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This paper presents a theoretical investigation of the general problem of
emergent  irreducible  information  in  networked  populations  of  com-
putable systems. In particular, we narrow our scope to study this prob-
lem  in  algorithmic  networks  composed  of  randomly  generated  Turing
machines that follow a susceptible-infected-susceptible contagion model
of  imitation  of  the  fittest  neighbor.  We  show  that  there  is  a  lower
bound for the stationary prevalence (i.e., the average density of infected
nodes by the fittest nodes) that triggers expected (local) emergent open-
endedness,  that  is,  that  triggers  an  unlimited  increase  of  the  expected
local emergent algorithmic complexity (or information) of a node as the
population size grows. In addition, we show that static networks with a
power-law degree distribution following the Barabási–Albert model sat-
isfy  this  lower  bound  and  thus  display  expected  (local)  emergent  open-
endedness. 
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Introduction1.

The  general  scope  of  this  paper  encompasses  complex  systems,  com-
plex  networks,  information  theory  and  computability  theory.  In  par-
ticular,  we  study  the  general  problem  of  emergence  of  complexity  or
information  when  complex  systems  are  networked  compared  with
when they are isolated. This issue has a pervasive importance in the lit-
erature  about  complex  systems,  with  applications  to  investigating
systemic properties of biological, economical or social systems. As dis-
cussed in [1], it may be a subject connected to questions ranging from
the  problem  of  symbiosis  [2],  cooperation  [3]  and  integration  [4]  to
biological  [5],  economic  [6]  and  social  [7]  networks.  To  this  end,  we
tackle this general problem with a theoretical approach. We present a
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mathematical  study  on  the  emergence  of  irreducible  information  in
networked  computable  systems  that  follow  an  information-sharing
(or communication) protocol based on contagion or infection models,
as described in [8–10]. As supported by these references, such models
of  spreading  using  the  approach  from  complex  networks  have  been
shown  to  be  relevant  in  order  to  study  epidemic  and  disease  spread-
ing,  computer  virus  infections  or  the  spreading  of  polluting  agents.
Consequently,  it  has  helped,  for  instance,  with  immunization  strate-
gies, epidemiology or pollution control [8–10].

However,  instead  of  focusing  on  the  pathological  properties  of
these  complex  networks’  contagion  dynamics,  we  show  that  this
dynamics  may  instead  trigger  an  unlimited  potential  of  optimization
through  diffusion.  That  is,  diffusing  the  best  solution  (or  the  largest
integer  when  one  uses  the  busy  beaver  game  [1]  as  a  toy  model)
through  the  network  may  trigger  an  unlimited  increase  of  expected
emergent algorithmic information of the nodes as the randomly gener-
ated population of computable systems (i.e., nodes) grows. Thus, this
paper’s  objective  is  to  present  theorems  and  corollaries  in  order  to
mathematically  investigate  under  which  conditions  this  phenomenon
is expected to happen. 

For  this  purpose,  we  use  the  theoretical  framework  for  networked
computable  systems  developed  in  [1,  11,  12]  and  a  susceptible-
infected-susceptible  (SIS)  [13]  epidemiological  model,  which  was  also
studied in [8–10]. The definitions and main lemmas and theorems are
based  on  [1,  11]  and,  from  preliminary  results  in  [12]  only  for
Barabási–Albert  static  networks,  we  extend  our  previous  results  to
general  dynamic  topologies  with  a  stationary  prevalence.  The  phe-
nomenon  of  triggering  an  unlimited  increase  of  the  expected  local
emergent  algorithmic  complexity  (or  information)  of  a  node  as  the
population size grows indefinitely was previously studied in [1], how-
ever,  under  different  topological  conditions  and  under  different  com-
munication  protocols.  We  have  called  this  phenomenon  expected
(local) emergent open-endedness. 

From  an  information-theoretic  perspective,  this  paper  is  related  to
emergence in complex systems as in [14–16]. In addition, it is related
to  an  information-theoretic  study  (statistical  and/or  algorithmic)  on
complex  networks  or  graphs  [17–20].  Besides  complex  systems  and
complex networks, our work is also related to and inspired by funda-
mental  concepts  in  distributed  computing,  multi-agent  systems  and
evolutionary game theory. See [1] for more discussion. 

In this paper, we show that there is a lower bound for the station-
ary  prevalence  that  triggers  expected  (local)  emergent  open-ended-
ness.  As  a  direct  consequence,  we  show  that  static  networks  with  a
power-law  degree  distribution  following  the  Barabási–Albert  model
display expected (local) emergent open-endedness. 
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First,  we  base  our  model  and  definitions  on  a  mathematical  repre-
sentation  for  randomly  generated  computable  systems  (i.e.,  systems
that  can  be  fully  simulated  in  a  Turing  machine)  that  are  networked
in  a  time-varying  topology  (i.e.,  a  dynamic  network).  In  our  model,
nodes  are  randomly  generated  Turing  machines  that  can  send  and
receive information (i.e., partial outputs) as each node runs its compu-
tations until returning a final output. We have defined this networked
population  of  randomly  generated  Turing  machines  (and  a  more
general  mathematical  model  for  networked  computable  systems)  in
[1, 11]. We have called it algorithmic networks. 

Second, we describe and define an algorithmic network that plays a
modified  version  of  the  busy  beaver  imitation  game  (BBIG),  in  which
each node always imitates the fittest neighbor only. We present here a
variation  on  the  information-sharing  (or  communication)  protocol
that  is  different  from  the  model  in  [1].  The  major  difference  with
respect  to  this  previous  work  comes  from  allowing  nodes  to  become
“cured”  with  rate  δ  and  get  “infected”  with  rate  ν.  That  is,  although
still  playing  a  BBIG,  now  susceptible  nodes  follow  a  rule  of  imitating
the  neighbor  that  had  output  the  largest  integer  (which  corresponds
to the fittest individual outcome in the population). However, they fol-
low  this  rule  with  probability  ν.  In  addition,  infected  nodes  come
back—become  cured—to  an  “uninfected”  state  with  probability  δ.
Thus,  the  key  idea  of  this  model  is  that  the  infection  scheme  of  the
best output returned by a randomly generated node is ruled by the SIS
epidemic  model,  in  which  there  is  a  constant  probability  ν  of  being
infected by a previously fitter neighbor and a constant probability δ of
returning to a non-fittest state. 

Here  we  also  assume,  as  in  [8–10],  that  the  prevalence  of  infected
nodes  (i.e.,  the  average  density  of  infected  nodes)  becomes  stationary
after  sufficient  time.  In  particular,  our  results  hold  if  this  amount  of
time  is  upper  bounded  by  a  computable  function.  Therefore,  the
effective  spreading  rate  λ  ν / δ  defined  in  [8–10]  assumes  a  direct
interpretation of the rate in which the imitation-of-the-fittest protocol
[1]  was  applied  on  a  node—and  this  is  the  reason  why  we  are  using
the words “infection” and “cure” between quotation marks. 

