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In this paper, we construct a weakly universal cellular automaton (CA)

in the heptagrid, the tessellation 7, 3 that takes place in the hyperbolic

plane. The CA is not rotation invariant but is truly planar. This result,

under  these  conditions,  cannot  be  improved  for  the  tessellations  p, 3

of the hyperbolic plane. 
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Introduction 1.

This  paper  presents  a  result  of  weak  universality  in  a  tiling  of  the
hyperbolic  plane.  Weak  universality  is  a  terminology  encouraged  by
the  author  and  followed  by  some  others,  like  [1,  2].  Classically,  the
Turing machine starts its computation from an initial finite configura-
tion; the term weak universality stresses that the condition on the ini-
tial  configuration  is  weakened  in  some  way.  In  many  cases  of  such
results,  the  relaxed  condition  is  the  finiteness  of  the  initial  condition.
This  is  the  case  here.  As  in  many  other  studies  where  that  relaxation
occurs,  the  initial  configuration  cannot  be  arbitrary:  outside  a  finite
frame,  it  must  be  constructed  by  some  automatic  process,  possibly
with the help of single-stack machinery. A famous example of a result
established in a context where the initial configuration is at large con-
structed  with  the  help  of  a  finite  automaton  is  the  weak  universality
of  rule  110  of  elementary  cellular  automata  (ECAs)  according  to
Wolfram’s  classification.  The  result  was  conjectured  in  1983  by
Wolfram and the proof was published in [3, 4] 20 years later.  

In  this  paper,  the  space  where  the  considered  cellular  automaton
lives is the hyperbolic plane. The interest of this frame lies in the infi-
nite number of regular tessellations on which cellular automata (CAs)
can be defined as usual, considering such a tessellation as the space of
the  cells.  Outside  the  theoretical  interest  of  this  new  frame,  possible
applications  can  be  viewed  in  the  fact  that  hyperbolic  geometry  is
suited as a frame for restricted relativity. Another possible application
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is  the  possibility  in  this  richer  geometrical  space  to  represent  graphs
and  especially  trees  in  a  more  convenient  frame.  We  refer  the  reader
to  [5,  6]  for  an  introduction  to  tessellations  in  the  hyperbolic  plane
suited to such a paper. 

This  paper  is  basically  an  improvement  of  [7]  and  [8],  where  the

author  proved  the  same  result  in  the  tessellations  9, 3  and  8, 3,

respectively.  The  reason  for  this  improvement  lies  in  the  relatively
small number of rules for [7] and the fact, noticed in that paper, that
several rules were uselessly duplicated. Also, as is usual in this process
of  reducing  the  possibilities  of  the  automaton,  here  its  neighborhood,
it is necessary to change something in the previous scenario of the sim-
ulation. Here, the scheme explained in [9] is repeated. The key idea of
that  paper  was  to  combine  two  existing  structures  in  order  to  elimi-
nate  one  of  the  structures  used  so  far  in  the  simulation  scheme
explained  in  [6].  Note  that  the  present  result  cannot  be  improved  for
this  class  of  CAs,  which  explicitly  make  use  of  nonrotation-invariant

rules:  indeed,  the  heptagrid  is  the  tessellation  p, 3  of  the  hyperbolic

plane  with  the  smallest  possible  value  for  p,  which  is  7.  This  paper
makes use of the new system of coordinates introduced in [10] for the

tilings  p, 3  and  p - 2, 4.  In  this  paper,  the  same  model  as  in  [11]

and [12] and the other quoted papers is used. 
For the reader’s convenience, Section 2 introduces the model simu-

lated by the automaton. In Section 3, the model is implemented in the
heptagrid. In Section 4, the rules of the automaton are given, stressing
the way the rules are defined in a context where rotation invariance is
no longer required, which allows us to prove the following result: 

Theorem 1. There is a weakly universal cellular automaton (CA) on the

heptagrid  of  the  hyperbolic  plane,  the  tessellation  7, 3,  that  is  truly

planar and that has two states.  

Presently,  we  turn  to  the  proof  of  the  result,  repeating  that  the
rules are not rotation invariant: the statement of the theorem does not
mention that condition. 

The Railway Model    2.

This model was introduced by Stewart in [13]. It defines a circuit that
takes  place  in  the  Euclidean  plane  on  which  a  single  locomotive  is
running. The circuit consists of segments of straight lines, quarters of
circles,  crossings  and  switches.  The  crossing  is  a  structure  allowing
two  tracks  to  cross  each  other.  A  switch  is  the  meeting  of  three
straight  lines  a,  b  and  c.  The  locomotive  may  arrive  at  the  switch
through a and then leave it either through b or c: it is called an active
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passage  or  crossing.  The  track  through  which  the  locomotive  leaves
the switch is called the selected track. The locomotive may also arrive
through  b  or  c  and  then  leave  the  switch  through  a:  this  is  called  a
passive crossing.  

There  are  three  kinds  of  switches:  fixed  switch,  flip-flop  and
memory  switch.  The  fixed  switch  accepts  both  active  and  passive
crossings.  But  in  an  active  passage,  the  selected  track  is  always  the
same:  either  always  b  or  always  c.  The  flip-flop  accepts  active  pas-
sages only, but the selected track is changed after each passage of the
locomotive.  The  memory  switch  also  accepts  both  active  and  passive
crossings.  However,  the  rule  for  changing  the  selected  track  is  differ-
ent:  the  selected  track  is  the  track  of  the  last  passive  crossing  by  the
locomotive. 

Assembling  all  those  elements  allows  us  to  construct  a  circuit  in
which  the  traversal  by  the  locomotive  mimics  any  Turing  machine
(see [13]) or any register machine; see [7, 10–12, 14] as well as [6] for
the results obtained before the previous ones. At each time, the config-
uration  of  the  circuit  is  defined  by  the  state  of  all  its  switches,  where
the state indicates which track is the selected one. 

Figure 1 and its caption illustrate the working of the basic element
of the circuit. The element contains one bit of information. The figure
explains  how  the  information  is  read.  It  also  explains  how  it  is  writ-
ten.  Note  that  the  writing  is  performed  only  for  changing  the  current
value to the opposite one. The circuit must be managed in such a way
that the locomotive enters W if and only if a change of the bit must be
performed at that moment. 

Figure 1. The  basic  element:  first  row,  the  element  with  R,  reading  entry  and
W, writing entry. Second row: the action of the reading entry: left, reading 0;
right,  reading  1.  Third  row,  action  of  the  writing  entry.  Left,  marking  the
change  from  1  to  0  at  W,  then  at  R.  Right,  change  from  0  to  1  at  the  same
places.
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The Scenario of the Simulation3.

In  [7],  we  could  reduce  the  number  of  faces  of  the  cells  from  11  in
[11]  down  to  nine  by  introducing  the  decomposition  of  the  crossing
and  of  the  previously  mentioned  switches  into  simpler  structures.  In
[7], these structures are the passive fixed switch, the fork, the doubler,
the selector between a simple and a double locomotive, the controller
and the sensor. 

That  decomposition  reinforces  the  importance  of  the  tracks:  their
role  for  conveying  key  information  is  more  and  more  decisive.  Here
too,  tracks  are  blank  cells  marked  by  appropriate  black  cells  we  call
milestones. We carefully study this point in Section 3.1. Later, in Sec-
tion  3.2,  we  adapt  the  configurations  described  in  [7]  to  the  hepta-

grid, the tessellation 7, 3. 

The Tracks   3.1

In  this  implementation,  the  tracks  are  represented  in  a  way  that  is  a
bit similar to that of [7, 8]. Figure 2 indicates the basic feature of the
implementation.  

