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The problem of prediction is a general problem in the philosophy of sci-
ence.  It  is  important  in  every  discipline  for  which  prediction  concerns
the  behavior  of  an  artificial  or  a  biological  system,  such  as  artificial
intelligence or synthetic biology. Synthetic biology shares with artificial
intelligence some theoretical issues from the point of view of prediction.
My claim is that the problems related to the prediction of system behav-
iors  are  analogous  because:  (a)  artificial  intelligence  and  synthetic
biology  aim  at  producing  autonomous  systems;  and  (b)  their  products
interact with an open-ended and uncertain context. I argue my claim by
providing  three  versions  of  the  prediction  problem  in  artificial  intelli-
gence  and  synthetic  biology,  to  show  the  analogies  between  them
within this framework and to suggest some useful consequences. 
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Introduction1.

The  problem  of  prediction  is  a  general  problem  in  the  philosophy  of
science.  Prediction  in  science  is  related  to  the  scientific  method  and
consists  of  formulating  hypotheses  as  the  logical  consequences  of  sci-
entific theories and testing them through observations or experiments.
A theory is stronger if its predictive power is corroborated by experi-
ence.  In  some  disciplines,  prediction  has  a  slightly  different  meaning
and relevance. In artificial intelligence (AI) and synthetic biology (SB),
prediction  is  related  to  actual  products,  which  are  artificial  artifacts
or artificial biological entities, whose behavior has to be tested as well
as controlled for specific goals. The former case is more typical of the
AI  methodology  of  modeling  “intelligent”  capabilities;  the  latter  is
more  typical  of  SB  products  and  their  usefulness  for  practical  pur-
poses  (medical  or  biotechnological  applications,  for  example).
However, both are interested in predicting the behavior of their actual
outcomes, that is, the entities they aim at building. This is the specific
sense  of  prediction  that  I  will  address  in  what  follows,  showing  how
this particular issue connects AI and SB in some respects.
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SB  shares  with  AI  and  computer  science  some  theoretical  issues,
which  are  influential  from  the  point  of  view  of  applied  research.  For
example,  present-day  research  on  genome  editing  reuses  old  paral-
lelisms  between  the  genetic  code  and  the  theory  of  information.
Genome  editing  is  seen  as  a  sort  of  programming,  and  programming
is par excellence the science of information. My claim is that the prob-
lems of AI and SB are related to the prediction of a system’s behaviors
that are analogous because of the following: (1) AI and SB aim at pro-
ducing autonomous systems; and (2) AI and SB products interact with
an  open-ended  and  uncertain  context,  such  as  real-world  environ-
ments. The notion of autonomy is currently debated, especially in AI,
from both an epistemological and an ethical, legal and political point
of  view.  Generally  speaking,  an  autonomous  system,  software  or
robotics,  is  a  system  that  goes  beyond  the  behavior  programmed  in
the  initial  algorithm.  In  particular,  the  autonomous  system  can  learn
by  itself  from  data  and  environment,  so  that  its  behavior  is  unpre-
dictable.  It  usually  performs  in  a  context,  that  is,  a  social,  virtual  or
actual environment, in interaction with other natural or artificial enti-
ties.  The  contextual  behavior  is  unpredictable  because  it  depends  on
an indefinite number of variables that can influence the behavior itself
(see, for example, [1]). In a similar sense, an SB entity or a biological
entity  modified  with  SB  techniques  (see,  for  example,  [2])  acts  in  a
context  at  different  levels,  from  cellular  to  real  world,  in  interaction
with  all  the  components  of  its  context.  The  “programmed”  nature  of
these  entities,  along  with  their  complexity,  or  the  complexity  of  the
contextual system, makes it hard to predict the results and the behav-
ior  of  the  system  in  advance.  These  kinds  of  SB  entities  are
autonomous  in  an  analog  sense  with  AI  autonomous  systems,  even
though they are generated in a different manner. 

This is just a part of what I call the “prediction problem” in AI and
SB.  Fresh  problems  encountered  from  this  standpoint  are  analogous
to problems in AI emergent systems, such as those produced by means
of  cellular  automata  and  evolutionary  programming.  The  notion  of
emergence  has  been  debated  in  the  philosophy  of  science  since  the
1960s  [3].  A  typical  distinction  is  between  weak  emergence  and
strong  emergence  [4].  While  the  former  regards  the  arising  of  new
properties  or  entities  as  a  result  of  the  interactions  of  entities  at  a
lower level and is connected to the assumptions that make it possible
to  simulate  a  system—at  an  elementary  level—that  is  emergent  or
shows  emergent  properties,  the  latter  emphasizes  the  irreducibility  of
high-level  properties  or  entities  to  the  lower  ones  [5].  The  debate  is
still  open,  and  the  relevance  of  this  notion  is  clear  for  the  biological
world as well as for artificial systems that simulate biological phenom-
ena or are bio-inspired, as in many recent trends for AI and robotics.
In  SB  and  AI,  the  epistemological  debate  on  emergence  is  related  to
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the  biological  complexity  of  natural  and  synthetic  systems  and  the
practical limitations on prediction and control of living systems [6, 7].
The  connection  between  emergence  and  predictability  is  therefore
strong from a computational and an epistemological point of view. 