Then  we  show  that,  for  big  enough  values  of m  compared  to  λ,  if
the  time  for  achieving  a  stationary  prevalence  of  infected  nodes

ρ ~ exp-1 mλ is upper bounded by a value given by a computable

function,  then  the  expected  emergent  algorithmic  complexity/infor-
mation  of  a  node  (i.e.,  the  expected  local  emergent  algorithmic  com-
plexity/information) goes to infinity as the network/population size N
goes  to  infinity.  In  other  words,  the  average  local  irreducible  infor-
mation that emerges when nodes are networked compared with when
they  are  isolated  is  expected  to  always  increase  for  large  enough
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populations of randomly generated Turing machines. As a direct con-
sequence  of  [8–10],  our  results  also  imply  that  the  same  emergent
phenomenon occurs if the network is static and has a scale-free degree

distribution  in  the  form  of  a  power  law  Pk ~ 2m2  k3.  This  topol-

ogy  and  construction  of  the  networks  are  defined  by  a  random  pro-
cess connecting new nodes under a probability distribution given by a
preferential attachment as in [21]. That is, new nodes are more likely
to  have  connections  to  higher-degree  previous  nodes.  Thus,  it  is  a
corollary of our main result that such scale-free static algorithmic net-
works also display expected local emergent open-endedness. 

Our proofs stem from the main idea of combining an estimation of
a  lower  bound  for  the  average  algorithmic  complexity/information  of
a  networked  node  and  an  estimation  of  an  upper  bound  for  the
expected  algorithmic  complexity/information  of  an  isolated  node.
Additionally, as in [1], the estimation of the latter still comes from the
law  of  large  numbers,  Gibb’s  inequality  and  algorithmic  information
theory applied on the randomly generated population. However, now
the estimation of the former comes from the SIS model with a station-
ary  prevalence  (i.e.,  a  stationary  average  density  of  infected  nodes).

The central idea is that the prevalence ρ ~ exp-1 mλ, as in [8–10],

becomes equal to the average diffusion density τE in [1]. 

Background2.

In this section, we provide preliminary definitions and concepts along
with previous results on which this paper is based. In particular, these
are  based  on  [1].  A  more  extensive  description  of  these  models  can
also be found in [22].

Algorithmic Networks2.1

We  remember  here  the  general  definition  of  algorithmic  networks

  G, , b in [1]. It is a triple G, , b defined upon a population

of theoretical machines , a generalized graph G  (, ℰ) and a func-
tion b that makes aspects of G correspond to properties of , so that

a node in VG is mapped one-to-one to an element of .

First,  (generalized)  graphs  G,  which  are  multi-aspect  graphs
(MAGs),  are  generalized  representations  for  different  types  of  graphs
[23, 24]. In particular, an MAG represents dyadic (or two-place) rela-
tions between arbitrary n-tuples. Since we aim at a wider range of dif-
ferent  network  configurations,  MAGs  allow  you  to  mathematically
represent abstract aspects that may appear in complex high-order net-
works  [25].  For  example,  these  may  be  dynamic  (or  time-varying)
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networks,  multicolored  nodes  (or  edges)  or  multilayer  networks,
among others. Moreover, this representation facilitates network analy-
sis by showing that their aspects can be isomorphically mapped into a
classical  directed  graph  [24].  Thus,  the  MAG  abstraction  has  proved
to  be  crucial  in  [1]  to  establish  connections  between  the  characteris-
tics of the network and the properties of the population composed of
theoretical machines. Formally:

Definition 1. Let G  (, ℰ) be an MAG, where ℰ is the set of existing
composite edges of the MAG and  is a class of sets, each of which is
an aspect. Each aspect σ ∈  is a finite set, and the number of aspects
p   is called the order of G. By an immediate convention, we call
an MAG with only one aspect a first-order MAG, an MAG with two
aspects  a  second-order  MAG  and  so  on.  Each  composite  edge  (or
arrow)  e ∈ ℰ  may  be  denoted  by  an  ordered  2p-tuple

a1, … , ap, b1, … , bp,  where  ai, bi  are  elements  of  the  ith  aspect

with 1 ≤ i ≤ p  . 

G denotes the class of aspects of G and ℰG denotes the com-

posite  edge  set  of  G.  We  denote  the  ith  aspect  of  G  as  G[i].  So,

G[i]  denotes  the  number  of  elements  in  G[i].  In  order  to

match the classical graph case, we adopt the convention of calling the
elements of the first aspect of an MAG vertices. Therefore, we denote

the set G1 of elements of the first aspect of an MAG G as VG.

Thus, a vertex should not be confused with a composite vertex. 
Note that the terms vertex and node may be employed interchange-

ably in this paper. However, we choose to use the term node preferen-
tially in the context of networks, where nodes may realize operations
or computations or would have some kind of agency, like in real net-
works or algorithmic networks. Thus, we choose to use the term ver-
tex preferentially in the mathematical context of graph theory. 

Second, we define a population  as an ordered sequence (in which

repetitions  are  allowed)  o1, …, oi, …, o,  where  X  is  the  support

set of the population and fo is a labeling surjective function 

fo :   o1, … , oi, … , o → X ⊆ L

oi ↦ fo(oi)  w
,

where L is the language on which the chosen theoretical machine U is
running.  Each  member  of  this  population  may  receive  inputs  and
return  outputs  through  communication  channels.  A  communication
channel between a pair of elements from  is defined in ℰ by an edge
(whether directed or undirected) linking this pair of nodes/programs.

Third, we define function b as follows:
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Definition 2. Let 

b : Y ⊆ G → X ⊆ Pr()

a ↦ b(a)  pr

be a function that maps a subspace of aspects Y  in  into a subspace
of properties X in the set of properties Pr() of the respective popula-
tion.  In  addition,  there  is  a  bijective  function  fV  such  that,  for  every

v, x ∈ Y ⊆ G with bv, x  oi, bY-1(x) ∈ X,

fV : VG →   oi fo(oi)  w ∈ L

v ↦ fV(v)  oi

where v is a vertex (or node) and oi is an element of sequence .

Busy Beaver Imitation Game2.2

In [1], we have narrowed our theoretical approach by defining a class

of algorithmic networks BBN, f, t, τ, j—also denoted by a triplet as

Gt, BB(N), bj—in  which  their  populations  BB(N)  and  graphs

Gt ∈ f, t, τ have determined properties.

As  defined  in  Section  2.1,  each  element  of  the  population  corre-
sponds one-to-one to a node/vertex in Gt, and each time instant in Gt

is  mapped  to  a  cycle  (or  communication  round).  These  mappings  are
defined by the function bj. 

The population BB(N) is composed of randomly generated Turing

machines  (or  randomly  generated  self-delimiting  programs),  which
are  represented  in  a  self-delimiting  universal  programming  language
LU.  This  population  is  synchronous  with  respect  to  halting  cycles.

That  is,  at  the  end  of  a  cycle  (or  communication  round,  as  in  dis-
tributed  computing),  every  node  returns  its  outputs  at  the  same  time.
In  addition,  nodes  that  do  not  halt  in  a  cycle  always  return  as  final
output the lowest fitness, that is, the integer value 0. Here, a straight-
forward  interpretation  is  that  nodes  that  eventually  do  not  halt  in  a
cycle  are  “killed,”  so  that  their  final  output  has  the  “worst”  fitness.
Thus,  these  nodes  are  programs  that  ultimately  run  on  an  oracle
Turing  machine  (or  a  hypercomputable  system)  U′—this  requirement
is  also  analogous  to  the  one  in  [14,  26,  27],  which  deals  with  a  sole
program  at  a  time  and  not  with  a  population  of  them.  However,  the
oracle  is  only  necessary  to  deal  with  the  non-halting  computations.
That  is,  U′

 behaves  like  a  universal  Turing  machine  U,  except  that  it
returns zero whenever a nonhalting computation occurs. 

