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Universality  classes  are  defined  for  an  idealized  nonlinear  system  that
governs  the  competition  between  biological  species.  The  decay  to
asymptotic  steady  state  is  examined  for  supercritical  Hopf  bifurcation
by  considering  a  phenomenological  approach  supported  by  numerical
simulations  and  confirmed  by  an  analytical  description.  The  formalism
is general and it is expected to be universal for systems exhibiting Hopf
bifurcations. 
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Introduction1.

In  statistical  mechanics,  scaling  laws  are  generally  associated  with
changes  in  the  spatial  structure  of  dynamical  systems  due  to  varia-
tions of control parameters [1–4]. A bifurcation is the scientific termi-
nology  given  to  these  particular  qualitative  changes  in  the  dynamics
[5].  In  the  local  bifurcation  theory,  when  an  equilibrium  point
changes  stability  from  stable  to  unstable  and  a  stable  limit  cycle
shows up, we say the system has undergone a Hopf bifurcation [6, 7].
In general, the study of the Hopf bifurcation is of great practical con-
cern as well as of fundamental scientific interest, since it is present in
a  variety  of  systems,  including  electrical  circuits  [8–10],  dynamical
population  [11,  12],  lasers  [12,  13]  and  many  others.  Some  of  the
basic questions that remain to be explored about Hopf bifurcation are
the regimes for which certain scaling laws exist and whether the expo-
nents  obtained  for  systems  obeying  certain  kinds  of  dynamics  are
valid for others.

In  this  paper,  we  examine  the  dynamics  of  interacting  biological
species  modeled  by  the  Lotka–Volterra  prey-predator  equations.  The
Lotka–Volterra  mathematical  model  [14–16]  describes,  considering
assumptions not necessarily realizable in nature, the dynamical behav-
ior governing the growth, decay and evolution of two competing bio-
logical species, one as predator and the other as prey. 
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Our  main  goal  in  this  paper  is  to  apply  the  scaling  formalism  to
explore the mathematical model of prey-predator near the Hopf bifur-
cation. Here, two different procedures are adopted. The first is mostly
phenomenological,  with  scaling  hypotheses  ending  up  with  scaling
laws  of  seven  critical  exponents.  The  second  considers  an  analytical
description  confirming  the  results  obtained  by  numerical  simulation.
The  scaling  analysis  presented  in  this  paper  suggests  that  the  same
critical exponents as well as the scaling properties studied should also
be  valid  for  other  multidimensional  systems  that  exhibit  Hopf  bifur-
cation [17]. 

This paper is organized as follows. In Section 2, an idealized theo-
retical model for the prey-predator system is presented and its normal
form is derived. Section 3 is devoted to describing the phenomenolog-
ical  approach  based  on  scaling  hypotheses  leading  to  critical  expo-
nents and hence to scaling laws. In Section 4, an analytical description
is made and scaling exponents are derived through the direct solution
of  the  differential  equations.  Moving  on,  conclusions  are  made  in
Section 5. 

The Dynamics and Normal-Form Computation2.

The Mathematical Model and Dynamics2.1

The  evolution  of  ecological  systems  has  different  models,  depending
on the number of assumptions about the population and environment
[15, 16, 18–20]. For the purposes of this work, we consider two inter-
acting populations: a prey (rabbits) species x1  and its predator (foxes)

x2.  The  dimensionless  form  of  the  rate  equations  for  a  simple  preda-

tor-prey system [21] is given by 

x 1  rx1b + x11 - x1 - cx1x2

x 2  c - dx1x2 - bdx2,
(1)

where  x1,  x2,  r,  c  and  b ∈ .  For  further  developments,  r  and  c  are

assumed constant, and b is treated as a control parameter. The model
expressed in equation (1) has one fixed point at

P0 
bd

c - d
,

bd

c - d
1 -

bd

c - d
. (2)
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Near the fixed point P0, we have the Jacobian matrix

JP0


brdc + d

c - d2

c - d

c + d
- b -

bdc

c - d

br
c - d1 + b

c - d
0

. (3)

The eigenvalues of the matrix in equation (3) considering the fixed
point P0 are 

λ1,2  αb ± iβb, (4)

where

αb 
brdc + d

2c - d2

c - d

c + d
- b ,

βb  rc2
dc - d

c + d3
.