First, the sides of a cell are numbered. That numbering of the sides
will  systematically  be  used  throughout  the  paper.  As  far  as  rotation
invariance is no longer required, we may decide which side of the cell
is  side  1.  That  choice  is  at  our  disposal  and,  for  each  cell,  it  is  fixed
once  and  for  all.  It  also  fixes  the  numbers  of  the  other  sides  of  the
cell: they are numbered starting from side 1, moving counterclockwise
around  the  cell.  That  drives  us  to  consider  that  the  tracks  are  one
way.  Consequently,  the  following  convention  is  introduced:  in  each
cell of the track, side 1 is the side shared by the next cell of the track.
Note  that  the  same  side,  which  is  shared  by  two  cells,  most  often
receives  two  different  numbers  in  the  cells  that  share  it.  An  example
of  that  situation  is  given  in  Figure  2:  in  the  central  cell,  denoted  by
0(0),  side  1  is  side  6  in  the  neighbor  of  the  central  cell  sharing  that
side. In Section 4.1, the tracks consist of assembling the elements indi-
cated in Figure 2. 

Note  that  Figure  2  shows  two  rays  starting  from  M,  the  midpoint
of side 2 of the central cell. Those rays allow us to introduce the num-
bering of the tiles based on [10]. It will be used in the figures illustrat-
ing this paper. 

Those  rays,  u  and  v,  are  defined  as  follows.  They  both  start  from
the  midpoint  M  of  side  2  of  the  largest  cell  of  the  figure.  The  ray  u
passes  through  the  midpoint  of  its  side  1.  It  also  passes  through  the
midpoint  of  side  7  of  the  neighbor  of  the  central  cell,  which  is  seen
through  its  side  1  and  which  we  denote  1(1).  The  ray  v  cuts  sides  5
and  4  of  1(1)  at  their  midpoints.  Its  support  also  passes  through  the
midpoint of side 3 of the central cell. 
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Figure 2.  Element of the tracks: in pink, the exit cells; in yellow: the entrance
to the cell and the cell itself.  

In  the  figures  in  this  paper,  the  central  cell  is  the  tile  whose  center
is  the  center  of  the  circle  in  which  the  figure  is  inscribed.  The  central
cell  is  numbered  0,  denoted  by  0(0).  We  number  the  sides  of  the  tile

as indicated in Figure 2. For i ∈ 1..7, the cell that shares side i with

the central cell is called neighbor i and it is denoted by 1(i). The rays u
and v denote sector 1. The rotation around 0(0) allows us to attach a
sector to each tile 1(i). Number 1 in this notation is the number given
to the root of the tree attached to the sector defined from this tile; see
[5, 10]. Here, that definition is adapted to the case of the tessellation

7, 3, which we call the heptagrid from now on, as in many previous

papers. The reader is invited to follow the present explanation of Fig-
ure 1. Consider the sector defined by the rays u and v. The neighbors

of  cell  1(1)  sharing  its  sides  j,  j ∈ 1..3  are  numbered  j + 1  and  are

denoted by j + 11. We say that cell 1(1) is a W-cell and its daughters

are  defined  by  the  rule  W→BWW,  which  means  that  2(1)  is  a B-cell.
This  means  that  the  daughters  of  2(1)  are  defined  by  the  rule  B→BW,
where  the  B-daughter  has  two  consecutive  sides  crossed  by  u  in  their
midpoints.  Those  daughters  of  1(1)  constitute  level  1  of  the  tree.  The
daughters of 2(1) starting from its B-daughter are numbered 5 and 6,
denoted by 5(1) and 6(1), respectively. By induction, level n + 1 of the
tree is the daughter of the cells that lie on level n, applying the preced-
ing rules. The cells are numbered from level 0, the root, level by level,
and on each level, from left to right, that is, from ray u to ray v. What

A Weakly Universal CA in the Heptagrid of the Hyperbolic Plane 319

https://doi.org/10.25088/ComplexSystems.27.4.315

https://doi.org/10.25088/ComplexSystems.27.4.315


we have seen on the numbering of the daughters of 2(1) is enough to
see  how  the  process  operates  on  the  cells.  From  now  on,  we  use  this
numbering of the cells in the figures of this paper. 

Further,  Figure  3  illustrates  how  to  assemble  elements  of  the  track
on which the locomotive passes. As mentioned in the caption, the tra-
jectory  of  the  locomotive  is  illustrated  in  yellow.  From  the  point  of
view  of  the  CA,  this  is  not  a  new  state:  yellow  cells  are  blank  cells.
This representation is used to facilitate the reader’s understanding. 

Figure 3. Element of the tracks: in yellow, the elements of the track where the
locomotive passes.  

As can be seen in the figures of Section 4, the locomotive is imple-
mented  as  a  single  black  cell:  it  has  the  same  color  as  the  milestones
of the tracks. Only the position of the locomotive with respect to the
milestones  allows  us  to  distinguish  it  from  the  milestones.  As  is  clear
from  the  next  subsection,  we  know  that  besides  this  simple  locomo-
tive,  the  locomotive  also  occurs  as  a  double  locomotive  in  some
portions  of  the  circuit:  two  consecutive  black  cells.  In  a  double  loco-
motive,  the  cell  that  is  a  neighbor  of  the  next  cell  occupied  by  the
locomotive  is  the  front  of  the  locomotive,  while  its  other  cell,  neigh-
boring  the  front,  is  called  the  rear.  The  cell  of  a  simple  locomotive  is
also called the front of the locomotive. 

In Figure 3, assuming that the locomotive goes from top to bottom,
the milestones are in neighbors 2, 5 and 7 for cell 1(6) or in neighbors
2,  4  and  6  for  cell  3(1).  It  is  important  to  notice  that  such  tracks
allow  us  to  join  any  pair  of  points.  In  Section  4,  we  check  that  the
rules will satisfy that constraint. 
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The  circuit  also  makes  use  of  signals  that  are  implemented  in  the
form of a simple locomotive. Accordingly, at some point, it may hap-
pen that we have three simple locomotives traveling on the circuit: the
locomotive and two auxiliary signals involved in the working of some
switch. For aesthetic reasons, the black color that is in contrast to the
blank is dark blue in the figures. 

The Structures of the Simulation    3.2

The  crossings  of  [13]  are  present  in  many  of  the  author’s  papers.  In
[15] and later papers, they are replaced by roundabouts, a road traffic
structure,  in  the  author’s  simulations  in  the  hyperbolic  plane.  At  a
roundabout where two roads are crossing, if you want to continue in
the  direction  you  arrived  at  the  roundabout,  you  need  to  leave  the
roundabout  at  the  second  road.  The  structure  is  illustrated  by  Fig-
ure�4.  Its  caption  illustrates  the  position  of  the  components  of  the
structure: a fixed switch, a doubler and a selector. 

Figure 4. Implementation  scheme  for  the  roundabout:  the  green  diamond  is  a
doubler; circle f  is a fixed switch. Circles 1, 2 and 3 are selectors.  

The  arriving  simple  locomotive  first  reaches  a  doubler  that  trans-
forms it into a double locomotive. Then, the new locomotive meets a
first  selector  that,  detecting  that  it  is  double,  sends  it  to  the  second
selector.  The  second  selector,  detecting  a  single  locomotive,  sends  it
on  a  track  that  leaves  the  roundabout.  In  this  section,  we  present  the
implementation of these structures, which are those of [8] adapted to
the present tessellation. 

The Fixed Switch, the Doubler and the Fork    3.2.1

We  look  at  the  fixed  switch  first,  and  then  at  the  doubler  and  the
fork, as the doubler is a combination of the fork and the fixed switch.
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The Fixed Switch  3.2.2

As the tracks are one-way and as an active fixed switch always sends
the locomotive in the same direction, no track is needed for the other
direction:  there  is  no  active  fixed  switch.  Passive  fixed  switches  are
still needed, as mentioned previously.  

Figure  5  illustrates  the  passive  fixed  switch  when  there  is  no  loco-
motive  around:  we  say  that  such  a  configuration  is  idle.  We  shall
again  use  this  term  in  a  similar  situation  for  the  other  structures  and
for individual cells too. 

Figure 5. Idle configuration of the passive fixed switch. In yellow, the arriving
path from the left; in green, the arriving path from the right; in pink, the path
leaving the switch.  