There is another theoretical issue related to the general aim of these
two disciplines. In a technological improved scenario, genetic manipu-
lation,  selection  and  engineering  could  lead  to  biological  superintelli-
gence,  and  evolutionary  computation  is  a  good  candidate  to  achieve
an  artificial  superintelligence.  The  question  about  how  evolutionary
computation  could  achieve  artificial  superintelligence  concerns  the
overall  problem  of  prediction  in  AI  and  the  relationship  with  SB,
which can provide autonomous systems and systems interacting in an
unpredictable context. 

In  what  follows,  I  will  clarify  and  support  my  claim  about  predic-
tion  in  AI  and  SB  and  the  relationship  between  them.  In  Section  2,  I
speak about the general notion of prediction; in Section 3, I deal espe-
cially with the problem of prediction in AI and SB; in Section 4, I pro-
vide  three  versions  of  the  problem;  and  Section  5  has  the  concluding
remarks. 

The Notion of Prediction and the Problem of Prediction2.

Prediction  is  to  foretell  what  will  happen  on  the  basis  of  what  is
known.  In  science,  prediction  provides  a  specific  future  situation  that
will  take  place  given  some  initial  conditions  and  the  scientific  laws
and  theories  concerning  the  specific  scientific  domain  in  question.
More  specifically,  prediction  in  science  has  an  important  role  in
research  and  discovery,  insofar  as  it  allows  for  testing  scientific  theo-
ries  under  various  circumstances.  Prediction  is  important  in  many
fields  related  to  science:  probability,  statistics,  game  theory,  decision
theory,  causality,  scientific  theory,  scientific  models,  models  in  sci-
ence, future technological developments and simulations. For the aims
of  this  paper,  future  technological  developments  and  simulations  are
the most prominent.

In  general  philosophy  of  science,  the  issue  of  prediction  is  usually
connected with the problem of scientific explanation. There is a long-
lasting  debate  at  least  since  Hempel–Oppenheim’s  proposal  for  the
deductive-nomological  model  of  explanation  of  1948  [8].  This  model
means  to  be  adequate  for  explanations  and  predictions  of  phenom-
ena,  which  are  seen  as  a  relation  of  symmetry.  Many  authors  have
questioned  the  validity  of  the  symmetry  assumption  with  different
arguments,  especially  concerning  the  causal  explanation  [9,  10].  The
difference  between  explanation  and  prediction  concerns  the  fact  that
the  former  refers  to  something  that  has  already  happened  and  the
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latter  to  something  that  will  take  place,  or  what  should  take  place.
Therefore,  we  may  consider  explanation  and  prediction  as  opposing
in the light of their temporal asymmetry. 

We may also consider prediction as part of the pragmatic aspect of
science,  as  something  that  science  is  used  for,  especially  to  control
nature,  such  as  in  applied  sciences.  Without  prediction,  there  is  no
control of scientific results and artifacts. This goal is, however, uncer-
tain,  because  the  more  complex  the  system,  the  less  accurate  the pre-
diction.  Prediction  shows,  therefore,  that  science  and  scientific
knowledge  have  limits  [11,  12].  Prediction  is  limited  compared  to
explanation  and  is  subject  to  uncertainty  and  to  every  cognitive  issue
related  to  uncertainty:  bounded  rationality,  cognitive  inaccessibility
and  the  relevance  problem.  The  reduction  of  uncertainty  strengthens
the  power  of  prediction,  but  uncertainty  is  unavoidable  and  inelim-
inable,  especially  with  the  increasing  complexity  of  systems,  as  in  the
case  of  living  systems  or  systems  simulating  living  ones.  This  is  pre-
cisely  the  domain  I  deal  with,  that  is,  prediction  in  the  sense  as
explained  in  the  previous  section.  The  epistemological  limitations  of
the notion of prediction are useful to set the problem in the context of
AI  and  SB,  where  the  logical  consequences  of  scientific  theories  are
effective artifacts or entities with a specific open-ended behavior. 

Prediction in Artificial Intelligence and Synthetic Biology3.