(5)

According to the linear stability theory, when α < 0 the fixed point
turns  into  a  stable  spiral  whose  sense  of  rotation  depends  on  β.  For
α  0, a stable spiral still dictates the dynamics; however, the speed of
convergence  is  different  from  α < 0.  Finally,  for  α > 0  ,  there  is  an
unstable  spiral  at  the  origin,  and  a  stable  and  periodic  limit  cycle
bifurcates from the fixed point. 

The Normal-Form Computation2.2

In the study of local bifurcation, the normal-form theory is an advan-
tageous  approach,  since  it  corresponds  to  the  simpler  analytical
expression  at  which  a  dynamical  system  can  be  rewritten  through  a
convenient  choice  of  a  coordinate  system  without  losing  or  changing
the phase space topology of the original given system being studied.

To  compute  the  normal  form  of  the  dynamical  system  in  equa-
tion�(1), use Theorem 1. 

Theorem 1. Consider  a  two-dimensional  dynamical  system  described
by the equations 

x  f(x, μ),

x ∈ 2,

μ ∈ ,

(6)

Statistical Scaling Laws for Competing Biological Species 357

https://doi.org/10.25088/ComplexSystems.27.4.355

https://doi.org/10.25088/ComplexSystems.27.4.355


where  f  is  a  smooth  function  of  its  variables  and  time,  having  for  all
sufficiently small μ the fixed point x0  0 with eigenvalues

λ1, 2  α(μ) ± iβ(μ). (7)

If for μ  0 the following conditions are satisfied:

α0  0, β0 ≠ 0 (non-hyperbolicity)1.

dα(μ)
dμ μ0

≠ 0 (transversality)2.

l10 ≠ 0 (non-degeneracy)3.

where l1 is the first Lyapunov coefficient

then, the dynamical system expressed in equation (4) can be rewritten
in the following normal form:

y 1  α(μ)y1 - β(μ)y2 + ay1 - by2(y1)
2 + (y2)

2,

y 2  α(μ)y2 + β(μ)y1 + ay2 + by1(y1)
2 + (y2)

2.
(8)

Theorem 1 says for a generic dynamical system in two dimensions,
if  it  is  proved  that  it  satisfies  the  conditions  of  the  Hopf  bifurcation
theorem,  then  its  normal  form  is  known  to  be  described  by  equa-
tion�(8). A proof of this theorem is outlined in other sources [7]. From
Theorem 1 follows its corollary: 

Corollary 1. Imagine the two-dimensional system

x  f(x, μ),

x ∈ 2,

μ ∈ ,

(9)

and x0  its fixed point. At μ  0, the dynamical system equation (9) is

said  to  exhibit  a  Hopf  bifurcation.  Suppose  further  that  for  μ < μ0
(μ > μ0),  equation  (9)  has  a  pair  of  complex-conjugate  eigenvalues

with  positive  real  part  and,  for  μ > μ0  (μ < μ0),  equation  (9)  has  a

pair of complex-conjugate eigenvalues with negative real part. Then,

For  l1 < 0,  which  happens  when  a < 0,  the  fixed  point  x0  is  said  to  be

asymptotically  stable  at  μ  μ0.  Although,  at  μ > μ0  (μ < μ0)  a  unique

stable  (unstable)  curve  of  periodic  solutions  bifurcates  from  the  unsta-
ble  (stable)  fixed  point.  In  this  case,  the  dynamical  system  exhibits  the
so-called supercritical Hopf bifurcation. 

1.

For  l1 > 0,  which  happens  when  a > 0,  the  fixed  point  x0  is  said  to  be

unstable  at  μ  μ0.  However,  at  μ < μ0  (μ > μ0)  a  unique  unstable

(stable) curve of periodic solutions bifurcates from the stable (unstable)
fixed  point.  In  this  case,  the  dynamical  system  exhibits  the  so-called
subcritical Hopf bifurcation. 

2.

For l1  0, nothing can be said about the dynamics.3.
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Corollary  1  establishes  whether  the  dynamical  system  being
studied  exhibits  the  supercritical  or  the  subcritical  case  of  the  Hopf
bifurcation. 