We can see that it consists of elements of the tracks that are simply
assembled  in  the  appropriate  way  in  order  to  drive  the  locomotive  to
the bottom direction in the graphic, no matter from which upper side
the  locomotive  arrived  at  the  switch.  The  path  followed  by  the  loco-
motive  to  the  switch  is  in  yellow  or  in  green  until  the  central  cell,
which  is  pink.  The  path  from  the  left-hand  side,  yellow  in  the  figure,
consists  in  this  order  of  the  cells:  29(2),  11(2),  10(2),  3(2)  and  1(2).
From  the  right-hand  side,  green  in  the  figure,  it  consists  of  the  cells
23(1),  9(1),  3(1),  2(1)  and  1(7).  Of  course,  1(2)  and  1(7)  are  neigh-
bors  of  0(0).  The  path  followed  by  the  locomotive  from  0(0)  is  in
pink in the figure. It consists of the following cells in this order: 0(0),
1(4), 2(4), 7(4), 8(4), 9(4) and 24(4). Note that cell 0(0) in Figure 5 is
a standard element of the track with three milestones in 1(5), 1(1) and
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1(3),  its  neighbors  2,  5  and  7,  respectively.  Note  that  1(3)  and  1(1)
are milestones for cell 1(2), that 1(3) and 1(5) are milestones for 1(4)
and  that  2(7)  and  1(1)  are  milestones  for  1(7).  Note  that  the  mile-
stones of 1(7) are its neighbors 3, 5 and 7. 

From  our  description  of  the  way  the  roundabout  works,  a  passive
fixed switch must be crossed by a double locomotive as well as a sim-
ple  locomotive.  Later,  in  Section  4.2.1,  we  shall  check  that  the  struc-
ture illustrated by Figure 5 allows those crossings. 

The Fork and the Doubler    3.2.3

The fork is the structure illustrated in Figure 6(a). Note that its struc-
ture  is  very  different  from  that  of  the  tracks  or  of  the  fixed  switch.
The  central  cell  0(0)  is  black  and  two  paths  start  from  1(1),  each  on
one  side  of  the  central  cell  with  respect  to  its  axis,  which  crosses  its
side  1  and  passes  through  the  vertex  that  is  opposite  side  1;  it  is
shared  by  sides  4  and  5.  The  paths  each  take  two  cells  around  0(0)
and then leave the neighborhood of cell 0(0). The cells leading to 1(1)
are yellow in the figure. The left-hand track is green, consisting of the
following  cells,  in  this  order:  1(2),  1(3),  3(3),  7(3)  and  20(3).  The
right-hand  track  is  pink.  It  consists  of  the  cells  1(7),  1(6),  4(6),  5(7)
and  13(7).  The  locomotive,  a  simple  one,  arrives  through  the  yellow
path:  28(1),  10(1),  4(1)  and  1(1).  From  1(1),  two  simple  locomotives
appear: one in 1(2), going along the green path; the other in 1(7), trav-
eling along the pink path.  

(a) (b)

Figure 6. Idle  configurations.  (a)  The  fork.  (b)  The  doubler.  In  both  of  them:
arrival  of  the  locomotive  through  the  yellow  track.  Then,  one  locomotive  on
the green and on the pink tracks. In the doubler: the double locomotive leaves
the switch through the orange track.  
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The  doubler  is  a  structure  that  receives  a  simple  locomotive  and
yields  a  double  locomotive.  The  idea  is  to  use  a  fork  to  produce  two
simple locomotives and then to gather them at a fixed switch in order
to  produce  the  double  locomotive.  The  process  is  illustrated  by  Fig-
ure�6(b). The structure is inspired by that of [8], but it turns out that
here it is much simpler than there. The reason is that in [8], the even
number of sides compelled the author to devise a detour in order that
two  locomotives  arrive  at  the  same  time,  one  after  the  other,  at  one
entrance  of  the  fixed  switch.  In  the  heptagrid,  the  odd  number  of
sides allowed us to perform a simpler implementation. The odd num-
ber allows us to have two equal paths around the common milestones
of the concerned elements of the tracks. It is enough to place the cen-
tral  cell  of  the  fixed  switch  at  the  end  of  one  of  the  paths,  the  green
path in Figure 6(b). The graphic uses the same colors as the graphic of
the fork with the same meaning. Consider the green path. Its cells are,
in  this  order:  2(2),  1(2)  and  0(0),  which  makes  three  cells.  The  pink
path  consists  of  the  following  cells,  in  this  order:  3(1),  2(1)  and  1(7).
It  can  be  seen  that  the  cells  around  0(0)  are  exactly  the  neighbors  of
the  central  cell  of  a  fixed  switch;  see  Figure  5.  According  to  this
description,  the  two  simple  locomotives  created  at  the  same  time  in
2(2) and 3(1), respectively, do not arrive at the same time at cell 0(0).
When  the  locomotive  created  in  2(2)  arrives  at  cell  0(0),  the  locomo-
tive  created  in  3(1)  is  at  1(7),  so  that  the  two  black  cells  in  1(7)  and
0(0)  constitute  a  double  locomotive  arriving  from  the  right  whose
front is in the central cell of the fixed switch. Then the double locomo-
tive  leaves  the  switch  through  the  orange  path,  in  this  order:  1(4),
2(4),  7(4),  8(4),  9(4)  and  24(4).  Accordingly,  the  structure  works  as
expected  for  a  doubler.  Note  that  only  elements  of  the  track  are
involved. 

The Selector3.2.4

The selector is illustrated by Figure 7. This structure is less symmetric
than  the  corresponding  structure  of  [8],  which  makes  another  differ-
ence with that paper. 

We have a yellow track through which the locomotive arrives, sim-
ple  or  double;  both  cases  are  possible.  The  track  consists  of  the  cells
25(6),  9(6),  10(6),  4(6),  1(6)  and  0(0).  When  a  simple  locomotive
arrives,  it  leaves  the  cell  through  1(1)  via  the  pink  path,  which  con-
sists of the cells 1(1), 2(1), 7(1) and 18(1). When a double locomotive
arrives,  a  simple  locomotive  leaves  the  structure  through  the  green
path,  consisting  of  the  cells  1(4),  2(5),  5(5),  12(4)  and  33(4).  Both
cells  1(5)  and  1(7)  can  detect  whether  the  locomotive  is  simple  or
double. They can do that when the front of the locomotive is in 0(0).
Then,  if  the  locomotive  is  double,  its  rear  is  in  1(6).  Both  cells  0(0)
and 1(6) are neighbors of 1(5) and of 1(7) too.
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Figure 7.  Idle configuration of the selector. Cells 1(7) and 1(5) detect whether
the locomotive is simple or double. Arriving through the yellow track, a sim-
ple  locomotive  leaves  through  the  pink  track;  a  double  locomotive  leaves
through the green track as a simple locomotive.  

In  Section  4,  the  rules  will  show  the  implementation  of  this
process. 

The Controller and the Sensor    3.3

In  this  subsection,  we  look  at  the  additional  structures  used  for  the
flip-flop  and  for  the  memory  switch;  see  [6,  13]  for  the  definitions
and  for  the  implementation  in  the  hyperbolic  plane.  As  explained  in
[6],  the  flip-flop  and  the  active  memory  switch  are  implemented  by
using the fixed switch, the fork and a new structure we shall study in
Section  3.3.1:  the  controller.  The  structure  is  illustrated  by  Figure  8.
For  the  passive  memory  switch,  we  need  the  fork,  the  fixed  switch
and another new structure we shall study in Section 3.3.2: the sensor,
illustrated by Figure 9. 

Suitably  assembled,  these  structures  allow  us  to  implement  the
required  switches.  Figure  10  indicates  how  a  specific  assembly  using
the  fixed  switches,  the  forks  and  the  controllers  only  allows  us  to
implement the flip-flop and the active memory switch: we remind the
reader  that  due  to  the  one-way  property  of  the  tracks,  the  active
memory switch is split into an active one corresponding to the tracks
of  the  active  passage  and  a  passive  one  corresponding  to  the  passive
crossing. 
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Figure 8. Idle  configuration  of  the  controller  of  the  flip-flop  and  of  the  active
memory  switch.  In  orange,  cell  1(3):  the  sensor  that  controls  the  working  of
the  device.  In  pink,  the  portion  of  the  track  that  is  allowed  when  cell  1(3)  is
black only.