Prediction  is  connected  to  different  fields  of  AI  and  cognitive  science.
There  are  at  least  four  areas  in  which  prediction  is  involved:  (a)  in
computability theory, where we want to know if a computer program
and  a  specific  input  will  end  or  if  it  will  go  on  forever.  This  is  also
known as the halting problem and it is one of the first problems to be
proven as undecidable by Turing (see [13]) and Church (see [14]). It is
still a programming problem, because we would like to know if a com-
plex program with a certain input will stop and we want to know this
with as much accuracy as possible. In other terms, we want to predict
the running of the program in the best possible way. The halting prob-
lem  is  a  logical  obstacle  to  this  requirement  for  the  programs,  a  hard
one as regards prediction; (b) prediction is important for game theory
and  decision  theory,  whose  aims  are,  among  others,  to  predict  the
agent’s  behavior  in  an  interactive  situation  or  in  a  choice  situation,
and where one of the crucial notions is that of expected utility; (c) pre-
diction  is  significant  in  the  simulative  approach  in  the  science  of  the
artificial,  and  with  reference  to  the  synthetic  method  (see  [15]),  to
build and exploit software and/or hardware models and artifacts with
a  rational/intelligent/cognitive  behavior.   The  way  in  which  we  build
the  model,  or  the  artifact  as  a  model,  includes  elements  the  builder
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thinks  the  model  should  have  to  show  a  specific  behavior,  which  of
course  could  also  be  disregarded  in  the  case  of  a  wrong  prediction;
and  (d)  prediction  is  important  in  understanding  future  technological
developments  and  their  impacts.  This  is  especially  true  for  AI  and  its
aim  to  achieve  a  general  artificial  intelligence  or  a  human-like  artifi-
cial  intelligence  with  powers  that  we  do  not  understand  yet,  and  the
risks of no control are high.

I  claim  that  (a),  (c)  and  (d)  concerning  AI  are  relevant  for  SB.  The
problem  of  prediction  of  algorithms  has  a  corresponding  problem  in
new  genetic  editing  technologies.  The  problem  of  prediction  in  the
simulation of evolutionary techniques of AI, and in AI self-replicating
systems  and  cellular  automata,  has  a  corresponding  problem  in  SB
emergent phenomena and multicellularity issues. The problem of pre-
diction in relation to artificial superintelligence building has an analo-
gous  problem  in  the  general  aim  of  SB  complex  systems  building.
These are the three problems of prediction I will address as follows. 

The Three Problems of Prediction4.

Algorithm Prediction in Artificial Intelligence and Synthetic 

Biology
4.1

In  computability  theory,  decidable  problems,  unlike  the  halting
problem,  are  those  that  are  computable  in  a  finite  number  of  steps,
but we do not know how many steps and which ones. They are solv-
able by a Turing machine (TM), according to the Church–Turing the-
sis—actually  not  a  thesis  but  a  conjecture  that  was  never  disproven.
The  Church–Turing  thesis  is  a  model  of  computation.  It  is  based  on
the  abstraction  of  computers  with  an  infinite  amount  of  memory.  A
TM-solvable  problem  needs  a  finite,  even  though  indefinite,  amount
of  memory.  The  algorithm  concludes,  namely  the  program  stops,  but
the  greater  the  complexity  of  the  algorithm  and  its  inputs,  the  harder
it  is  to  know  when  the  program  stops  and  its  output.  From  an  epis-
temic  standpoint,  computation  is  often  beyond  the  limits  of  human
knowledge.

This  problem  has  been  computationally  and  mathematically
addressed  since  the  mid-1960s.  From  this  point  of  view,  this  field  of
study  is  known  as  Kolmogorov  complexity  and  was  independently
started by Andrei Kolmogorov, Ray Solomonoff and Gregory Chaitin
(for  a  historical  reconstruction,  see  [16]).  In  particular,  Solomonoff
claimed  that  it  is  possible  to  consider  the  complexity  of  a  binary
string  s  as  the  length  of  the  shortest  program  that,  starting  from  no
input, prints out s. This definition of complexity helps to find a hierar-
chy  in  the  complexity  of  algorithms  and  assign  a  probability  to  every
string and to everything that could be coded as binary strings, that is,
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for  example,  a  hypothesis  on  empirical  facts.  The  less  the  complexity
(the  shortest  program),  the  more  the  probability.  (For  a  discussion  of
the relationship between algorithmic probability in the context of pre-
diction  from  an  epistemological  point  of  view,  see  [17].  See  also  [18]
for  a  discussion  of  the  predictability  in  deterministic  computing  sys-
tems  and  the  general  epistemology  of  algorithms.)  This  problem  is
also  connected  to  the  issue  of  computational  irreducibility,  the  idea
that  for  some  physical  system  it  is  possible  to  simulate  every  step  of
the  evolution  of  system  behavior,  but  it  is  not  possible  to  predict  an
outcome  of  such  evolution  without  letting  the  system  evolve  every
step. In other words, there are no shortcuts to predict the behavior of
the  system.  This  is  called  computational  irreducibility  [19,  20]  and  it
is  typical  of  emergent  phenomena  [21],  like  biological  phenomena
and related simulations. 

