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Genetic  regulatory  networks  (GRNs)  model  the  dynamics  and  interac-
tions  among  genes.  From  a  robotics  perspective,  GRNs  are  extremely
interesting  because  they  are  capable  of  producing  complex  behaviors.
Notably,  cell  differentiation  can  be  modeled  using  GRNs,  and  the
dynamics of this process can be studied by means of dynamical systems
methods. In a nutshell, the state of a cell is represented by an attractor
in  the  state  space  of  a  dynamical  system,  and  the  transitions  between
cell  states  correspond  to  transitions  between  attractors.  This  view  sug-
gests  a  visionary  approach:  apply  the  metaphor  of  landscape  attractor
to  design  specific  cell  dynamics  that  can  match  the  attractor  landscape
required  for  attaining  a  target  behavior  in  a  robotic  system.  The  con-
straints  prescribed  by  the  robotic  application  are  just  the  correspon-
dence  between  behavioral  attractors  in  the  robot  and  cell  attractors  in
the cell, along with specific transitions between attractors. This perspec-
tive  may  lead  to  applications  in  biorobotics,  and  it  may  also  help
synthetic  biology  systems  design,  which  may  benefit  from  methods
developed for complex dynamical systems. We believe that this level of
abstraction can provide a common vocabulary and a shared set of cate-
gories  between  researchers  in  robotics  and  synthetic  biology.  In  this
paper, we elaborate on previous results on GRNs-controlled robots and
propose  some  guidelines  for  making  this  approach  viable,  illustrating
these concepts with examples and case studies in biorobotics. 
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Introduction1.

Genetic  regulatory  networks  (GRNs)  are  commonly  used  to  model
the  dynamics  and  interactions  among  genes.  GRNs  are,  in  general,
capable of producing complex behaviors: this property is of particular
interest to researchers in the field of robotics, as GRNs are a computa-
tional  model  of  a  system  that  interacts  with  its  environment  and  is
capable of performing nontrivial information processing and computa-
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tions.  Let  us  consider  the  example  of  cell  differentiation:  different
gene  activation  patterns  enable  stem  cells  to  undergo  differentiation
from a pluripotent to a mature state by following a path along the lin-
eage  tree;  the  branch  taken  at  each  choice  point  in  the  tree  may  be
influenced  by  external  chemical  and  physical  inputs.  The  path  can  be
reverted  and,  if  provided  with  specific  input  signals,  the  cell  can  also
move upward to a multipotent state.

Cellular  systems  are  both  robust  and  adaptive;  that  is,  they  can
maintain their basic functions in spite of damages and noise, and they
are  able  to  adapt  to  new  environmental  conditions.  Notably,  cell  dif-
ferentiation  can  be  modeled  by  means  of  GRN  models,  and  the
dynamics  of  this  system  can  be  studied  by  using  dynamical  systems
methods  [1].  Recently,  a  dynamical  systems  view  of  cell  differentia-
tion has been proposed [2, 3]. In a nutshell, the state of a cell is repre-
sented  by  an  attractor  in  the  state  space  of  a  dynamical  system,  and
the  transitions  between  cell  states  correspond  to  transitions  between
attractors. Transitions may be both stochastic and deterministic. This
model  makes  it  possible  to  capture  some  fundamental  phenomena  in
cell differentiation [4, 5]. 

The  complex  behavior  exhibited  by  cell  dynamics  can  be  inter-
preted  from  a  robotics  viewpoint,  suggesting  the  possibility  of
achieving  robust  and  adaptive  behaviors  in  robots—and  a  group  of
robots—by  exploiting  the  dynamical  properties  of  GRN  models.
These models can be effectively used as robot programs. According to
[6],  we  call  robot  program  the  computational  model  of  the  system
that  maps  the  percepts  of  the  robot  to  the  actions  it  takes,  possibly
according to a utility function and a goal. The key motivation of this
idea  lies  in  the  possibility  of  applying  dynamical  system  theory  to
robotics  [7–9],  exploiting  the  tight  link  between  artificial  intelligence
and dynamical systems, which consists primarily in the fact that infor-
mation processing can be seen as the evolution in time of a dynamical
system [10, 11]. The archetypal case of this approach consists in asso-
ciating  the  initial  conditions  of  the  dynamical  system  to  the  input  of
the  problem  and  letting  the  system  evolve  in  time  until  it  reaches  a
steady  state,  which  is  then  interpreted  as  the  output,  that  is,  the
answer to the problem. An example in theoretical computer science is
the  solution  of  the  satisfiability  problem  through  Boolean  networks
(BNs)  [12],  while  a  typical  example  in  robotics  is  represented  by  the
different  gait  patterns  in  a  quadruped  robot,  each  corresponding  to
one  specific  attractor  in  the  sensory-motor  system  of  the  robot  (see
[8,�Chapter 4]). 