Figure 9. Idle  configuration  of  the  sensor  of  the  passive  memory  switch.  In
yellow, cell 1(1), the sensor cell.
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(a)

(b)

Figure 10. Assembling fixed switches, forks and controllers. (a) It yields a flip-
flop. (b) An active memory switch.

In both cases, the controller is crossed by a simple locomotive and
it  acts  in  the  same  way:  when  it  is  black,  it  lets  the  locomotive  cross
the switch. When it is blank, it cancels the locomotive. This behavior
is  explained  by  the  assembly  itself:  the  arriving  locomotive  first
crosses  a  fork  C  that  yields  two  simple  locomotives.  One  of  them  is
sent to the controller L, while the other is sent to the other controller
R. The controller L is black; the controller R is white: in Figure 10, it
corresponds to a left-hand-side selected track. Both switches are imple-
mented  in  the  same  way  for  what  is  the  management  of  the  selected
track.

A  difference  occurs  in  the  change  of  the  selected  track.  In  the  flip-
flop, the change is triggered by the passage of the locomotive. This is
why  the  track  from  C  to  R  first  crosses  another  fork,  A.  One  of  the
two  simple  locomotives  produced  by  A  is  sent  to  the  controller  R,
while the second locomotive is sent to a fork S. In both cases, the two
simple  locomotives  sent  by  S  go  to  both  controllers  L  and  R.  They
arrive  there  through  another  entry  than  that  used  by  the  locomotives
sent by C. Arriving at the controller, the locomotive sent by S changes
its color to the opposite one. In the active memory switch, the change
is triggered by a locomotive sent from the passive memory switch: the
locomotive arrives at the fork S. It has the same effect as in the case of
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the  flip-flop.  We  shall  see  how  to  deal  with  the  passive  memory
switch in Section 3.3.2. 

The Controller3.3.1

As  shown  by  Figure  8,  the  controller  sits  on  an  ordinary  cell  of  the
track.  The  locomotive  that  runs  on  that  track  is  always  simple.  The
track  consists  of  the  yellow  path  that  passes  through  25(6),  9(6),
10(6), 4(6) and 1(6), a neighbor of 0(0), and the pink path that starts
from 0(0) and that is crossed by the locomotive when the controller is
black. The color of the controller is defined by cell 1(3), in orange in
Figure  8.  The  pink  path  consists  of  the  following  cells,  in  this  order:
0(0), 1(4), 2(5), 5(5), 12(4) and 33(4), a path already seen in previous
figures.  When  cell  1(3)  is  black,  then  cell  0(0)  is  an  ordinary  element
of  the  track,  so  that  the  locomotive  goes  on  its  way  along  the  pink
path, leaving the controller. If cell 1(3) is white, then cell 0(0) can no
longer  work  as  an  element  of  the  track.  It  remains  white,  which
means  that  the  locomotive  is  stopped  at  1(6):  after  that,  it  vanishes.
This  implements  the  action  of  a  selection  in  an  active  passage  of  the
switch:  the  locomotive  cannot  run  along  a  nonselected  track.  Here  it
can  do  it  for  a  while,  but  at  some  point,  it  is  stopped  by  the  con-
troller. Note that the occurrence of a locomotive in the structure does
not  change  the  color  in  1(3).  The  change  of  color  in  that  cell  is
performed by a signal that takes the view of a simple locomotive arriv-
ing through another track: 31(3), 12(3) and 4(3), the last cell being a
neighbor of 1(3). When the locomotive signal arrives at 4(3), it makes
cell  1(3)  change  its  color:  from  white  to  black  and  from  black  to
white. 

The Sensor   3.3.2

Let us now turn to the passive memory switch whose structure is illus-
trated  by  Figure  11,  taken  from  [7].  It  assembles  two  fixed  switches,
four  forks  and  two  new  structures:  the  sensors,  the  green  and  red
small squares of the figure. As in [7], we put a fork on the tracks that
arrive  at  the  passive  memory  switch.  One  of  the  simple  locomotives
created by the forks S1 and S2 goes to the fixed switch F1, from which

it  continues  to  another  switch.  The  indication  of  the  selected  track  is
indicated  by  the  sensors:  as  controllers,  they  have  a  color.  When  the
sensor  is  white  or  black,  it  corresponds  to  the  unselected  or  selected
track,  respectively,  as  in  the  case  of  the  active  switches.  The  other
locomotive created by S1 and S2 goes to a sensor. Consider the case of

S1,  which  in  the  figure  corresponds  to  the  selected  track  because  the

associated  sensor  L  is  green.  The  sensor  is  white,  but  the  locomotive
coming from S1 is stopped: there is no change to perform on the color
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of  the  sensors.  Consider  the  case  of  S2.  This  time,  sensor  R  indicates

that the track leading to S2  is not selected. The locomotive sent by S2
to R finds a black sensor. The sensor turns to white and lets the loco-
motive  go  on  its  way,  but  now,  that  locomotive  is  used  like  a  signal
sent to the other sensor L and to the controllers of the active memory
switch  in  order  to  change  their  colors.  This  is  why  the  locomotive  is
sent  to  another  fork,  S3,  which  sends  one  locomotive  to  L  and  the

other  to  the  fixed  switch  F2  in  order  to  go  to  the  active  memory

switch  associated  to  the  passive  one.  There  is  a  similar  sensor  S4  for

the case when the sensor L is black. This is why the fixed switch F2  is

placed  in  order  to  collect  the  signal  that  arrives  either  from  one  side
or  from  the  other.  Note  the  occurrence  of  two  roundabouts  in  the
structure,  as  tracks  for  managing  the  signal  have  to  cross  each  other
there, at some points.  

Figure 11. Organization  of  the  passive  memory  switch  with  fixed  switches,
forks  and  sensors.  Note  that  the  sensors  are  not  represented  with  the  same
symbol as the controllers in Figure 10.

Let  us  now  turn  to  the  implementation  of  the  sensor  illustrated  by
Figure 9. Note that the working of the sensor is different from that of
the controller: in the sensor, the reaction of the locomotive according
to  the  color  is  opposite  to  its  reaction  in  the  controller.  The  sensor  is
again installed on a track, the same as in Figure 8. The cell that plays
the role of a sensor is this time cell 1(1), whose state we call the color
of  the  sensor.  Note  that  the  neighborhood  of  that  cell  in  Figure  9  is
the same, up to rotation, as the neighborhood of cell 1(3) in Figure 8:
the green path here consists of cells 26(1), 9(1) and 3(1), the last one
being a neighbor of 1(1). 

Figure  9  shows  a  very  different  structure  for  cell  0(0)  compared
with  that  of  Figure  8.  When  the  sensor  is  white,  its  neighborhood  is
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exactly that of cell 0(0) when the controller is black: it is an ordinary
element  of  the  track,  so  that  the  locomotive  goes  on  its  way  on  the
track.  The  difference  in  both  structures  allows  us  to  implement  the
logic  of  each  switch.  In  the  case  of  the  controller,  when  the  locomo-
tive  goes  on  its  way,  it  is  the  locomotive  of  the  circuit  going  to
another switch or to a roundabout. In the case of the sensor, the loco-
motive that goes on its way on the track becomes a signal sent to the
other sensor and to the active switch associated to the passive switch. 

We can just note that the change of color is different in the sensor:
when  the  sensor  is  white,  if  a  locomotive  passes,  it  must  become
black: the signal is the locomotive itself, as will be seen in Section 4.5.
This is why cell 0(0) is green in Figure 9: cell 1(1) can see the locomo-
tive  only  when  it  is  in  0(0).  When  the  sensor  is  black,  it  has  to  be
changed  if  a  locomotive  passed  through  the  other  sensor,  which  then
changed  from  white  to  black.  The  locomotive  that  arrived  at  the  for-
merly  white  sensor  is  sent  to  the  still-black  one  in  order  to  make  it
change  to  white.  The  locomotive  arrives  through  the  green  path  of
Figure 9. As the configuration is the same around cell 1(1) of that fig-
ure as that around 1(3) in Figure 8, the change from black to white is
performed. 

Rules4.