The  question  of  algorithmic  complexity  is  strictly  related  to  com-
putability theory and theoretical computer science. If we consider AI’s
main assumptions and basic ideas on formal systems within an unpre-
dictable  context,  that  is,  a  real-world  context  in  which  AI  systems
behave,  the  notions  of  prediction  and  predictability  have  different
senses, concerning the behavior of the AI system, along with the con-
text in which it happens and the limitations of the observer. This was
already stated by Turing in the 1950s.

In  Turing’s  most  famous  paper  on  machinery  intelligence,  he
claimed  that  prediction  connected  to  a  general  issue  about  machines
that  are  able  to  think.  The  first  one  is  in  the  discussion  of  Lady
Lovelace’s  objection,  according  to  which  a  machine  “has  no  preten-
sions to originate anything. It can do whatever we know how to order
it  to  perform”  [22,  p.  455].  The  point  is,  if  we  consider  algorithms,
that nothing new is in the running of a program, as it will do what it
is  built  for  and  nothing  more.  Turing  said,  however,  that  “machines
take me by surprise with great frequency. This is largely because I do
not  do  sufficient  calculation  to  decide  what  to  expect  them  to  do,  or
rather  because,  although  I  do  a  calculation,  I  do  it  in  a  hurried,  slip-
shod  fashion,  taking  risks.  [… ]  The  view  that  machines  cannot  give
rise  to  surprises  is  due,  I  believe,  to  a  fallacy  to  which  philosophers
and  mathematicians  are  particularly  subject.  This  is  the  assumption
that  as  soon  as  a  fact  is  presented  to  a  mind  all  consequences  of  that
fact spring into the mind simultaneously with it. It is a useful assump-
tion  under  many  circumstances,  but  one  too  easily  forgets  that  it  is
false. A natural consequence of doing so is that one then assumes that
there is no virtue in the mere working out of consequences from data
and general principles” ([22, pp. 455–456], emphasis added). 

One is not aware of all the consequences of a formal system, or of
a  system  presented  in  a  formal  way.  This  is  an  empirical  fact,  of
course, due to the limits of human cognitive capabilities and bounded
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cognitive  systems.  Moreover,  every  program  runs  on  physical  hard-
ware that is subject to microphysical perturbations, which undermine
the idea of a deterministic universe. This is what Longo [23] calls the
“electron  effect,”  which  anticipates  the  “butterfly  effect”  by  Lorentz,
referring  to  Turing’s  claim  in  a  1950  paper,  “The  displacement  of  a
single  electron  by  a  billionth  of  a  centimeter  at  one  moment  might
make  the  difference  between  a  man  being  killed  by  an  avalanche  a
year  later,  or  escaping.”  Longo  sees  in  it  an  earlier  example  of  the
unpredictability  of  nonlinear  dynamics  connected  with  the  sensitivity
to initial conditions, pointing out that, actually, the “1950 article had
been  read  principally  in  relation  to  Artificial  Intelligence;  this  did  not
allow people to grasp [Turing’s] insight as a great mathematician who
was  working  on  morphogenesis,  as  a  physical  dynamic  in  the  contin-
uum”  [23].  Turing’s  work  on  morphogenesis  [24]  addressed  the
breaking  of  symmetry  and  homogeneity  and  the  creation  of  reaction-
diffusion  systems,  which  are  complex  systems  for  all  intents  and
purposes. 

It is true that Turing’s 1950 article had been read in relation to AI
in a long-lasting debate on the imitation game, the Turing test, and so
on.  It  is  also  true,  however,  that  AI  emphasizes  the  unpredictable
aspects  of  algorithms  especially  for  two  reasons:  (a)  one  of  the  main
aims  of  AI  is  to  produce  autonomous  systems;  and  (b)  AI  products
interact with an open-ended context. In other terms, processing predic-
tions  is  hard  due  to  the  open-endedness  of  the  real-world  context.
This is the asymmetry we discussed previously; that is, we can explain
every step of a program, but we cannot always predict future steps. 