Preliminary  results  in  this  direction  have  been  achieved  in  control-
ling  robots  by  means  of  BNs  (GRN  models  introduced  by  Kauffman
[13]  and  subsequently  used  to  model  important  phenomena  in  biol-
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ogy  [14,  15]).  The  effectiveness  of  this  approach  was  demonstrated
through  experiments  on  both  simulated  and  real  robots  [16–19].
These  experiments  showed  that  BNs  can  be  successfully  used  to  con-
trol  robots,  and  therefore  that  a  nontrivial  behavior  can  be  attained
by a system sharing some similarities with biological cells. The imagi-
nation  would  then  run  to  the  synthesis  of  specific  cells  controlling
micro-robots,  produced  by  synthetic  biology  (SB)  approaches:  given
the  GRN  designed  in  silico  by  means  of  an  automatic  procedure,  a
synthetic  cell  is  produced  by  composing  elementary  cellular  bricks.
Preliminary  results  on  automatic  design  of  GRNs  for  cell  differentia-
tion have been recently achieved [20]. Results on automatic design of
Boolean networks have also been presented in [21]. The most natural
way  to  achieve  this  goal  would  be  either  to  reproduce  a  given  GRN
by  means  of  biological  material,  that  is,  a  circuit  composed  of  wet
logical gates, or to synthesize a cell characterized by a given low-level
dynamic,  corresponding  to  the  target  GRN.  Unfortunately,  this  low-
level  approach  might  introduce  too  many  constraints  on  the  design
process  and  turn  out  to  be  extremely  complicated,  if  not  impossible.
Anyway, should this be possible in the future, the approach proposed
in  this  contribution  would  still  be  useful.  We  believe  that  a  different
strategy  can  be  successfully  applied,  which  consists  in  raising  the
abstraction  level  of  the  analogy  from  the  details  of  the  dynamics  to
that of attractor landscape. Indeed, an in-depth analysis of the GRN-
controlled  robot  dynamics  showed  that  a  robot’s  behavior  can  be
decomposed  into  elementary  behaviors,  represented  by  attractors  in
the network state space and connected by trajectories that can be con-
trolled by specific inputs. 

This result suggests the visionary approach we propose for the first
time  in  this  paper:  apply  the  metaphor  of  landscape  attractor  to
design  specific  cell  dynamics  that  can  match  the  attractor  landscape
required  for  attaining  a  target  behavior  for  a  robot.  Indeed,  the  con-
straint  prescribed  by  the  robotic  application  is  just  the  correspon-
dence between behavioral attractors in the robot and cell attractors in
the  cell,  along  with  some  specific  transitions  between  attractors.  Let
us  suppose  we  have  to  design  a  micro-robot  controlled  by  a
(synthetic) cell—or a population of cells—whose dynamics in terms of
attractors and transitions among them is sufficiently known. A corre-
spondence between cell attractors and robot elementary behaviors can
be defined, and the chemical signals that force the transitions between
cell states can be used as inputs to the robot for changing its elemen-
tary behavior. 

In  Section  2,  we  first  outline  the  notion  of  attractor  landscape  in
cell dynamics, mainly referring to cell differentiation. Subsequently, in
Section 3, we summarize the results attained in the context of robotics
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controllers  based  on  GRNs.  In  Section  4,  we  provide  concrete  exam-
ples of the use of cell differentiation models to control robots. Finally,
we discuss the implications of our vision and conclude in Section 5. 

Attractors in Cell Dynamics2.

Although  some  specific  and  recurrent  biological  interactions—net-
work motifs [22]—present in GRNs can be well explained and under-
stood  by  means  of  relatively  simple  mathematical  equations,  we  are
far  from  a  satisfactory  understanding  of  the  whole  long-term  dynam-
ics generated by these complex networks. One possible explanation of
this fact is that the cell phenotype is not the direct consequence of the
superposition of an isolated genetic pathway [23].

Albeit  abstract,  a  conceptual  mathematical  framework  in  which  a
cell  is  viewed  as  a  dynamical  system  and  its  attractor  states—stable
equilibrium states of the GRN dynamics—underlie its observable phe-
notypes  [24]  has  been  proposed  since  the  pioneering  works  of  Kauff-
man  [13,  25].  This  framework,  relying  on  complex  systems  science,
aims to enrich the current understanding of cell dynamics and to over-
come  the  classical  linear  causation  scheme  (one  gene  →  one  trait)
deriving from the central dogma of biology. 