The  figures  of  Section  3  help  us  to  establish  the  rules.  Their  applica-
tion  is  illustrated  by  the  figures  of  this  section,  which  are  taken  from
figures  drawn  by  a  computer  program.  The  program  wrote  the
PostScript files of the latter graphics (see [9]) from the computation of
the  application  of  the  rules  to  the  configurations  of  the  various  types
of  parts  of  the  circuit.  The  computer  program  also  established
the  traces  of  execution  that  contribute  to  checking  the  application  of
the rules. 

Let  us  explain  the  format  of  the  rules  and  what  is  allowed  by  the
relaxation from rotation invariance. We remind the reader that a rule
has the form XoX1

..X7Xn, where Xo is the state of the cell c, Xi is the

current  state  of  the  neighbor  i  of  c  and  Xn  is  the  new  state  of  c

applied  by  the  rule.  As  the  rules  no  longer  observe  rotation  invari-
ance,  we  may  freely  choose  which  is  side  1  for  each  cell.  We  already
indicated  in  Section  3.1  how  we  define  which  is  neighbor  1  for  the
cells  of  the  tracks.  There  are  exceptions,  namely  the  cells  that  belong
to  several  tracks,  which  is  typically  the  case  for  the  central  cell  of  a
switch or for some of its neighbors. In particular, when a cell belongs
to  two  tracks,  side  1  is  arbitrarily  chosen  among  the  two  possible
cases. In some places, side 1 may be chosen in order to allow the CA
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to  apply  the  expected  rule.  Most  often,  the  milestones  have  their  side
1 shared with an element of the track, which also contributes to reduc-
ing  the  number  of  rules.  Note  that  in  that  case  there  may  be  several
possibilities,  in  particular  when  a  milestone  belongs  to  two  tracks  or
when it belongs to several cells of the same track. 

There  are  two  types  of  rules.  Those  that  keep  the  structure  invari-
ant  when  it  is  idle,  we  call  conservative,  and  those  that  control  the
motion of the locomotive, we call motion rules. Those latter rules are
applied to the cells of the tracks as well as their milestones and some-
times to the cells of the structures that may be affected by the passage
of  the  locomotive.  Next,  in  each  subsection,  we  give  the  rules  for  the
motion of the locomotive in the tracks, then for the fixed switch, then
for  the  doubler  and  for  the  fork,  then  for  the  selector,  then  for  the
controller  and,  eventually,  for  the  sensor.  In  each  subsection,  we  also
illustrate the motion of the locomotive in the structure, as well as pro-
vide  a  table  giving  traces  of  execution  for  the  cells  of  the  track
involved  in  the  crossing.  The  rules  are  numbered,  and  in  the  tables
and when they are referred to in the text, we write in red the number
of  a  rule  where  the  new  state  of  the  cell  is  different  from  its  current
state. 

The Rules for the Tracks    4.1

Figure  2  shows  us  a  single  element  of  the  track.  Figure  3  shows  us
how to assemble elements as illustrated in Figure 2 in order to consti-
tute tracks. In Figure 3, the track is represented by the yellow cells, in
this order when going from top to bottom: the cells 16(1), 6(1), 7(1),
3(1), 1(1), 1(7), 1(6), 1(5), 1(4), 3(4), 10(4), 11(4) and 29(4). 

A  close  look  at  the  tracks  shows  us  at  least  two  kinds  of  cells,
despite  all  of  them  being  three-milestoned  cells,  another  difference
with  [8],  where  four-milestoned  elements  of  the  tracks  are  often  pre-
sent.  In  Figure  3,  there  are  three-milestoned  cells  with  milestones  in
their  neighbors  2,  4  and  7  as,  for  instance,  1(6)  and  3(1),  and  three-
milestoned cells with their milestones in neighbors 3, 5 and 7, as 1(1)
and  7(1),  for  instance.  Table  4  shows  us  that  for  cells  1(6)  and  3(1),
rules  4,  36,  17,  25  are  applied,  while  rules  3,  38,  40,  43  are  applied
for cells 1(1) and 7(1). The rules are taken from Table 2, which gives
all rules used by the locomotives on the tracks. 

Another  assortment  of  the  milestones  is  in  neighbors  2,  5  and  7.
Table 1 gives the motion rules corresponding to these cells and a few
others as indicated by Tables 4 and 5. In that table and in the follow-
ing  ones,  the  black  state  corresponding  to  a  simple  locomotive  is
denoted by B. 

Note  that  Table  1  gives  all  possible  neighborhoods  for  three  iso-
lated milestones, requiring that neighbor 1 be blank in the idle config-
uration.  For  instance,  take  the  positions  2,  4,  6  for  the  milestones.
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Rule 14 is the conservative rule and rule 31 corresponds to the case of
a simple locomotive being in the cell. As the locomotive always leaves
the cell through neighbor 1, rule 34 applies after rule 31. Now, there
are  a  priori  three  possible  entrances  for  the  locomotive:  one  is  neigh-
bor  5  as  in  rule  28,  displayed  in  Table  1.  Table  2  shows  that  neigh-
bors  3  and  7  are  also  used;  look  at  rules  63,  WWBBBBWBWB  and  41,
WWBWBWBBB.  The  same  observation  can  be  made  for  the  other  dis-
patches of the milestones in Table 1.

Accordingly,  for  the  display  2,  4,  7,  besides  rule  36  corresponding
to  an  entrance  through  neighbor  3,  rule  41  again  corresponds  to
another one through neighbor 6; it is now read as WWBWBWBBB, and
rule  45  WWBWBBWBB  corresponds  to  yet  another  one  through  neigh-
bor  5.  This  can  be  repeated  for  the  other  neighbors;  see  Table  3,
where  the  number  in  brackets  indicates  the  neighbor  through  which
the locomotive enters. Rule 71 will be used later, in the fixed switch. 

Table 1. The motion rules for a simple locomotive.  

Table 2. Rules managing the motion of a locomotive on the tracks.   
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Table 3. The other rules involved for the motion of a simple locomotive.   

Table 4. Execution  of  rules  1  to  45:  motion  along  the  tracks  from  bottom  to
top for a simple locomotive.  

Table 5. Execution of rules 1 to 45: motion along the tracks from top to bot-
tom for a simple locomotive.  

Call  the  rules  of  Table  1  for  a  given  neighborhood,  the  conserva-
tive  rule,  the  front  rule,  the  cell  rule  and  the  witness  rule,  the  names
being self-explanatory. 

Table  1  also  shows  us  an  interesting  feature:  the  neighborhood  of
rule 36 is WBBBWWB and that of rule 29 is BBWWBWB. It is not diffi-
cult to see that we can pass from one neighborhood to the other by a
circular  permutation.  Accordingly,  rule  36  and  rule  29  are  not  rota-
tionally  compatible:  rule  36  is  a  front  rule;  rule  29  is  a  witness  rule.
The  other  conclusion  we  can  draw  from  the  comments  regarding
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other  variants  of  the  rule  allowing  the  locomotive  to  enter  the  cell  is
that this number of variants gives us an important flexibility for devis-
ing  tracks  that  go  from  one  tile  to  another.  In  the  example  of  Fig-
ure�3, we can see that the track going to 1(6) can also go to 2(6), 3(6)
or 4(6). Figure 12 shows us how to proceed to continue a path to the
daughters of an already reached element. 

Figure 12. Element  of  the  tracks:  in  yellow,  the  elements  of  the  track  where
the locomotive passes.  

In  Figure  3,  the  neighborhood  of  1(6)  is  of  the  type  2,  5,  7.  In  the
graphics of Figure 12, we have the following neighborhoods: 

It is worth noticing that many rules appearing in Table 4, showing
the rules used when a simple locomotive goes up along the tracks illus-
trated  by  Figure  3,  also  appear  in  Table  5,  which  displays  the  rules
used when the same locomotive goes down, assuming that the sides 1
have  been  changed  in  order  to  allow  the  motion  from  top  to  bottom
on the same cells. Of course, in the circuit, for any cell, side 1 is fixed
once and for all. 

The  application  of  the  rules  so  far  considered  for  the  motion  of  a
simple  locomotive  is  illustrated  by  Figure  13,  where  the  simple  loco-
motive  runs  over  the  tracks  illustrated  by  Figure  3  in  one  direction,
and then in the other. 