SB  has  two  main  streams  of  research,  which  usually  are  expressed
in  this  way:  (a)  the  design  and  construction  of  new  biological  parts,
devices and systems; and (b) the redesign of existing natural biological
systems  for  useful  purposes.  SB  also  has  different  subfields:  bio-
inspired  and  bio-mimetic  SB,  recombinant  DNA  applied  to  metabolic
engineering,  genome  engineering,  evolution,  and  biological  building
using  bio-bricks  [25].  Within  genome  engineering,  there  is  the  new
and very promising subfield of genome editing, which draws the atten-
tion  also  of  all  nonexperts  because  of  the  potential  implications  on
life, medicine, economy, and so on. Genome editing is the best candi-
date to a parallelism with the AI algorithmic point of view in SB. 

The  long-lasting  debate  on  the  use  of  information  in  biology  was
developed until the modern techniques of genome editing came about.
The use of information terminology to describe molecular biology pro-
cesses dates to the discovery of DNA [26] and even to the Schrödinger
book  on  life  [27].  The  core  idea  is  that  DNA  is  genetic  information.
The  processes  of  gene  expression  and  protein  synthesis  were  soon
described  with  notions  such  as  translation,  transcription,  code,  mes-
senger, editing and others (see, for example, [28, 29]). In the literature
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of  the  last  20  years,  a  different  position  about  DNA  as  information
was argued by many authors (e.g., [30, 31]): that DNA is not informa-
tion,  but  information  and  related  terms  have  a  metaphorical  or
heuristic  role  in  biological  research.  For  better  research  practices,
information should be eliminated from biological explanations. Some-
one  has  argued  that  such  a  metaphorical  use  is  even  dangerous  [32].
(Longo  underlines  that  Turing,  in  the  article  on  morphogenesis  [24],
claims  that  “genes  are  at  most  the  producers  of  enzymes  which  are
involved  in  the  reaction  [… ],  and  it  is  the  speed  of  this  production
that  contributes  to  a  process  that  is  global,  interactive,  and  based  on
physical  continua,  not  ‘computational,’  even  less  ‘programmed’”
[32].)  On  the  contrary,  some  authors  defend  the  role  of  information
theory  and  algorithmic  programming  to  explain  biological  phenom-
ena,  especially  as  regards  the  relationship  between  disease  and  the
immune  system,  and  in  relation  to  the  possibility  of  reprogramming
cells.  These  software-engineering  approaches  to  systems  biology  are
based  on  a  computational  interpretation  of  cell  behavior.  Gene  ther-
apy is one example of this methodology. The use of algorithmic termi-
nology is an attempt to strictly predict the behavior of the system, and
some theoretical concepts of information theory are exploited to con-
trol  the  system  exposed  to  perturbation,  such  as  the  cell  replication
process  [33].  The  debate  is  still  open.  The  reprogramming  of  a  cell
can  be  achieved  by  natural  or  artificial  methods,  which  is  close  to
some  recent  developments  of  SB  that  use  techniques  in  line  with  this
approach. 

Even though there are many criticisms concerning the use of infor-
mation terms in molecular biology that are considered too vague and
misleading, this kind of terminology is present in recent papers about
genome editing techniques. My claim is that could have consequences
in  the  SB  subfield  as  regards  prediction  issues.  For  example,  in  a
paper  on  CRISPR-Cas9  [34],  the  information  terminology  still
remains and is in line with the long tradition of molecular biology. In
the  introduction,  genome  engineering  is  defined  as  “the  process  of
making targeted modifications to the genome, its contexts (e.g., epige-
netic  marks),  or  its  outputs  (e.g.,  transcripts);  to  overcome  the
challenges  of  gene-targeting  experiments  a  series  of  programmable
nuclease-based  genome  editing  technologies  have  been  developed  in
recent  years”  [emphasis  added].  The  most  famous  editing  technology
is  Clustered  Regularly  Interspaced  Short  Palindromic  Repeats
(CRISPR)  and  its  associated  systems,  especially  the  Cas9  endonucle-
ase  enzyme.  Cas9  is  the  only  enzyme  within  the  cas-gene  cluster  that
mediates  target  DNA  cleavage  (Figure  1),  but  the  CRISPR-cas  coding
power  has  been  proven  not  only  in  biology  but  has  been  used,  for
example,  to  encode  a  digital  movie  into  the  genomes  of  a  population
of living bacteria [35]. 
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Figure 1. The  DNA  double-stranded  break  and  in  box  C,  the  Cas9  working
(from [34]). 