We  can  therefore  define  a  network  state  at  a  given  time  by  means
of  a  vector  state  S(t)  [x1(t), x2(t), … xN(t)]  where  each  xi(t)  repre-

sents the expression level of the ith gene, which depends on the regula-
tory  interactions  between  genes.  So  if  we  represent  a  gene  expression
pattern  by  means  of  this  vector  state,  all  the  possible  gene  expression
patterns  constitute  the  state  space  of  the  GRN  and,  among  them,
those  in  a  stable  equilibrium  condition  are  attractor  states,  and  their
gene  expression  profiles  determine  the  observable  cell  types.  For  any

initial state St  0  S0, its trajectory will eventually converge to an

attractor state, where the interaction forces are null. Of course, as far
as GRNs are concerned, not all the states might be a biologically plau-
sible initial condition. We call the basin of attraction the set of states
that lead toward an attractor. 

Waddington,  through  his  “epigenetic  landscape”  metaphor  [23],
has  already  captured  with  the  valley  abstraction  the  idea  of  basins  of
attraction  and  discrete  cell  fates;  the  marble  (network  state)  rolls
down in the landscape topology until it reaches a local minimum (the
attractor  state).  We  can  attribute  to  his  metaphor  a  formal  basis  and
in  this  way  explain  how  a  network  of  interactions,  in  particular  its
dynamics, can give rise to a particular landscape topography. Consid-
ering  that  at  equilibrium  not  all  network  states  S  are  equally  likely,
due  to  the  interaction  forces  that  shape  the  landscape,  we  can  assign
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to each state a potential VS  - ln pS where pS is the probability

that  the  network  is  at  state  S  when  the  system  is  at  equilibrium  (see

supplementary  material  of  [24]).  The  function VS  determines  the

depth of the various network states in the landscape topography, and
the attractor states are the local minima of this function. 

The  model  based  on  the  attractor  abstraction,  of  which  Wadding-
ton’s  landscape  provides  an  intuitive  visual  representation,  proved
able  to  explain,  unify  and  integrate  various  theories  concerning  cell
dynamics in a consistent framework, free of ad hoc explanations. 

Based  on  previous  theoretical  and  in  silico  results  of  Kauffman,
Huang and colleagues in [2] tried to verify, with empirical evidence, if
cell  types  could  be  represented  by  attractor  states  of  the  GRN.  For
this  purpose,  they  stimulated  in  vitro  HL60  cells  by  two  biochemi-
cally distinct stimuli, provoking in this way initially divergent trajecto-
ries  and  observing  both  sets  of  cells  converge  to  a  macroscopically
indistinguishable neutrophil stable state. Although this is only a neces-
sary  condition  for  the  presence  of  an  attractor  state,  it  is  particularly
important  because  the  two  sets  of  cells  follow  very  different  gene
expression trajectories before converging to the same stable state, and
we  have  to  exclude  the  unique  and  common  differentiation  pathway
hypothesis. 

The traditional approach to explain and understand cell regulation
is  based  on  the  identification  of  functional  signaling  pathways  acti-
vated  by  the  high-specificity  ligand-cell  surface  receptor  binding;  this
generates a cascade of signals, which in turn activate specific genes for
one  cell  fate,  or  more  generally,  a  cell  behavior.  In  [26],  the  authors
highlight  various  experimental  aspects  not  coherent  with  this  old
paradigm because: (i) a growth factor can induce—conversely to what
is believed to be true—the activation of a very large set of genes; (ii) a
biochemical  signal  can  lead  to  different  results  depending  on  the  cell
state  or  the  cell  type  itself;  and  (iii)  “nonspecific”  mechanical  stimuli
can  induce  the  same  cell  fates  of  growth  factors  that  with  high  speci-
ficity bind to their receptors. These mechanisms and dynamics suggest
that  the  cell  fates  are  organized  as  attractors.  In  order  to  provide  a
mathematical  support  to  this  intuition  and  to  take  into  account  the
cell  fate  switch  produced  by  mechanical  stimuli,  they  make  use  of  a
simple  mathematical  network  model.  They  made  a  simple  model  of
the  signaling  system  within  capillary  endothelial  cells,  including  the
growth  factors  and  cell  shape  modulation  as  inputs  of  the  model.
They  noticed  that  shape  modulation  in  living  endothelial  cells  pro-
duces changes within cells, related to both gene expression and signal
transduction,  very  similar  to  those  induced  by  growth  factors  and  by
computer  simulation  of  their  model.  These  results  suggested  that  spe-
cific  molecular  signals  and  also  mechanical  forces  are  translated  into
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patterns  of  gene  expression  that  represent  attractors  of  the  network
model  dynamics.  The  attractors  are  the  stable  and  robust  operating
ways  of  functioning  of  a  cell—such  as  cell  types  or  cell  behavioral
modes  like  growth,  quiescence,  differentiation  and  apoptosis—that
arise  from  the  constraints  of  the  regulatory  networks.  The  resulting
attractor—and in the last instance the observable phenotype—is deter-
mined  by  the  initial  condition  of  the  cell  and  by  the  subsequent
stimuli  or  perturbations  that  regardless  of  their  nature—chemical,
mechanical,  thermal  fluctuations  or  other—place  the  dynamics  in  its
basin of attraction.