Before turning to the rules for a double locomotive, note that in the
conservative  rules  for  the  elements  of  the  tracks,  the  neighborhoods
are rotated forms of each other. 
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(a)

(b)

Figure 13. A  simple  locomotive  along  a  track:  (a)  in  one  direction;  (b)  in  the
opposite one.   

The rules for the double locomotive are displayed in Table 6. They
can  be  derived  from  the  previous  rules  as  follows.  The  conservative
and  the  front  rules  are  the  same:  at  those  times,  the  cell  does  not
know whether the locomotive is simple or double. Once the front is in
the cell, the cell rule cannot be applied, as the rear is seen at the place
where  the  front  was  one  step  previously.  Accordingly,  the  cell  rule  is
replaced by two new rules: the rear rule, which makes the rear of the
locomotive  enter  the  cell,  and  the  clearing  rule,  which  makes  it  leave
the cell. The witness rule is the same as for a simple locomotive: when
the rear is in the next cell on the track, the cell cannot remember that
the  locomotive  was  double.  Note  that  the  rear  and  clearing  rules  are
obtained  from  the  front  and  witness  rules,  respectively,  by  changing
the  current  state  from  W  to  B.  Table  6  gives  the  rules  applied  in  the
respective  neighborhoods  considered  in  Table  1.  That  table  has  the
same  property  as  Table  1.  Other  entries  are  possible  for  the  double
locomotive.  Table  3  indicates  to  us  for  each  neighborhood  the
sequence of rules constituted, in this order, by the front, the rear and
the  clearing  rules.  Also,  brackets  indicate,  after  each  triple,  which  is
the  neighbor  through  which  the  locomotive  enters  the  cell.  In  that
table, the locomotive is marked as B. In Table 6, the front of the loco-
motive  is  B  and  its  rear  is  B.  Table  7  indicates  all  possible  neighbor-
hoods with the entry of the front of the locomotive in brackets. Note
the  same  phenomenon  as  in  Table  1:  a  few  pairs  of  rear  and  clearing
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rules are the same for different neighbors. In fact, that feature appears
when two neighbors differ by one place, for example 2, 4, 7 and 2, 5,
7.  Clearly,  the  positions  of  the  black  neighbors  are  the  same  for  the
front  and  rear  rules  when  the  entrance  is  neighbor  5  and  4,
respectively.  Note  that  in  Table  6,  rule  34  occurs  with  B,  while  in
Table 1, the same rule occurs with B at the same place. It corresponds
to  the  fact  that  the  single  cell  of  a  simple  locomotive  is  both  the  rear
and the front. 

Table 6. The motion rules for a double locomotive.   

Table 7.  The other rules involved for the motion of a double locomotive.  

Table  6  contains  20  rules.  The  cell  rule  is  different  in  Table  1  so
that, together, those tables contain 24 rules. Table 7 brings in 16 new
rules.  Accordingly,  we  have  40  rules  for  the  elements  of  the  track

only. There are other rules concerning the milestones: BWαBWβB with
α, β ≥ 0 and α + β  6 together with α < 5 when a simple locomotive
moves;  see  rules  19,  22,  15,  37  and  39.  For  a  double  locomotive,  we

have  all  possible  rules  of  the  form  BWαBBWβB  with  α, β ≥ 0  and
α + β  5 together with BBW5BB; see rules 49, 46, 57, 58, 64, 62 and
50.  We  also  have  to  append  rule  1,  WW7W,  the  conservative  rule  of

the blank cells that have no black cell among their neighbors, as well
as rule 2, BW7B, which is the conservative rule of the milestones of the

elements  of  the  track.  Table  8  illustrates  the  use  of  many  of  those
rules,  together  with  some  others  for  four  cells:  4(1),  a  white  cell,  and
three  milestones:  2(1),  0(0)  and  4(4).  Cell  4(1)  illustrates  a  situation
when a white cell can see two consecutive elements of the tracks. We
use the same color conventions as in Tables 1 and 6 for the front and
for the rear of a locomotive. 

It can be noted that the rules of Table 8 do not change the current
state  of  the  cell:  it  is  conformal  with  the  role  of  witness  devoted  to
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these  cells.  We  also  can  remark  that  the  change  of  direction  in  the
motion  boils  down  to  a  change  in  the  order  of  application  of
the  rules.  We  also  can  see  the  change  in  the  display  of  the  colors  in
the rules attached to the motion of a double locomotive. 

Table 8.  Rules for cells witnessing the motion on the tracks.   

Tables 9 and 10 show which instructions are applied to the cells of
the  track  when  a  double  locomotive  passes:  from  bottom  to  top  in
Table  9,  from  top  to  bottom  in  Table  10.  Figure  14  illustrates  the
application  of  the  rules  when  a  double  locomotive  runs  over  the
tracks illustrated by Figure 3. 

We conclude this section by a remark: in [7] and in [8], the tracks
were  implemented  by  using  both  three-  and  four-milestoned  cells  as
elements  of  the  tracks.  Here  we  succeeded  in  using  three-milestoned
cells  only.  The  large  number  of  motion  rules  allowed  us  to  assemble
such elements in very efficient structures. Also note the importance of
the  choice  of  side  1.  As  an  example,  for  cell  4(4),  its  side  1  is  shared
with 3(4). 
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Table 9.  Execution of rules 1 to 66: the double locomotive on the tracks from
bottom to top.  

Table 10.  Execution  of  rules  1  to  66:  the  double  locomotive  on  the  tracks
from top to bottom. 

Figures 13 and 14 illustrate the motions described by Tables 4, 5, 9
and  10.  They  are  produced  by  PostScript  commands  computed  by  a
computer  program.  The  program  applies  the  rules  given  in  Table  2
and the other tables of rules given in the following subsections to the
cellular automaton. From those calculations, it computes the position
of  the  cell(s)  representing  the  locomotive  on  the  tracks.  The  same
program  did  the  same  for  the  various  configurations  we  shall  further
investigate. 

The Rules for the Fixed Switch, the Fork and the Doubler    4.2

We  now  turn  to  the  study  of  the  fixed  switch,  the  fork  and  the  dou-
bler.  Table  11  gives  new  rules  that  are  used  for  the  crossing  of  those
structures,  together  with  already  used  rules.  We  start  our  study  with
the fixed switch, which is a passive structure as noted in Section 3.2.  
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(a)

(b)

Figure 14. A  double  locomotive  along  a  track:  (a)  in  one  direction;  (b)  in  the
opposite one.   

Table 11.  Rules for the crossing of a fixed switch, a doubler and a fork.   

The Fixed Switch    4.2.1

As can already be seen in Figure 5, the structure is mainly constituted
by elements of the tracks assembled in an appropriate way. In particu-
lar, the central cell is a three-milestoned cell, as in the elements of the
tracks. Its neighborhood is a rotated image of any neighborhood of a
cell  of  the  tracks,  as  studied  in  Section  4.1.  The  rules  for  the  fixed
switch are displayed by Table 11. 

Table  13  shows  the  instructions  applied  during  the  crossing  of  a
simple locomotive through the fixed switch from the left and from the
right,  for  the  cells  of  the  tracks  only.  We  can  notice  that  the  rules
involved in the table are those of the motion of the locomotive on the
tracks.  The  information  of  those  tables  is  completed  by  that  of
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Table�12,  showing  the  rules  applied  at  cell  1(1),  which  has  a  view  on
each  track  arriving  at  the  central  cell.  For  that  latter  table,  we  again
used the colors distinguishing the front from the rear in a double loco-
motive.  Note  that  in  rule  23,  the  color  of  the  locomotive  depends  on
whether it represents the front or the rear of a simple or double loco-
motive, respectively. 

Table 12. Rules for cell 1(1), which witnesses the motion on the tracks.   

Table 13. Execution  of  the  rules  for  the  fixed  switch  when  a  locomotive
crosses  the  switch:  upper  half,  simple  locomotive;  lower  half,  double
locomotive.
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Table  13  shows  the  rules  applied  to  the  elements  of  the  tracks  tra-
versed  by  the  locomotive  when  it  crosses  the  switch.  Table  13  deals
with  the  locomotive,  whether  it  is  simple  or  double.  For  each  side  of
the  switch,  the  table  indicates  the  group  of  cells  involved  by  the
arrival of the locomotive at the central cell. 

