives
more information: we can now visualize exactly how one state in the
STG  evolves  into  another.  Max-plus  algebra  offers  promising  scope
for assigning numerical measures to the states in memory; the parame-
ters 9i, 8ij, along with the cycle time, are likely to play major roles for

this  purpose.  Such  classification  scales  up  to  the  CA  space-time  pat-
tern as a whole, and attempts to do this are the focus of further work. 

Synchronous  CA have  previously  been  held  up  as  models  for  pat-
terns seen in nature (such as those seen on seashells and the growth of
snowflakes). Certain probabilistic CA improved on this to account for
random  fluctuations  in  the  growth  processes.  We  hypothesize  that  a
max-plus algebraic approach adds further realism because it considers
the actual  processing and delay times that  may be present  within the
chemical  reactions  and does  not  rely  on probability.  One might  con-
jecture the aforementioned transient  states  in memory to be precisely
the  processes  observed  during  the  natural  construction  of  such  pat-
terns  as  found  on  seashells  and  snowflakes;  that  is,  apparent  devia-
tions from !normal" growth may, in fact, be part of a transient phase
as  opposed  to  some  random  fault.  Noting  the  absence  of  significant
literature  on  the  matter,  we  believe  Boolean  networks  provide  a  no-
table avenue to exploit; it would be interesting to see how the various
topologies of these networks behave under max-plus time. How does
a max-plus model impact applications such as Kauffman$s genetic reg-
ulatory network [17]? Moreover, in light of connections to the idea of
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causal  invariance in [25],  might max-plus algebra now provide a nu-
merical measure for the related topics (e.g., of space, time, and relativ-
ity) contained therein? 

In addition to the above work, this paper has also laid the theoreti-
cal  groundwork for  extending the  asynchronous  model  itself.  For  in-
stance,  one  such  extension  includes  the  minimum  operator  and  can
subsequently be used to conduct further studies of asynchronous CA,
particularly  to  better  describe  an  intended  application.  Preliminary
results  of these new !max-min-plus"  models are less predictable,  par-
ticularly  manifested  by  an  absence  of  the  bijection  described  in  Sec-
tion 4.3 [23]. 
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Appendix

Maximal Strongly Connected Subgraph   A.

We say that node i communicates with node j, denoted i ] j, if either
i % j or i - j and j - i. Note that we allow a solitary node to commu-
nicate with itself, even if there is no self-loop attached to it.  

It  is  thus  possible  to  partition  the  node  set  V  of  a  graph into  dis-
joint subsets Vi  such that V % V1>V2>2>Vq, where each subset
Vi  contains  nodes  that  communicate  with  each  other  but  not  with
other nodes of V. By taking Vi together with arc set Ei, each of whose
arcs  has  start  node  and  end  node  in  Vi,  we  obtain  the  subgraph
Ki % (Vi, Ei).  We  call  this  subgraph  a  maximal  strongly  connected
subgraph (MSCS) of K % (V, E). 

Asymptotic Behavior of the Max-Plus System    B.

Theorem 2.  Let  A & 'max
n4n  be  irreducible.  Then  A  possesses  a  unique

eigenvalue,  denoted R(A),  which is  finite ( D <).  Moreover,  this  eigen-
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value is equal to the maximal average weight of elementary circuits in
K(A). Let c denote an elementary circuit of K(A). Denote the set of all
elementary circuits of K(A) by C(A). Then 

R(A) % max
c&C(A)

c w

c l

. (B.1)

Proof. See [18, Theorem 2.9]. V
The following theorem shows that the cycle time vector 

X % lim
k-=

x1(k)

k
, lim

k-=

x2(k)

k
, * , lim

k-=

xN(k)

k

H
(27)

is unique.  

Theorem 3.  Consider  the  recurrence  relation  x(k . 1) % A@ x(k)  for
k 3 0  and  A & 'max

n4n  irreducible.  For  some  xU(0) & 'max
n  whose  ele-

ments are all finite, if the limit 

lim
k-=

Ak @ xU(0)

k

exists, then this limit is the same for any initial condition x(0) & 'max
n

whose elements are all finite. 