In [24], Huang et al. present the idea of “cancer attractors,” resum-
ing previous ideas of Kauffman. In that paper, the authors try to con-
textualize  tumorigenesis  within  developmental  biology,  avoiding  the
traditional vision of cancer as an aberrant product of the evolutionary
process.  Explanations  of  cancer  manifestations  by  means  of
“plausible  mutations”  reveal  their  paradoxical  nature  if  we  consider
that no mutations are required to produce the various cell phenotypes
generated during the development of a multicellular organism. Recall-
ing  Waddington’s  metaphor,  the  authors  propose  to  consider  tumor
types as latent cell types. Thus, nongenetic perturbations can facilitate
cells to visit them, by placing the cell state into their basins of attrac-
tions.  Remarkably,  this  framework  does  not  exclude  genetic  muta-
tions as possible causes of tumorigenesis, but relegates them to one of
the  possible  causations  of  tumorigenesis;  since  they  change  the  net-
work  architecture,  they  can  significantly  modify  the  attractor  land-
scape and facilitate the visit of cancer attractors. 

Recently,  a  powerful  mathematical  model  able  to  reproduce  the
main  abstract  properties  of  cell  differentiation  as  different  degrees  of
differentiation,  stochastic  and  deterministic  differentiation,  limited
reversibility, induced pluripotency and induced change of cell type has
been  proposed  by  Serra  and  Villani  [4,  27].  This  model  considers  a
cell  subject  to  intrinsic  noise,  and  as  such,  its  dynamics  may  not
remain  trapped  in  an  attractor,  and  jumps  between  attractors  can
occur.  This  model  can  be  seen  as  a  generalization  of  the  attractors
model;  indeed  the  threshold  ergodic  set  (TES)  is  the  main  abstraction
of this formalization, and it is defined as the set of attractors in which
the  dynamics  remains  trapped,  under  the  hypothesis  that  attractor
transitions with probability less than a certain threshold are not feasi-
ble. The threshold concept is strictly related to the noise level present
in the cell, and by varying it, the network dynamics can generate dif-
ferent  TES  landscapes,  which  represent  the  various  steps  of  a  cell
differentiation process. 
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Attractors in Robotics Behavior3.

The concept of attractors in robotics was introduced in the context of
a  dynamical  systems  approach  to  designing  robotic  systems  in  the
early 1990s (see [7, Chapter 9]). Here the rationale is the one already
proposed  in  cybernetics  and  cognitive  complex  systems,  which  states
that the steady states of the system (i.e., its attractors) represent its typ-
ical  behaviors.  A  prototypical  example  is  that  of  different  kinds  of
gait  shown  by  a  robot:  despite  the  fact  that  the  controller  is  always
the  same,  different  environmental  conditions  coupled  with  the  con-
troller itself give rise to and at the same time establish the final attrac-
tors of the system (e.g., walking or trotting). See [8], page 98.

Along  this  line  are  the  experiments  in  Boolean  network  robotics
[16–19].  A  BN  is  a  discrete-time,  discrete-state  dynamical  system

whose  state  is  an  N-tuple  in  0, 1N,  (x1, … , xN).  The  state  is

updated  according  to  the  composition  of  N  Boolean  functions

fixi1
, … , xiKi

,  where  Ki  is  the  number  of  inputs  of  node  i,  which  is

associated to Boolean variable xi. Each function fi  governs the update

of  variable  xi  and  depends  upon  the  values  of  variables  xi1
, … , xiKi

.