We  can  see  that  the  rules  applied  to  the  central  cell  have  already
been  seen  in  Section  4.1.  The  rules  for  a  simple  locomotive  coming
from the left are those of cell 10(4) in Table 4. For a double locomo-
tive  from  the  left,  the  rules  appear  in  Tables  6  and  7  for  cells  whose
neighborhood  is  2,  5,  7.  For  a  simple  locomotive  coming  from  the
right, the front rule used here is in Table 3 with the neighborhood 2,
5, 7. When a double locomotive comes from the right, Tables 6 and 7
indicate the corresponding rules. 

Figure  15  illustrates  the  motion  of  the  locomotive  for  the  four
motions  we  have  to  consider  for  the  fixed  switch.  The  figure  illus-
trates what was indicated in Table 13 for such motions. 

(a)

(b)

(c)

Figure 15. (continues)

A Weakly Universal CA in the Heptagrid of the Hyperbolic Plane 341

https://doi.org/10.25088/ComplexSystems.27.4.315

https://doi.org/10.25088/ComplexSystems.27.4.315


(d)

Figure 15.  Illustration of the motion of a locomotive through a fixed switch.   

The Rules for the Doubler and the Fork   4.2.2

As is clear from Table 11, only a few rules are needed by the doubler
and  the  fork.  As  the  doubler  contains  both  the  fork  and  the  fixed
switch,  Table  11  displays  the  three  additional  rules  required  by  the
doubler before the two rules required by the fork, as tested in the con-
figuration  of  Figure  6(a).  Here,  we  distinguish  between  the  two
locomotives  created  by  cell  4(1)  by  giving  them  colors:  green  for  the
locomotive that will follow the green path; dark pink for the one that
will go along the pink path.  

In  Table  14,  we  give  the  rules  used  by  the  doubler  when  the  loco-
motives cross cells 4(1), 1(1) and 0(0). Note that when the locomotive
enters cell 4(1), at the next time, two locomotives leave the cell, which
is  witnessed  by  the  cell;  see  rule  74  in  Table  14.  Cell  1(1)  also  wit-
nesses the duplication, as shown by rules 37, 73, 75, 50 and 23. That
last rule already appeared for cell 1(1) in the passive fixed switch, wit-
nessing  that  the  rear  of  the  new  double  locomotive  leaves  the  neigh-
borhood  of  the  cell.  Note  that  rule  50  witnesses  the  junction  of  the
two  simple  locomotives  into  a  double  locomotive.  Note  that  cell  4(1)
has applied a sequence of rules that differs from a sequence indicated
in Section 4.1 by the witness rule: instead of rule 29 as in the motion
rules,  we  have  here  rule  74,  as  the  cell  can  see  two  locomotives  cre-
ated in its neighbors 1 and 3. In cell 0(0), rule 66 witnesses the junc-
tion  of  the  two  simple  locomotives  into  a  double  locomotive.  This  is
why in the sequence of rules 7, 16, 47, 51 and 29 in the crossing of a
cell  by  a  double  locomotive  (see  the  rules  for  cell  1(6)  in  Table  10)
rule 47 is replaced by rule 66 as the occurrence of the second cell, the
rear,  appears  from  the  side  that  is  opposite  to  the  expected  one.
Figure 16 illustrates the motion of the locomotive for the doubler and
the fork. 

Table  15  shows  us  the  rules  of  Table  11  that  are  applied  by  the
cells  that  constitute  the  track  in  a  doubler  and  then  in  a  fork.  These
executions  can  also  be  followed  on  Figure  16(a)  for  the  doubler  and
on Figure 16(b) for the fork.
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Table 14. Rules  for  cells  4(1),  0(0)  and  1(1), which  witness  the  motion  of  the
locomotives in the doubler.   

Table 15. Upper,  lower  part:  execution  of  the  rules  for  the  doubler  and  the
fork, respectively, corresponding to the illustrations of Figure 3.

The Rules for the Selector   4.3

The  selector  is  the  last  structure  we  need  to  implement  roundabouts.
The new rules needed by the structure are given in Table 16, while the
execution of the rules used by the crossing of a locomotive is given in
Table 18: the left- and right-hand side subtables give the rules used by
a  simple  and  double  locomotive,  respectively.  Figure  17  illustrates
both situations.  
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(a)

(b)

Figure 16. (a)  Illustration  of  the  crossing  of:  (a)  the  doubler  and  (b)  the  fork,
by the locomotive.   

Table 16. Rules for the locomotive through the selector.   

In both subtables of Table 18, we can see that the track leading the
locomotive to the selector makes use of motion rules examined in Sec-
tion  4.1,  cell  1(6)  excepted.  That  cell,  which  constitutes  the  entrance
to the selector, has a specific neighborhood involving five milestones. 

Among  them,  cells  1(7)  and  1(5),  which  constitute  the  sensors  of
the  selector:  they  detect  whether  a  simple  or  a  double  locomotive
arrived  at  cell  0(0).  Table  17  shows  the  rules  applied  at  cells  1(7),
1(5),  1(6)  and  0(0).  For  each  cell,  the  table  gives  the  rules  when  a
simple locomotive arrives and then when a double locomotive arrives.
Note  that  W  indicates  that  the  cell  1(7)  or  1(5)  became  white  for
one  time  in  order  to  cancel  the  locomotive  prepared  for  the  corre-
sponding path. 

344 M. Margenstern

Complex Systems, 27 © 2018



Table 17. Rules  for  cells  1(7)  and  1(5),  1(6)  and  0(0),  which  witness  the
motion of the locomotives in the selector.

Table 18. Execution of the rules for a locomotive passing through the selector. 

Figure  17  illustrates  the  motion  of  the  locomotive  in  the  selector,
whether it is simple, Figure 17(a); or double, Figure 17(b). 
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At this point, it is important to point out the fact that for cell 1(6),
side  1  is  not  shared  with  0(0)  but  with  a  milestone  of  1(6),  namely
2(7). In the same way, for 0(0), side 1 is not shared with a cell of the
tracks,  it  is  also  shared  with  a  milestone:  cell  1(7).  The  reason  for
these  choices  lies  in  the  fact  that  the  idle  neighborhood  of  1(6)  coin-
cides with the rotated form of a neighborhood of 0(0) in the selector:
this  can  be  seen  with  rules  79  and  86,  whose  neighborhoods  are
rotated forms of each other and which, consequently, are rotationally
incompatible. 

(a)

(b)

Figure 17. Illustration  of  the  crossing  of  the  selector:  (a)  by  a  simple  locomo-
tive; (b) by a double locomotive.  

The Rules for the Controller   4.4

Let us now consider the rules for the controller of the active switches.
The rules are displayed by Table 19. As mentioned in the table itself,
the  two  columns  on  the  left-hand  side  deal  with  the  passage  of  the
locomotive,  while  the  last  column  deals  with  the  change  of  color  of
the controller. We remind the reader that the color of the controller is
the color of cell 1(3) in Figure 8. Table 20 gives the execution trace of
the  crossing  of  a  black  controller  by  the  locomotive.  The  first  row  of
Figure  18  together  with  the  first  two  figures  of  the  second  row  illus-
trates  the  crossing  of  a  black  controller  by  the  locomotive.  Table  22
indicates  the  rules  that  are  applied  when  the  locomotive  arrives  at  a
white controller and those that are applied when the signal for chang-
ing  its  color  arrives  at  the  controller.  Starting  from  the  third  graphic,
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the  second  row  of  Figure  18  illustrates  the  motion  of  the  locomotive
through a white controller. Figure 19 illustrates the change of color of
the controller when it is reached by the appropriate signal. 

Table 19. Rules  for  the  control:  passage  of  the  locomotive  and  signal  for
changing the selected track.  

Table 20. Execution of the rules used during the traversal of a black controller
by the locomotive.   