In addition, the networked population BB(N) follows an imitation-

of-the-fittest  protocol  (IFP),  diffusing  the  information  of  the  fittest
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randomly generated node (i.e., the randomly generated node that par-
tially  outputs  the  largest  integer  in  cycle  1).  As  in  [11,  14,  26,  28],
note that we still use the busy beaver function as our fitness function.
Therefore, the largest integer directly represents the fittest final output

of  a  node.  Every  node  in  BBN, f, t, τ, j  obeys  the  IFP,  in  which

after the first cycle (i.e., after the first round of partial outputs) every
node  only  imitates  the  neighbor  that  has  partially  output  the  largest
integer,  repeating  this  value  as  its  own  partial  output  in  the  next
cycle.  Thus,  the  main  idea  defining  the  IFP  is  a  procedure  in  which
each  node  oi  compares  its  neighbors’  partial  output  (i.e.,  the  integer

they  have  calculated  in  the  respective  cycle)  and  runs  the  program  of
the neighbor that has output the largest integer if and only if this inte-
ger is larger than the one that the very node oi has output. 

Since BBN, f, t, τ, j is playing the busy beaver game [1] on a net-

work while limited to simple imitation performed by a randomly gen-
erated  population  of  programs,  we  say  it  is  playing  a  BBIG.  A
(network)  busy  beaver  game  is  a  game  in  which  each  player  is  trying
to  calculate  the  largest  integer—as  established  as  our  measure  of  fit-
ness  or  payoff  (see  [1,  14,  27]  for  more  discussion)—it  can  by  using
the  information  shared  by  its  neighbors.  Thus,  the  BBIG  is  a  special
case of the busy beaver game. In Figure 1, we give an illustrative sim-
ple  example  of  the  IFP  being  applied  to  a  static  network  with  seven
nodes  in  four  time  instants.  Note  that  static  networks  are  a  special
case of a TVG. See also Section 3. 

(a) Spreading at t0. (b) Spreading at t1.

(c) Spreading at t2. (d) Spreading at t3.

Figure 1. The spreading of the largest integer.  

Emergent Open-Endedness from Contagion of the Fittest 375

https://doi.org/10.25088/ComplexSystems.27.4.369

https://doi.org/10.25088/ComplexSystems.27.4.369


Graphs Gt  V, ℰ, T  are  time-varying  graphs  (TVGs)  as  defined

in  [24,  29,  30].  These  are  a  special  case  of  second-order  MAGs
that  have  only  one  additional  aspect  relative  to  variation  over

time  with  respect  to  the  set  of  nodes/vertices.  Therefore, VGt  is  the

set  of  nodes, TGt  is  the  set  of  time  instants,  and

ℰ ⊆ VGt⨯TGt⨯VGt⨯TGt  is  the  set  of  edges.  Formally,  we

define a family of graphs Gt that share a common property: 

Definition 3. Let 

f, t, τ j =

Gt
i  VGt and this size is unique in  f, t, τ

f(i, t, τ) is well defined

where

f : ℕ*⨯X ⊆ TGt⨯Y ⊆ 0, 1 → ℕ

(x, t, τ) ↦ y

be  a  family  of  unique-sized  time-varying  graphs  that  share  function
f(i, t, τ), where i is the number of vertices, as a common property.

In  summary,  BBN, f, t, τ, j  is  a  synchronous  algorithmic  net-

work  populated  by  N  randomly  generated  nodes  such  that,  after  the
first  cycle  (or  arbitrary  c0  cycles),  it  starts  a  diffusion  process  of  the

biggest  partial  output  (given  at  the  end  of  the  first  cycle)  determined
by network Gt: at the first time instant, each node may receive a net-

work input w, which is given to every node in the network, and runs
separately  (i.e.,  not  networked),  returning  its  respective  first  partial
output; then, the plain diffusion of large integers starts as determined
by  the  IFP  through  the  respective  dynamical  network  Gt.  At  the  last

time instant, contagion stops and one cycle (or more) is spent in order
to make each node return a final output. Formally: 

Definition 4. Let 

BBN, f, t, τ, j  Gt, BB(N), bj

be  an  algorithmic  network  where  f  is  an  arbitrary  well-defined  func-
tion such that

f : ℕ*⨯X ⊆ TGt⨯Y ⊆ 0, 1 → ℕ

(x, t, τ) ↦ y

and  Gt ∈ f, t, τ,  VGt  N,  TGt > 0,  and  there  are  arbitrarily

chosen  c0, n ∈ ℕ  where  c0 + TGt + 1 ≤ n ∈ ℕ  such  that  bj  is  an
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injective function, where

bj : VGt⨯TGt → BB(N)⨯ℕ
1

n

(v, tc-1) ↦ bj(v, tc-1)  (oi, c0 + c).

Since c0  and n are arbitrarily chosen, we can choose to make them

as  small  as  possible  in  order  to  minimize  the  number  of  cycles,  for

example, c0  0 and n  TGt + 1.

Evolutionary Open-Endedness versus Emergent Open-
Endedness

2.3

Although  investigating  evolutionary  open-endedness  (EOE)  is  not  in
the  scope  of  the  present  paper,  we  mention  in  this  section  some  gen-
eral  concepts  from  the  literature  in  order  to  differentiate  and  empha-
size  its  relation  to  emergent  open-endedness,  as  introduced  in  [1].
EOE is also known as open-ended evolution (OEE), and although the
term  “open-ended  evolution”  is  more  frequently  used  in  our  refer-
ences,  we  choose  to  employ  the  term  “evolutionary  open-endedness”
with  the  purpose  of  drawing  a  comparison  with  emergent  open-
endedness.

In a general sense, as pointed out in [14, 31], the concept of EOE is
commonly understood in evolutionary computation, evolutionary biol-
ogy  or  complex  systems  as  the  inherent  potential  of  an  evolutionary
process  to  trigger  an  endless  increase  of  distinct  systemic  behavior
capabilities.  For  example,  within  the  context  of  dynamical  systems,
EOE is shown to be strictly related to innovation and unbounded evo-
lution in state trajectories or rule trajectories [31]. However, since we
are  studying  networked  computable  systems  in  this  paper,  we  choose
to  follow  an  algorithmic  and  universal  approach  to  EOE  in  which
(absolute  or  relative)  undecidability  and  irreducibility  play  a  central
role [14, 27, 32–34]. In particular, it is shown in [14] and experimen-
tally  supported  in  [34]  that  the  model  introduced  in  [32,  33]  satisfies
the  requirements  for  strong  EOE.  In  [27],  it  is  shown  that  this
approach  can  be  relativized,  so  that  it  also  holds  for  subrecursive
classes of computable systems. Thus, in the specific case of evolution-
ary  computation  and  strong  EOE  in  general  computable  systems,
open-endedness is strictly related to an endless increase of complexity
or irreducible information. 

Following  this  algorithmic  approach  to  EOE,  we  have  found
in  [1]—and  we  also  show  in  this  paper—that  open-endedness  may
also  emerge  as  a  phenomenon  that  is  related  to,  but  different  from
EOE:  instead  of  achieving  an  unbounded  quantity  of  algorithmic
complexity over time (e.g., after successive mutations), an unbounded
quantity  of  emergent  algorithmic  complexity  is  achieved  as  the
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population/network  size  increases  indefinitely.  And  since  it  is  a  prop-
erty  that  emerges  depending  on  the  number  of  parts  of  a  system—
only  when  these  nodes  are  interacting  somehow  (e.g.,  exchanging
information)—this additional irreducible information becomes by defi-
nition an emergent systemic property [15, 16, 35]. 