BNs  were  introduced  by  Kauffman  [13]  as  GRN  models  and  proved
able  to  capture  important  phenomena  in  biology  [14,  15].  In  BN
robotics, the robot is controlled by means of a BN: the value of some
nodes of the BN are imposed from the robot sensor readings, and the
actuators  of  the  robot  take  the  value  of  some  BN  nodes.  The  BN  is
trained  by  means  of  a  learning  algorithm  that  manipulates  the
Boolean  functions  (and  possibly  also  node  connections).  The  algo-
rithm  employs  as  learning  feedback  a  measure  of  the  performance  of
the  BN-controlled  robot  (in  the  following,  BN-robot)  on  the  task  to
perform,  such  as  in  evolutionary  robotics  [28].  For  example,  it  was
shown  that  a  BN-robot  can  learn  a  composite  mission,  in  which  the
first  task  is  to  perform  phototaxis;  then,  after  a  sharp  sound  is
perceived,  the  robot  performs  anti-phototaxis  [16–19].  A  dynamical
systems’ analysis shows that the behavior of the robot is mainly com-
posed of three attractors: in the first the robot steadily rotates and in
the  second  the  robot  goes  straight.  When  the  frontal  light  sensor
switches  on,  the  BN  trajectory  exits  from  a  “rotate”  attractor  and
jumps into a “go straight” attractor. Subsequently, when the sound is
perceived, the trajectory exits from this attractor and moves to a third
attractor,  the  one  corresponding  to  the  action  “escape  from  light.”
This  dynamic  emerges  from  the  learning  (evolutionary)  process  that
shaped  the  BN.  The  results  achieved  in  BN  robotics  are  still  prelimi-
nary,  yet  quite  promising,  as  they  show  that  a  GRN  model  can  be
effectively used to control a robot that has to attain a nontrivial goal.
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Further results on GRN models used in robotics are summarized in a
survey  by  one  of  the  authors  of  this  paper  [29].  Related  to  BN
robotics  are  works  in  evolutionary  robotics,  where  robots  are  con-
trolled  by  artificial  neural  networks,  which  are  designed  by  means  of
evolutionary computation techniques [28]. An important research line
in evolutionary robotics that is quite relevant for BN robotics and the
perspective presented in this work is the one that emphasizes the role
of  embodiment  in  evolved  robots  [9,  30].  Indeed,  the  behavior  of  a
BN-robot  emerges  from  the  interaction  among  its  sensors  and  actua-
tors (and the body of the robot itself), the BN dynamics and the envi-
ronment. In a sense, the experiments in BN robotics are an instance of
the evolution of minimally cognitive behaviors [31, 32]. The problem
of programming and reprogramming evolved GRNs has been recently
addressed  from  the  perspective  of  algorithmic  complexity  and  causal-
ity  [33].  This  study  proposes  a  causal  interventional  calculus  that
makes it possible to steer complex evolved systems. Such an approach
may be extremely useful in the context of GRN-controlled robots. For
the sake of completeness, we also mention the fact that the automatic
design of control software for robots is currently a prominent topic in
robotics research, especially when swarms of robots are involved [34]. 

Following  these  recent  advancements  and  mainly  the  achievements
in  BN  robotics,  in  the  next  section  we  will  illustrate  the  use  of  an
attractor landscape to bridge robotics and SB. 

Robotics Meets Synthetic Biology4.

The  abstraction  of  attractor  landscape  is  the  space  where  robotics
meets  SB.  In  this  section,  we  illustrate  this  vision  by  discussing  two
paradigmatic  examples  in  which  a  genetic  network  is  used  as  control
software for robots.

Boolean Network Model of a Simple Genetic Network4.1

An illustrative example of a BN modeling the basic cellular states of a
cell  is  provided  by  Huang  in  [26].  This  BN  is  a  minimalistic  example
of a biologically plausible GRN, as the genes regulating functions con-
sist  of  Boolean  encoding  of  relations  that  can  be  typically  found
among  genes  in  real  cells.  Here  we  introduce  the  model  and  discuss
the  properties  that  are  relevant  for  the  purpose  of  this  contribution.
The network is composed of four genes, named A, B, C and D. In Fig-
ure  1,  the  relations  among  genes  and  their  functions  are  illustrated.
The  state  of  the  network  is  given  by  a  binary  vector  of  four  compo-
nents,  representing  the  activation  state  of  the  genes.  For  example,
state 0001 represents a situation in which genes A, B and C are inac-
tive,  while  gene  D  is  active.  The  network  is  supposed  to  update  its
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Figure 1. Boolean network representing a simple genetic network. Left: graph
representing  the  relations  among  genes.  Right:  Boolean  functions  computed
by the nodes.

node  synchronously,  therefore—in  the  absence  of  external  perturba-
tions—each state has a unique successor. Under this updating scheme,
the  dynamics  of  the  network  starting  from  any  initial  state  (i.e.,  gene
activation  profile)  is  a  trajectory  composed  of  a  transient—if  any—
and a cyclic attractor, which may be a degenerate cycle involving only
one  state,  that  is,  a  fixed  point.  The  graph  representing  all  the  possi-
ble  transitions  between  network  states  is  depicted  in  Figure  2.  We
observe  that  the  dynamics  are  characterized  by  four  attractors:  three
fixed  points  0000,  0100  and  1110  and  a  cycle  of  period  2,
(1100,0110). The attractors represent the main cell states, as they con-
stitute  the  steady  states  in  the  dynamics  of  the  cell.  For  this  reason,
they  assume  a  particular  importance,  as  also  shown  in  the  original
example  by  Huang,  who  associates  one  specific  cell  behavior  to  each
attractor. The state space (i.e., the space of all possible gene configura-
tions) can be partitioned into basins of attraction, each containing all
the  states  that,  if  assumed  as  initial  condition,  lead  to  one  specific
attractor.  For  example,  the  basin  of  attraction  of  the  cyclic  attractor
(1100,0110) is composed of the states {1010,1011,0111,1100,0110}. 