(a)

(b)

Figure 18. Illustration  of  the  crossing  of  the  controller  by  the  locomotive:
(a) when it is black; (b) when it is white.   
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(a)

(b)

Figure 19. Illustration  of  the  arrival  of  the  signal  at  the  controller.  (a)  From
black to white; (b) from white to black.   

All  cells  of  the  track  obey  the  rules  we  have  considered  for  the
tracks  for  three-milestoned  rules.  As  an  example,  the  same  rules  are
applied  to  cell  1(4)  as  cell  1(6)  in  Tables  1  and  4.  We  shall  look
closely at cell 1(3), the control cell of the structure, and at central cell
0(0). 

In Table 21, as in previous tables, black and white cells have differ-
ent  meanings  with  respect  to  the  simulation.  For  the  convenience  of
the reader, we indicate that B marks the locomotive, B marks the sig-
nal, B shows us that the controller is black, which allows the passage
of the locomotive, while W shows us that it is white, which forbids the
passage of the locomotive. The way the rules are working should now
be clear without further comments. 

Table 21. Rules for cells 0(0) and 1(3) of the controller. Rules for the passage
of the locomotive and for the signal, whatever the color of the controller.
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Accordingly,  the  neighborhood  for  central  cell  0(0)  when  the  con-
troller  is  black  is  WBWBWWB  as  the  third  milestone,  which  is  in  1(3),
is the cell that performs the control. In that case, the motion rules for
cell 0(0) are rule 4, rule 36, rule 17 and rule 25. This corresponds to a
cell of the tracks whose milestones are at the neighbors 2, 4 and 7, as
indicated  in  Table  1.  When  the  controller  is  white,  the  neighborhood
of cell 0(0) is now WBWBWWW. The motion rules are then rule 77 and
104. Rule 77 appeared for the fork and rule 104 appeared in the selec-
tor when it is crossed by a simple locomotive. 

The neighborhood of cell 1(3) is WWBBWWW, where the milestones
occur at neighbors 3 and 4. That neighborhood works for an idle con-
figuration, whatever the state of cell 1(3). The conservative rule for a
black controller is rule 57, which already appeared in the motion of a
double locomotive along the tracks. The conservative rule for a white
controller is rule 126, a new rule appearing in Table 19. 

The motion rules are rule 57, rule 95 and rule 101 already appear-
ing  in  Tables  1  and  16,  for  the  motion  rules  on  the  track  and  for
the selector, respectively, in both cases, when it is crossed by a simple
locomotive. 

The  change  of  color  for  the  controller  is  triggered  by  a  signal  that
arrives at its neighbor 5. This is indicated by rule 129, which follows
rule 57 and is then followed by rule 126: rule 129 performs the transi-
tion from an idle black configuration to an idle white one. The oppo-
site  transition  is  performed  by  rule  131;  see  Tables  21  and  22.
Figure�19 illustrates that behavior. 

Table 22. Execution  of  the  rules  when  the  locomotive  arrives  at  a  white  con-
troller and when the signal for changing the color arrives.   

The Rules for the Sensor   4.5

In this last subsection of Section 4, we examine the rules that manage
the working of the sensor, the specific control structure of the passive
memory  switch.  Section  3.3  explained  the  working  of  the  structure,
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pointing at the differences between the controller and the sensor illus-
trated by Figures 8 and 9. Table 23 illustrates the few rules that have
to  be  appended  to  the  already  examined  132  rules  in  order  to  make
the structure work as expected. 

Table 23. Rules for the sensor of the passive memory switch.   

As  can  be  seen  in  the  comparison  of  Figures  8  and  9,  many  rules
used for the controller are also used for the sensor. As an example, as
long as the sensor is white, the rules executed in the cells of the tracks
when  the  locomotive  passes  are  the  same  as  those  used  in  the  same
action when the controller is black; see Tables 20 and 24. 

Table 24. Execution of the rules when the sensor is white and then a locomo-
tive passes.   

Table  25  indicates  the  rules  used  for  cells  0(0)  and  1(1)  when  the
locomotive  crosses  a  white  sensor.  Note  the  colors  given  to  some  let-
ters.  We  use  the  same  conventions  of  colors  as  for  the  controller:  the
global meaning of B and of W are the same, and we keep the marks B
and  W  for  cell  1(1),  which  is  the  sensor  cell  of  the  structure.  We
remind  the  reader  that  B  means  that  there  is  nothing  to  change,  so
that  here  B  blocks  the  locomotive  so  that  no  change  is  performed  for
the  considered  sensor  or  for  the  other.  Similarly,  W  means  that  the
change  must  be  performed.  It  is  performed  at  the  considered  sensor
where cell 1(1) turns from W to B. As the locomotive passes, it is after
that  point  a  signal  that  triggers  the  change  in  the  other  sensor  and  in
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the  active  memory  switch,  according  to  the  scheme  given  by  the  sec-
ond  graphic  of  Figure  10.  The  rules  for  that  latter  change  are  also
given in Table 25. Another look at those changes is given in Tables 24
and  26,  which  give  the  rules  used  along  with  the  cells  crossed  by  the
locomotive and the signal during the corresponding times. 

Table 25. Rules  for  cells  0(0)  and  1(1)  of  the  sensor.  Rules  for  the  passage  of
the locomotive and for the signal, whatever the color of the sensor.   

Table 26. Execution  of  the  rules  for  the  black  sensor,  for  the  locomotive  and
for the signal.   

We  just  mention  that  here  neighbor  1  of  cells  0(0)  and  cell  1(1)  is
cell  1(3)  and  cell  4(1),  respectively,  for  an  examination  of  Figure  9.
This allows us to better understand the rules of Table 25. The motion
rules  for  cell  0(0)  when  cell  1(1)  is  white  correspond  to  a  neighbor-
hood  of  0(0),  which  is  1,  3,  5,  a  new  configuration;  see  rule  133  in
Tables  23  and  25.  The  conservative  rule  for  0(0)  when  the  sensor  is
white is rule 133, while it is rule 139 for a black sensor. That is clear
in Table 25. 

Note  that  the  neighborhood  of  1(1)  has  its  milestones  at  4,5.  The
rule  is  conservative  when  the  sensor  is  black:  see  rule  58;  it  is  not
when it is white: see rule 131. Cells with only two milestones and con-
tiguous ones were already met in the motion on the tracks as rules 18
and  21  or  rules  121  and  126  for  the  controller.  In  all  those  latter
rules,  which  are  conservative,  the  current  state  of  the  cell  is  white.
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That  again  points  at  the  importance  of  the  relaxation  of  the  rotation
invariance hypothesis. 

At last, note that the change of color in 1(1) is not triggered in the
same way. From white to black, the change is triggered by the locomo-
tive;  see  rule  131,  where  the  black  cell  of  the  locomotive  is  marked
with B. From black to white, it is triggered by the signal; see rule 143,
where  the  locomotive  signal  is  marked  B.  Those  features  can  be  read
in Table 25 in the part devoted to the rules applied to cell 1(1). 

Figure  20  shows  the  three  different  motions  we  studied  with
Tables�24  to  26.  The  first  two  lines  show  us  the  locomotive  when  it
crosses  a  white  sensor.  The  third  line  shows  us  that  when  cell  1(1)  is
black, it stops the advance of the locomotive, preventing the changes.
The  last  line  shows  us  how  the  signal  arriving  at  cell  3(1)  makes  cell
1(1) turn from black to white. 

We completed the examination of the rules for the sensor. Accord-

ingly, Theorem 1 is proved. □

(a)

(b)

(c)

Figure 20. Illustration of the working of the sensor. (a) Passage of the locomo-
tive;  (b)  the  locomotive  is  stopped;  (c)  the  signal  changes  a  black  sensor  to  a
white one.   
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Conclusion5.

As mentioned in the introduction, Theorem 1 is the best result for tes-

sellations  involving  a  regular  convex  polygon  with  the  angle 2π  3:

the  tessellation 7, 3  is  the  tessellation p, 3,  where p  has  the  small-

est value possible for the hyperbolic plane. With this model, the imple-
mentation in the heptagrid seems to be very difficult if not impossible
under the rotation invariance assumption. 
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