CRISPR-cas9  and  gene  prediction  (the  process  to  identify  DNA
regions  connected  to  genes)  techniques  are  powerful  tools.  In  partic-
ular,  the  CRISPR-cas9  system  is  usually  described  in  the  following
manners:  it  allows  DNA  sequence  cleavage,  it  can  be  reprogrammed
to  target  a  site  by  changing  the  sequence  of  its  crRNA,  and  it  can
make  programmable  transcription  factors  allowing  specific  genes  to
be  activated  or  silenced.  It  has  many  different  applications:  biogene-
sis,  generation  of  cellular  models,  generation  of  transgenic  animal
models, and so on [34]. 

However,  researchers  are  aware  of  some  potential  problems:
“Because genome editing leads to permanent modifications within the
genome, the targeting specificity of Cas9 nucleases is of particular con-
cern, especially for clinical applications and gene therapy. A combina-
tion  of  in  vitro  and  in  vivo  assays  has  been  typically  used  [… ]  but
systematic analysis has remained challenging due to difficulties in syn-
thesizing  large  libraries  of  proteins  with  varying  sequence  specificity”
[34]. This does not seem to be an in-principle problem, but just a con-
tingency  problem,  due  to  the  state  of  the  art  of  technology.
“Systematic  analysis”  will  be  addressed  in  the  coming  years  with  the
development  and  improvement  of  techniques  and  with  new  experi-
mental  achievements.  More  interesting  is  a  part  of  the  paper’s
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abstract,  where  the  reference  to  the  programming  domain  is  explicit:
“Analogous  to  the  search  function  in  modern  word  processors,  Cas9
can  be  guided  to  specific  locations  within  complex  genomes  by  a
short  RNA  search  string.  Using  this  system,  DNA  sequences  within
the  endogenous  genome  and  their  functional  outputs  are  now  easily
edited  or  modulated  in  virtually  any  organism  of  choice”  [34]
(emphasis added). The analogy with word processors is used to stress
positively  the  wide  potential  use  of  Cas9.  It  is  this  analogy,  however,
that shows the risks of the Cas9 technique. 

One  of  the  acknowledged  risks  of  this  technique  is  the  possibility
of  mosaicism  (populations  of  cells  with  different  genomes  in  an  indi-
vidual),  but  this  is  an  “internal,”  domain-specific  risk.  If  we  consider
the  parallelism  with  AI  and  computer  algorithms,  an  external,  more
general  risk  is  connected  to  the  uncertainty  of  the  consequences  of
results, that is, to the prediction of the Cas9 processes. Outcomes are
not  under  control  in  the  long  run  because  there  are  too  many  factors
involved  in  gene  expression  and  cell  reproduction.  In  this  case,  the
metaphor  of  information  could  be  useful  to  cast  some  light  on  the
genome  editing  general  perspective.  If  genome  editing  becomes  a  sci-
ence of programming, or is meant as a science of programming, it can
inherit some warning from AI and computation theory related to pre-
diction.  Moreover,  my  claim  is  that  the  whole  SB,  of  which  genome
engineering is a subfield, has the same problem of prediction as AI in
the  long  run  because  of  the  following:  (a)  SB  aims  at  producing
autonomous systems; and (b) SB products that interact with an open-
ended context. 

Prediction and Complex Systems4.2

A  second  problem  of  prediction  concerns  the  complex  systems
involved  in  the  origins  of  artificial  life.  In  the  Hixon  symposium  of
1948,  von  Neumann  tackled  the  problem  of  self-replicative  systems.
He  tried  to  establish  a  logical  theory  of  self-replication  by  addressing
the  issue  of  evolution  through  errors  in  replication  [36].  After  his
work, the general theory of cellular automata, that is, spaces in which
cells  change  according  to  specific  rules,  was  developed  in  subsequent
years. In the logical simulation of self-replication, one may distinguish
two  different  senses  of  self-replication:  (1)  of  a  single  entity,  a  cell;
and  (2)  of  systems  made  by  cells  replicating  themselves.  This  is  a
replication and self-replication of complex systems, reproducing them-
selves at some emergent level. John Conway’s Game of Life is a well-
known example of a cellular automaton, and Langton’s Ant is one of
the  most  famous  applications  of  cellular  automata  to  artificial  life
[37]. These are examples of the second case of self-replication and are
important as complex systems with emergent unpredictable behavior.
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The  study  of  evolutionary  laws  and  principles  that  von  Neumann
began established a bridge between the collective behavior of microen-
tities,  from  a  logical  and  a  mathematical  point  of  view,  as  well  as
emergent  phenomena  in  the  biological  domain.  This  bridge  connects
AI and biology from a bottom-up standpoint and according to the per-
spective of the emergence of complex system behavior from the inter-
action of the system’s parts. This led to evolutionary computation and
evolutionary programming, which are relevant techniques in AI, artifi-
cial  life  and  general  computer  science.  In  particular,  genetic  algo-
rithms  are  the  basis  of  the  complex  adaptive  systems  developed  since
the 1970s [38]. The emergence of new entities in space or time, which
is typical of evolution, is an unpredictable process, even though some
attempts to go beyond this problem have recently been made [21]. In
evolutionary  computation,  such  unpredictability  is  not  only  accepted
but  is  also  the  strength  of  these  kinds  of  techniques.  So  where  is  the
problem? The problem lies in the fact that the strength given by unpre-
dictability  is  due  to  the  system  being  without  control.  In  an  artificial
simulation, this is not a problem, but what about in an actual biologi-
cal synthetic system? 