In  the  absence  of  perturbations,  after  a  (possibly  empty)  transient,
a cell rests in one attractor. However, when the network in an attrac-
tor is perturbed, it might exit from the basin of attraction of the cur-
rent steady state and move to another one. Usually, in these models a
perturbation affects just one node at a time [27], therefore it is possi-
ble  to  draw  the  attractor  graph,  which  represents  the  possible  transi-
tions  between  steady  states.  The  attractor  graph  of  the  example  we
are  discussing  is  depicted  in  Figure  3.  The  graph  is  obtained  by
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perturbing  each  node  of  each  attractor  and  connecting  attractor  α  to
attractor  β  with  an  arrow  from  α  to  β  if  the  perturbation  in  α  pro-
duces a trajectory ending in β—or, equivalently, if the perturbation on
α  produces  a  state  in  the  basin  of  attraction  of  β.  In  the  case  of  the
cyclic attractor of period two, we numbered the states and denoted by
a  subscript  the  perturbed  genes  as  a  function  of  the  state.  We  can
observe  that  it  is  possible  that  the  same  gene,  if  perturbed,  leads  the
trajectory  to  different  steady  states,  depending  on  the  attractor  state
in which the gene is perturbed. For example, gene A leads to attractor
1110  if  perturbed  in  state  0110  and  to  attractor  0100  if  flipped  in
state 1100. 

Figure 2. State graph of the network defined in Figure 1. Note the four attrac-
tors:  three  fixed  points  0000,  0100  and  1110  and  a  cycle  of  period  2
(1100,0110).

Figure 3. Attractor  graph  of  the  network  defined  in  Figure  1.  For  clarity,  the
transients  are  omitted  and  only  macro  transitions  between  attractors  are
depicted.  A  transition  occurs  after  the  transitory  flip  of  the  value  of  a  gene.
The labels on the edges denote the genes that, if flipped, cause the transition.
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The network described models a typical case of cell dynamics, and
it was used in [26] to illustrate the notion of attractors in cell dynam-
ics.  In  the  following  subsections,  we  show  how  this  network  can  be
used to control a robot performing a minimal yet not trivial cognitive
task. The key idea is that attractors are associated to robot behaviors,
in  the  same  way  as  they  represent  cell  behaviors  in  the  biological
interpretation. 

Example 1: Controlled Phototaxis4.2

In  this  first  example,  we  exploit  the  properties  of  the  attractor  land-
scape  to  control  the  speed  of  a  robot  performing  phototaxis,  that  is,
moving toward a light source. Here and in the following case studies,
we  have  directly  introduced  a  mapping  between  attractors  and  robot
behaviors.  However,  this  mapping  can  be  the  result  of  an  adaptive
process, as indeed is done in nature, where the interactions between a
system (e.g., a cell or even an organism) and the environment emerge
as  an  adaptive  process  that  exploits  some  regularities  in  the  environ-
ment. This process is analogous to the emergence of sensors in nature,
where  regularities,  correlations  and  sufficiently  robust  patterns  are
captured by organisms’ parts that assume the role of sensor devices—
see  [35–38]  for  a  discussion  on  the  evolution  of  sensors,  both  in
nature  and  in  robotics.  Intermediate  situations  are  possible  between
these  two  extreme  possibilities,  such  as  in  the  case  studies  in  BN
robotics  that  we  have  previously  mentioned  (see  Section  3).  In  those
BN-robots, some nodes of the network are directly connected to a sen-
sor (e.g., a light or a proximity sensor), their value is imposed by sen-
sor  readings,  and  actuators  are  directly  controlled  by  the  values  of
some  predefined  node.  Despite  this  a  priori  setting,  nothing  is
imposed  on  the  way  the  network  will  use  the  information  set  on  its
inputs  nor  the  way  it  will  control  the  robot  actuators,  as  the  connec-
tions among nodes and node functions are the result of an evolution-
ary  process.  In  a  sense,  we  may  say  that  this  evolutionary  process
defines  the  semantics  of  the  information  received  and  elaborated  by
the robot.