We  follow  a  consensual  abstract  notion  of  emergence  [15,  16,
35–37]  as  a  systemic  feature  or  property  that  appears  only  when  the
system  is  analyzed  (theoretically  or  empirically)  as  a  “whole.”  Thus,
the algorithmic complexity (i.e., an irreducible number of bits of infor-
mation)  of  a  node/program’s  final  output  when  networked  minus  the
algorithmic  complexity  of  a  node/program’s  final  output  when  iso-
lated  formally  defines  an  irreducible  quantity  of  information  that
emerges  with  respect  to  a  node/program  that  belongs  to  an  algorith-
mic  network.  We  call  it  the  emergent  algorithmic  complexity  (EAC)
of  a  node/program.  The  reader  may  also  find  more  discussion  on
emergence and open-endedness in [1]. 

Formally, we have defined average emergent open-endedness in the
context of general algorithmic networks as follows:

Definition 5. We say an algorithmic network  with a population of N
nodes  has  the  property  of  average  (local)  emergent  open-endedness
(AEOE) for a given network input w in c cycles if and only if 

lim
N→∞

E Δ
iso

net
A(oi, c)  ∞.

And  in  the  case  of  an  algorithmic  network    G, , b  with

randomly generated nodes, we call this property expected (local) emer-
gent open-endedness. We have that 

E Δ
iso

net
A(oi, c) 

b

∑
oi∈

Δ
iso

netb

A(oi,c)

N

b

denotes  the  average  emergent  algorithmic  complexity  of  a  node/pro-

gram  (AEAC)  in  an  algorithmic  network    G, , b  with  network

input w. In addition:

Definition 6. The  emergent  algorithmic  complexity  (EAC)  of  a  node/
program oi  in c cycles is given in an algorithmic network that always

produces partial and final outputs by 

Δ
iso

net(b)
A(oi, c)  AUpnet

b (oi, c) -A(U(piso(oi, c))

where:

fo(oi) ∈ L.1.
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pnet
b

 is the program that computes cycle per cycle the partial outputs of

oi  when  networked  assuming  the  position  v,  where  bv, x  oi, b(x),

in  the  graph  G  in  the  specified  number  of  cycles  c  with  network  input

w. Thus, pnet
b (oi, c) represents the program that returns the final output

of  oi  when  networked  assuming  the  position  v,  where

bv, x  oi, b(x),  in  the  graph  G  in  the  specified  number  of  cycles  c

with network input w. 

2.

piso  is the program that computes cycle per cycle the partial outputs of

oi  when isolated in the specified number of cycles c with network input

w. Thus, piso(oi, c) represents the program that returns the final output

of  oi  when  isolated  in  the  specified  number  of  cycles  c  with  network

input w.

3.

The  (prefix)  algorithmic  complexity  (Kolmogorov  complexity,  pro-
gram-size  complexity  or  Solomonoff–Komogorov–Chaitin  com-
plexity) of a string w ∈ LU, denoted here by A(w), is the length of the

shortest  program  w* ∈ LU  such  that  U(w*)  w.  LU  is  an  arbitrarily

chosen  binary  self-delimiting  universal  programming  language  for  a
universal  Turing  machine  U.  See  [1]  for  more  discussion  on  this
notation.

Background Results2.4

In  [1],  we  presented  our  main  theorem  proving  that  there  is  a  lower
bound  for  the  expected  emergent  algorithmic  complexity  in  algorith-
mic networks BB  such that it depends on how much larger the aver-

age  diffusion  density  (in  a  given  time  interval)  τE(max)N, f, t, τ
t
t′

  is,

compared  to  the  cycle-bounded  conditional  halting  probability
Ω(w, c(x)). Formally:

Theorem 1. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.

Let  BBN, f, t, τ, j  Gt, BB(N), bj  be  well  defined.  Let  t0 ≤ t ≤

t′ ≤ tT(Gt)-1
. Let 

c : ℕ → ℭBB

x ↦ c(x)  y

be a total computable function where c(x) ≥ c0 + t
′ + 1. Then, we will

have that:

lim
N→∞

EBB(N, f, t, τ) Δ
iso

net
A(oi, c(x)) ≥

lim
N→∞

τE(max)N, f, t, τ
t
t′
-Ω(w, c(x)) lg(N) -

Ω(w, c(x)) lg(x) - 2Ω(w, c(x)) lglg(x) -A(w) -C5,

where lg(x) denotes the binary logarithm log2(x). 
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This  lower  bound  also  depends  on  the  parameter  for  which  one  is
calculating  the  number  of  node  cycles.  In  fact,  we  have  proved  that
our results hold even in the case of spending a computably larger num-
ber  of  node  cycles  compared  to  x.  Furthermore,  we  have  proved  that
there  are  asymptotic  conditions  such  that  they  ensure  that  there  is  a
central  time  tcen1

(c)  to  trigger  expected  emergent  open-endedness.

Formally:

Theorem 2. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.  If  there  is

0 ≤ z0 ≤ TGt - 1 and ϵ, ϵ2 > 0 such that 

z0 + fN, tz0
, τ + 2  O

NC

lg(N)

where

0 < C 

τE(max)N, f, tz0
, τ tz0

tz0+fN, tz0
, τ

-Ωw, c0 + z0 + fN, tz0
, τ + 2 - ϵ 

Ωw, c0 + z0 + fN, tz0
, τ + 2 ≤

1

ϵ2

,

then, for every nondecreasing total computable function 

c : ℕ → CBB

x ↦ c(x)  y
,

where tz0
, tz0+fN, tz0

, τ ∈ TGt and 

cz0 + fN, tz0
, τ + 2 ≥ c0 + z0 + fN, tz0

, τ + 2,

such that

BBN, f, tz0
, τ, j  Gt, BB(N), bj

is well defined, we will have that there is tcen1
(c) such that

tcen1
(c) ≤ tz0

.

In  particular,  we  will  prove  a  modified  version  of  Theorem  2  in
Section  4  for  our  new  model  of  information-sharing  protocol.  See
Section 3. 

Our  proofs  follow  mainly  from  information  theory,  computability
theory  and  graph  theory.  Therefore,  we  have  shown  that  there  are
topological  conditions  (e.g.,  the  small-diameter  phenomenon)  that
trigger a phase transition in which eventually the algorithmic network
BB  begins  to  produce  an  unlimited  number  of  bits  of  average  local

emergent  algorithmic  complexity/information.  These  conditions  come
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from a positive tradeoff between the average diffusion density and the
number of cycles (i.e., communication rounds). In particular, the diffu-
sion  power  of  a  dynamic  (or  static)  network  has  proved  to  be
paramount  to  the  purpose  of  optimizing  the  average  fitness/payoff  of
an  algorithmic  network  that  plays  the  BBIG  in  a  randomly  generated
population of Turing machines. 

Model3.