Returning  to  the  mathematical  model  expressed  in  equation  (1),
the eigenvalues of the Jacobian matrix are 

λ1, 2 
brdc + d

2c - d2

c - d

c + d
- b ± i rc2

dc - d

c + d3
.

Note that for bc  
c-d
c+d

, αbc  0 and βbc ≠ 0. 

Also, 

dαb

db
bbc

 -
bcc + drd

2c - d2
≠ 0. (10)

Finally, 

l1bc  -
c2d2r

βbc
≠ 0. (11)

Therefore, all the conditions of Theorem 1 are satisfied. Hence, the
normal polar form of the dynamical system of equation (1) is given by 

ρ

 αbρ - ρ3,

ϕ

 βb + ρ2,

(12)

where  ρ  and  ϕ  describe  the  radial  and  angular  coordinates,
respectively.

In  this  section,  the  normal  form  of  the  prey-predator  model  is
obtained. The theorem proposed acts as a shortcut to obtain the nor-
mal  form  for  dynamical  systems  characterized  by  occurrence  of  the
Hopf bifurcation. 

The Phenomenological Properties of the Steady State3.

We  now  outline  the  derivation  of  the  scaling  law  for  Hopf  bifurca-
tion.  The  scaling  analysis  presented  was  carried  out  in  a  very  similar
direction to that discussed in [22], so we present only the main points
here,  rather  than  providing  the  detailed  arguments.  In  our  analysis,
the  first  step  is  to  apply  the  normal-form  theory  to  simplify  the  form
of  the  dynamics  on  the  center  manifold,  which  yields  to  the  reduced
set of equations (12).

To  see  the  scaling  properties,  we  must  look  at  the  convergence  to
the  steady  state,  and  the  natural  variable  that  describes  it  is  the
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distance  from  P0.  Besides,  the  convergence  must  also  depend  on  the

initial  condition  and  hence,  the  control  parameter  αb.  The  parame-

ter αbc  0 defines the bifurcation point, and the convergence to the

equilibrium  point  for  variables  ρ  and  ϕ  is  shown  in  Figures  1  and  2,
respectively, considering different initial conditions. 

Figure 1. Convergence  to  the  steady  state  at  the  fixed  point  P0  for  different

initial conditions as shown in the figure. The parameter used was αbc  0. 

Figure 2. Plot  of  the  angular  variable  ϕ  as  a  function  of  time  τ  for  different

initial conditions, as labeled in the figure. The parameter used was αbc  0. 

Analysis  of  Figures  1  and  2  indicates  that  depending  on  the  initial
condition,  the  orbit  stays  in  a  constant  plateau,  and  after  reaching  a
crossover  time,  τρ  for  ρ  and  τϕ  for  ϕ,  the  orbit  suffers  a  changeover

from a constant regime to a power-law decay in the radial coordinate
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and  a  power-law  growth  in  the  angular  coordinate.  Based  on  the
behavior  observed  from  Figures  1  and  2,  we  can  propose  the  follow-
ing scale hypotheses: 

For a short interval of time τ, say τ ≪ τx, the convergence to the steady

state is given by 

1.

ρ(τ) ∝ ρ0
αρ ,

ϕ(τ) ∝ ϕ0
αϕ .

(13)

A  quick  analysis  of  Figures  1  and  2  allows  us  to  conclude  that  critical
exponents αρ  αϕ  1.

For a sufficiently large τ, say τ ≫ τx, the convergence to the steady state

is given by

2.

ρ(τ) ∝ τβρ ,

ϕ(τ) ∝ τβϕ ,
(14)

where βρ gives the decay exponent and βϕ gives the growth exponent.

The characteristic crossover time τx  that describes the changeover from

a constant regime to a power-law decay in the radial coordinate and to
a power-law growth in the angular coordinate is given respectively by 

3.

τx ∝ ρ0
zρ ,

τx ∝ ϕ0
zϕ ,

(15)

where zρ and zϕ are known as the changeover exponents.