SB  has  complex  systems  as  outcomes  or  targets,  for  example,  syn-
thetic  multicellular  systems  [39,  40].  Evolutionary  techniques  in  SB
engineering are useful for in vitro experiments, but in general, SB does
not like overwhelmingly emergent phenomena [41], because it is hard
to  control  SB  products  if  their  properties,  development  and  behavior
are  emergent,  especially  when  SB  products  have  to  be  inserted  in  the
real world. To study emergent entities, behaviors and products of evo-
lutionary  processes,  AI  uses  computer  simulation  and  models,  espe-
cially  in  the  framework  of  the  synthetic  method  [15].  The  test  bench
of synthetic method outcomes, however, is often (e.g., in robotics) the
interaction  with  the  real  world.  Negative,  namely  nonadaptive,
autonomous  entities  or  behaviors  are  changed  or  deleted.  In  SB  sys-
tems  with  emergent  properties,  the  consequences,  the  behavior  and
the new emergent entities are as unpredictable as in AI. SB may use in
silico  and  in  vitro  analysis  and  models  (see,  for  example,  [42]).  But
what  about  in  vivo  SB  entities?  Is  it  possible  to  use  them  to  predict
consequences  and  emergent  properties?  Is  it  possible  to  eliminate  or
change  negative  in  vivo  products,  maybe  inside  living  organisms,  in
the same way as in the case of AI modeling and artifacts? Do or could
AI and SB share the same sort of simulation method and entity build-
ing?  The  answers  to  these  questions  are  related  to  the  possibility  of
making  predictions  and  using  techniques  that  are  in  principle  unpre-
dictable  as  regards  their  outcomes.  Unpredictability  is  constitutive  of
these methods, but in the real world of living systems, it may become
a  problem  if  there  are  no  means  to  control  the  outcomes  of  unpre-
dictable  processes.  The  possibility  of  control  seems  to  be  a  minimal
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requirement in every aspect related to this problem, the unpredictabil-
ity of emergence, in SB. 

Prediction and General Artificial Intelligence and Synthetic 

Biology Aims
4.3

In his 1950 paper, Turing made a second claim concerning prediction
about  computing  machinery  and  intelligence:  “I  believe  that  in  about
fifty  years’  time  it  will  be  possible,  to  programme  computers  [… ]  to
make them play the imitation game so well that an average interroga-
tor  will  not  have  more  than  70  per  cent  chance  of  making  the  right
identification  after  five  minutes  of  questioning.  [… ]  I  believe  that  at
the end of the century the use of words and general educated opinion
will  have  altered  so  much  that  one  will  be  able  to  speak  of  machines
thinking  without  expecting  to  be  contradicted.  I  believe  further  that
no  useful  purpose  is  served  by  concealing  these  beliefs.  The  popular
view  that  scientists  proceed  inexorably  from  well-established  fact  to
well-established  fact,  never  being  influenced  by  any  improved  conjec-
ture,  is  quite  mistaken.  Provided  it  is  made  clear  which  are  proved
facts  and  which  are  conjectures,  no  harm  can  result.  Conjectures
are  of  great  importance  since  they  suggest  useful  lines  of  research”
[22, p. 449].