In  this  section,  we  present  the  model  of  algorithmic  networks  on
which  we  prove  lemmas  and  theorems.  The  main  idea  that  defines
these  algorithmic  networks  BB

′
 is  to  formalize  an  SIS  contagion

scheme.  This  is  a  modification  of  the  algorithmic  networks  BB  that

only  follow  a  plain  IFP  with  a  plain  spreading  of  the  largest  integer,
as  described  in  Section  2.2.  Thus,  in  this  section,  we  focus  on  a
description  of  the  new  model.  For  extended  formal  definitions  and
extensive discussions, see [22].

Now we will define a class of algorithmic networks BB
′ N, f, t, j—

which  can  also  be  denoted  as  the  triplet  Gt, BB
′ (N), bj—in  which

their  populations  BB
′ (N)  and  graphs  Gt ∈ SISf, t  have  determined

properties.  The  terms  in  parentheses  determine  the  full  characteriza-
tion  of  the  algorithmic  network.  N  is  the  network/population  size,
that is, the number of nodes, and j is the index of the arbitrarily cho-
sen  function  bj.  Terms  f  and  t  are  intrinsically  defined  by  the  family

of graphs SISf, t, as we will explain later. Each element of the popu-

lation  corresponds  one-to-one  to  a  node/vertex  in  Gt,  and  each  time

instant in Gt  is mapped one-to-one to a cyle of the population. These

mappings are also defined by the function bj. 

The population BB
′ (N) is composed of randomly generated Turing

machines  (or  randomly  generated  self-delimiting  programs)  that  are
represented  in  a  self-delimiting  universal  programming  language  LU.

The  population  is  also  synchronous  with  respect  to  halting  cycles;
that  is,  at  the  end  of  a  cycle  (or  communication  round,  as  in  dis-
tributed  computing),  every  node  returns  its  partial  and  final  outputs
at  the  same  time.  Nodes  that  do  not  halt  in  a  cycle  always  return  as
final  output  the  lowest  fitness/payoff,  that  is,  the  integer  value  0.
Here, a straightforward interpretation is that nodes that eventually do
not  halt  in  a  cycle  are  “killed,”  so  that  their  final  output  has  the
“worst” fitness/payoff. 

Thus, as presented in [1], these nodes are programs that ultimately
run on an oracle Turing machine (or hypercomputer) U′—this require-
ment  is  also  analogous  to  the  one  presented  in  [26,  28,  32],  which
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deals  with  a  sole  program  at  a  time  and  not  with  a  population  of
them.  The  difference  in  the  present  paper  with  respect  to  [1]  is  that
now the oracle Turing machine also needs access to a randomly gener-
ated number in order to deal with the probabilities ν and δ in the SIS
contagion  scheme  explained  in  the  following.  See  also  [1,  32,  33]  for
a  complete  evolutionary  formalization  of  this  property.  Note  that
now  there  is  a population  of  software,  while  in  [32, 33]  there  is  only
one single organism at a time. 

In  addition,  unlike  the  networked  population  BB(N)  described  in

Section  2.2,  the  networked  population  BB
′ (N)  follows  an  IFP  by  an

SIS contagion scheme (IFPSIS) on the fittest randomly generated node
(i.e.,  the  randomly  generated  node  that  partially  outputs  the  largest
integer  in  cycle  1).  As  in  [11,  14,  26,  28],  note  that  we  still  use  the
busy  beaver  function  as  our  fitness  function.  Therefore,  the  largest
integer  directly  represents  the  fittest  final  output  of  a  node.  Thus,
every  node  still  obeys  the  IFP  as  in  [1],  in  which  after  the  first  cycle
(i.e., after the first round of partial outputs), every node only imitates
the  neighbor  that  has  partially  output  the  largest  integer,  repeating
this value as its own partial output in the next cycle. However, the dif-
ference  now  is  that,  if  a  node  has  not  been  infected  by  the  fittest
randomly  generated  node  and  one  of  its  neighbors  sends  the  largest
integer,  then  the  node  obeys  the  IFP  with  probability  ν.  Otherwise,
the  node  just  continues  to  be  susceptible  with  probability  1 - ν.
Another difference is that, if a node got infected by the largest integer,
then it may be cured, returning 0 as partial output, with probability δ.
Otherwise, it remains infected with probability 1 - δ. 

In  Figure  2,  we  give  an  illustrative  simplified  example  of  the  IFP
under  an  SIS  contagion  model.  This  is  a  static  network  with  six  time
instants  and  seven  nodes.  Note  that  the  initial  stage  Figure  2(a)  at
time  instant  t0  is  exactly  the  same  as  in  Figure  1.  At  the  first  time

interval  Figure  2(b),  almost  the  same  spreading  occurs  as  in  Figure�1,
but  only  from  the  fittest  node  and  under  probability  ν.  After  time
instant  t1,  the  infection  dynamics  occurs  totally  differently  from  that

described in Figure 1. It is now a contagion of the fittest under an SIS
model.  In  particular,  taking  into  account  only  these  six  time  instants,
one may see that the prevalence becomes stationary at time instant t4. 

Graphs  Gt  V, ℰ, T  are  TVGs  as  defined  in  [1,  24,  29,  30].

These  are  a  special  case  of  MAGs  that  have  only  one  additional
aspect  relative  to  variation  over  time  with  respect  to  the  set  of

nodes/vertices. Therefore, VGt is the set of nodes, TGt is the set of

time instants and 

ℰ ⊆ VGt⨯TGt⨯VGt⨯TGt

382 F. S. Abrahão, K. Wehmuth and A. Ziviani

Complex Systems, 27 © 2018



(a) Infection of the

fittest neighbor at t0.

(b) Infection of the

fittest neighbor at t1.

(c) Spreading at t2. (d) Infection of the

fittest neighbor at t3.

(e) Infection of the

fittest neighbor at t4.

(f) Infection of the

fittest neighbor at t5.

Figure 2. Example of the IFP under an SIS contagion model.  

is the set of edges regarding Gt. We assume that an undirected graph

(or  MAG)  is  a  special  case  of  a  directed  graph  (or  MAG)  in  which
each  edge  represents  two  opposing  arrows.  In  addition,  a  static  net-
work  Gs  is  also  a  special  case  of  MAGs,  which  is  obtained  from  col-

lapsing  all  the  aspects  in    into  just  one  aspect  (i.e.,  into  the  set  of
vertices/nodes  V)  where  the  set  of  edges  of  this  MAG  is  invariant
under  any  relation  other  than  the  set  of  vertices/nodes—see  also  sub-
determination  in  [24].  Thus,  a  static  network  Gs  is  a  traditional

(directed or undirected) graph G  (V, E) with all relations (e.g., with
respect to time instants or layers) depending only on its set of edges E.
However,  for  present  purposes,  a  TVG  is  sufficient  to  deal  with  the
SIS  model  and  hence,  there  is  only  one  aspect  we  are  collapsing.

Therefore,  we  define  a  static  network  Gs  V, ℰ, T  as  a  TVG  in

which, for every fixed value of ti, tj, tk, th ∈ T,

vi, vj vi, ti, vj, tj ∈ ℰ  vi, vj vi, tk, vj, th ∈ ℰ.
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Inspired  by  the  networks  in  [8–10],  let SISf, t  be  a  family  of

TVGs  in  which  every Gt ∈ SISf, t  achieves  stationary  prevalence ρ

in  a  number  of  time  intervals  Δt
*

 (after  an  arbitrary  time  instant

t ∈ TGt  from  which  contagion  may  have  been  started  in  the  first

place) following the SIS scheme. Formally:

Definition 7. Let 

SIS f, t  Gt i  V Gt and this size is unique in SISf, t

where

f :
ℕ*⨯X ⊆ TGt → ℕ

(x, t) ↦ y

be a family of unique-sized TVGs that depends on the choice of func-
tion f, the time instant t and on the fact that every Gt ∈ SIS  achieves

stationary prevalence ρ in a number of time intervals Δt
*
 (after an arbi-

trary  time  instant  t ∈ TGt)  following  a  susceptible-infected-suscepti-

ble (SIS) contagion scheme.