Based  on  the  behavior  shown  in  Figures  1  and  2  and  considering
the scaling hypotheses, it is possible to describe the ρ and ϕ as homo-

geneous and generalized functions when αbc  0, as 

ρ(ρ, τ)  ℓρℓcρ0, ℓ
dτ,

ϕ(ϕ, τ)  ℓϕℓc1ϕ0, ℓ
d1τ,

(16)

where  ℓ  is  a  scaling  factor  and  the  ci  and  di  are  characteristic  expo-

nents.  By  convenient  choices  of  ℓ,  the  ci  and  di  exponents  are  proved

to be related to the characteristic exponents α, β and z for both polar
variables. We start our analysis considering only the radial coordinate.

As  ℓ  is  a  scaling  factor,  we  chose  ℓcρ0  1,  therefore  leading  to

ℓ  ρ0
-1/c.  By  substituting  this  expression  in  equation  ρ(ρ, τ)  we  end

up�with 

ρ(ρ0, τ)  ρ0
-1/cρ1, ρ0

-d/cτ. (17)

We assume ρ1, ρ0
-d/cτ as a constant for τ ≪ τx. Comparing equation

ρ(ρ, τ) with the first scaling hypothesis, we conclude that αρ  -1  c.
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We  now  choose  ℓcρ0  1,  yielding  ℓ  τ-1/c.  Substituting  in  equa-

tion ρ(ρ, τ), we obtain for τ ≫ τx that 

ρ(ρ0, τ) ∝ τ-1/d. (18)

A  direct  comparison  of  this  result  with  the  second  scaling  hypothesis

gives βρ  -1  d. Finally, by comparing the two expressions obtained

for  the  scaling  factor  ℓ,  we  arrive  at  τx  ρ0
αρβρ .  A  comparison  with

the  third  scaling  hypothesis  allows  us  to  obtain  the  following
scaling�law:

zρ 
αρ

βρ

. (19)

The  knowledge  of  any  two  exponents  allows  determining  the  third
one  by  substituting  equation  (19).  The  scaling  hypotheses  for  the
angular  coordinate  lead  to  the  same  scaling,  as  described  in  [22];

therefore, we obtain zϕ  αϕ  βϕ.

Following  the  procedures  already  described  [22],  the  analysis
obtained  from  the  numerical  simulations  of  ρ  has  shown  the  charac-

teristic  exponents  αρ  1.000,  βρ  -0.4993.  Evaluating  equa-

tion�(19)  for  exponents  αρ  and  βρ,  we  obtain  zρ  -2.0028.  The

analysis  for  ϕ  has  shown  αϕ  1.000,  βϕ  -0.4993  and

zϕ  -2.0036. 

Once  we  have  discussed  the  convergence  to  the  steady  state  at  the

bifurcation  point,  we  now  discuss  the  dynamics  for  αb ≠ 0,  which

characterizes  the  neighborhood  of  a  Hopf  bifurcation.  The  con-

vergence  to  the  steady  state  is  αb  marked  by  an  exponential  law  of

the type 

ρ(τ) - ρ* ≃ (ρ0 - ρ*)e-τ/ϵ, (20)

where ϵ is the relaxation time described by

ϵ ∝ αbδ, (21)

where  δ  is  a  relaxation  exponent.  Figure  3  shows  the  behavior  of  ϵ

versus αb. A power-law fitting gives δ  -0.9699 ≃ -1.
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Figure 3. Plot  of  the  behavior  of  relaxation  time  ϵ  against  α(σ).  A  power-law

fitting furnishes δ  -0.9699 ≃ -1.

Analytical Approach to the Steady State4.

Our  main  goal  in  this  section  is  to  investigate  the  scaling  properties
observed  in  the  convergence  to  steady  state  at  the  Hopf  bifurcation
that  characterizes  the  prey-predator  dynamical  system.  Before  the
bifurcation, the dynamics converge to a fixed point that is asymptotic
stable. However, at the bifurcation point, the fixed point loses stabil-
ity,  and  after  the  bifurcation  it  repeals  the  dynamics,  which  converge
to a closed orbit in a plane, that is, a limit cycle of period 1. Because
the  attractor  is  a  closed  cycle  in  a  plane,  the  use  of  polar  coordinates
is  the  better  approach  to  describe  the  dynamics  and  hence  investigate
the  scaling  properties  as  well  as  the  critical  exponents  for  the  Hopf
bifurcation.