The  issue  of  AI’s  future  is  hotly  debated  today.  Turing  was  one  of
the first thinkers who dealt with this issue. His predictions have been
wrong  about  passing  the  test  (the  imitation  game),  but  rather  exact
about  speaking  of  machine  thinking  at  the  end  of  the  twentieth  cen-
tury.  The  “importance  of  the  conjectures,”  underlined  by  Turing,  is
significant in the present-day debate on the future of AI. In particular,
many  authors  discuss  the  possibility  of  an  artificial  general  intelli-
gence  and  of  a  (biological  or  artificial)  superintelligence  [43],  that  is,
an  intelligence  that  exceeds  human  intelligence.  Even  though  the
future  is  mostly  unpredictable,  this  is  another  relevant  problem  for
prediction  in  AI,  as  it  is  not  clear  if  we  already  have  or  we  will  soon
have  technological  achievements  enabling  artificial  or  biological  enti-
ties  that  are  more  intelligent  than  human  beings.  The  problem  is  not
trivial,  as  there  are  at  least  two  cases:  (1)  a  superintelligence  we  can
recognize for its power to do things we want it to do, but are unable
to  do;  and  (2)  a  superintelligence  that  we  will  not  recognize,  as  its
powers,  goals,  motivations  and  methods  are  far  from  human  under-
standing. The former case is more predictable than the latter, and the
problem  is  that  in  the  former  case  it  is  most  likely  that  we  will  be  in
control of the superintelligent entity, whereas we will not in the latter
case,  because  of  our  not  understanding  the  new  superintelligent
entity.  Prediction  is  crucial,  but  it  is  hard.  Therefore,  nowadays  there
are many institutes and centers of research dealing with this problem.
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(For  example,  the  Future  of  Humanity  Institute,  the  Future  of  Life
Institutes  and  the  Leverhulme  Center  for  the  Future  of  Intelligence,
among others.)

SB  is  part  of  this  scenario  as  well.  For  example,  in  a  technological
improved  scenario,  genetic  manipulation,  selection  and  engineering,
including genome editing techniques, could lead to biological superin-
telligence  through  understanding  the  biological  mating  patterns
behind intelligence, or maybe in some other differently controlled evo-
lutionary  ways.  Consider,  as  an  example  of  methodology,  implanta-
tion  in  embryos  and  embryo  selection  over  many  generations.  This
may lead to a weak form of superintelligence, a biological one, which
could  produce  smarter  and  smarter  human  beings  by  accelerating  the
evolutionary  process.  Within  the  framework  of  “transhumanism”
[25, 44], the point is that a great number of more and more intelligent
humans  will  be  able  to  produce  artificial  superintelligences.  SB  tech-
niques  and  methods  can  provide  control  of  transhuman  entities  [25].
Further,  in  this  way,  SB  could  help  future  AI  by  solving  part  of  the
problem  of  prediction  if  SB  is  able  to  control  its  processes  and
outcomes. 

From  the  point  of  view  of  AI,  evolutionary  computation  seems  to
be a good candidate in the attempt to achieve an artificial superintelli-
gence,  insofar  as  human  intelligence  is  a  product  of  evolution,
according  to  Moravec’s  predictions  [45].  But  how?  By  simulating  the
features  of  evolutionary  process?  Or  by  increasing  computation
power  to  exploit  the  existing  evolutionary  computational  technology
in a fuller way? The problem of predicting the outcomes of processes
still remains and so the problem controls them. The outcomes of evo-
lutionary computation could help to achieve or avoid similar develop-
ments in SB. So the debate and research on artificial superintelligence
can  be  used  to  gain  some  insight  into  current  research  on  AI  general
and  specific  systems,  as  well  as  in  SB.  This  kind  of  guiding  role  of
future  predictions  concerning  general  complex  systems  seems  to  be
useful  in  this  third  version  of  the  prediction  problem.  In  particular,
the  regulative  role  of  these  ideas—that  is,  prediction  concerning  the
developments  of  unprecedented  and  autonomous  complex  systems
that could have a deep influence on human life and society—may help
to  define  the  ethical,  legal  and  political  regulation  of  AI  and  SB,  a
field debated in the present-day political agenda of public and private
institutions. 

Conclusion5.

In  this  article  I  have  established  an  analogy  between  artificial  intelli-
gence  (AI)  and  synthetic  biology  (SB)  in  relation  to  the  problem  of
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prediction, which I have characterized in three different manners con-
cerning  the  three  subfields  of  AI  and  SB:  algorithms  and  program-
ming;  complex  systems  and  emergence;  and  epistemological  issues  of
the  future  of  these  disciplines.  My  main  claim  is  that  the  analogy
relies  on  the  aim  of  AI  and  SB  to  produce  autonomous  systems  and
systems  interacting  with  an  unpredictable  context,  that  is,  the  real
(environmental and social) world. My suggestion is that such an anal-
ogy  is  helpful  for  generating  warnings  on  research  methods  and  tar-
gets,  for  discussing  the  limits  and  the  possibilities  of  both  AI  and  SB,
for steering the research trends and for understanding what is next in
these adjacent fields, at least as regards their general aim of producing
autonomous  (complex)  systems.  The  knowledge  produced  in  AI  and
SB is useful if it is shared by researchers of both fields, in both direc-
tions,  and  on  the  basis  of  similar  theoretical  terminology,  whenever
this sharing is possible.
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