Thus,  SISf, t  defines  a  family  of  dynamic  networks  [29,  30,  38]

that follows the SIS model. Since we have defined static networks as a

special  case  of  dynamic  networks,  family  SISf, t  can  be  seen  as  a

generalization  of  the  model  presented  in  [8–10]  (see  Definition  8)  in
order  to  encompass  a  broader  class  of  dynamic  networks.  Since
function  f  and  time  instant  t  are  not  specified  in  the  condition  of  the

set  SISf, t,  then  this  family  is  independent  of  the  choice  of  f, t.

However,  the  reader  will  see  that  this  pair  f, t  is  crucial  for  extend-

ing  the  results  in  [1]  in  order  to  build  the  proof  of  Theorem  3  and
Corollary 1. 

In  addition,  we  define  a  family  BAf, t  of  TVGs  in  SIS  that  are

static  networks  following  a  classical  Barabási–Albert  model  [21,  39].
They  have  a  scale-free  distribution  of  connectivities  as  a  consequence
of  an  application  of  preferential  attachment  at  the  addition  of  each
new  node,  which  results  in  a  degree  distribution  in  the  form  of  a
power law 

Pk ~
2m2

k3

as the number of nodes goes to infinity. The finite number of nodes of
each  graph  in  this  family  may  vary  from  1  to  ∞  as  each  new  node  is
added  with  m  edges  linked  to  previous  nodes  i  under  probability
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distribution

Πki 
ki

∑j kj
.

Note  that,  as  shown  in  [8–10],  these  networks  in  BAf, t  are

expected to display a stationary prevalence

ρ ~ exp -
1

mλ

for a large enough network size and for a small enough spreading rate

λ.  If  these  two  conditions  are  met,  then  BAf, t ⊆ SISf, t.  There-

fore, family BAf, t is defined to directly correspond to the networks

presented in [8–10]. Formally:

Definition 8.  We  define  a  family  of  static  networks  analogous  to  the
ones presented in [8–10] as 

BA f, t  Gs i  VGs and the size is unique in BAf, t

where

f : ℕ*⨯X ⊆ TGt → ℕ

(x, t) ↦ y
.

Thus,  BAf, t  is  a  family  of  unique-sized  TVGs  that  are  static  net-

works  following  a  classical  Barabási–Albert  model  [21,  39]  such  that
every  Gs ∈ BA  achieves  stationary  prevalence  ρ  in  a  number  of  time

intervals  Δt
*

 (after  an  arbitrary  time  instant  t ∈ TGt)  following  an

SIS contagion scheme.

In  summary,  BB
′ N, f, t, j  is  a  synchronous  algorithmic  network

populated  by  N  randomly  generated  nodes  such  that,  after  the  first
cycle (or arbitrary c0 cycles), it starts a diffusion process of the biggest

partial  output  (given  at  the  end  of  the  first  cycle)  determined  by  net-

work Gt  that belongs to a family of graphs SISf, t—remember that

each network in SISf, t follows an SIS contagion scheme. Note that

in  our  model,  once  the  first  cycle  is  started,  the  population  remains
fixed.  Thus,  during  the  cycles  (i.e.,  when  the  algorithmic  network  is
running  its  computations)  no  new  node  is  created  and  no  node  is
killed.  At  the  beginning  of  the  first  cycle,  each  node  receives  a  net-
work input w, which is given to every node in the network, and runs
separately  (i.e.,  not  networked),  returning  its  respective  first  partial
output.  At  the  last  time  instant,  contagion  stops  and  one  cycle  (or
more)  is  spent  in  order  to  make  each  node  return  a  final  output.
Formally:
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Definition 9. Let 

BB
′ N, f, t, j  Gt, BB

′ (N), bj

be  an  algorithmic  network  where  f  is  an  arbitrary  well-defined  func-
tion such that

f : N*⨯X ⊆ TGt → ℕ

(x, t) ↦ y ≥ x

and  Gt ∈ SISf, t,  VGt  N,  TGt > 0  and  there  are  arbitrarily

chosen  c0, n ∈ ℕ  where  c0 + TGt + 1 ≤ n ∈ ℕ  such  that  bj  is  an

injective function

bj : VGt⨯TGt → BB
′ (N)⨯ℕ 1

N

(v, tc-1) ↦ bj(v, tc-1)  (oi, c0 + c)

where  population  BB
′ (N)  is  an  ordered  set  of  labels  from  a  sequence

as  in  Section  2.1.  Since  c0  and  n  are  arbitrarily  chosen,  we  can  make

them  as  small  as  possible  in  order  to  minimize  the  number  of  cycles,

for example. That is, c0  0 and n  TGt + 1.

Expected Local Emergent Open-Endedness from a Susceptible-
Infected-Susceptible Model

4.

In this section, we present the central theorem and its two corollaries

with  the  purpose  of  showing  that  BB
′ N, f, t, j  Gt, BB

′ (N), bj  is

an  algorithmic  network  capable  of  exhibiting  expected  (local)  emer-
gent  open-endedness.  We  show  that  it  occurs  under  certain  topologi-
cal  conditions  of  the  graph  Gt  in  which  the  prevalence  (i.e.,  the

average  density  of  infected  nodes)  becomes  stationary  within  a  com-
putably bigger time interval. During these time intervals, the algorith-
mic network is running under the IFP with an SIS contagion scheme.

Moreover,  once  these  topological  properties  are  met,  the  concept
of  central  time  (denoted  as  tcen1

)  to  trigger  expected  emergent  open-

endedness  within  the  minimum  number  of  cycles  becomes  well
defined.  We  define  the  central  time  tcen1

 in  generating  unlimited

expected  emergent  algorithmic  complexity  of  a  node  (i.e.,  expected

local  emergent  algorithmic  complexity)  in  a  network  BB
′ N, f, tz0

, j

during ctcen1
(c) + fN, tcen1

(c) + 1 cycles, where c(x) is a nondecreas-

ing  total  computable  function  and  f  is  an  arbitrary  function,  as  the
minimum time instant t in which the expected local emergent algorith-
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mic  complexity  goes  to  infinity  as N → ∞  after ct + f(N, t) + 1

cycles. Formally:

Definition 10. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.  Let  c(x)

be a nondecreasing total computable function where 

c : ℕ → ℕ*

x ↦ c(x)  y
.

Let  BB
′ N, f, tz, j  Gt, BB

′ (N), bj,  where  0 ≤ z ≤ TGt - 1,  be

well defined, where there is tz0
∈ TGt such that

lim
N→∞

EBB
′ N,f,tz0

 Δ
iso

net
Aoi, cz0 + fN, tz0

 + 2  ∞.

We define the central time tcen1
 in generating unlimited expected emer-

gent  algorithmic  complexity  of  a  node  in  a  network  NBB
′ N, f, tz0

, j

during ctcen1
(c) + fN, tcen1

(c) + 1 cycles as

tcen1
(c)  minti lim

N→∞
EBB

′ (N,f,ti)
Δ
iso

net
Aoi, ci + f(N, ti) + 2  ∞.