We  start  by  considering  the  evolution  toward  the  fixed  point  at
the  bifurcation  point,  that  is,  at  α  0.  The  differential  equation  is
written as 

dρ

dτ
 -ρ3. (22)

A straightforward integration gives 

ρ(τ) 
ρ0

1 + 2τρ0
2
.

(23)

Let  us  now  discuss  the  implications  of  equation  (23)  for  specific
ranges of τ. For sufficiently short time, we realize that ρ(τ) ∝ ρ0. Since

this  is  a  constant  for  short  time,  the  exponent  αρ  obtained  from  the
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hypothesis ρ(τ) ∝ ρ0
αρ , we end up with the conclusion of αρ  1. How-

ever, for sufficiently long times we have

ρ(τ) ∝ τ-1/2. (24)

The hypothesis for long time is that ρ(τ) ∝ τβρ ; therefore, we conclude

that  βρ  -1  2.  From  the  scaling  law  zρ  αρ  βρ,  we  obtain  that

zρ  -2.

We then discuss the case α ≠ 0, considering the convergence to the
steady state at the neighborhood of a Hopf bifurcation. Near a bifur-
cation,  the  convergence  to  the  steady  state  is  described  by  an  empiri-

cal function of the type ρ(τ) - ρ*  (ρ0 - ρ*)e-τ/ϵ, where ρ*  is the value

of  ρ  at  the  equilibrium,  ρ0  is  the  initial  condition  for  ρ  at  τ  0,

ϵ ∝ αδ,  where  τ  is  the  relaxation  time  with  α  denoting  the  distance
from  the  bifurcation  measured  in  the  control  parameter,  and  δ  is  the
critical exponents driving the speed of convergence to the steady state.
We then have to solve the following differential equation:

dρ

dτ
 αρ - ρ3.

A direct integration gives 

ρ(τ) - α ≃
α

2
e-2ατ. (25)

This result furnishes the relaxation exponent δ  -1. 

A  next  step  is  to  investigate  the  angular  bifurcation  function.  We
consider first the case of α  0. The differential equation, when incor-
porated with the solution of ρ(τ), is written as 

dϕ

dτ
 β +

ρ0
2

1 + 2τρ0
2
.

After integration we obtain the following:

ϕ(τ)  ϕ0 + βτ +
1

2
ln1 + 2τρ0

2. (26)

Let  us  now  discuss  the  implications  of  equation  (26)  for  specific
ranges of τ. Considering the case where 

βτ +
1

2
ln1 + 2τρ0

2 ≪ ϕ0,

we realize that ϕ(τ) ∝ ϕ0, leading to αϕ  1. However, in the case

βτ ≫ ϕ0 +
1

2
ln1 + 2τρ0

2,
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we obtain ϕ(τ) ∝ τ, giving βϕ  1. The last case is obtained when

βτ  ϕ0 +
1

2
ln1 + 2τρ0

2 ≅ ϕ0,

which gives zϕ  1.

Therefore,  the  results  obtained  by  the  phenomenological  approach
are  confirmed  by  the  direct  solution  of  the  differential  equations  that
govern the dynamics. 

Conclusions5.

Scaling laws and critical exponents are derived from the investigation
of an idealized model for the prey-predator dynamical system. The rel-
ative simplicity of the model and the ability to generate a large variety
of  nonlinear  behaviors  motivate  the  choice  of  the  system.  In  this
work,  a  critical  step  in  the  scaling  investigation  is  the  representation
of the dynamics in the normal form.

The  convergence  to  the  steady  state  was  conducted  by  two  differ-
ent  approaches:  (i)  phenomenological,  where  scaling  hypotheses  lead
to  homogenous  functions  with  critical  exponents  related  by  scaling
laws; and (ii) analytical, through the direct solution of the differential
equations, which is only possible in the normal form. 

The  scaling  properties,  as  well  as  the  scaling  exponents,  define  a
class of universality within which these results should also be valid for
other multidimensional systems that exhibit Hopf bifurcation. 

Given  the  importance  of  the  results  obtained,  it  is  important  to
mention that the scaling properties for Hopf bifurcation as well as the
scaling  properties  for  other  bifurcations,  in  general,  give  an  alterna-
tive form to investigate and classify the type of bifurcation in dynami-
cal systems, for example, electrical circuits, when the set of equations
describing the dynamics is not all known. 
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