Proof. See [18, Theorem 3.11]. V
In fact, the condition of irreducibility can be relaxed to that of re-

ducibility,  as  long  as  each  node  has  at  least  one  predecessor  node  in
K(A);  this  corresponds  to  all  rows  of  A  containing  at  least  one
nonzero ( D /=) element. Thus, in the latter (relaxed) case, we obtain
a  cycle  time  vector  whose  elements  may  not  necessarily  be  identical.
However,  for  A  irreducible,  each  element  of  X  turns  out  to  be  the
same—specifically  the  eigenvalue  of  A—as  stated  in  the  following
lemma. 

Lemma 2.  For  the  recurrence  relation  x(k . 1) % A@ x(k)  with  k 3 0,
let A & 'max

n4n  be an irreducible matrix having eigenvalue R & '. Then,
for i % 1, 2, * , n, 

lim
k-=

xi(k)

k
% R

for any initial condition x(0) & 'n.  

Proof. See [18, Lemma 3.12]. V
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Eigenspace of an Irreducible Matrix   C.

As in conventional linear algebra, eigenvectors are not unique in max-
plus  algebra  because  they  are  defined  up  to  scalar  multiplication.  (It
can easily be shown that if v and w are eigenvectors of A & 'max

n4n  asso-
ciated  with  eigenvalue  R,  then  for  G, ^ & 'max,  G@ v? ^@w  is  also
an eigenvector of A.)  

Consider the definition of the Kleene star for any A & 'max
n4n : 

A_ %
def?k%0

= A@k. (C.1)

It  is  known  that  if  circuit  weights  in  K(A)  are  nonpositive,  then  the
Kleene star of a square matrix over 'max exists [18]. Denote the criti-
cal  graph  of  A  as  Kcr(A) % (Vcr(A), Ecr(A)),  and  the  normalized  ma-

trix A
Z
% /R@A.   

Theorem 4.  Let  A & 'max
n4n  be  irreducible  and  consider  A

Z _
 to  be  the

Kleene star of A
Z
% /R@A. 

If node i belongs to Kc r(A), then EA
Z _
F`i is an eigenvector of A. 1.

The eigenspace of A is 2.

V(A) % av & 'max
n v % ?i&Vcr(A)ai @ EA

Z _
F`i for ai & 'maxb. (C.2)

For i, j belonging to Kcr(A), there exists a & ' such that 3.

a@ EA
Z _
F`i % EA

Z _
F`j (C.3)

if and only if i and j belong to the same MSCS of Kc r(A).  

Proof. In [18, Theorem 4.5]. V

Hasse Diagram   D.

With  elements  taken  from  [24],  we  define  the  Hasse  diagram  for-
mally. We first require the !happened before" relation, denoted by c.  

Definition 11. The relation c on a set of events is defined by the follow-
ing conditions: 

If the events a and b are processed by the same processor, and a occurs
before b, then a c b. 

1.

If a  is the sending of a message by processor A,  and b  is the receipt of
the message by another processor B, then a c b. 

2.

If a c b and b c c, then a c c. 3.
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We say that two distinct events a and b are concurrent if a d b and
b d a.  We  also  assume  the  properties  of  irreflexivity,  that  is,  a d a,
and antisymmetry on the times of events; that is, if at  and bt  represent
the times of events a and b, then at d bt, bt d at e at % bt. 

In fact, Definition 11, along with the properties of irreflexivity and
antisymmetry,  defines  a partial  ordering  on the set  X  of  all  events  in
our system. We say that the set X, along with the relation c, forms a
partially ordered set (poset). In the following, the pair (X, c) denotes
a poset. 

Definition 12.  Let  x  and  y  be  distinct  elements  of  a  poset  (X, c).  y  is
said to cover x if x c y, but no element z satisfies x c z c y. 

Definition 13.  Let  the set  X1  of  n  elements  +x1, x2, * , xn,  be a subset
of (X, c) such that each element may be totally ordered according to
c  as  x1 c x2 c 2 c xn.  Then  X1  is  a  chain.  The  subset  X2 & X  is
called an antichain if and only if no elements of X2  may be totally or
partially ordered. 

These  definitions  now  allow  us  to  formulate  the  following  defini-
tion. 

Definition 14. The Hasse diagram of a poset (X, c) is a graph drawn in
the Euclidean plane such that each element of the poset is represented
by a unique vertex in the graph. Each covering pair x c y  is depicted
by a directed arc from x to y, where the point representing x is below
the point representing y (i.e., it has a smaller Y coordinate). 
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