Note  that  the  arbitrarily  chosen  function  f  may  not  behave  mono-
tonically with t in general. 

The  expected  local  emergent  algorithmic  complexity  is  defined  in
[1,  11]  (see  also  Section  2.3)  as  the  number  of  extra  bits  of  algorith-
mic  complexity  (or  information)  that  emerges  from  a  direct  compari-
son  of  the  algorithmic  complexity  of  the  final  output  of  a  networked
node  with  the  algorithmic  complexity  of  the  final  output  of  the  iso-
lated (same) node. The term “local” here refers to the emergent algo-
rithmic  complexity  of  a  node.  The  investigation  of  the  emergent
algorithmic  complexity  of  the  population  as  a  whole,  as  also  men-
tioned  in  [1],  is  out  of  our  current  scope.  We  can  call  this  latter  a
global emergent algorithmic complexity. Note that it may behave dif-
ferently  from  the  local  one.  Thus,  we  leave  the  investigation  of
expected global emergent open-endedness for future research. 

As  in  [1],  the  main  idea  behind  the  construction  of  the  proof  of
Theorem 3 comes from combining an estimation of a lower bound for
the  average  algorithmic  complexity  of  a  networked  node  and  an
estimation  of  an  upper  bound  for  the  expected  algorithmic  complex-
ity  of  an  isolated  node.  The  estimation  of  the  latter  comes  from  the
law  of  large  numbers,  Gibb’s  inequality  and  algorithmic  information
theory  applied  on  the  randomly  generated  population  BB

′ (N),  which

is  analogously  the  same  as  BB(N)  in  [1]  for  the  isolated  case.  How-

ever,  now  the  estimation  of  the  former  comes  from  the  very  BBIG
dynamics  in  an  SIS  contagion  scheme.  Thus,  as  presented  in

Emergent Open-Endedness from Contagion of the Fittest 387

https://doi.org/10.25088/ComplexSystems.27.4.369

https://doi.org/10.25088/ComplexSystems.27.4.369


Section�2.3,  calculating  the  former  estimation  minus  the  latter  gives
directly  a  lower  bound  for  the  expected  local  emergent  algorithmic
complexity of a node. 

In  this  section,  we  present  short  proofs  of  Theorem  3  and  Corol-
lary 1. Most of these proof steps are based on a direct analogy to the
proof steps developed in [1], so only in Corollaries 1 and 2 would our
new  model  introduce  new  conceptual  substantial  differences  in  the
mathematical  formal  text.  For  complete  and  self-contained  defini-
tions, lemmas, theorems and corollaries, see [22]. 

Central Time to Trigger Expected Emergent Open-Endedness4.1

Theorem 3. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.  Let  f  be

an arbitrary function where 

f : ℕ*⨯X ⊆ TGt → ℕ

(x, t) ↦ y
.

Let 

c : ℕ → ℭBB

x ↦ c(x)  y
,

where  ℭBB  is  the  set  of  cycles  of  the  population  BB
′ (N),  be  a  total

computable nondecreasing function where 

cz + f(N, tz) + 2 ≥ c0 + z + f(N, tz) + 2

and

cz + f(N, tz) + 2 - c0 - 1 ≤ tT(Gt)-1
.

If there are 0 ≤ z0 ≤ TGt - 1 and ϵ, ϵ2 > 0 such that:

z0 + fN, tz0
 + 2  O

NC

lg(N)

where

0 ≤ C  τE(ρ)N, f, tz0
 tz0

cz0+fN,tz0
+2-c0-1

-Ωw, c0 + z0 + fN, tz0
 + 2 - ϵ 

Ωw, c0 + z0 + fN, tz0
 + 2 ≤

1

ϵ2
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and BB
′ N, f, tz0

, j  Gt, BB
′ (N), bj  is  well  defined,  then  there  is

tcen1
(c) such that

tcen1
(c) ≤ tz0

.

Proof.  This  proof  follows  from  the  six  lemmas,  Theorem  8.1  and
Corollary  8.1.1  in  [1].  First,  replace  algorithmic  network

BBN, f, tz0
, τ, j  Gt, BB(N), bj  and  its  respective  characteristics,

for  example,  population  BB(N)  and  family  of  graphs  f, t, τ,  with

BB
′ N, f, tz0

, j  Gt, BB
′ (N), bj,  BB

′ (N),  SISf, t,  and  others  in

the six lemmas, Theorem 8.1 and Corollary 8.1.1 in [1]. Note that in
the proof of the sixth lemma, the average (singleton) diffusion density
τE(max)  is  replaced  with  the  prevalence  τE(ρ).  Also  note  that  in

Corollary  8.1.1  in  [1],  the  last  time  instant  tz+f(N,tz,τ)
 is  replaced  with

cz0 + fN, tz0
 + 2 - c0 - 1.  Then,  the  proof  of  Theorem  3  follows

directly  analogously  to  Theorem  8.2  in  [1]  (see  also  Theorem  2  in

Section 2.4). □ 

Expected Emergent Open-Endedness from a Stationary 

Prevalence
4.2

Corollary 1. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.  Let

BB
′ N, f, tz0

, j  Gt, BB
′ (N), bj be well defined. Let

c : ℕ → CBB

x ↦ c(x)  y

be a total computable nondecreasing function where

cz0 + fN, tz0
 + 2 ≥ c0 + z0 + fN, tz0

 + 2

and

cz0 + fN, tz0
 + 2 - c0 - 1 ≤ tT(Gt)-1

.

If 

fN, tz0
  Olg(N)

where  every  Gs ∈ BAf, tz0
  achieves  stationary  prevalence  ρ  in  a

number of time intervals

Δtz0
* ≤ cz0 + fN, tz0

 + 2 - c0 - 1
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after time instant tz0
 and

ρ ~ exp -
1

mλ
> Ωw, c0 + z0 + fN, tz0

 + 2,

then there is tcen1
(c) such that

tcen1
(c) ≤ tz0

.

Proof.  The  proof  follows  directly  from  Theorem  3  and  the  definition

of  the  algorithmic  network  BB
′ N, f, tz0

, j  Gt, BB
′ (N), bj  by  not-

ing that: 

z0 + fN, tz0
 + 2  z0 +Olg(N) + 2  Olg(N)

and that there is ϵ > 0 such that

-1 - ϵ

ϵ2

< 0 < C 

1
e(1/mλ) -Ωw, c0 + z0 + fN, tz0

 + 2 - ϵ

Ωw, c0 + z0 + fN, tz0
 + 2



τE(ρ)N, f, tz0
 tz0

cz0+fN, tz0
+2-c0-1

-Ωw, c0 + z0 + fN, tz0
 + 2 - ϵ 

Ωw, c0 + z0 + fN, tz0
 + 2 ≤

1 -Ωw, c0 + z0 + fN, tz0
 + 2 - ϵ

Ωw, c0 + z0 + fN, tz0
 + 2

≤
1

ϵ2

.□

Expected Emergent Open-Endedness from a Scale-Free 

Algorithmic Network
4.3

Corollary 2. Let  w ∈ LU  be  a  network  input.  Let  0 < N ∈ ℕ.  Let

BB
′ N, f, tz0

, j  Gs, BB
′ (N), bj  be  well  defined  for  every

Gs ∈ BAf, t. Let 

c : ℕ → CBB

x ↦ c(x)  y

be a total computable nondecreasing function where

cz0 + fN, tz0
 + 2 ≥ c0 + z0 + fN, tz0

 + 2

and

cz0 + fN, tz0
 + 2 - c0 - 1 ≤ tT(Gt)-1

.
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If

fN, tz0
  Olg(N)

where  every  Gt ∈ SISf, tz0
  achieves  stationary  prevalence  ρ  in  a

number of time intervals

Δtz0
* ≤ cz0 + fN, tz0

 + 2 - c0 - 1

after  time  instant  tz0
,  then  for  a  small  enough  value  of  λ 

ν

δ
,  there

are tcen1
(c) and a big enough value of m such that

t0  tcen1
(c) ≤ tz0

.