The attractors of the network are characterized by a different num-
ber of active genes, from 0 to 3. This property can be easily exploited
as a control factor for the speed of the robot: the larger the number of
active  genes  in  the  state,  the  higher  the  speed  of  the  robot.  The  con-
trol  genes  are  D,  which  is  temporarily  switched  on  when  the  robot
sees  the  light,  and  B,  which  is  temporarily  deactivated  whenever  the
luminescence  gradient  perceived  by  the  light  sensors  exceeds  a  given
threshold. As an aside, we observe that while we are using the termi-
nology  typical  of  robotics,  we  are  just  describing  a  dynamical  system
interacting  with  the  environment,  like  a  cell.  The  network  starts  in
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attractor 0000, which represents the quiescent state where the robot’s
wheels  do  not  move.  When  the  robot  perceives  the  light,  gene  D  is
switched on—as if it were activated by an external molecule. At each
control  step  of  the  robot,  the  network  updates  its  state;  therefore,
after  the  perturbation  occurring  on  gene  D,  the  network  enters  the
basin  of  attraction  of  fixed  point  1110,  which  is  reached  in  a  few
steps. Then the robot moves toward the light and progressively slows
down, as an effect exerted by gene B, which is temporarily suppressed
(i.e.,  set  to  0)  as  soon  as  the  light  intensity  detected  exceeds  a  fixed
value. Eventually, the robot stops when it is close to the light source.
Note  that  the  stop  state  corresponds  to  fixed  point  0000,  which  is
reached from attractor 0100 just by setting B to 0. The video of a rep-
resentative  run  is  available  in  the  supplementary  material  [39]  as
video-01. The same network can be used to control a group of robots
performing the same task. We performed this and the following exper-
iments  in  a  simulated  environment  by  the  means  of  ARGoS  [40],
which  is  one  of  the  most  widespread  robotics  simulators.  The  main
steps of this dynamics are depicted in Figure 4, and a video of the sim-
ulation is available as video-02. 

In case this network is used to control the behavior of a swarm of
robots,  one  may  want  to  attain  a  final  situation  in  which  robots  are
evenly distributed across the light sources, similarly to clustering phe-
nomena  in  cell  biology.  To  attain  this  goal,  the  very  same  network
can be used, and gene D is activated as long as the robot density per-
ceived  by  a  robot  (through  its  proximity  sensors)  exceeds  a  given
threshold. In this way, the temporary activation of gene D moves the
network to the attractor corresponding to the maximal speed, so that
the robot has the chance to move and find another less crowded light
source.  The  main  phases  of  these  dynamics  are  depicted  in  Figure  5,
while the video of a typical simulation is available as video-03. 
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Figure 4. Main  phases  of  the  phototaxis  behavior  of  a  group  of  robots  (from
top to bottom and left to right). Robot colors denote their attractor (and con-

sequently,  their  speed):  black → 0000,  yellow → 1110,  red → 0110, 1100,

blue → 0100.
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Figure 5. Main  phases  of  the  phototaxis  behavior  of  a  group  of  robots  (from
top  to  bottom  and  left  to  right),  trying  to  gather  around  a  light  source  so  as
to  split  into  approximately  equal  groups.  Also  in  this  case,  robot  colors
denote  their  attractor  (and  consequently,  their  speed):  black → 0000,  yel-

low → 1110,  red → 0110, 1100,  blue → 0100.  Note  that  robots  in  a  dense

group are colored yellow; that is, they are moving at a high speed. Therefore,
in  this  case,  the  equilibrium  reached  at  the  end  of  the  run  is  dynamic,  rather
than static.

Example 2: Actions Triggered by an External Stimulus4.3

As  a  second  example  of  the  use  of  the  dynamical  properties  of  a  cell
model,  we  show  an  alternative  approach  to  encode  inputs  and  out-
puts  in  the  network.  In  the  previous  example,  the  mapping  between
cell  model  and  robot  was  achieved  by  temporarily  setting  some  gene
to  a  specific  activation  state  and  using  the  entire  genetic  profile  to
decide  the  actions  the  robot  should  take  (in  the  previous  case,  the
speed  of  the  robot).  Another  approach  consists  in  directly  connecting
some  genes  of  the  network  to  external  inputs—that  is,  treating  them
as  receptors—and  using  the  value  of  some  specific  genes  to  directly
control some low-level robot actions. In the example we discuss here,
we consider a simple scenario in which a robot is placed in a corridor
that has to be traversed so as to reach a target. In Figure 6, the initial
situation is depicted; the target is represented by a light source, but it
may  be  any  source  of  a  signal  that  the  robot  can  perceive,  such  as
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sound  or  temperature.  On  the  biological  side,  this  source  can  be  any
chemical source, and the phenomenon would be chemotaxis. The net-
work controlling the robot is the same as the one used in the previous
example, just with a different encoding of inputs and outputs.

Figure 6. Corridor scenario: the robot points toward a goal and its movement
is triggered by an external stimulus.