Proof.  Since,  by  supposition,  BB
′ N, f, tz0

, j  Gs, BB
′ (N), bj  and

Gs ∈ BAf, t, then we will have from [8–10] that 

BA ⊆ SIS

and

ρ ~ exp -
1

mλ

for  sufficiently  large  populations  and  for  a  small  enough  value  of  λ.
Thus,  as  Theorem  3  and  Corollary  1  hold  where  the  population  size
tends to ∞, we will have that condition

ρ ~ exp -
1

mλ
> Ωw, c0 + z0 + fN, tz0

 + 2

in Corollary 1 holds for a big enough value of m given a small enough
value  of  λ.  Thus,  from  Corollary  1,  we  will  have  that  there  is  tcen1

(c)

such that 

tcen1
(c) ≤ tz0

.

And, since every Gs is a static network, then

t0  tcen1
(c) ≤ tz0

.□

Conclusion 5.

In  this  paper,  we  have  presented  a  model  for  networked  computable
systems  in  order  to  investigate  the  problem  of  emergence  of  algorith-
mic  complexity.  In  particular,  we  have  mathematically  investigated
conditions  that  enable  the  triggering  of  emergent  open-endedness,
that  is,  the  conditions  that  trigger  an  unlimited  increase  of  emergent
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complexity  as  the  population  size  grows  toward  infinity.  We  have
shown  that  these  conditions  are  met  by  dynamic  networks  (or  static
networks) that exhibit a stationary prevalence of infected nodes under
a  susceptible-infected-susceptible  (SIS)  model  for  contagion  of  the
fittest  randomly  generated  node.  As  shown  in  [1],  such  research  may
be  crucial  for  optimizing  communication  protocols  in  artificial  net-
works  of  randomly  generated  systems  that  seek  a  better  solution  to  a
problem.

Our model for networked computable systems is based on that pre-
viously  established  in  [1].  Nodes  are  randomly  generated  Turing
machines  that  can  send  and  receive  information  (partial  outputs)  as
each  node  runs  its  computations  until  returning  a  final  output,  and
edges  (or  arrows)  are  communication  channels.  Thus,  as  defined  in
[1], these algorithmic networks are composed of a synchronous popu-
lation  that  follows  a  protocol  of  imitation  of  the  “best  information”
shared by a neighbor. However, the present paper introduced a varia-
tion  on  this  previous  model  such  that  this  protocol  is  now  followed
under an SIS model [8–10]. 

In this paper, we have shown that, for big enough arbitrary values
of  m ∈ ℕ  compared  to  the  effective  spreading  rate  λ,  if  the  time  for

achieving  a  stationary  prevalence  of  infected  nodes  ρ ~ exp-1 mλ

is  upper  bounded  by  a  computably  big  enough  function  of  Olog(N)

(e.g.,  as  a  function  of  the  expected  diameter  or  average  shortest  path
length  in  scale-free  networks  or  in  classical  random  networks
[40,  41]),  then  a  lower  bound  for  the  expected  emergent  algorithmic
complexity/information  of  a  node  goes  to  infinity  as  the  network/
population  size  N  goes  to  infinity.  That  is,  the  average  local  irre-
ducible  information  that  emerges  when  nodes  are  networked  (from  a
comparison  with  the  isolated  case)  is  expected  to  always  increase  for
large  enough  populations  of  randomly  generated  Turing  machines.
Thus,  these  dynamic  (or  static)  algorithmic  networks  with  stationary
prevalence cross the phase that we call expected local emergent open-
endedness [1] for sufficiently large randomly generated populations. 

In addition, since our main result only depends on assuming a sta-

tionary prevalence in the form of ρ ~ exp-1 mλ, we have shown as

a  corollary  from  our  theorems  and  from  [8–10]  that  under  the  same
conditions on m and λ, the same lower bound holds for static algorith-
mic  networks  with  a  scale-free  degree  distribution  in  the  form  of  a

power  law  Pk ~ 2m2  k3  [21].  Therefore,  synchronous  algorithmic

networks  with  a  randomly  generated  population  of  computable  sys-
tems  and  with  a  topology  and  a  contagion-of-the-fittest  model  suffi-
ciently close to the ones studied in [8–10] are also expected to display
expected local emergent open-endedness.
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These  results  suggest  that  contagion  schemes  like  the  SIS  model,
which  have  been  shown  to  be  important  for  studying  epidemic  and
disease  spreading  and  computer  virus  infections,  may  be  also  related
to  the  emergence  of  complexity  or  irreducible  information  [1,  11]  in
networked  systems.  In  this  way,  the  present  work  and  the  investiga-
tion on networked computable systems using algorithmic networks in
[1,  11,  12]  are  able  to  formally  define  sound  and  crucial  properties
and  to  prove  fruitful  theorems  in  order  to  grasp  fundamental  aspects
and  limitations  of  the  theories.  Such  a  theoretical  approach  to  study-
ing  emergence  of  complexity  or  information  in  networked  com-
putable  systems  may  help  to  understand  and  establish  foundational
properties  on  why  an  information  dynamics  within  a  system  display-
ing  synergistic  or  emergent  behavior  might  be  advantageous  from  a
computational,  evolutionary  or  game-theoretical  point  of  view.  Thus,
as it is our goal to suggest in the present paper, these phenomena may
be  also  related  to  infection  dynamics  [8–10]  by  considering  an
opposed  but  analogous  perspective:  contagion  of  the  fittest  (or  the
best solution for a problem) element in a population instead of conta-
gion of pathological or undesirable elements. 

Regarding  only  the  lower  bound  for  the  expected  emergent  algo-
rithmic complexity of a node, our main results show that a version of
the  halting  probability  for  synchronous  algorithmic  networks  may
work like an asymptotic threshold for triggering expected local emer-
gent open-endedness through a stationary prevalence. For example, in
the  case  of  the  static  algorithmic  network  with  a  Barabási–Albert
scale-free  degree  distribution  [21],  we  have  shown  that  arbitrarily
small values of the spreading rate can be overcome by big enough val-
ues of m (i.e., the number of new edges per node addition) in order to
surpass this “threshold,” triggering the expected local emergent open-
endedness.  However,  since  we  have  only  investigated  a  lower  bound,
this  halting  probability  may  not  actually  be  the  threshold  for  the
actual  expected  emergent  algorithmic  complexity  of  a  node.  Thus,  in
order to study the existence of such a threshold, we suggest for future
research  the  investigation  of  an  upper  bound  and  an  asymptotically
tight bound for the expected local emergent algorithmic complexity. 
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