Here we suppose that an input gene is clamped to 0 or 1 as a conse-
quence of an external signal; when a network node is forced to a con-
stant  value,  the  network  state  graph  changes  and  some  transitions
(along  with  some  states)  no  longer  exist.  To  adhere  to  the  biological
framework  depicted  by  Huang,  we  suppose  that  signals  exert  their
effect on the network to condition the transitions from an attractor to
another one. In this way, attractors still represent the main behaviors
of the robot, and the transitions between them are achieved by clamp-
ing  a  node  to  a  constant  value  so  as  to  control  the  transient  from  an
attractor to another one. 

In the scenario we discuss in this example, the control gene is again
D and the output gene is A, which acts as a binary selector: if A  0,
then the robot holds; otherwise, it moves straight forward. The initial
state  is  the  quiescent  one  (0000)  and,  when  an  external  signal  is  per-
formed  (e.g.,  a  sound)  and  during  the  time  interval  it  is  perceived  by
the robot, gene D is clamped to 1. As shown in Figure 7, as soon as D
is set to 1, the network state moves to 0001 and, while D  1, the net-
work  trajectory  eventually  reaches  1111,  which  is  a  fixed  point  as
long  as  D  1.  We  may  call  this  particular  steady  state  a  conditional
attractor, that is, an attractor conditioned to an external conditioning
on  some  genes,  to  distinguish  this  case  from  that  of  original  attrac-
tors,  which  are  the  ones  characterizing  the  autonomous  dynamics  of
the network. In the context of dynamical systems, an autonomous sys-
tem has no inputs and it is subject to an internal dynamics. Once this
conditional attractor is reached, the external stimulus can be detached
from D and the network freely reaches the original fixed point 1110.
Along  this  trajectory,  gene  A  is  always  1  and  so  the  robot  moves
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straight. The possibilities opened by clamping one or more genes to a
specific value until a new attractor is reached make it possible to also
introduce  a  stopping  condition  to  this  behavior:  when  we  want  the
robot  to  stop,  both  C  and  D  have  to  be  clamped  to  0,  and  so  after
two  steps  a  new  conditional  attractor  is  reached  with  A  0  and  the
robot  stops.  At  this  point,  the  plasticity  of  the  network  enables  us  to
again  control  the  movements  of  the  robot  toward  the  light  source  by
keeping  C  clamped  to  0  and  activating  or  inhibiting  D,  which  then
will act as a switch to make the robot move and rest. Videos of these
behaviors can be watched at [39] as video-04 and video-05. 

Figure 7. State graph of the network controlling the robot. While the network
is  the  same  as  the  one  in  the  previous  example,  its  state  graph  is  different
because some genes are clamped to either 0 or 1 from an attractor until a new
attractor is found.

Conclusion: Implications for Robotics and Synthetic Biology5.

We believe that the notion of attractor landscape provides an effective
abstraction  level  for  cross-fertilization  between  robotics  and  synthetic
biology  (SB).  On  the  one  hand,  robotics  may  exploit  advances  in  SB
so  as  to  devise  unconventional  control  systems.  Indeed,  the  examples
we have presented in the previous section illustrate a viable approach
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to  combining  robotics  and  SB,  which  consists  in  exploiting  synthetic
cellular  circuits  to  control  robots.  This  “understanding  by  building”
cross-discipline methodology can produce unforeseen developments in
both  fields.  Indeed,  results  obtained  from  the  evaluation—in  simula-
tion  or  in  the  real  world—of  robots designed  to  exploit  these  cellular
synthetic  bricks  may  provide  biological  insights  and  hypotheses  to
motivate  new  experiments,  which  in  turn  may  lead  to  the  construc-
tion of new bricks. In addition, this approach opens the possibility of
designing and building hybrid robots, also made of biological compo-
nents.  Typical  scenarios  of  such  creatures  are  environments  where
human exploration is not possible, such as oceans, human and animal
bodies  and  also  plants,  where  swarms  of  micro-robots  may  collec-
tively  accomplish  a  mission.  On  the  other  hand,  the  design  of  syn-
thetic  cellular  systems  may  be  formalized  in  terms  of  an  embedded
agent  perceiving  the  environment  and  acting  on  it—as  is  done  in
robotics—and  design  techniques  for  control  software  in  robots  may
be used in SB design.

We are aware that the approach we have sketched is more a vision,
rather  than  an  actual  research  project.  However,  we  strongly  advo-
cate  the  use  of  high-level  concepts  from  dynamical  systems,  and  in
particular,  attractor  landscapes,  not  just  as  metaphors  but  as  design
guidelines.  In  addition,  we  believe  that  this  level  of  abstraction  can
provide a common vocabulary and a shared set of categories between
researchers  in  artificial  intelligence  and  SB,  and  that  this  bridge
between cell and robot dynamics is worth pursuing in the future. 
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